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We investigate the thermoelectric effect, which describes the generation of an electric field induced by
temperature and conserved charge chemical potential gradients, in the hot and dense hadronic matter
created in heavy-ion collisions. Utilizing the Boltzmann kinetic theory within the repulsive mean-field
hadron resonance gas model, we evaluate both the diffusion thermopower matrix and diffusion coefficient
matrix for the baryon number (B), electric charge (Q), and strangeness (S). The Landau-Lifshitz choice for
the rest frame of the fluid is enforced in the derivation. We find that the thermoelectric effect hinders the
diffusion processes of multiple conserved charges, particularly reducing the coupling between electric
charge and baryon number (strangeness) in baryon (strangeness) diffusion. Given that the repulsive mean-
field interactions between hadrons have a significant effect on the diffusion thermopower matrix and
diffusion coefficient matrix in the baryon-rich region, we extend the investigation to include the impact of
magnetic fields, analyzing the magneto-thermoelectric effect on both the diffusion coefficient matrix and
the Hall-like diffusion coefficient matrix. The sensitivities of the magnetic field-dependent diffusion
thermopower matrix and magneto-thermoelectric modified diffusion coefficient matrix to the choices of
various transverse conditions are also studied.
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I. INTRODUCTION

Relativistic heavy-ion collision experiments open up a
unique portal for understanding the properties of strongly
interacting matter under extreme temperatures. Awealth of
experimental data from the relativistic heavy-ion collider
(RHIC) [1–4] at Brookhaven National Laboratory (BNL)
and in the large hadron collider (LHC) [5–10] at the
European Organization for Nuclear Research (CERN) have
indicated that a new deconfined state of matter—quark-
gluon plasma (QGP) can be created. Meanwhile, quantum
chromodynamics (QCD) serves as the fundamental theory
of the strong interaction and the lattice QCD calculation has
predicted a smooth crossover for QCD matter from a
hadronic phase to a QGP phase can be realized as temper-
ature (T) increases at the small or vanishing baryon

chemical potential (μB) [11–13]. At large μB, calculations
based on the low-energy QCD effective models, such as the
(Polyakov-loop-) Nambu-Jona-Lasinio model [14–16], the
(Polyakov-loop-) quark-meson model [17–20] have
revealed that the QCD phase transition becomes first-order
and terminates at a second-order critical endpoint (CEP),
which has sparked long-sought debate without conclusive
experimental evidence yet [21]. Furthermore, the beam
energy scan (BES) program at RHIC [22,23] and ongoing
experimental programs at the Facility for Antiproton and
Ion Research (FAIR) [24,25] and the Nuclotron-based Ion
Collider facility (NICA) [26,27], are striving to unravel the
properties of baryon-dense nuclear matter and search the
potential signatures of the CEP in the QCD phase diagram.
In addition to the equilibrium QCD thermodynamical

properties, the medium’s response to perturbations around
equilibrium, which is encoded in transport coefficients,
plays a crucial role in describing the evolution of bulk
matter created in relativistic heavy-ion collisions. The
small shear viscosity to entropy density ratio (η=s) has
been employed to successfully describe collective flow
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observables [28–31]. The bulk viscosity to entropy density
ratio (ζ=s) exhibits a novel behavior near critical temper-
ature [32–34]. Recently, electric conductivity has been
utilized to extend the duration of the initial magnetic field
generated in off-central heavy-ion collisions [35–37], and
provide essential input for magnetohydrodynamic simula-
tions [38,39]. On the other hand, the diffusion coefficient,
which characterizes the medium’s response to inhomoge-
neities in the number density and is largely overlooked at
the top RHIC and LHC energies, gains significance in the
dynamical description of the evolution of low-energy
heavy-ion collisions. Specifically, a diffusion coefficient
matrix is specifically required to quantify the coupling
among diffusion currents of various conserved charges.
This arises from the fact that QCDmatter constituents, such
as hadrons and quarks, carry multiple quantum conserved
numbers, including baryon number (B), electric charge (Q),
and strangeness (S). The complete diffusion coefficient
matrix in both the QGP and hadron gas has been calculated
within the Boltzmann kinetic theory [40–42]. The asso-
ciated results reveal that the off-diagonal matrix elements
are comparable in magnitude to the diagonal elements,
making them crucial in the hydrodynamic simulation of
low-energy nuclear collisions. Recently, Das et al. have
explicitly imposed the Landau-Lifshitz frame into the
previous derivations [40,41], and provided a unique expres-
sion in the hadron resonance gas model with and without
excluded volume corrections [43]. In this study, we explore
how repulsive interactions, incorporated via a density-
dependent mean-field potential in the repulsive mean-field
hadron resonance gas (RMFHRG) model, impact the
diffusion properties of hadronic matter.
The thermoelectric effect, which facilitates the direct

conversion of temperature differences into electric voltage
and vice versa through a thermocouple, has been exten-
sively explored across various disciplines, including
material science, solid-state physics, and chemistry. The
most fundamental thermoelectric effect is the Seebeck
effect, which describes the generation of an electric voltage
caused by a temperature gradient within a conductive
material. Intriguingly, heavy-ion collisions offer a unique
platform to study the Seebeck effect in QCD matter. This is
due to the notable temperature difference between the
central region and peripheral region of the fireball. The
Seebeck coefficient or thermopower, defined as the ratio of
the induced electric field and the collinear temperature
gradient (S ¼ E=∇T) in the absence of electric current, has
been estimated in both the partonic and hadronic phases of
QCD matter [44–52]. Unlike studies in condensed matter
physics, the non-zero net conserved number is required to
estimate the Seebeck coefficient in QCDmatter. To our best
knowledge, most estimations have focused exclusively on
scenarios where only net baryon density is nonzero,
neglecting the potential contributions of other conserved
charges to the thermoelectric effect. However, it is

important to note that the gradients of multiple conserved
charge chemical thermal potentials (∇ðμq=TÞ with
q∈ fQ;B; Sg) are also a source to generate an internal
electric field, which is quantified by diffusion thermopower
matrix, denoted as MqQ ¼ E=ðT∇ðμq=TÞÞ, in the limit of
zero electric current. Such thermoelectric effect involving
multiple conserved charges has the potential to further
influence the thermally spin Hall effect (TSHE) recently
proposed in the heavy-ion collisions at BES energies
[53,54]. Given that the thermoelectric effect is highly
related to the gradients of conserved charge chemical
potentials and can theoretically impact the diffusion coef-
ficient matrix, to the best of our knowledge, there have been
no associated studies yet. This serves as the primary
motivation for our research.
Considering that a partial magnetic field created in

