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We revisit the chiral properties of nucleon interpolating currents, and show that of the two leading order
currents j1 and j2, only two linear combinations j1 � j2 transform covariantly under the anomalous Uð1ÞA
symmetry. As a result, calculations of quantities which vanish by symmetry in the chiral limit may produce
unphysical results if carried out with different linear combinations of the currents. This includes
observables such as electric dipole moments, induced by the quantum chromodynamics (QCD) parameter
θ, and the θ-dependence of the nucleon mass. For completeness, we also exhibit the leading order results
for nucleon electric dipole moments (dn;p) induced by θ, and the nucleon magnetic moments (μn;p), when
calculated using QCD sum rules for both the covariant choices of the nucleon interpolating current. The
results in each channel, conveniently expressed as the ratios, dn;p=μn;p, are numerically consistent, and
reflect the required physical dependence on θ.

DOI: 10.1103/PhysRevD.110.034028

I. INTRODUCTION

Novel sources of CP-violation continue to be a primary
target of searches for physics beyond the Standard Model,
due to their potential role in clarifying the puzzle of the
baryon asymmetry in the universe. Among many CP-odd

sources, the θ-term in QCD, L ¼ θGg2s
32π2

Ga
μνG̃

aμν, could
contribute to a number of observables, but requires a fully
nonperturbative analysis. Odd powers of θG break P and
CP in flavor-diagonal channels. The experimentally veri-
fied absence of such observables way below the natural
level implied by QCD has created a puzzle, known as the
strong CP-problem [1,2].
While the nonperturbative treatment of QCD in the

hadronic regime is of course nontrivial, an important
guide in elucidating the nature of θ-dependent observables
is the strong violation of chiral symmetry in the nonet
of pseudoscalar Nambu-Goldstone mesons, mη0 ≫ mπ;η8 .

The nonvanishing ofmη0 in the chiral limit,mu;d;s → 0, was
identified in [3] as the necessary and sufficient condition
for θ-dependence of physical observables. The dependence
of the vacuum energy on θ (or equivalently the axion mass,
if one promotes θG to a dynamical variable), the θ-induced
CP-odd pion-nucleon coupling, and the electric dipole
moments (EDMs) of nucleons, all rely on a finite m0

η in the
chiral limit.
Among the nonperturbative approaches to θ-dependent

observables, lattice QCD promises to provide a systematic
approach to the computation of the neutron EDM, dnðθÞ,
but results thus far are inconclusive and the program is
ongoing; for a partial list of relevant papers, see e.g.
Refs. [4–14]. Approaches using chiral perturbation theory
show relatively stable answers for the leading IR-singular
terms [8,15–18]. The QCD sum rule method, originating in
Ref. [19], is conceptually much closer to lattice QCD, and
has also been employed to calculate dnðθÞ [20–23], with
results consistent with chiral estimates, but slightly smaller
numerically. Nucleon magnetic moments have also been
found within this method to be in reasonable agreement
with observations [24].
In this paper, our focus will be on a careful analysis of

the chiral properties of the nucleon interpolating currents
used in both lattice QCD and QCD sum rules, and to
reassess the sum rules calculations of dnðθÞ, as a concrete
means of testing the symmetry-based constraints inferred
from more general considerations. In this context, the sum
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rule approach, based on calculations of the operator product
expansion (OPE) for hadronic current correlators in an
external θ background, offers the advantage that many sym-
metries of the problem, such as chiral symmetry, and the
chiral re-phasing invariance, can be made manifest at the
quark-gluon level. These symmetries will allow us to deter-
mine physical choices for nucleon interpolating currents
that ensure the required scaling of observables in the
chiral limit.
To be concrete, recall that the physical θ angle,

θ̄ ¼ θG þ θm, also includes the phase θm ¼ ArgDetMq of
the quark mass matrix Mq, and thus any physical depend-
ence on θ necessarily vanishes in the chiral limit. This is
conveniently observed within QCD itself by using the
anomalous Uð1ÞA symmetry to rotate away θG, so that the
physical phase is captured entirely by a complex singlet
mass term. Restricting to the case of two light flavors, this
term has the form

Lm� ¼ −m�θ̄ðūiγ5uþ d̄iγ5dÞ þ
1

2
m�θ̄2ðūuþ d̄dÞ þ � � � ;

ð1Þ
where m� ¼ mumd=ðmu þmdÞ. It follows that any physi-
cal dependence on θ must vanish as m� → 0. This is
immediately apparent in CP-even observables such as the
topological susceptibility d2Evac=dθ̄2 ¼−m�h0jūuþ d̄dj0i,
and the θ-dependence of the nucleon mass d2mN=dθ̄2 ¼
−m�hNjūuþ d̄djNi.
CP-odd observables of considerable phenomenological

interest first arise at linear order in θ, such as nucleon
EDMs and CP-odd pion nucleon couplings, and must also
vanish in the m� → 0 limit. Our focus in this paper will be
on the properties of nucleon interpolating currents that are
required to ensure this behavior. For example, we can write
the most general interpolating current for neutrons that just
involves the leading quark fields and no derivatives as
follows,

jβnðxÞ ¼ j1ðxÞ þ βj2ðxÞ; ð2Þ

where β is a numerical coefficient, and the two currents
with the quantum numbers of the neutron are given by
j1ðxÞ ¼ 2ϵijkðdTi Cγ5ujÞdk and j2ðxÞ ¼ 2ϵijkðdTi CujÞγ5dk
(see Sec. II for further details). The notation in (2) reflects
the fact that only j1 is nonzero in the nonrelativistic limit,
and thus the value of β is apparently unimportant for
generic observables in the neutron rest frame. However, the
nonrelativistic limit for nucleons, encapsulated by the naive
quark model, may not always be a good starting point for
real life QCD, which corresponds to the limit of nearly
massless quarks. This distinction proves to be important
for CP-odd observables that are intrinsically sensitive to
chirality-violating parameters such asm�, and the choice of

interpolating current deserves further scrutiny. Indeed, we
will show below that only the choices β ¼ �1, namely

j�n ðxÞ ¼ j1ðxÞ � j2ðxÞ; ð3Þ

are fully consistent when computing the leading depend-
ence of observables on quantities, such as θ, that trans-
form under the anomalous Uð1ÞA symmetry. Other choices
allow for an unphysical dependence of observables in the
chiral limit. For example, we show that away from these
two special points, nucleon current correlators depend
explicitly on θ in the m� → 0 limit, in contradiction
with (1).
Subtleties in the treatment of nucleon correlators in the

