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In this work we study the multiplicity distributions (MDs) of charged particles within jets in proton-
proton collisions, which were measured by the ATLAS Collaboration in 2011, 2016 and 2019. The first
dataset refers to jets with smaller transverse momenta (4 < pT < 40 GeV) whereas the other two refer to
higher pT jets (0.1 < pT < 2.5 TeV). We find that the lower pT set shows no sign of KNO scaling and that
the higher pT sets gradually approach the scaling limit. For the lower pT set the mean multiplicity as a
function of pT can be well-described by expressions derived from QCD with different approximation
schemes. For higher (> 500 GeV) values of pT these expressions significantly overshoot the data. We
show that the behavior of the MDs can be well-represented by a sub-Poisson distribution with energy
dependent parameters. In the range 40 < pT < 100 GeV there is a transition from sub to super Poissonian
behavior and the MD evolves to a geometric distribution, which shows KNO scaling. In this way we fit the
MDs in all transverse momentum intervals with one single expression. We discuss the implications of this
phenomenological finding.
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I. INTRODUCTION

Multiplicity is a global observable that allows to char-
acterize events in all colliding systems and has been widely
studied in attempts to understand multiparticle production
processes. Experimentally, charged-particle multiplicity is
one of the simplest observables, and its importance
stretches from calibration to advanced tagging techniques.
We can try to obtain the maximum information from the
multiplicity distribution (MD) of charged particles to gain
insights on the production mechanisms [1,2]. In high-
energy proton-proton collisions, particles are produced
basically in two ways. In an early stage of the collision

there is a perturbative parton cascading process which is
governed by the evolution equations of quantum chromo-
dynamics (QCD). Later, the partons are converted into
hadrons with additional particle production. Here the main
mechanism is nonperturbative; string formation and decay.
The complete description of multiparticle production is
very complicated [1,2]. Nevertheless, in spite of the
complexity of the subject, over the years the study of
multiplicity distributions has given us valuable information
about the dynamics of particle production.
One of the remarkable features exhibited by MDs is the

famous Koba-Nielsen-Olsen (KNO) scaling [3–6], a phe-
nomenon expected to be observed at asymptotically high
energies. This prediction was made before the existence of
QCD. Later there were several attempts to understand it in
terms of quark and gluon dynamics, such as in Refs. [7,8].
In these works it was shown that KNO scaling emerges if
the effective theory describing color-charge fluctuations
at a scale of the order of the saturation momentum is
approximately Gaussian. Moreover both nonlinear satura-
tion effects and running-coupling evolution are required in
order to obtain KNO scaling. Very recently, in Ref. [9] a
MD satisfying KNO scaling was derived by solving the
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Mueller dipole evolution equation in the double logarithm
approximation. This supports the idea that gluon emission
is a Markov process in which the emitted gluons are
strongly ordered in rapidity.
From the experimental side there was progress too. The

analysis of MDs in different systems and in different phase
space regions showed that KNO scaling follows a complex
pattern, appearing in certain situations and not in others.
For example, in the analysis of minimum bias events in
proton-proton collisions at

ffiffiffi
s

p ¼ 0.9, 2.36 and 7 TeV made
by the CMS Collaboration [10], KNO scaling appeared in
the MD of particles in the central pseudorapidity region
jηj < 0.5, whereas it was violated in the wider range
jηj < 2.4. More recently, violation of KNO scaling was
also observed in studies of the moments of the multiplicity
distributions measured by ALICE and ATLAS data [11,12]
which were found to grow with the energy [11,12].
The higher energies reached at the LHC opened new

ways to study multiparticle production. Collimated groups
of particles produced by the hadronization of quarks and
gluons are called jets. In hadron-hadron collisions, jets are
produced in high-momentum transfer scatterings. As the
energy increases, we may produce jets with increasingly
higher energies. These jets decay into more and more
particles and they are now numerous enough so that we
can study multiplicity distributions of particles produced
in the jets. Multiplicity within jets is used to study both
the perturbative and nonperturbative QCD processes,
and since quarks and gluons have different color factors,
the hadronization is sensitive to the initial parton. Thus,
the particle content and its momentum distribution
within jets can be used to discriminate the type of
parton that initiated the jet. It is well-known that gluon-
initiated jets contain larger particle multiplicities than
quark-initiated jets at the same energy, and the trans-
verse momentum of the constituent particles is harder for
gluon-initiated jets [13].
The multiplicity distribution within low pT (4 < pT <