the off-central heavy-ion collisions can persist into the
hadronic phase, the motions of charged hadrons driven
by ∇ðTðμq=TÞÞ undergo deflection. This deflection
results in a transverse or Hall-like electric field, viz, E ∼
∇ðTðμq=TÞÞ ×H in the magnetic field. This phenomenon,
known as the magneto-thermoelectric effect, is quantified
by the Hall-like diffusion thermopower. Similarly, addi-
tional Hall-type diffusion currents of conserved charges
also arise in the magnetic field and are determined by the
Hall-like diffusion coefficient matrix. Thus, the magneto-
thermoelectric effect can affect both the magnetic field-
dependent diffusion coefficient matrix and the Hall-like
diffusion coefficient matrix. It is crucial to note that the
formulation of the magneto-thermoelectric modified dif-
fusion coefficient matrix depends on the choices of trans-
verse conditions: (1) all transverse gradients in net
conserved charge densities vanish, and (2) another trans-
verse specific conserved charge diffusion current disap-
pears apart from a zero transverse electric current.
This paper is organized as follows. In Sec. II, we

provide a brief overview of the ideal hadron resonance
gas (IHRG) model and repulsive mean-field hadron reso-
nance gas (RMFHRG) model. In Sec. III, we derive the
general formulas for the diffusion thermopower and dif-
fusion coefficient of conserved charges by solving the
Boltzmann equation under relaxation time approximation
in the framework of the RMFHRG model with and without
magnetic field. We present, for the first time, the expres-
sions of the magneto-thermoelectric modified diffusion
coefficient matrix under various transverse conditions.
Section IV delves into the impacts of RMF correction,
baryon chemical potential, magnetic field, and (magneto-)
thermoelectric effect on the (Hall-like-) diffusion coeffi-
cient matrix. We summarize our findings in Sec. V.
Throughout this paper, we adopt natural units with

c ¼ ℏ ¼ kB ¼ 1, and work in flat Minkowski space-time
with metric tensor gμν ¼ diagð1;−1;−1;−1Þ, thus the fluid
velocity satisfies uμuμ ¼ 1. The tensor Δμν ¼ gμν − uμuν

is the projection operator onto the three-dimensional
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subspace orthogonal to uμ. In the local rest frame,
uμ ¼ ð1; 0Þ, the projector Δμν has the form: Δμν ¼ Δμν ¼
diagð0;−1;−1;−1Þ;Δμ

ν ¼ diagð0; 1; 1; 1Þ. The projection
of any four-vector Aμ ¼ ðA0;AÞ onto the three-dimensional
subspace orthogonal to uμ is defined as Ahμi ≡ Δμ

νAν. The
four-derivative is decomposed as ∂

μ ≡∇μ þ uμD, where
D ¼ uμ∂μ and ∇ν ¼ Δα

ν∂α denote the time derivative and
spatial gradient operator in the local rest frame, respec-
tively. In the local rest frame, we have ∇μ ≡ ð0;−∇Þ.

II. MODEL DESCRIPTION

The hadron resonance gas (HRG) model [55,56] is a
simplistic thermal statistical model that successfully
describes the low-temperature hadronic phase of QCD at
chemical freeze-out. In the IHRG model, the attractive
interactions between hadrons are implicitly accounted for
by including all the resonances with zero width, while the
repulsive interactions among hadrons, which are already
known from nucleon-nucleon scattering experiments, are
missed. Consequently, several extensions of the IHRG
model have emerged, such as excluded volume HRG
model [57–59], van der Waals HRG model [60,61] and
repulsive mean-field HRG model [62–65]. These exten-
sions aim to provide a more precise fit to various thermo-
dynamic observables derived from lattice QCD
simulations. In this work, we utilize the repulsive mean-
field hadron resonance gas (RMFHRG) model to describe
the repulsive interactions between the hadrons.

A. Ideal hadron resonance gas (IHRG) model

In the IHRG model, the partition function, containing all
relevant degrees of freedom of the confined QCD phase, is
the starting point for deriving thermodynamic observables.
The logarithm of the total partition function in the grand
canonical ensemble is given as

lnZid ¼
X
a

lnZid
a ðT; μa; maÞ; ð1Þ

where logarithm of the partition function for hadron species
a is given by

lnZid
a ¼ �V

X
a

Z
dΓa ln½1� e−βðϵ0a−μaÞ�: ð2Þ

Here, the superscript “id” represents the ideal gas and V is
the system volume, we use the notation dΓa ¼ dad3pa=
ð2πÞ3, where da is the spin degeneracy of hadron species a.
β ¼ 1=T is the inverse temperature of the system. The front
upper and lower signs correspond to (anti)fermions and
bosons, respectively. ϵ0a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2a þm2

a

p
is the energy of

hadron species a with mass ma. The chemical potential
of hadron species a is defined as μaðfμqgÞ ¼ BaμBþ
QaμQ þ SaμS, where fμqg≡ fμB; μQ; μSg are the baryon,

electric and strangeness chemical potentials, respectively,
and Ba,Qa and Sa are the corresponding quantum numbers
for particle species a. Therefore, the ideal thermodynamics
including total pressure ðPidÞ, total energy density ðEidÞ,
and total number density ðρidÞ in the IHRG model can be
obtained as follows.

Pid ¼
X
a

Pid
a ¼ ∂ lnZid

β∂V
¼

X
a

Z
dΓa

p2a
3ϵ0a

fida ; ð3Þ

Eid ¼
X
a

Eid
a ¼ −

1

V
∂ lnZid

∂β
¼

X
a

Z
dΓaϵ

0
afida ; ð4Þ

ρid ¼
X
a

ρida ¼
X
a

T
V
∂ lnZid

∂μa
¼

X
a

Z
dΓafida : ð5Þ

Here, fida is the thermal equilibrium distribution function of
particle species a in the IHRG model. It is expressed as

fida ðT; μaÞ ¼ ½exp½ðϵ0a − μaÞβ� � 1�−1; ð6Þ

where the signs� correspond to the Fermi-Dirac and Bose-
Einstein statistics, respectively.