chiral limit are well known, but are only important when
studying chirally sensitive observables such as those
dependent on θ. It was highlighted in [20] that in the
presence of CP-violation, the coupling of the physical
nucleon state (represented by a spinor v) to the nucleon
interpolator acquires an additional unphysical phase α,
where h0jjnjNi ¼ λeiαnγ5=2v. This phase can mix magnetic
and electric dipole structures, and complicates the extrac-
tion of physical observables from two-point correlation
functions. As we discuss below, one can consider special
tensor structures from which the phase αn decouples, such
as fF · σγ5; =pg as considered in [20], or explicitly calculate
the phase as advocated for the specific approaches to
computing dnðθÞ in lattice QCD [7]. The lack of chiral
invariance for the generic nucleon interpolators also man-
ifests in nontrivial mixing with CP-conjugate currents
(denoted i1 and i2 in [20]), dependent on the unphysical
combination θG − θm orthogonal to θ̄. In this work, we will
further argue that the chiral noninvariance of jβn leads in fact
to a generic and unphysical dependence on θ in the chiral
limit unless β ¼ �1.
We then proceed to systematically analyze the leading

order results for the magnetic and electric dipole moments
of nucleons using QCD sum rules for both consistent
choices of the current interpolator j�n , extending earlier
work [20,23]. We report new results for the β ¼ −1 choice
finding that dnðθÞ is consistent, both in sign and magnitude,
with earlier estimates of dnðθÞ using β ¼ þ1 [20–23].
This analysis also allows us to directly relate dn;p to the
nucleon magnetic dipole moment (MDM) μn;p. From
general principles, it is clear that one should expect the
scaling dn ∝ ðθ̄m�=mnÞ × μn, and determining a concrete
coefficient in this relation is another goal of this paper.
Since μn;p are reproduced rather reliably in the QCD SR
approach [24], and recently on the lattice [25], this may be
considered as a useful/natural normalization for the EDMs.
The remaining sections of this paper are organized as

follows. In Sec. II, we define the nucleon interpolating
currents, and illustrate their transformation under Uð1ÞA in
a general basis. We find that only the combinations β ¼ �1
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transform covariantly. In Sec. III, we consider the chiral
m� → 0 limit, and demonstrate the unphysical dependence
of correlation functions on θ in the chiral limit unless
β ¼ �1. In Sec. IV, we generalize earlier calculations of the
nucleon EDMs using QCD sum rules for both covariant
choices of the interpolating current j�n;p, and use alternate
channels sensitive to the magnetic moment to express
EDMs in the ratio dn;p=μn;p. We conclude by discussing the
implications of our results for calculations of θ-dependent
observables, e.g. using the j1 current, in Sec. V.

II. NUCLEON CURRENTS AND CHIRALITY

In general, at lowest dimension, there are two indepen-
dent nucleon interpolating currents (after applying the Fierz
identity) that have the same quantum numbers as the
nucleons

ja1 ¼ 2ϵijkðdTi Cγ5ujÞqak; ð4Þ

ja2 ¼ 2ϵijkðdTi CujÞγ5qak; ð5Þ

where i, j, k are the color indices and C is the charge
conjugate matrix that satisfies ðγμÞTC ¼ −Cγμ. The index
“a” represents the isospin and qa ¼ ðu; dÞT . We note that
dTi Cγ5uj ¼ uTj Cγ5di and d

T
i Cuj ¼ uTj Cdi, and hence we can

rewrite the currents as

ja1 ¼ ϵijkðqbTi ϵbcCγ5qcjÞqak; ð6Þ

ja2 ¼ ϵijkðqbTi ϵbcCqcjÞγ5qak; ð7Þ

where ϵab is the anti-symmetric tensor with ϵ12 ¼ þ1 and
hence ϵ12 ¼ −1. This form makes it explicit that the
diquark products inside the brackets are invariant under
both chiral and vector SUð2Þ transformations. This
immediately leads to the conclusion that all linear combi-
nations of the currents transform covariantly under the
SUð2Þ chiral and vector rotation.
Parametrizing a general linear combination of the two

interpolation functions as

jβa ¼ ja1 þ βja2; ð8Þ

we see that for the special choices of β ¼ �1,

jþa ¼ 2ϵijk
�
−ðqTiLCqjLÞqakL þ ðqTiRCqjRÞqakR

�
; ð9Þ

j−a ¼ 2ϵijk
�ðqTiRCqjRÞqakL − ðqTiLCqjLÞqakR

�
; ð10Þ

where we suppress the isospin indices of the quark
products, and the subscripts “L=R” indicate the projections
onto left-/right-handed components. This tells us that j�a are
covariant under the anomalous Uð1ÞA transformation
qi → eiθAγ5qi, while the current jβa is not covariant under

the Uð1ÞA rotation for β ≠ �1.1 In general, the current
transforms as

jβa →
1þ β

2
e3iθAγ5jþa þ 1 − β

2
e−iθAγ5j−a : ð11Þ

Note, in particular, that the current j0a which contains the
unique nonrelativistic structure, and so is widely used in
lattice QCD computations, does not transform covariantly
under the Uð1ÞA rotation.
We anticipate that this noncovariance for β ≠ �1 may

complicate the extraction of physical quantities from
nucleon correlators that depend sensitively on the realiza-
tion of the anomalous chiral symmetry in QCD. To see this,
recall that current correlators may be computed by intro-
ducing an external fermionic source term ηa, with

Lη ¼ Lþ η̄aj
β
a þ ðH:c:Þ; ð12Þ

where L is the original QCD Lagrangian (including
CP-odd θ phases). The nucleon current correlator then
follows from a second-order variation of action with respect
to ηa. If j

β
a transforms covariantly under a Uð1ÞA rotation,

i.e. if β ¼ �1, we can preserve the anomalous Uð1ÞA
symmetry by re-absorbing the chiral phases in the
source ηa. In other words, we can treat ηa as a spurion
to render the Lagrangian, including the source term,
invariant. On the other hand, if jβa does not transform
covariantly under the Uð1ÞA rotation, we cannot keep the
whole Lagrangian, including the source term, invariant
under the Uð1ÞA rotation.2 As a result, it is not guaranteed
that the final correlators maintain the anomalous Uð1ÞA
symmetry of the original theory, for example being inde-
pendent of the unphysical phase combination θG − θm. Nor
does it guarantee the restoration of θ̄-independence in the
chiralm� → 0 limit.3 This consideration naturally invites us
to use the covariant currents j�a .
In the rest of this paper, we compute the nucleon

correlators explicitly and confirm our general argument
above; the unphysical phase θG − θm in general shows up

1Here we call a current “covariant” if its transformation can be
expressed as multiplying only a single chiral phase. In this sense,
the currents β ≠ �1, including the one with β ¼ 0, are not
covariant since they are composed of two parts obtaining different
chiral phases, 3θA and −θA. This notion of the (non)covariance is
essential for our discussion in the following.