40 GeV) jets has been recently addressed in [14], where
the authors presented an analysis of the ATLAS 2011 data
[15,16]. They showed that they can be well-reproduced by
a sub-Poissonian (SP) distribution. This finding is interest-
ing in itself since it establishes a clear difference between
the multiplicity distributions observed in minimum bias
events and those observed in jets, the former being much
broader than the latter. Triggering on high pT events, such
as jets, one selects perturbative QCD processes. If the QCD
parton radiation would be similar to bremsstrahlung, one
would expect a multiplicity distribution similar to a Poisson
distribution, which is much narrower than the familiar
negative binomial distribution (NBD), successful in
describing minimum bias data. Surprisingly, the appropri-
ate distribution is SP, which is still narrower. All these
considerations apply to the ATLAS data which refer to
transverse momenta in the range 4 < pT < 40 GeV.

In the theoretical analysis presented in [17,18], the
authors suggested that jet multiplicity distributions follow
KNO scaling if one replaces the collision energy

ffiffiffi
s

p
by the

jet average transverse momentum pjet
T . To substantiate this

conjecture the authors performed a simulation with the
PYTHIA-8 Monte Carlo event generator. They obtained
distributions that, when plotted in the KNO style, present a
very good scaling. Unfortunately, they missed the oppor-
tunity to compare the results of their simulations with the
already existing data [15,19].
Empirical scaling laws per se are important in physics,

independently of their theoretical interpretation. To study
them we first have to analyze the data choosing the most
relevant variables and the best way to plot them. Then we fit
these data with expressions which contain some physical
meaning, such as, in the present context, the negative
binomial distribution. The observation of scaling and the
behavior of the fitting distributions can give insights on the
production dynamics and serve as a guide to theoretical
microscopic studies.
In this work we will first revisit the ATLAS data and

check whether they satisfy KNO scaling and also whether
the average multiplicities are well described by QCD
predictions. Then we will fit all the ATLAS data with a
sub-Poisson distribution and analyze the energy dependence
of the parameters. As it will be seen, the data suggest that the
MD undergoes a transition from sub- to super-Poissonian
behavior and starts to approach the KNO scaling limit.

II. REVISITING THE ATLAS DATA

In this section we perform a quite simple and model-
independent exercise to check whether the existing ATLAS
data [15,19] satisfy the scaling found in [17,18]. In Fig. 1
we plot the ATLAS data on jet multiplicities in the KNO
form. In Figs. 1(a) and 1(b) we show the data from Ref. [15]
on lower pT jets. The two sets refer to two values of the jet
R variable. We clearly see that the data violate KNO
scaling. However, if we consider the higher pT jets
measured in Ref. [19] we observe the onset of scaling,
as shown in Fig. 1(c), specially at pT > 300 GeV. This
change of behavior can be more clearly seen if we plot the
ratio between the variance and the average multiplicity
[VarðnÞ=n̄] which is equal to one for a Poisson distribution.
In Fig. 2 we can see that this ratio is below one for lower n̄
[Fig. 2(a)] and for lower pT [Fig. 2(b)] and around n̄ ≃ 10
or pT ≃ 30 GeV there is a clear change. The ratio becomes
larger than one and we go from a sub-Poissonian to a super-
Poissonian distribution. It is tempting to associate this
broadening of the multiplicity distribution with the tran-
sition from quark to gluon initiated jets. In Ref. [13] the
properties of quark and gluon jets were studied. In
particular, it was found that the dispersion D of the
multiplicity distribution from jets was Dg ≃ 4.37 and
Dq ≃ 4.30 for gluon and quark jets respectively. The errors
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quoted in [13] are very large but these numbers suggest that
gluon jets are broader than quark ones and the onset of the
dominance of the former could be the dynamical cause of
the behavior observed in Fig. 2.
From the low pT data [15] we have extracted the average