B. Repulsive mean-field hadron resonance gas
(RMFHRG) model

The RMFHRG model is a extension of the IHRG model
that includes short-range repulsive interactions between
hadrons via a mean-field approach. In this model, the
single-particle energy is modified as [66]

ϵ̃a ¼ ϵ0a þ Ua; ð7Þ

where Ua is the potential describing the repulsive inter-
actions between hadrons, and acts as an additional chemical
potential. In the RMFHRG model, the repulsive inter-
actions only among meson-meson pairs, baryon-baryon
pairs, and antibaryon-antibaryon pairs are considered [64].
The mean-field potentials for (anti)baryons and mesons are
defined as [64,66]

Ua∈ fB;B̄gðρB;B̄Þ ¼ KBρB;B̄; Ua∈ fMgðρMÞ ¼ KMρM; ð8Þ

with subscripts B; B̄,M denoting baryons, antibaryons, and
mesons, respectively, ρB;B̄;M are the respective total number
densities. Two phenomenological parameters KM and KB
are introduced to scale the repulsive interaction strength
among the mesons and (anti)baryons, respectively.
Accordingly, the logarithm of the total partition function
in the RMFHRG model can be expressed as
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lnZRMF ¼ �V
X
a

Z
dΓa ln½1� e−βðϵ0a−μ�aÞ�

− Vβχa∈ fM;B;B̄gðρM;B;B̄Þ ð9Þ

where the effective chemical potential of hadron species a
is defined as μ�a ¼

P
q qaμq − KB;B̄ρB;B̄ for (anti)baryons,

and μ�a ¼
P

q qaμq − KMρM for mesons. In the RMFHRG
model, ρB;B̄;M are calculated as follows:

ρB;B̄;M ¼
X

a∈ fB;B̄;Mg

Z
dΓaf̄0a: ð10Þ

Here, f̄0a represents the thermal equilibrium distribution
function of particle species a in the RMFHRG model. It is
given by:

f̄0aðT; μaÞ ¼ fida ðT; μ�aÞ ¼ ½expð½ϵ0a − μ�a�βÞ � 1�−1: ð11Þ

In Eq. (9), χa is an additional correction factor to avoid the
double counting of the mean-field potential and to ensure
the correct number density per particle ρa ¼ T

V
∂ lnZRMF

∂μa
(or

the correct energy density per particle Ea ¼ ∂E=∂ρa).
Assuming that hadron species a is a baryon or antibaryon,
its number density takes the following form:

ρa ¼ ρa − ρa

�
∂Ua

∂ρB;B̄

∂ρB;B̄
∂μa

�
−

∂χa
∂ρB;B̄

∂ρB;B̄
∂μa

: ð12Þ

Accordingly, the expression of χa can be obtained as

χa∈ fB;B̄gðρB;B̄Þ ¼ −
1

2
KBρ

2
B;B̄: ð13Þ

Similarly, if hadron species a is a meson, χa∈ fMgðρMÞ ¼
− 1

2
KMρ

2
M. By utilizing Eqs. (3) and (4) along with Eq. (9),

we can derive the pressure and energy density for baryons,
antibaryons, and mesons in the RMFHRG model, which
are expressed respectively as

PB;B̄;M ¼
X

a∈ fB;B̄;Mg
Pid
a ðT; μ�aÞ − χB;B̄;MðρB;B̄;MÞ; ð14Þ

EB;B̄;M ¼
X

a∈ fB;B̄;Mg
Eid
a ðT; μ�aÞ þ χB;B̄;MðρB;B̄;MÞ: ð15Þ

The total pressure and total energy density in the
RMFHRG model are given by P ¼ PB þ PB̄ þ PM and
E ¼ EB þ EB̄ þ EM, respectively. Compared to the IHRG
model, the RMFHRG model incorporates an additional
term in both pressure and energy density, ensuring the
thermodynamic consistency. In the present RMFHRG
model, all distinct (anti)baryons or mesons are assigned
a uniform repulsive interaction strength. Specifically,

KB ¼ 0.45 GeV · fm3 and KM ¼ 0.05 GeV · fm3 are
adopted to improve the agreement with the thermodynamic
quantities obtained from the lattice QCD simulations at
zero and finite baryon densities [64,65].

III. THERMOELECTRIC COEFFICIENTS AND
DIFFUSION COEFFICIENTS OF CONSERVED
CHARGES IN BOLTZMANN KINETIC THEORY

A. Formalism

It is effective to calculate the transport coefficients of
hadronic matter within the kinetic theory framework. The
evolution of the single-particle phase-space distribution
function faðx; paÞ can be described by the Boltzmann
equation within the covariant formalism [67],

pμ
a∂μfaðx; paÞ þmaKμ

∂
ðpÞ
μ faðx; paÞ ¼ Ca½fa�; ð16Þ

where pμ
a ¼ ðϵ0a; paÞ represents the four-momentum of the

particle species a, Kμ is the four-force experienced by
individual particle, and Ca½fa� denotes the collision term.
When a particle is subjected to an electromagnetic
field force, then Kμ

a ¼ −ϵ0a∂μUaðxÞ=ma þ Qa
ma

paνFμν. Here,
Ua refers to the repulsive mean-field potential among
hadrons, and Fμν is the electromagnetic field-strength
tensor. This tensor is defined as: Fμν ≡ Eμuν − Eνuμþ
1
2
ϵμναβðuαHβ − uβHαÞ, where ϵμναβ is the totally antisym-

metric Levi-Civita tensor. The four-vectors Eμ ≡ Fμνuν and
Hμ ¼ ϵμναβFναuβ=2 are nothing but the electric and mag-
netic fields measured in the frame where the fluid moves
with a velocity uμ. Both Eμ ¼ ð0;EÞ and Hμ ¼ ð0;HÞ are
space like, satisfying Eμuμ ¼ 0; Hμuμ ¼ 0. They can be
normalized as EμEμ ¼ −E2; HμHμ ¼ −H2, where E≡ jEj
and H ≡ jHj. Note that in this study, the electric field is
induced by gradients of conserved charge densities rather
than a decaying external magnetic field.
Considering that the system is slightly deviated from the

local equilibrium, the phase space distribution function for
hadron species a can be formulated as

fa ¼ f̄0að1þ ϕaÞ; ð17Þ

where the deviation function jϕaj ≪ 1. Here, f̄0a represents
the local equilibrium distribution function within the
RMFHRG model, given by

f̄0a ¼
�
exp

�
ðpμ

auμ þ UaÞβ −
X
q

qaαq

�
þ 1

�
−1
; ð18Þ

with αq ≡ μqβ denoting the chemical thermal potential of
conserved charge q.
To solve Eq. (16), the deviation function ϕa is assumed

have the following linear combination form:
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ϕa ≈ −
X
q