2This naturally requires us to treat the external sources that
couple to the j�a components inside jβa separately. In other words,
we are required to introduce two distinct sources, so that
Lη ¼ Lþ η̄�a j�a þ ðH:c:Þ, to maintain the invariance. It then
follows that the correlators are defined by the chiral covariant
currents j�a .

3The approach introduced in [20,21] to account for leading-
order mixing with CP-conjugate currents i1 ¼ γ5j2 and i2 ¼ γ5j1
removes dependence on θG − θm, but may still induce an
unphysical θ̄ dependence in the chiral limit unless β ¼ �1.

CHIRAL PROPERTIES OF THE NUCLEON INTERPOLATING … PHYS. REV. D 110, 034028 (2024)

034028-3



in the correlators of jβa with β ≠ �1, while only the physical
combination m�θ̄ appears in higher-point correlators of j�a
(after properly subtracting the chiral phase of the two-point
function; see Sec. IV).

III. NUCLEON CORRELATORS
IN THE CHIRAL LIMIT

In Sec. II, we have seen that the lowest dimension
nucleon interpolation currents are in general not covariant
under the Uð1ÞA transformation, with the exception of two
linear combinations, j�a with β ¼ �1. In this section, we
begin our investigation of the consequence of this non-
covariance by taking the chiral limit, mq → 0, with m�=mq

fixed. In this limit, from the general properties of QCD, all
dependence on θ should disappear from physical quantities,
as it can be rotated away by theUð1ÞA transformation of the
quarks. Despite this general expectation, as we see below,
unphysical dependence on θ remains in the correlators
of the currents for general choices of β. The unphysical
dependence disappears only for β ¼ �1, indicating that
only these choices of currents produce physical results.
In the chiral limit, we take the QCD Lagrangian as

L ¼ q̄i =Dq −
1

4
Ga

μνGaμν þ θGαs
8π

Ga
μνG̃

aμν; ð13Þ

where G̃aμν ¼ ϵμνρσGa
ρσ=2 with ϵ0123 ¼ þ1. We define the

electromagnetic part of the covariant derivative as Dμ ¼
∂μ þ ieqAμ with eu ¼ 2e=3 and ed ¼ −e=3. We have e > 0

with this convention. We define the nucleon correlator as

Πβ
nðpÞ ¼ i

Z
d4x eip·xh0jT fjβnðxÞ; j̄βnð0Þgj0i: ð14Þ

In the following, we compute correlator structures corre-
sponding to the nucleon mass and EDM in the presence
of θ, employing the operator product expansion (OPE) with
large p2 < 0, as the first crucial step in constructing the
QCD sum rule.

A. Nucleon mass

We begin our discussion with correlators that are often
used for the calculation of the nucleon mass. We first note
that, as argued above, we can rotate away the gluonic θ term
via a Uð1ÞA transformation, q → eiθGm�γ5=2mqq.4 This indi-
cates that we can write down the (color-diagonal) quark
propagator in the presence of θG as

SqðθGÞ ¼ eiθGγ5=4SqðθG ¼ 0ÞeiθGγ5=4: ð15Þ

The massless quark propagator is given at leading order by

SqðθG ¼ 0Þ ¼ i=x
2π2x4

−
hq̄qi
12

: ð16Þ

Here hq̄qi is short-hand notation for the vacuum conden-
sate of quarks, h0jq̄qj0i. We then insert this expression into
the nucleon correlator, simplify the Dirac matrix structures,
and perform the Fourier transformation to momentum
space. Correlators with an odd number of gamma-matrices,
=p in this particular case, are explicitly θ-independent at
leading order. However, chirality flipping Dirac structures,
proportional to Dirac matrices 1 or γ5, acquire θ-dependence.
The leading order OPE terms are linear in the quark
condensate and are given by

Πβ
nj1;γ5 ¼

hq̄qi
16π2

p2 log

�
−
p2

μ2

�

× ð1 − βÞ�6ð1þ βÞeiθGγ5=2 þ ð1 − βÞe−θGγ5=2�:
ð17Þ

This is a generalization of a well-known result [26,27] for
an arbitrary θ angle. A dual description of the same physics
is achieved via a sum over nucleon states, including the
excited states, ∝

P
i λ

2
i e

iαiγ5ð=p −miÞ−1eiαiγ5 . We see that, if
the currents are covariant, β ¼ �1, we have only one chiral
phase.5 We can then interpret the phase as the chiral phase
of the nucleon states αi that needs to be subtracted to obtain
a physical result. In equivalent language, we can reabsorb
this phase into the definition of the source ηa so that the
nucleon mass correlator does not depend on θ.
On the other hand, if the currents are not covariant,

β ≠ �1, the correlator contains two chiral phases, e�iθGγ5=2,
and we cannot absorb both phases in the overall chiral
phase of the nucleon state. We may choose the phase so that
it absorbs the term linear in θG, but the term quadratic in θG
remains. This would lead to the erroneous conclusion that
the nucleon mass should acquire θ2-dependent contribu-
tions in the m� → 0 limit, which is entirely an artifact of
using noncovariant currents. For instance, for β ¼ 0, the
correlator can be expressed as

Π0
nj1;γ5 ∝ e5iγ5θG=28

�
1 −

3

49
θ2G þ � � �

�
e5iγ5θG=28; ð18Þ

where the dots indicate higher order terms in θG. We may
absorb the phase e5iγ5θG=28 into the nucleon state, but the
terms in the bracket, including the term of order θ2G, will
still contribute to the chirality flipping structure. Therefore,

4For brevity, in the rest of this subsection, we choosemu ¼ md
and thus m�=mq ¼ 1=2 so that the chiral rotations of u, d quarks
are pure Uð1ÞA transformations.