multiplicities for the R ¼ 0.4 and R ¼ 0.6 sets. For the
higher pT sets the average multiplicities were already given
in [19] and [20]. From the theoretical point of view, the
definition of the multiplicity in a jet can be rather tricky.
The total hadronic multiplicity within a jet can be obtained
from the jet fragmentation function and it was studied in
perturbative QCD in several works [21–26]. Very recently
these calculations have been done with higher precision
(see Ref. [27] for a recent review of the literature). Here, for
simplicity, we shall use the analytical formulas derived
from perturbative QCD in the next-to-leading-logarithmic
approximation (NLLA) [22] and also, more recently, in the
next-to-modified-leading-log approximation (NMLLA)
including next-to-leading-order (NLO) corrections to the
αs strong coupling [26]. These expressions were success-
fully applied to fit the multiplicities measured in eþe−
collisions [28]. The NLLA expression is given by [22]

n̄ch ¼ a½αsðpTÞ�bec=
ffiffiffiffiffiffiffiffiffiffi
αsðpT Þ

p h
1þ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αsðpTÞ

p i
; ð1Þ

where [22]

b ¼ 1

4
þ 10

27

Nf

β0
¼ 0.49 c ¼

ffiffiffiffiffiffiffiffi
96π

p

β0
¼ 2.27

αsðQ2Þ ¼ 4π

β0 lnðQ2=Λ2Þ −
β1 ln lnðQ2=Λ2Þ
β30ln

2ðQ2=Λ2Þ

with β0 ¼ 11 − 2=3Nf, β1 ¼ 102 − 38=3Nf and
Λ ¼ 0.15 GeV. The NMLLA-NLO expression reads [26],

n̄ch ¼ Kch exp

�
2.50217

ffiffiffiffi
Y

p
− 0.491546 lnY

− ð0.06889 − 0.41151 lnYÞ 1ffiffiffiffi
Y

p

þ ð0.00068 − 0.161658 lnYÞ 1
Y

�
; ð2Þ

where

Y ¼ lnðpT=ΛQCDÞ:

In the above expressions all the parameters have already
been fixed so as to reproduce the multiplicity distributions
measured in eþe− collisions at LEP and at energies ranging

(a) (b) (c)

FIG. 1. Data from Ref. [15] plotted in the KNO form for (a) R ¼ 0.4, (b) R ¼ 0.6. c). Data from Ref. [19].

(a) (b)

FIG. 2. Variance as a function of (a) n̄ and (b) pT . Data are from Refs. [15,19]. The solid line shows the result obtained with the
Poisson distribution.
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from 2 GeV <
ffiffi
s

p
< 200 GeV . In (1) the normalization a

and the (higher order corrections) parameter d were
adjusted. In (2) the normalization Kch and ΛQCD were
adjusted. Both expressions were able to yield very good
fits. We assume that each of the two jets in eþe− collisions
is initiated by one highly energetic parton, in the same way
as the jets observed in pp collisions. Therefore, apart from
a normalization factor, the formulas (1) and (2) can be
applied to the average multiplicities studied in this work.
In Fig. 3 we show the average multiplicities. As it can be

seen, the low pT data from Ref. [15] in Fig. 3(a) are well
reproduced both by (1) and (2). The parameters obtained
from the fits are shown in Table I. In comparison to the jets
measured in eþe−, both the normalization factor and ΛQCD

are systematically smaller. These expressions work well
for the higher pT sets from Ref. [20] shown in Fig. 3(b)
and also from Ref. [19] shown in Fig. 3(c) up to
pT ≃ 500–600 GeV. Up to this point, Eq. (1) and Eq. (2)
seem to capture the energy dependence of the data very
well. Beyond this point, they overshoot the data. In this
region it is possible that gluon recombination (not yet
included in the calculations) starts to play a role. In fact
gg → g would reduce the number of produced partons
(and hadrons). Qualitatively this effect would go in the right
direction to reproduce the data.