Bq
ap

μ
a∇μαq − Gap

μ
aβEμ þ…; ð19Þ

where Bq
a and Ga are unknown functions with respect to

momentum pa. For the binary inelastic or reactive colli-
sions aðpaÞ þ bðp0

bÞ → cðp00
cÞ þ dðp000

d Þ, the initial particle
species (a, b) are allowed to be different from final particles
species (c, d), such that the collision term in Eq. (16) reads
as [68–70]

Ca ¼
1

2

X
b;c;d

Z
dΓ0

bdΓ00
cdΓ000

d ½Wabjcdðpa;p0
bjp00

c;p000
d Þ

×f00cf000d ð1þ tafaÞð1þ tbf0bÞ−Wcdjabðp00
c;p000

d jpa;p0
bÞ

×faf0bð1þ tcf00cÞð1þ tdf000d Þ�; ð20Þ

where ð1þ tafaÞwith ta ¼ � correspond to Bose enhance-
ment factor and Pauli blocking factor, respectively. Here,
Wabjcdðpa; p0

bjp00
c; p000

d Þ is collisional transition rate, in the
absence of a reaction threshold, it satisfies the detailed
balance property [68]

Wabjcdðpa; p0
bjp00

c; p000
d Þ ¼ Wcdjabðp00

c; p000
d jpa; p0

bÞ: ð21Þ

Furthermore, the transition rate remains invariant under
the interchange of momenta of incoming or outgoing
particles: Wabjcdðpa;p0

bjp00
c;p000

d Þ¼Wbajcdðp0
b;pajp00

c;p000
d Þ¼

Wabjdcðpa;p0
bjp000

d ;p
00
cÞ¼Wbajdcðp0

b;pajp00
c;p000

d Þ. The prefac-
tor 1=2 in Eq. (20) is added to correct the double counting
from the symmetry under the exchange of the momenta of
the final state p00

c and p00
d. By utilizing the detailed balance

condition, for example, aþ b ↔ cþ d gives f̄0
00
c f̄0

000
d ð1þ

taf̄0aÞð1þ tbf̄0
0

b Þ ¼ f̄0af̄0
0

b ð1þ tcf̄0
00
c Þð1þ tdf̄0

000
d Þ, then the

collision term is computed as

Ca ¼
1

2

Z
dΓ0

bdΓ00
cdΓ000

d Wabjcdðpa; p0
bjp00

c; p000
d Þ

× ff̄0af̄00b ½ð1þ tdf̄0
000

d Þϕ00
c þ ð1þ tcf̄0

00
c Þϕ000

d �
− f̄0

00
c f̄0

000
d ½ð1þ tbf̄0

0
b Þϕa þ ð1þ taf̄0aÞϕ0

b�g ð22Þ

¼ −
1

2

Z
dΓ0

bdΓ00
cdΓ000

d Wabjcdðpa; p0
bjp00

c; p000
d Þ

×
f̄0af̄0

0
b ð1þ tcf̄0

00
c Þ

ð1þ taf̄0aÞ
ð1þ tdf̄0

000
d Þϕa: ð23Þ

Here, we have assumed that particle species a is slightly out
of equilibrium (ϕa ≠ 0), while all other particles are in
equilibrium (ϕ0

b ¼ ϕ00
c ¼ ϕ000

d ¼ 0). In this study, our focus
is solely on elastic binary collisions. The transition rate in
the elastic limit is defined as [68]:

Wabjcd ¼ γabðδacδbd þ δadδbcÞWab; ð24Þ

where γab has been inserted to guarantee that Wab repre-
sents the transition rate both for the case of identical particle
species (a ¼ b) and particles of different species (a ≠ b).
Accordingly, the collision term for the elastic binary
process aðpaÞ þ bðp0

bÞ → aðp00
aÞ þ bðp000

b Þ is formulated as

Ca ¼ −
X
b

γab

Z
dΓ0

bdΓ00
adΓ000

b Wabðpa; p0
bjp00

a; p000
b Þ

×
f̄0af̄0

0
b ð1þ taf̄0

00
a Þ

ð1þ taf̄0aÞ
ð1þ tbf̄0

000
b Þϕa: ð25Þ

We shall now consider the collision term in Eq. (16)
using a simple and popular approximation, known as the
relaxation time approximation (RTA) [71]. Under the RTA,
the collision term takes the form

−
ϵ0af̄0aϕa

τa
¼ Ca ¼ −

ϵ0aδfa
τa

: ð26Þ

Here, τa denotes the relaxation time of hadron species a,
describing how fast the system reaches the equilibrium
again. The term δfa ¼ fa − f̄0a is a perturbation term.
Then, the energy-momentum tensor Tμν and the net
conserved charge four-current Nμ

q can be expressed in
terms of the phase space distribution function as follows:

Tμν ¼
X
a

Z
dΓa

p�μ
a pν

a

ϵ0a
fa þ gμνχa; ð27Þ

Nμ
q ¼

X
a

qa

Z
dΓa

pμ
a

ϵ0a
fa; ð28Þ

where p�μ
a ¼ pμ

a þUμ
a. In a nonequilibrium system, the

energy-momentum diffusion four-current and the con-
served charge diffusion four-current are defined as Wμ ≡
Δμ

νTανuα and Vμ
q ≡ Δμ

νNν
q, respectively [72,73]. They can

also be expressed as

Wμ ¼
X
a

Z
dΓa

Δμ
νpν

aðϵ0a þ UaÞ
ϵ0a

f̄0aϕa; ð29Þ

Vμ
q ¼

X
a

qa

Z
dΓa

Δμ
νpν

a

ϵ0a
f̄0aϕa: ð30Þ

In ideal hydrodynamics, the fluid four-velocity is deter-
mined because the energy and conserved charge number
currents are parallel to each other. The local rest frame of
the fluid is then defined by the requirement that these
currents vanish identically. However, in dissipative hydro-
dynamics, the energy flow and charge number flow are
separate, leading to a non-unique definition of the fluid
four-velocity [74]. There are two natural choices for fixing
the local rest frame of fluid: Eckart frame (or conserved