5The correlator vanishes at this order for β ¼ þ1. One can
repeat the computation at Oðhq̄qi3Þ and obtain the same con-
clusion that the correlator with β ¼ þ1 contains only one chiral
phase.
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if we use this expression to estimate the nucleon mass, we
obtain an unphysical dependence on θ even in the chiral
limit. This is inconsistent with the general constraint
following from Eq. (1), indicating that the calculation
based on the noncovariant currents, in general, is flawed. At
a technical level, this occurs because the nucleon currents
away from β ¼ �1 contain “built-in” flips of the quark
chiralities qL ↔ qR that persist in the chiral limit.

B. Nucleon EDM

In the above subsection, we have seen that the nucleon
mass term acquires unphysical dependence on θ in the
chiral limit for general β ≠ �1. This raises concerns
about the use of e.g. the “nonrelativistic” β ¼ 0 current
for calculation of any θ-dependent nucleon observable. We
should anticipate similar issues for CP-odd operators such
as nucleon EDMs that are intrinsically sensitive to the
θ-phases, and we indeed confirm this expectation below.
In the following, we again focus on the chirality flipping
part, as used in lattice QCD calculations of the neutron
EDM [4,5,7–14].
In the chiral limit, with a background electromagnetic

field, the quark propagator is given by

Sq ¼
i=x

2π2x4
−
hq̄qi
12

�
1þ iγ5θG

m�
mq

�

−
χ̃q
24

F · σ

�
1þ iγ5θG

m�
mq

�
; ð19Þ

where we have restored the dependence on m�=mq for
clarity, F · σ ¼ Fμνσ

μν, and the vacuum condensate in the
presence of the external electromagnetic field is para-
metrized as hq̄σμνqiF ¼ χqFμνhq̄qi ¼ χ̃qFμν. The quantity
χq is the so-called magnetic susceptibility of the QCD
vacuum introduced in [24], while χ̃q is introduced here for
brevity. By focusing on the chirality flipping structures
relevant to the sum rule [see the discussion around Eq. (45)
below] and retaining only the leading singular part, the
correlator in the external field is given by

Πβ
n
��
f=p;f=p;F·σ=2gg ¼ −

ð1 − βÞ2χ̃u
96π2

log

�
−
p2

μ2

�
; ð20Þ

Πβ
n
��
f=p;f=p;iF·σγ5=2gg ¼ −θG

ð1− βÞ2χ̃u
96π2

m�
mu

log

�
−
p2

μ2

�
; ð21Þ

Notice that the dependence on the unphysical phase θ does
not disappear in this expression.
In the context of lattice computations of the neutron

EDM, Refs. [7,10] have proposed canceling the spurious
phase by subtracting the corresponding phase computed
via the two-point function (representing the chiral phase of
the nucleon state), αβn, from the phase of the three-point
function. The chirality flipping part of the two-point

function was computed in (17), and upon linearization in
θ takes the following form,

Πβ
n
��
1;γ5

¼ hq̄qi
16π2

p2 log
�
−
p2

μ2

�
ð1− βÞ

×

�
7þ 5βþ iγ5θG

�
6ð1þ βÞm�

md
− ð1− βÞm�

mu

��
;

ð22Þ
where we retain only the leading-order terms with the
logarithm. From this expression, we can read off the chiral
phase, acting on the nucleon mass operator, as

αβn ¼
�
6ð1þ βÞ
7þ 5β

m�
md

−
1 − β

7þ 5β

m�
mu

�
θG: ð23Þ

Following [7,10], we may subtract this chiral phase from
the three-point function to obtain

Πβ
n
��
f=p;f=p;iF·σγ5=2gg þ αβn × Πβ

n
��
f=p;f=p;F·σ=2gg

¼ −
χ̃uθG
16π2

log

�
−
p2

μ2

�
×
ð1 − βÞ2ð1þ βÞ

7þ 5β
; ð24Þ

where we note the minus sign arising from commuting γ5
with =p, resulting in þαβn instead of −αβn in the first line.
As one can observe, the removal of the unphysical phase

does not occur in the EDM correlator for a generic choice β.
Since physical quantities must be independent of θ in the
chiral limit, it appears that the procedure outlined in [7,10]
requires the use of β ¼ �1 currents to ensure the cancela-
tion of spurious θ-dependence in nucleon EDMs.

IV. EDM AND MDM SUM RULES FOR β= � 1

Thus far we have seen that calculations based on the non-
covariant currents generically induce spurious θ depend-
ence even in the chiral limit. As discussed in Sec. II, the
interpolation functions with β ¼ �1 are covariant under
theUð1ÞA transformation. This property allows us to define
two distinct procedures to obtain correlators invariant under
the Uð1ÞA transformation and thus free from unphysical θ
dependence:

(i) Use the chirality conserving structure (with an odd
number of γμ) in the correlator.

(ii) Use the chirality flipping structure (with an even
number of γμ) in the correlator, and subtract the
chiral phase computed from the two-point correlator.

The former procedure was originally proposed in [20], as
dependence on the chiral phase θA automatically cancels
due to the gamma-matrix identity:

eiαγ5ðodd number of γμÞeiαγ5 ¼ odd number of γμ: ð25Þ
As a result, the EDM correlator structure proportional to
fF · σγ5; =pg is guaranteed to depend only on the physical
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combination m�θ̄, and unphysical phases do not make an
appearance for β ¼ �1. This method makes it possible to
calculate EDM correlators without the need to consider the
two-point functions and rotation angles αn. For a generic
choice of β, Ref. [20] suggested to add the specific
admixture of CP-rotated currents ði1; i2Þ that restore the
invariance under the Uð1ÞA rotation in this channel and
guarantee m�θ̄-proportionality of the OPE.
The second procedure (using the channel with an even

number of γμ) has been applied in lattice QCD computa-
tions of the neutron EDM [7,10], with the β ¼ 0 current
choice. We would like to follow this path and calculate
EDMs in the channel with an even number of γ matrices,
but with the important observation that we must use the
covariant currents β ¼ �1 to ensure physical dependence
on θ̄. Since the currents are covariant, the two- and three-
point functions obtain the same chiral phase after perform-
ing the chiral rotation of the quarks, and hence their
difference is guaranteed to be independent of the Uð1ÞA
rotation angle. This, again, leads to the dependence only on
the physical combination m�θ̄.
In the following, we confirm that the neutron EDM

indeed depends only on the physical combination m�θ̄ for
both procedures, based on the QCD sum rule technique.
Moreover, we observe that results obtained this way are
consistent between the two different channels, using tensor
structures with odd and even numbers of γ matrices.
We focus on the terms up to linear order in mq and the