III. THE SUB-POISSONIAN DISTRIBUTION

A sub-Poissonian distribution (SPD) is a probability
distribution that has a smaller variance than the Poisson
one with the same mean. A distribution which has a

larger variance is called super-Poissonian and to this class
belongs also the widely used negative binomial distribution
(NBD). In [29,30] the SPD was introduced in the context
of particle physics and applied to study MDs measured at
lower energies.
Since the SPD has not been used very often, it is worth

saying a few words about its origin and meaning. In
particular, we would like to show how it can be obtained
from a stochastic Markov process with multiplicity-
dependent birth and death rates.
Let Pðn; tÞ be the probability of having n particles at

time t and let us consider a very general birth-death process
given by the following equations:

dPð0; tÞ
dt

¼ −λ0Pð0; tÞ þ μ1Pð1; tÞ; ð3Þ

dPðn; tÞ
dt

¼ −ðλn þ μnÞPðn; tÞ þ λn−1Pðn − 1; tÞ
þ μnþ1Pðnþ 1; tÞ; ð4Þ

where λn and μn are the birth and death rates when the
multiplicity is n. Let us further assume that,

λn ¼ λðnþ 1Þ−δ þ σ and μn ¼ nμ: ð5Þ

Then, in the steady state, when dPðn;tÞ
dt ¼ 0, Eq. (4) yields,

− ½λðnþ 1Þ−δ þ σ þ nμ�PðnÞ þ ðλn−δ þ σÞPðn − 1Þ
þ ðnþ 1ÞμPðnþ 1Þ ¼ 0: ð6Þ

(c)(a) (b)

FIG. 3. Average multiplicities (data points) obtained from ATLAS, in (a) Ref. [15], (b) Ref. [20] and (c) Ref. [19]. The curves show the
fits with the theoretical expressions Eq. (1) (solid line) and Eq. (2) (dashed line).

TABLE I. Fitted values of Kch and ΛQCD in Eq. (2) and values of a and d in Eq. (1) for all datasets and the
corresponding values of these parameters obtained from eþe− collisions in [26] and [28].

ATLAS 2011 R ¼ 0.4 ATLAS 2011 R ¼ 0.6 ATLAS 2016 ATLAS 2019 eþe−

Kch 0.04(1) 0.06(3) 0.03(2) 0.03(1) 0.117(1)
ΛQCD (GeV) 0.15(8) 0.15(12) 0.15(22) 0.15(19) 0.191(13)
a 0.042(5) 0.05(2) −0.012ð9Þ −0.015ð7Þ 0.53(6)
d 0.9(4) 1.1(1.4) −13ð8Þ −11ð4Þ 1.11(39)
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Introducing the notation,

λ

μ
¼ α and

σ

μ
¼ α0; ð7Þ

Eq. (6) can be rewritten as

− ½αðnþ 1Þ−δ þ α0 þ n�PðnÞ þ ½αn−δ þ α0�Pðn − 1Þ
þ ðnþ 1ÞPðnþ 1Þ ¼ 0; ð8Þ

which yields the following recurrence relation,

ðnþ 1ÞPðnþ 1Þ ¼ ½αðnþ 1Þ−δ þ α0�PðnÞ ¼ gðnÞPðnÞ;
ð9Þ

where gðnÞ ¼ ðnþ 1ÞPðnþ 1Þ=PðnÞ ¼ αðnþ 1Þ−δ þ α0.
Knowing Pð0Þ, with the above expression we can construct
the multiplicity distribution,

PðnÞ ¼ Pð0Þ
n!

Yn−1
i¼0

gðiÞ ¼ Pð0Þ
n!