IMPACT OF THE MAGNETOTHERMOELECTRIC EFFECT ON THE … PHYS. REV. D 110, 034023 (2024)

034023-5



charge frame) and Landau-Lifshitz frame (or energy
frame). In the Eckart frame, the fluid velocity is parallel
to one of the conserved charge currents, demanding the
overall diffusion current of that conserved charge to be
zero. However, in low-energy heavy-ion collisions, there
are multiple conserved charges and are not necessarily
nonvanishing in all regions of space-time, therefore, the
definition of Eckart frame may not be suitable [72]. On the
other hand, in the Landau-Lifshitz frame, the fluid velocity
is parallel to the energy flow, requiring the total energy-
momentum diffusion current to vanish in the local rest
frame. The Landau-Lifshitz frame is our choice for the local
rest frame of fluid.
Upon substitution of Eq. (26) into the right-hand side of

Eq. (16), we can compute the perturbation term δfa for the
first-order gradient expansion as follows:

δfa¼
τa
ϵ0a
f̄0að1− f̄0aÞ

�
pμ
apν

aβðuμDuνþ∇μuνÞ

þpμ
aðpa ·uþUaÞðuμDβþ∇μβÞ

−pμ
a

X
q

qaðuμDαqþ∇μαqÞþpμ
aβðuμDUaþ∇μUaÞ

−pμ
aβðuμDUaþ∇μUaÞþQaβpaνFμνuμ

�
: ð31Þ

In ideal hydrodynamics, taking the projection of ∂μTμν ¼ 0

along the direction orthogonal to uν, one gets uν∂μTμν ¼
uν½DEuν þ ðE þ PÞθuν þ ðE þ PÞDuν −∇νP� ¼ 0, where
θ is the expansion rate. Due to uνuν ¼ 1, we have
uν∂μuν ¼ 0. Then we can derive Duμ ¼ 1

ω∇μP with ω
being enthalpy density. Recalling the Gibbs-Duhem rela-
tion, dP ¼ sdT þP

q nqdμq, one arrives at: ∇μP ¼
−β−1ω∇μβ þ β−1

P
q nq∇μαq, where nq is conserved net

charge density. By invoking momentum conservation
∇μP ¼ 0, we ultimately obtain: ∇μβ ¼ P

q
nq
ω ∇μαq.

B. For vanishing magnetic field

In Eq. (31), we first consider only spatial-dependent
gradient terms and neglect the magnetic field effect, δfa
can be simplified to

δfa ¼
τa
ϵ0a

f̄0að1 − f̄0aÞ
�
pμ
apν

aβ∇μuν −QaβpaνEν

þ pμ
a

X
q

�
ðpa · uþ UaÞ

nq
ω

− qa

�
∇μαq

�
: ð32Þ

We only retain the terms related to the conserved
charge diffusion current, the above equation can be further
reduced as

δfa ≃ −τa
pμ
a

ϵ0a
FaQaEμ þ

X
q

τa
pμ
a

ϵ0a
Hq

a∇μαq: ð33Þ

The functions of Fa and Hq
a in Eq. (33) are defined as

follows:

Fa ¼ βf̄0að1� f̄0aÞ; ð34Þ

Hq
a ¼

�
nq
ω
ðϵ0a þUaÞ − qa

�
f̄0að1� f̄0aÞ: ð35Þ

In the Landau-Lifshitz frame condition, the total energy-
momentum diffusion current is required to vanish, i.e.,
Wμ ¼ 0. By inserting Eq. (19) into Eq. (29), one gets

X
a

Z
dΓaϵ̃a

phμi
a phνi

a

ϵ0a

�X
q

Bq
a∇ναqþGaβEν

�
f̄0a ¼ 0: ð36Þ

Given that we have the particular solutions Bq
a;part, Ga;part,

other solutions can be expressed as Bq
a ¼ Bq

a;part − bq and
Ga ¼ Ga;part − g, respectively, where bq and g are the
constants independent of particle species a. Inserting these
expressions into Eq. (36) to determine the uniqueness of
solutions, we arrive at

X
a

Z
dΓaϵ̃a

phμi
a phνi

a

ϵ0a

�X
q

Bq
a;part∇ναqþGa;partβEν

�
f̄0a

¼
X
a

Z
dΓaϵ̃a

phμi
a phνi

a

ϵ0a

�X
q

bq∇ναqþgβEν

�
f̄0a: ð37Þ

Employing the identity 3Tω ¼ P
a

R
dΓaðϵ0a þ UaÞ p

2
a
ϵ0a
f̄0a,

and comparing the coefficients of ∇ναq and βEν, we get

bq ¼ 1

3Tω

X
a

Z
dΓaðϵ0a þ UaÞ

p2a
ϵ0a

Bq
a;partf̄

0
a; ð38Þ

g ¼ 1

3Tω

X
a

Z
dΓaðϵ0a þ UaÞ

p2a
ϵ0a

Ga;partf̄0a: ð39Þ

Inserting Eq. (19) into Eq. (30), and utilizing Eqs. (38) and
(39), the diffusion current of conserved charge q0 can be
written as

Vμ
q0 ¼

X
a

q0a

Z
dΓa

phμi
a phνi

a

ϵ0a

�
−
X
q

ðBq
a;part − bqÞ∇ναq

− ðGa;part − gÞβEν

�
f̄0a ð40Þ

¼−
X
a

q0a

Z
dΓa

phμi
a phνi

a

ϵ0a

�X
q

Bq
a;part∇ναqþGa;partβEν

�
f̄0a

−n0qT
X
b

bq∇μαq−gn0qEμ; ð41Þ

ZHANG, SHEN, XIAO, and ZHANG PHYS. REV. D 110, 034023 (2024)

034023-6



where the orthogonality relation of phμi
a : phμi

a phνi
a ¼

Δμν

3
phγi
a pahγi¼−p2a

3
Δμν and the identity

P
a

R
q0adΓa

p2a
3ϵ0a

f̄0a ¼
nq0T have been employed. By substituting Eqs. (38) and
(39) into Eq. (41), we derive