θ-angles, and begin from the QCD Lagrangian

L ¼ q̄½i =D −mq�q −
1

4
Ga

μνGaμν − θmm�q̄iγ5q

þ θGαs
8π

Ga
μνG̃

aμν: ð26Þ

Following the QCD sum rule approach, we compute the
correlator of the nucleon interpolation current, given by

Π�
n ðpÞ ¼ i

Z
d4x eip·xh0jT fj�n ðxÞ; j̄�n ð0Þgj0i; ð27Þ

based on the OPE (the relevant diagrams are shown in
Fig. 1), and compare it with the phenomenological expres-
sion to extract the nucleon MDM and EDM. To avoid
sensitivity to IR divergences, it is convenient to use the
first procedure (using chirality conserving structures) for
β ¼ þ1, and the second procedure (using chirality flipping
structures) for β ¼ −1, respectively. We discuss each of
them in the following subsections.

A. Sum rules for β= + 1

We begin with the QCD sum rules of the neutron MDM
and EDM for β ¼ þ1 and focus on the chirality conserving
part, as in [20,21,23]. Since the current with β ¼ þ1 is
covariant, the chiral phase automatically cancels when we

focus on the chirality conserving structure, leading to the
dependence only on the physical combination m�θ̄, as
shown in the following.
In this case, Eq. (9) tells us that only the chirality

conserving part of the quark propagator contributes to the
correlator, and hence we can take

Sq ¼
i=x

2π2x4
−
ieq
8π2

xμ

x2
F̃μνγ

νγ5 −
iχ̃q
24

m�θ̄xμFμνγ
νγ5; ð28Þ

where we keep only the leading order terms contributing to
the MDM and EDM. Note that only the physical combi-
nation m�θ̄ appears in this expression since the chirality
conserving part does not depend on the spurious chiral
phase. As explained in Appendix A 1, the relevant part of
the correlator can be written as follows,

Πþ
n ¼ 4ed − eu

64π4
p2 log

�
−
p2

μ2

�
f=p; F · σg

−
4χ̃d − χ̃u
16π2

m�θ̄ log
�
−
p2

μ2

�
f=p; iF · σγ5g; ð29Þ

where we retain only the leading parts relevant for a Borel
transformation. The transformed correlator is given by

B½Πþ
n �f=p;F·σg ¼ −

4ed − eu
64π4

M2; ð30Þ

B½Πþ
n �f=p;iF·σγ5g ¼

4ed − eu
16π2

m�θ̄χhq̄qi; ð31Þ

where the subscripts denote the corresponding Dirac struc-
tures and we assume χq ¼ eqχ. Remarkably, both the MDM
and EDM depend on the linear combination, 4ed − eu,
that appears in the constituent quark model.6 On the
phenomenological side of QCD sum rules, we represent

FIG. 1. Diagrams that induce the nucleon MDM and EDM in
the nucleon correlator (27) with an external electromagnetic field.
For β ¼ þ1, the first diagram generates the MDM while the
second diagram induces the EDM at the leading order. For β ¼ −1,
the MDM and EDM receive contributions from both diagrams.
The dependence on θG arises from the vacuum condensate as
indicated, while the dependence on θm comes from the mass
dependence of the quark propagator and the equation of motion.

6This property of the EDM correlator was noted in [20], while
here we note that the same property holds for the MDM.
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the correlator, with a sum over hadron resonances and a
continuum. For our leading order estimates below, we can
neglect the continuum and single pole contributions,
concentrating only on the leading nucleon double pole
terms associated with the neutron ground state

Πþ
n ¼ −

jλnj2mn

2ðp2 −m2
nÞ2

�
μnf=p; F · σg þ dnf=p; iF · σγ5g

�
:

ð32Þ

This expression includes both the MDM and EDM
terms, and λn denotes the coupling to the neutron state,
h0jj�n jni ¼ λnv, up to an overall phase [20] which as noted
above cancels in the chirality conserving channel. After the
Borel transformation we obtain,

B½Πþ
n �f=p;F·σg ¼ −

jλnj2mn

2M4
μne−m

2
n=M2

; ð33Þ

B½Πþ
n �f=p;iF·σγ5g ¼ −

jλnj2mn

2M4
dne−m

2
n=M2

: ð34Þ

Taking the ratio to eliminate λn, we obtain

dn ¼ −μnm�θ̄
4π2χhq̄qi

M2
: ð35Þ

As advertised, this result indeed depends only on the
physical combination m�θ̄, as required.
In writing the estimate in the form (35), relating dn to μn,

one should also make sure that the estimate for the MDM is
reasonably close to its measured value. Normalizing the
MDM expression (33) using the sum rule for =p to eliminate
λn, one obtains the following expressions:

μn ¼
2

mn
×

�
4

3
ed −

1

3
eu

�
;

μn
μp

¼ −
2

3
: ð36Þ

The observed ratio of MDM is, famously, in agreement
with the −2=3 value that follows from the constituent
quark model and is also obtained using QCD sum rules
at β ¼ þ1.
The magnitudes of μn;p at leading order are within 50%

of the observed values. For example, for the neutron the
prediction is −8=3 ¼ −2.67 in units of the nuclear Bohr
magneton, while the observed value is −1.91. The estimate
(36) can be improved further upon the inclusion of the
subleading OPE terms in both the MDM and =p channels.
The subleading terms include gluon and quark condensate
corrections. While the quark condensate corrections explic-
itly vanish for β ¼ þ1, the inclusion of the gluon correc-
tions for the =p (see [27] and references therein) and MDM
structures, calculated here, lead to the result

μn
e=ð2mnÞ

¼ −
8

3
×
1þ b

24M4

1þ b
4M4

≃ −2.05 at M ¼ mn: ð37Þ

Here b parametrizes the strength of the gluon vacuum
condensate, b≡ ð2πÞ2hðαs=πÞGa