Yn−1
i¼0

½αðiþ 1Þ−δ þ α0�: ð10Þ

Choosing α0 > 0 and δ ¼ −1 we obtain the negative
binomial distribution,

PðnÞ ¼ Γðnþ kÞ
Γðnþ 1ÞΓðkÞ α

nð1 − αÞk: ð11Þ

where k ¼ 1þ α0=α. In the particular case when α0 ¼ 0,
the parameter k ¼ 1 and the above expression reduces to
the geometric (Bose-Einstein) distribution,

PðnÞ ¼ αnð1 − αÞ: ð12Þ

Setting δ ¼ 0 in (10) we obtain the Poisson distribution,

PðnÞ ¼ αn

n!
expð−αÞ: ð13Þ

For δ > 0 we get the sub-Poissonian distribution,

PðnÞ ¼ c
αn

ðn!Þ1þδ ; ð14Þ

where c is a normalization factor. Notice that when δ ¼ −1
the above expression becomes (12) apart from a constant
factor.

IV. FROM SUB-POISSON TO NEGATIVE
BINOMIAL DISTRIBUTION

In this section we shall use the form (14) to study the
ATLAS data on multiplicity distributions in jets. We will
extend the work [14] and fit all the ATLAS data from
Ref. [15] and also from Ref. [19]. We will fix α and δ

adjusting (14) to the data. The normalization factor c is
given in terms of α and δ as

c ¼
 XNmax

1

αn

ðn!Þ1þδ

!−1

ð15Þ

where the Nmax is the number of data points. The results are
shown in Figs. 4(a) and 4(b). As it can be seen, the SPD can
reproduce very well the low-pT ATLAS data. The fitted
parameters α and δ are shown in the Tables II and III,
as well as the χ2 of the fits, which is always below 2.1.
Because of the discrepancies in the large n region, the χ2 of
the high pT fits is unreasonably large and we do not show it
in Table IV. As seen in Tables II–IV, for higher values of pT
the δ parameter becomes negative, which signals the
transition from sub-PD to super-PD, best visible in
Fig. 4(c). Notice that the simple formula (14) used here
(with the parameter δ describing the departure from PD
towards sub-PD or super-PD) approaches the NBD limit
(where δ ¼ −1). In Fig. 4(d) we show lines obtained
with the NBD written in a form slightly different from
(11) and more convenient for our purposes. From (11) it is
easy to see that n̄ ¼ kα=ð1 − αÞ and hence αnð1 − αÞk ¼
ðn̄nkkÞ=ðn̄þ kÞðnþkÞÞ. Then (11) can be rewritten as

PðnÞ ¼ Γðkþ nÞ
ΓðkÞΓðnþ 1Þ

n̄nkk

ðn̄þ kÞnþk : ð16Þ

The fits are very good. They show that k decreases with
the jet pT in the same way as it decreases with the energy
in NBD fits of the minimum bias multiplicity distribu-
tions [11]. They also show that n̄=k increases with pT
indicating the approach to KNO scaling, which is reached
when n̄ ≫ k. Indeed, for KNO scaling, we expect the
moments of the Pðz ¼ n=n̄Þ distribution to be indepen-
dent of n̄. In the case of the NBD distribution, the second
central moment of the PðzÞ distribution is

VarðzÞ ¼ VarðnÞ
n̄2

¼ 1

n̄
þ 1

k
: ð17Þ

For n̄ ≫ k we have an approximate scaling. In fact, it was
shown in [7] that when this ratio reaches 6 one already
has a very good scaling. From the last entries of Table V
we have ratios close to this number.
To summarize, we observe a transition from the low pT

region, where there is no KNO scaling, to the high pT
region, where we find the scaling shown in Fig. 1(c). In our
description this is related to the fact that the SPD given
by (14) turns into a super-Poisson distribution for large pT
because δ becomes negative. In turn, the super-PD dis-
tribution transforms for δ ¼ −1 into the geometric distri-
bution (12), i.e. the NBD with k ¼ 1, for which we have
KNO scaling. Therefore, what we observe represents a
gradual change in dynamics causing the gradual (with
increasing pT) emergence of KNO scaling. Multiplicity
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distributions measured at higher energies are, as shown
in [17,18], better described by NBD. This fact is interesting
because it means a transition from one dynamical regime to
another [29,30].
A detailed interpretation of these results in terms of the