Vμ
q0 ¼−

X
a

q0a

Z
dΓa

phμi
a phνi

a

ϵ0a

�X
q

Bq
a;part∇ναqþGa;partβEν

�
f̄0a

þ
X
a0

nq0

ω

Z
dΓa0 ϵ̃

0
a0
phμi
a0 p

hνi
a0

ϵ0a0

X
q

Bq
a0;partf̄

0
a0∇ναq

þ nq0

ωT

X
a0

Z
dΓa0 ϵ̃

0
a0
phμi
a0 p

hνi
a0

ϵ0a0
Ga0;partf̄0a0Eν: ð42Þ

Here, we emphasize that both the
P

a and
P

a0 represent
the summation over all the hadron species under
consideration. Thus, we can combine these distinct
summation indices into a single summation index:P

aAaþ
P

a0Ba0 ¼
P

aðAaþBaÞ. Accordingly, the above
equation can be further simplified to

Vμ
q0 ¼

X
a

Z
dΓa

phμi
a phνi

a

ϵ0a

�
nq0 ðϵ0a þ UaÞ

ω
− q0a

�

×

�X
q

Bq
a;part∇ναq þ βGa;partEν

�
f̄0a: ð43Þ

We replace the right-hand side of Eq. (26) with Eq. (33),
and insert ϕa from Eq. (19) into the left-hand side of
Eq. (26). By equating δfa and f̄0aϕa through matching
tensor structure, we can derive the particular solutions for
the functions Bq

a and Ga from ϕa, which are presented as
follows:

Bq
a;part ¼

τa
ϵ0a

�
qa −

nq
ω
ðϵ0a þ UaÞ

�
ð1� f̄0aÞ; ð44Þ

Ga;part ¼ Qa
τa
ϵ0a

ð1� f̄0aÞ: ð45Þ

According to the linear response theory, Eq. (43) can be
expressed in the following matrix form:

2
664
Vμ
B

Vμ
Q

Vμ
S

3
775¼

2
664
ηBQ

ηQQ

ηSQ

3
775Eμþ

2
664
κBB κQB κSB

κBQ κQQ κSQ

κBS κQS κSS

3
775
2
664
∇μαB

∇μαQ

∇μαS

3
775: ð46Þ

The diffusion coefficient matrix, κqq
0
(q; q0 ∈ fB;Q; Sg),

which quantifies the coupling between the diffusion of
various conserved charges, is expressed as

κqq
0 ¼

X
a

da
3

Z
d3pa

ð2πÞ3 τa
p2a

ðϵ0aÞ2
�
q0a − ðϵ0a þ UaÞ

n0q
ω

�

×

�
qa − ðϵ0a þ UaÞ

nq
ω

�
f̄0að1� f̄0aÞ: ð47Þ

This expression is equivalent to the one presented in
Ref. [43], excluding the effects of quantum statistics
and the repulsive mean-field interactions. In Eq. (46),
the thermoelectric transport coefficient matrix, ηqq

0
, is

defined as

ηqq
0 ¼

X
a

daβ
3

Z
d3pa

ð2πÞ3 τa
p2a

ðϵ0aÞ2
q0a

×

�
qa − ðϵ0a þ UaÞ

nq
ω

�
f̄0að1� f̄0aÞ: ð48Þ

By setting q0a ¼ Qa, we redefine ηqQ as the thermoelectric
conductivity associated with the conserved charge q.
When the net electric diffusion current vanishes, i.e.,
Vi
Q ¼ VQ ¼ 0, the induced electric field is given by

E ¼
X
q

MqQT∇αq: ð49Þ

Here, MqQ is defined as diffusion thermopower associated
with the conserved charge q, which quantifies the ability of
hadronic matter to convert the gradients in conserved charge
chemical thermal potentials into an electric field, and it is
expressed as

MqQ ¼ βκqQ=ηQQ: ð50Þ

By inserting Eq. (49) into Eq. (46), Eq. (43) can be
rewritten as2

664
Vμ
B

Vμ
Q

Vμ
S

3
775 ¼

2
664
κ̃BB κ̃QB κ̃SB

κ̃BQ κ̃QQ κ̃SQ

κ̃BS κ̃QS κ̃SS

3
775
2
664
∇μαB

∇μαQ

∇μαS

3
775: ð51Þ

In this formulation, the thermoelectric modified diffusion
coefficients in the electric current sector vanish, specifically,
κ̃BQ ¼ κ̃SQ ¼ κ̃QQ ¼ 0. The thermoelectric modified diffu-
sion coefficient matrix elements in the baryon and strange-
ness diffusion current sectors takes the form

κ̃qq
00 ¼ κqq

00 − TMqQηq
00Q: ð52Þ

Here, q00 ∈ fB; Sg.

C. For finite magnetic field

Next, we investigate the influence of the magnetic field
on the thermoelectric effect and diffusion processes involv-
ing multiple conserved charges in the hadronic medium.
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In the presence of a weak magnetic field, the field is not
the dominant energy scale and its impact manifest primarily
at the classical level through the cyclotron motion of
charged particles. We reasonably propose that the scattering
mechanism of the constituents and the thermodynamic

quantities remain unaffected by the magnetic field. In the
uniform electric field E and external magnetic field H
(E⊥H⊥∇αq), taking into account a time-independent
phase space distribution function, Eq. (16) can be reformu-
lated as follows:

va · ∇fa þ ½QaðEþ va ×HÞ − ∇Ua� ·
∂fa
∂pa

¼ −
δfa
τa

: ð53Þ

where the RTA has been employed, and va ≡ dϵ0a
dpa

¼ pa=ϵ0a is the three-velocity of particle species a. Neglecting any second-
order terms in δfa, Eq. (53) can be simplified as

fa
τa

þQava ×H ·
∂fa
∂pa

¼ −QaE ·
∂f̄0a
∂pa

− ðva · ∇f̄0aÞ þ
f̄0a
τa

þ ∇Ua ·
∂f̄0a
∂pa

: ð54Þ

We further assume the solution to Eq. (54) satisfies the following linear form:

fa ¼ f̄0a − τaQaE ·
∂f̄0a
∂pa

− Ξ ·
∂f̄0a
∂pa

− τava · ∇f̄0a þ τa∇Ua ·
∂f̄0a
∂pa

; ð55Þ

where Ξ is an unknown quantity related to the magnetic field. By inserting Eq. (55) into Eq. (54), we derive