μνGa
μνi ∼ 1.2 GeV4. This

result is indeed remarkably close to the observed value
of the MDM, and the corrections do not spoil the −2=3
prediction for μn=μp. Therefore, we can be confident that
the β ¼ þ1 sum rules perform at least as well as the β ¼ −1
sum rules [24] in the MDM channel.
To obtain a numerical estimate for the EDM, we re-write

the above result in terms of the pion mass,

F2
πm2

π ¼ −ðmu þmdÞhq̄qi; ð38Þ

with Fπ ≃ 93 MeV as this reduces the dependence on the
normalization scale,

dn ¼ μnθ̄m2
π ×

mumd

ðmu þmdÞ2
4π2χF2

π

M2
: ð39Þ

Taking the Borel normalization scale to be M ¼ mn, with
mu=md ¼ 0.48, leads to the result

dnjβ¼þ1 ≃ 2 × 10−16 e cm × θ̄ ×

� jχj
6 GeV−2

�
: ð40Þ

Although this is a leading order estimate, it is con-
sistent with the result obtained in [20] which accounts
for higher-order terms. Notably, its value is sensitive to the
magnetic susceptibility χ of the QCD vacuum. Initial
estimates [24,28] put the value of χ close to −6 GeV−2

(−5.7� 0.6 GeV−2 [28]), while later work based on
considerations of the chiral anomaly in asymmetric kin-
ematics and the pion pole dominance [29], estimates this
quantity to be χ ∼ −Nc=ð4π2F2

πÞ ≃ −9 GeV−2. One should
also note that available lattice studies [30] have found this
quantity to be a factor of 2-to-3 smaller than Refs. [24,28],
albeit with a higher normalization scale. Therefore, we
conclude that the value of χ still provides the leading source
of numerical uncertainty.
Finally, for completeness, we also note that the proton

EDM in this approach is obtained by replacing n → p and
u ↔ d, and is numerically dpðθ̄Þ ¼ ð−3=2Þ × dnðθ̄Þ.

B. Sum rules for β= − 1
We next consider the sum rules for the neutron MDM

and EDM using β ¼ −1 and focusing on the chirality
flipping structure. Following Ioffe [26], this is the most
widely used current in the QCD SR literature, including the
MDM analysis of Ref. [24]. However, the EDM has not
previously been computed using this channel, or with this
choice of current. In this approach, the unphysical chiral
phase does not automatically cancel in the three-point
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function (that depends on Fμν), but can be subtracted by
computing it directly from the two-point function (that does
not depend on Fμν). Since j−a is covariant under the Uð1ÞA
transformation, this subtraction procedure [7,10] defines a
quantity that is invariant under the Uð1ÞA transformation,
leading to dependence only on the physical combina-
tion m�θ̄.
The relevant part of the quark propagator is given by

Sq ¼
i=x

2π2x4
−

mq

4π2x2

�
1 − iγ5θm

m�
mq

�

−
hq̄qi
12

�
1þ iγ5θG

m�
mq

�
−
ieq
8π2

xμ

x2
F̃μνγ

νγ5

−
χ̃q
24

F · σ

�
1þ iγ5θG

m�
mq

�

þ eqmq

32π2
log ð−μ2IRx2ÞF · σ

�
1 − iγ5θm

m�
mq

�
: ð41Þ

Notice that for the final term, the propagator perturbed
by both mq and Fμν, is sufficiently infrared-singular to
necessitate the introduction of the corresponding cutoff μIR.
As described above, we first compute the chiral phase of the
two-point function (see Appendix A 2), given by

Π−
n j1;γ5 ¼

hq̄qi
4π2

�
1 − iγ5θG

m�
mu

�
p2 log

�
−
p2

μ2

�

−
mu

32π4

�
1þ iγ5θm

m�
mu

�
p4 log

�
−
p2

μ2

�
; ð42Þ

where the subscript denotes the Dirac structures we focus
on. By performing the Borel transformation, we obtain

B½Π−
n �1;γ5 ¼ −

hq̄qiM2

4π2

�
1 − iγ5θG

m�
mu

�

þmuM4

16π4

�
1þ iγ5θm

m�
mu

�
: ð43Þ

From this expression, we extract the chiral phase α−n as

α−n ¼ −
m�
mu

θG −
m�M2

4π2hq̄qi θ̄: ð44Þ

Note that the first term depends on both the physical
and unphysical combinations of the phases, 2θG ¼
θ̄ þ ðθG − θmÞ.
To compute the external field dependent three-point

function, we note that the correlator on the phenomeno-
logical side of the sum rule takes the form

=pF · σ =pþm2
nF · σ ¼ 1

2
f=p; f=p; F · σgg − ðp2 −m2

nÞF · σ;

ð45Þ

for the MDM, and F · σ is replaced by iF · σγ5 for the
EDM. Therefore, to focus on the double-pole contributions,
we consider the Dirac structures f=p; f=p; F · σ=2gg for
the MDM and f=p; f=p; iF · σγ5=2gg for the EDM, respec-
tively [24]. We denote the former structure as “μ” and the
latter as “d̃” for brevity, with the tilde indicating that the
latter quantity is computed before subtracting the chiral
phase. As explained in Appendix A 2, these structures are
given by

Π−
n

��
μ ¼ −

χ̃u
24π2

log

�
−
p2

μ2

�

þ mu

32π4

�
euIðp2Þ þ ed log

�
−
p2

μ2

��
; ð46Þ

for the MDM, and

Π−
n

��
d̃ ¼ −

χ̃u
24π2

m�θG
mu

log

�
−
p2

μ2

�

−
m�θm
32π4

�
euIðp2Þ þ ed log

�
−
p2

μ2

��
; ð47Þ

for the EDM (before the chiral phase subtraction), where
Iðp2Þ is a function that encodes both UV and IR diver-
gences, given explicitly as Iðp2; ϵIR; ϵUVÞ in [31]. Here we
only require its Borel transform, given by

B½Iðp2Þ� ¼ log

�
M2

μ2IR

�
: ð48Þ

We then obtain

B½Π−
n �μ ¼

χ̃u
24π2

þ eumu

32π4

�
log

�
M2

μ2IR

�
−
ed
eu

�
; ð49Þ

B½Π−
n �d̃ ¼

χ̃u
24π2

m�
mu

θG −
eum�θm
32π4

�
log

�
M2

μ2IR

�
−
ed
eu

�
: ð50Þ

Although the second term in Eq. (49) is subdominant for
the nucleon MDM, it is important to obtain the physical
combination, m�θ̄, for the nucleon EDM after subtracting
the chiral phase. Also, we distinguish eu log ðM2=μ2IRÞ and
ed since they depend on different charges.
By subtracting the chiral phase α−n from the three-point

functions, we obtain

B½Π−
n �d ≡B½Π−

n �d̃ þ α−n ×B½Π−
n �μ

¼ −
�
χuM2

96π4
þ eu
32π4

�
log

�
M2

μ2IR

�
−
ed
eu

��
m�θ̄; ð51Þ

where we again note the minus sign arising from commut-
ing γ5 with =p, resulting in þα−n instead of −α−n in the first
line. Notice that this now depends only on the physical
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combination, m�θ̄, as expected. On the phenomenological
side of the sum rule, we have