QCD dynamics is beyond the scope of this work but there
are hints which may help theorists. We now present a few

TABLE II. Fitted α and δ from Eq. (14) for R ¼ 0.4 and data
from [15].

pT range (GeV) α δ χ2

[4, 6] 12.8(2) 1.00(1) 0.06
[6, 10] 11.1(4) 0.64(2) 0.32
[10, 15] 10.2(5) 0.38(3) 1.36
[15, 24] 9.2(6) 0.20(4) 2.08
[24, 40] 7.2(5) −0.02ð4Þ 1.13

TABLE III. Fitted α and δ from Eq. (14) for R ¼ 0.6 and data
from [15].

pT range (GeV) α δ χ2

[4, 6] 21.4(9) 0.98(3) 0.30
[6, 10] 15.7(3) 0.54(1) 0.06
[10, 15] 10.6(4) 0.17(2) 0.46
[15, 24] 8.5(6) 0.00(3) 1.55
[24, 40] 6.6(6) −0.18ð4Þ 1.32

(a) (b)

(c) (d)

FIG. 4. Fits of the ATLAS data on jet multiplicity distributions for (a) R ¼ 0.4 [15], (b) R ¼ 0.6 [15], and data from Ref. [19] fitted
with a (c) sub-Poisson distribution (14) and (d) with a negative binomial distribution (16).

TABLE IV. Fitted α and δ from Eq. (14), for ATLAS 2019
data [19].

pT range (GeV) α δ

[100, 200] 3.13(6) −0.505ð8Þ
[400, 500] 2.30(9) −0.69ð1Þ
[700, 800] 2.0(1) −0.74ð2Þ
[900, 1000] 2.0(1) −0.76ð2Þ
[1200, 1400] 1.9(1) −0.77ð2Þ
[1600, 2000] 1.9(1) −0.79ð2Þ
[2000, 2500] 1.9(2) −0.79ð2Þ
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heuristic remarks, but further investigation is required for
definite conclusions. They are the following:

(i) Parton saturation
The decreasing values of α suggest that the death

rate must increase with the energy. In a parton
cascade this would mean that the process gg → g
becomes more important and when this happens we
are approaching the gluon saturation regime. From
Fig. 3 we see that the deviations from the standard
perturbative QCD calculations occur at 1 TeV and
this energy is high enough for saturation effects to
become visible.

(ii) Quark and gluon jets and phase space
The initially positive values of δ render PðnÞ

narrow. This may be a consequence of phase space
restrictions. At lower energies we have a smaller
number of particles and energy-momentum conser-
vation prevents large fluctuations. At higher energies
and larger number of particles the fluctuations are
also larger and PðnÞ becomes broader. Alternatively,
the narrowness of PðnÞ at lower values of pT may
indicate that the jets are initiated by quarks. A
broader PðnÞwould indicate the dominance of gluon
initiated jets.

(iii) Threshold effects
Based on the “parton liberation” picture [31] and

on the “local parton-hadron duality” [32] we expect
the PðnÞ obtained from the parton cascade to be
similar to the PðnÞ of observed hadrons. In the
parton model the average number of partons is
related to the deep inelastic structure function and
at high energies it is assumed that n̄ ∝ Gðx;Q2Þ,
where G is the gluon distribution. An increase in the
number of gluons implies that the total momentum
will be partitioned among more gluons and it
becomes more likely to find a gluon with a small
fraction of the total momentum. Particle production
in the fusion of two gluons with momenta x1 and x2
introduces a threshold x1x2 ≥ m2=s, where m is the
(sum of the) mass(es) of the produced hadron(s) andffiffiffi
s