−
Ξ
τa

·
∂f̄0a
∂pa

þQava ×H ·
∂

∂pa

�
f̄a − τaQaE ·

∂f̄0a
∂pa

− Ξ ·
∂f̄0a
∂pa

− τava · ∇f̄0a þ τa∇Ua ·
∂f̄0a
∂pa

�
¼ 0: ð56Þ

To facilitate the calculation, we provide the following identities,

∂f̄0a
∂pa

¼ −f̄0að1� f̄0aÞβva; ð57Þ

∂f̄0að1� f̄0aÞ
∂pa

¼ −ð1� 2f̄0aÞf̄0að1� f̄0aÞβva; ð58Þ

∂ðϵ0aÞ−1
∂pa

¼ −
va

ðϵ0aÞ2
: ð59Þ

Then, several terms in Eq. (56) can be calculated as

∂

∂pa

�
E ·

∂f̄0a
∂pa

�
¼

�
ðE · vaÞð1� 2f̄0aÞf̄0að1� f̄0aÞvaβ

2 − Ef̄0að1� f̄0aÞ
β

ϵ0a
þ ðE · vaÞf̄0að1� f̄0aÞ

va

ϵ0a
β

�
; ð60Þ

∂

∂pa

�
Ξ ·

∂f̄0a
∂pa

�
¼

�
ðΞ · vaÞð1� 2f̄0aÞf̄0að1� f̄0aÞvaβ

2 − Ξf̄0að1� f̄0aÞ
β

ϵ0a
þ ðΞ · vaÞf̄0að1� f̄0aÞ

va

ϵ0a
β

�
; ð61Þ

∂

∂pa
½va · ∇f̄0a� ¼

�X
q

�
nq
ω
ðϵ0a þUaÞ − qa

�
va · ∇αq þ βva · ∇Ua

�
f̄0að1� f̄0aÞ

�
ð1� 2f̄0aÞβva −

1

ϵ0a
þ va

ϵ0a

�

− ðva · ∇βÞvaf̄0að1� f̄0aÞ; ð62Þ

∂

∂pa

�
∇Ua

∂f̄0a
∂pa

�
¼ −∇Ua

β

ϵ0a
f̄0að1� f̄0aÞ þ ð∇Ua · vaÞ

β

ϵ0a
f̄0að1� f̄0aÞva þ ð∇Ua · vaÞβ2ð1� 2f̄0aÞf̄0að1� f̄0aÞva: ð63Þ

Since Eqs. (60)–(63) involve a dot product with va ×H, certain vector components within these equations become
irrelevant by the orthogonality condition ðva ×HÞ · va ¼ 0. Consequently, Eq. (56) can be simplified and rewritten as
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0 ¼ Fa

τa
Ξ · va þ

Qa

ϵ0a
Fava ×H · ΞþQ2

a

ϵ0a
τaFava ×H · EþQaτa

ϵ0a
va ×H ·

X
q

Hq
a∇αq: ð64Þ

Through rigorous calculations, we obtain the following expression for Ξ:

Ξ ¼ τa
ðωc;aτaÞ2 þ 1

�
−ω2

c;aQaEþ ωc;a

τa
QaðE × hÞ þ ωc;aH

q
a

τaFa
ð∇αq × hÞ − ω2

c;aH
q
a

Fa
∇αq

�
; ð65Þ

where h ¼ H=H. The magnetic field information is embedded in cyclotron frequency of particle species a, denoted by
ωc;a ¼ QaH=ϵ0a. By inserting Eq. (65) into Eq. (55), we finally obtain the magnetic field-dependent perturbation term of the
distribution function,

δfa ¼
τ2a

ðωc;aτaÞ2 þ 1

�
ωc;aFaQaðE × hÞ · va þ

1

τa
FaQaE · va þ

X
q

ωc;aH
q
að∇αq × hÞ · va þ

X
q

1

τa
Hq

ava · ∇αq
�
: ð66Þ

Repeating some procedures in the previous subsection [Eqs. (17)–(30) and (36)–(45)], the particular solutions for the
functions Bq

a and Ga from ϕa in the presence of a magnetic field are computed as

Bq;H≠0
a;part ¼ τa

ϵ0a

�
qa −

nq
ω
ðϵ0a þUaÞ

�
ð1� f̄0aÞ

½ωc;aτaðh × vaÞ þ 1�
ðωc;aτaÞ2 þ 1

; ð67Þ

GH≠0
a;part ¼

Qaτa
ϵ0a

ð1� f̄0aÞ
½1þ ωc;aτaðh × vaÞ�

ðωc;aτaÞ2 þ 1
: ð68Þ

Upon substitution of Eqs. (67) and (68) into Eq. (43), the diffusion current of the conserved charge q0 in a magnetic field is
given by

Vq0 ¼ −
X
a;q

Z
dΓa

pa
ðϵ0aÞ2

τapa · ½ωc;aτað∇αq × hÞ þ ∇αq�
ðωc;aτaÞ2 þ 1

�
qa − ðϵ0a þ UaÞ

nq
ω

��
q0a − ðϵ0a þ UaÞ

nq0

ω

�
f̄0að1� f̄0aÞ

þ
X
a

q0a

Z
dΓa

pa
ðϵ0aÞ2

Qa

T
τapa · ½ωc;aτaðE × hÞ þ E�

ðωc;aτaÞ2 þ 1

�
q0a −

nq0

ω
ðϵ0a þUaÞ

�
f̄0að1� f̄0aÞ: ð69Þ

Assuming the magnetic field is aligned with the z-axis, the above equation can be decomposed into x- and y-components,
resulting in the following matrix form:"

Vq0
x

Vq0
y

#
¼

"
ηQq0Q
xx ηQq0Q

xy

ηQq0Q
yx ηQq0Q

yy

#"
Ex

Ey

#
þ
X
q

"
κQqq0
xx κQqq0

xy

κQqq0
yx κQqq0

yy

#"
−∇xαq

−∇yαq

#
: ð70Þ

Here, the thermoelectric conductivity tensors, denoted as ηQq0Q, and diffusion coefficient tensors, denoted as κQqq0 , in a
magnetic field satisfy the Onsager’s reciprocity relation [75,76]: κQqq0

xx ðηQq0Q
xx Þ ¼ κQqq0

yy ðηQq0Q
yy Þ and κQqq0

xy ðηQq0Q
xy Þ ¼

−κQqq0
yx ð−ηQq0Q

yx Þ. Accordingly, the magnetic field-dependent thermoelectric conductivity matrix element, ηQq0Q
xx , and the