Π−
n ¼ −

jλnj2
4ðp2 −m2

nÞ2
f=p; f=p; F · σðμn þ iγ5dnÞgg; ð52Þ

for the MDM and EDM parts, where it is understood that
this correlator holds after rotating away the unphysical
chiral phase. Therefore we obtain our final result, after
reexpressing jλnj2 via the sum rule for the MDM,

dn ¼ −μnm�θ̄
�

M2

4π2hq̄qi þ
3

4π2χhq̄qi
�
log

�
M2

μ2IR

�
−
ed
eu

��
;

ð53Þ

where we denoted χu ¼ euχ.
We note the following qualitative features of this result
(i) As stated above, we see that the use of the covariant

β ¼ −1 current automatically leads to the correct
dependence of EDM on m�θ̄.

(ii) The M2=ð4π2hq̄qiÞ term in (53) results from the
extraction of the α−n phase, and interferes destruc-
tively with the remaining terms. Using the leading
order sum rule for the nucleon mass, mnM2 ¼
−8π2hq̄qi, known as the Ioffe formula approxima-
tion, this term can be rewritten as −2=mn.

(iii) Dependence on the infrared regulator μIR means that
the β ¼ −1 result (53) is less precise than for
β ¼ þ1 due to the breakdown of the OPE. In
particular, it is doubtful that using the scale sepa-
ration one can calculate next-to-leading order cor-
rections to (53) without encountering powerlike
sensitivity to infrared scales.

(iv) The factor of m� in the numerator and hq̄qi in the
denominator form a combination that is far more
sensitive to the normalization scale than the β ¼ þ1
result in Eq. (39).

With the caveats above, one can still make a parametric
estimate of the EDM, by tentatively taking M ∼ 1 GeV,
μIR ∼ 0.3 GeV, and hq̄qi ≃ −ð0.225 GeVÞ3. Depending on
the assumed value for χ, that now enters in the denominator,
numerical values for the EDM are in the range

dnjβ¼−1 ∼ ð0.5–1.5Þ × 10−16 e cm × θ̄: ð54Þ

This result for the EDM indicates that we obtain the same
sign for both β ¼ þ1 and β ¼ −1 channels. This sign is
also consistent with the chiral calculation, assuming the
dominance of the chirally enhanced log mπ contributions.
The upper range of (54) is for smaller values of
χ ∼ −3 GeV−2, at which point the β ¼ þ1 and β ¼ −1
values for the EDM are approximately the same, and about
two times smaller than chiral estimates for the log mπ

contributions.

Finally, the proton EDM for β ¼ −1 is again obtained by
replacing n → p and u ↔ d, and is numerically dpðθ̄Þ∼
−ð2.5–4Þ × dnðθ̄Þ, where the range is mainly driven by the
uncertainty in χ.

V. DISCUSSION

The physical hadronic effects induced by the QCD vacuum
angle θ̄ are subtle and depend sensitively on quantities that
break chiral symmetry. Indeed, any matrix elements that
depend on θ̄ also depend on mq, rendering the quantitative
impact at the per mille level when the quark mass is properly
normalized on the hadronic mass, m�=mn ∼Oð10−3Þ. This
property follows directly from the QCD Lagrangian and the
action of the anomalous Uð1ÞA symmetry, but its imple-
mentation within modern methods that address hadronic/
nucleon physics is far from straightforward.
Among a multitude of leading dimension nucleon

interpolating currents jβa parametrized by the angle β, only
the choices β ¼ �1 correspond to currents that transform
covariantly under chiral rotations, i.e. preserving the same
structure of the current, and acquiring an overall eiγ5×phase

phase. Importantly, one can then show that correlators of
the corresponding currents Π�

n have the correct chiral
properties and depend only on the physical combination
m�θ̄ for m� ≪ mn, with θG þ θm ¼ θ̄.
Conversely, we exhibited problematic features of corre-

lators computed using other choices of currents, and in
particular the β ¼ 0 choice often used in lattice QCD
computations. The leading order OPE terms, that were
calculated both for the two- and three-point functions,
retain their θ dependence even in the chiral limit, mq → 0.
This is because these currents, away from the β ¼ �1
point, contain spurious qL ↔ qR chirality flips built into
the interpolators that retain the phase dependence upon
chiral rotations. Technically this manifests in the non-
covariant transformation properties of such currents, and as
a consequence Πβ≠�

n correlators retain unphysical phases
dependence both in the mass and EDM/MDM channels
even in the mq → 0 limit. While these calculations are
performed in the leading order of the OPE, it is nevertheless
clear that this problem is a consequence of symmetries and
not specific to this regime. As lattice QCD calculations
approach the sensitivity required to see the physical effects
of θ̄, use of the β ¼ �1 interpolating currents will ensure
that the appropriate chiral extrapolation is under control. It
is also worth emphasizing that the chiral covariance
problem discussed here is unique to the Uð1ÞA trans-
formation. In contrast, SUð2Þ chiral rotations, of the form
expðiγ5τaϕaÞ, will always result in a covariant transforma-
tion of all currents, due to the invariance of the diquark
structure. Therefore, calculations of nucleon properties in
the e.g. constant pion field background should produce
physical results regardless of the choice of current.
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We also revisited EDM calculations for both the covar-
iant β ¼ �1 choices of current, and calculated the EDM in
parallel to the MDM. For β ¼ þ1 we reproduce the leading
order result of Ref. [20], conveniently reexpressed as
dn;pðθ̄Þ being proportional to the MDM, μn;p. We note
that this channel does reproduce the measured values of the
MDM reasonably well, including the μn=μp ¼ −2=3 rela-
tion, and therefore μn can be used for normalization.
A new calculation was presented using the β ¼ −1