p
is the proton-proton collision energy. Imposing

this restriction will exclude the lower x domain of
GðxÞ where the number of gluons grows rapidly and

thus will exclude the larger n configurations. In
other words, the imposition of particle production in
a collision changes the solution of the parton cascade
equation, favoring a narrower PðnÞ with smaller n̄.
This motivates the use of the power index δ in the
birth rate in Eqs. (5) and in (14). As the energy

ffiffiffi
s

p
increases the threshold constraint becomes less
restrictive and allows for a larger number of
gluons producing a larger number of final hadrons.
As a consequence PðnÞ becomes broader and with a
larger n̄. In Eq. (14) this behavior translates into a
decreasing value of δ.

(iv) Convolution, substructures and scaling
In minimum bias proton-proton collisions typi-

cally half of the energy is released in the central
rapidity region and the other half is carried by the
remnants of the incoming protons. The fraction of
the energy released in the central region may change
with the energy [33]. This picture would suggest that
the observed hadrons in the final state come from
three sources. However the number of sources
may be larger because the ‘central fireball’ may
be composed of subsystems, smaller fireballs. This
depends on details of the dynamics, i.e., perturbative
or nonperturbative, with more or less string forma-
tion and decay, with or without thermalization, etc.
In any case an important part of our understanding of
the collision is to characterize the sources.

The number of sources will follow a distribution F and
each source will emit a number of hadrons with a
distribution G. Therefore the final multiplicity distribution
P will be the result of the convolution P ¼ F ⊗ G.
Alternatively, we can fix the number of sources to be
one (which might be appropriate for jets) and let the
average number of hadrons produced from this source,
n̄, to fluctuate according to a distribution F. Along this line,
in Ref. [34] (see also [35]) it was shown that, P will follow
KNO scaling (at large n and for finite n=n̄) if it can be
written as a convolution where G is a Poisson distribution
and F a gamma function. In this case, the convolution
F ⊗ G yielded a negative binomial distribution.
At lower energies, we do not observe scaling. On the

other hand, at higher jet energies we observe empirically
that KNO scaling is reached and also that the negative
binomial distribution reproduces the data very well. This
suggests that the limiting PðnÞ for jets can be written as the
convolution used in [34], allowing us to make conjectures
about the fluctuations of n̄ and about the nature of the
sources.

V. CONCLUSIONS

In this work we have studied the multiplicity distribution
of charged particles within jets in proton-proton collisions,
which were measured by the ATLAS Collaboration. In the
region pT < 500 GeV the mean multiplicity as a function

TABLE V. Fitted n̄ and k from Eq. (16), for ATLAS 2019
data [19].

pT range (GeV) n̄ k

[100, 200] 10.5(1) 12(1)
[400, 500] 16.0(2) 7.4(4)
[700, 800] 18.5(2) 6.0(2)
[900, 1000] 19.6(2) 5.7(2)
[1200, 1400] 20.8(3) 5.4(3)
[1600, 2000] 22.0(4) 5.2(3)
[2000, 2500] 23.0(4) 5.2(3)
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of the jet transverse momentum is well-fitted by the QCD-
NLLA and QCD-NMLLA formulas. At higher values of pT
these formulas overshoot the data. The low pT data [15] do
not show KNO scaling, whereas the higher pT data [19]
gradually approach KNO scaling. This is in line with the
PYTHIA simulations presented in Ref. [17]. Using
Eq. (14), which, depending on the sign of the δ parameter
describes sub-Poissonian, Poissonian and super-Poissonian
distributions, we have fitted all the existing data. However,
at the highest values of pT the best fit is obtained with the
negative binomial distribution. The ratio n̄=k of the NBD
fits is large, giving quantitative support to the approach to

KNO scaling. The results presented here illustrate the
research potential of the analysis of multiplicity distribu-
tions in high-energy jets for various values of transverse
momenta pT . As our analysis shows, different pT ranges
are described by different dynamics.
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