currents for the neutron and proton EDM. We utilized the
channel with an even number of γ matrices, and observed
explicitly how the combination of the two- and three-point
functions (i.e. explicit removal of the overall chiral phase)
leads to physical results. We obtained a different, but
nevertheless numerically consistent result for the neutron
EDM. Extraction of quantitative predictions, and their
systematic improvement within theQCD sum rules approach
is problematic in this channel, as the leading order result
already depends on the IR cutoff μIR. While this is a problem
for the sum rules approach to nucleon correlators, it can be
resolvedwithin latticeQCD.Thuswe hope that the procedure
described here, using covariant β ¼ �1 currents can be
followed in lattice QCD computations of the nucleon EDMs.
We conclude by noting that for phenomenological pur-

poses, it may be useful to revisit previous calculations of the
neutron EDM due to higher-dimensional CP-odd sources
such as the EDMs and chromo EDMs of quarks, using the
approach pursued here of adding numerical stability by
normalizing them on the MDM. Such sources are the
primary targets in analyzing nucleon and atomic and
molecular EDM sensitivity to new sources of CP violation
in nature [22]. In this context, we recall that while the
inferred value of θ̄ is small possibly hinting at dynamical
relaxation via the axion mechanism, the numerical value of
dnðθ̄Þ still plays an important role in this context as the axion
vacuum expectation value, θ̄ ¼ θind, can be shifted away
from zero in the presence of higher-dimensional sources.
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APPENDIX: TECHNICAL DETAILS FOR
NUCLEON CORRELATOR CALCULATIONS

Here we provide some additional technical details about
the calculation of the nucleon correlators in external fields

that form the basis of the QCD sum rule calculations
used in the main text. Further details are available in
Refs. [20–23].

1. Sum rules for β = + 1

We begin with the sum rule for β ¼ þ1 nucleon
interpolating currents. In this case, it is sufficient to retain
just the leading terms in the quark propagator as given by
(28) and its corresponding charge conjugate given by

Scq ¼
i=x

2π2x4
þ ieq
8π2

xμ

x2
F̃μνγ

νγ5 þ
iχ̃q
24

m�θ̄Fμνxμγνγ5: ðA1Þ

The nucleon current correlator relevant for the leading
order calculation of the MDM and EDM can then be
simplified to the form,

Πþ
n ¼ 48i

Z
d4x eip·x½tr½ScdSu�Sd þ 2SdScuSd�: ðA2Þ

By using

Z
d4x eip·x

xμ

x6
¼ −

π2pμ

4
log

�
−
p2

μ2

�
þ � � � ; ðA3Þ

Z
d4x eip·x

xμ

x8
¼ π2p2pμ

48
log

�
−
p2

μ2

�
þ � � � ; ðA4Þ

and the relations,

f=p; F · σγ5g ¼ 4ipμFμνγ
νγ5;

f=p; F · σg ¼ −4pμF̃μνγ
νγ5; ðA5Þ

we arrive at the expression (29), where we retain only the
terms relevant after the Borel transformation.

2. Sum rules for β = − 1
We next consider the sum rule for β ¼ −1 nucleon

interpolating currents. In this case, to subtract the unphys-
ical chiral phase, we compute both the two-point function
and three-point function with the external electromag-
netic field.
We begin with the two-point function. The terms in the

quark propagator (41) relevant in this case are given by

Sq ¼
i=x

2π2x4
−

mq

4π2x2

�
1 − iγ5θm

m�
mq

�

−
1

12

�
1þ iγ5θG

m�
mq

�
hq̄qi; ðA6Þ
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with the charge conjugate,

Scq ¼
i=x

2π2x4
þ mq

4π2x2

�
1 − iγ5θm

m�
mq

�

þ 1

12

�
1þ iγ5θG

m�
mq

�
hq̄qi: ðA7Þ

By focusing on the leading order terms, we can reduce the
nucleon correlator in this case to the form

Π−
n j1;γ5 ¼ −24i

Z
d4xeip·x

× ½SdðSu þ γ5Scuγ5ÞSd − SdfScu; γ5gSdγ5�1;γ5 :
ðA8Þ

It follows that we need to retain the chirality flipping part of
Scu, and we then obtain the expression (42) by using

Z
d4x eip·x

1

x6
¼ −

iπ2p2

8
log

�
−
p2

μ2

�
þ � � � ; ðA9Þ

Z
d4x eip·x

1

x8
¼ iπ2p4

192
log

�
−
p2

μ2

�
þ � � � ; ðA10Þ

where we exhibit just the terms relevant for the Borel
transform.
We now calculate the three-point function, or rather the

two-point function expanded to leading order in the back-
ground electromagnetic field, by focusing on the leading
terms of order χ̃q=x6 or mq=x6 (as terms of order hq̄qi=x4
do not enter to the double-pole contribution). At this order,
the quark propagator is given by (41), along with its charge
conjugate,

Scq ¼
i=x

2π2x4
þ mq

4π2x2

�
1 − iγ5θm

m�
mq

�

þ hq̄qi
12

�
1þ iγ5θG

m�
mq

�
þ ieq
8π2

xμ

x2
F̃μνγ

νγ5

−
χ̃q
24

F · σ

�
1þ iγ5θG

m�
mq

�

þ eqmq

32π2
log ð−μ2IRx2ÞF · σ

�
1 − iγ5θm

m�
mq

�
: ðA11Þ

Nontrivial contributions require picking up one of the last
three terms. The latter two terms have the same Dirac
structure and are combined with two =x propagators, while
the first term is combined with one =x and one mq or hq̄qi
term. One can show that, for both contributions, the traces
cancel and thus we can simplify the nucleon correlator to
the form,

Π−
n jμ;d̃ ¼ −24i

Z
d4xeip·x

× ½SdðSu þ γ5Scuγ5ÞSd − SdfScu; γ5gSdγ5�μ;d̃:
ðA12Þ

It follows, as in the case of the two-point function, that we
need to retain the chirality flipping part of Scu, and we then
obtain expressions (46) and (47) after some computation,
where the relevant Fourier transforms are given by

Z
d4x eip·x

xαxμ

x6
¼ iπ2ηαμ

4
log

�
−
p2

μ2

�
þ � � � ; ðA13Þ

Z
d4x eip·x

xαxμ

x8
¼ −

iπ2ðp2ηαμ þ 2pαpμÞ
48

× log

�
−
p2

μ2

�
þ � � � : ðA14Þ
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