Hall-like or transverse thermoelectric conductivity matrix element, ηQq0Q
yx , can be expressed as

�
ηQq0Q
xx

ηQq0Q
yx

�
¼

X
a

daQa

3T

Z
d3pa

ð2πÞ3
p2a

ðϵ0aÞ2

�
q0a − ðϵ0a þ UaÞ nq0ω

�
ðωc;aτaÞ2 þ 1

�
τa

−ωc;aτ
2
a

�
f̄0að1� f̄0aÞ: ð71Þ

Similarly, the magnetic field-dependent diffusion coefficient matrix element, κQqq0
xx , and the Hall-like diffusion coefficient

matrix element, κQqq0
yx , can be given as
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�
κQqq0
xx

κQqq0
yx

�
¼

X
a

da
3

Z
d3pa

ð2πÞ3
p2a

ðϵ0aÞ2

�
qa − ðϵ0a þUaÞ nqω

�
ðωc;aτaÞ2 þ 1

�
q0a − ðϵ0a þ UaÞ

nq0

ω

��
τa

−ωc;aτ
2
a

�
f̄0að1� f̄0aÞ: ð72Þ

To better distinguish the expressions of transport coefficients under various transverse restriction conditions later, we
convert Eq. (70) into the following matrix form:

2
666664

Ex

Ey

Vq00
x

Vq00
y

3
777775 ¼

2
6666666666664

ρQQ
xx ρQQ

xy
P
q
− TMQqQ

xx
P
q
− TMQqQ

xy

ρQQ
yx ρQQ

yy
P
q
− TMQqQ

yx
P
q
− TMQqQ

yy

ΠQq00Q
xx ΠQq00Q

xy
P
q
κ̃Qqq00
xx

P
q
κ̃Qqq00
xy

ΠQq00Q
yx ΠQq00Q

yy
P
q
κ̃Qqq00
yx

P
q
κ̃Qqq00
yy

3
7777777777775

2
666664

VQ
x

VQ
y

−∇xαq

−∇yαq

3
777775; q∈ fB;Q; Sg; q00 ∈ fB; Sg: ð73Þ

Solving the set of coupled matrix equations (73) under the
condition of vanishing gradients of transverse conserved
charge chemical thermal potentials (∇yαq ¼ 0) with
∇xαq ¼ 0 ¼ VQ

y ¼ 0, then the electric resistance tensors,
ρQQ,s can be obtained as

ρQQ
xx ¼ ρQQ

yy ¼ Ex

VQ
x

				∇yαq¼0

¼ ηQQQ
xx

ðηQQQ
xx Þ2þðηQQQ

xy Þ2 ; ð74Þ

ρQQ
yx ¼ −ρQQ

xy ¼ Ey

VQ
x

				∇yαq¼0

¼ ηQQQ
xy

ðηQQQ
xx Þ2 þ ðηQQQ

xy Þ2 : ð75Þ

In a magnetic field, the Hall-like diffusion thermopower of
conserved charge q, denoted as MQqQ

yx , can emerge. Under
the condition of ∇yαq ¼ 0 with VQ

x ¼ VQ
y ¼ 0, the mag-

netic field-dependent diffusion thermopower and Hall-like
diffusion thermopower of conserved charge q can be
derived respectively as

MQqQ
xx ¼ Ex

T∇xαq

				∇yαq¼0

¼ βρQQ
xx κQqQ

xx − βρQQ
xy κQqQ

xy ; ð76Þ

MQqQ
yx ¼ Ey

T∇xαq

				∇yαq¼0

¼−βρQQ
xx κQqQ

xy −βρQQ
xy κQqQ

xx : ð77Þ

In the absence of a magnetic field,MQqQ
xx simplifies toMQq.

Utilizing the set of coupled equations (73), and subjecting
to the condition of ∇yαq ¼ 0 with VQ

x ¼ VQ
y ¼ 0, the

magneto-thermoelectric modified diffusion coefficient,
κ̃Qqq00
xx , and Hall-like magneto-thermoelectric modified dif-
fusion coefficient, κ̃Qqq00

yx , can be computed respectively as

κ̃Qqq00
xx ¼ Vq00

x

−∇xαq

				∇yαq¼0

¼ κQqq00
xx − ηQq00Q

xx TMQqQ
xx þ ηQq00Q

yx TMQqQ
yx ; ð78Þ

κ̃Qqq00
yx ¼ Vq00

y

−∇xαq

				∇yαq¼0

¼ κQqq00
yx − ηQq00Q

yx TMQqQ
xx − ηQq00Q

xx TMQqQ
yx : ð79Þ

In condensed matter physics, the Righi-Leduc effect or
thermal Hall effect occurs when a transverse temperature
gradient (∇yT) is developed by a longitudinal temperature
gradient (∇xT) under a static magnetic field (Hz). The
associated Righi-Leduc coefficient is determined under the
transverse adiabatic condition, specifically when the trans-
verse heat current (Iy) is zero. Similarly, in hadronic matter
with multiple conserved charges, a transverse or Hall-like
conserved charge density gradient (∇yαq) perpendicular to
both the ∇xαq and Hz, can be induced. The corresponding
coefficient is calculated under the condition of vanishing

transverse diffusion current i.e., Vq00
y ¼ 0. Therefore, utiliz-

ing the matrix equation (73), and enforcing the conditions

Vq00
y ¼ VQ

x ¼ VQ
y ¼ 0, the Righi-Leduc-type relation within

the hadronic medium can be deduced as follows:

0 ¼
X
q

κ̃Qqq00
yx ∇xαq þ

X
q

κ̃Qqq00
xx ∇yαq

→ Lq

Vq00
y ¼0

¼ ∇yαq
∇xαq

				
Vq00
y ¼0

¼ κ̃Qqq00
xy

κ̃Qqq00
xx

; ð80Þ

where Lq

Vq00
y ¼0

denotes Righi-Leduc-like coefficient.

Accordingly, the magnetic field-dependent diffusion
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thermopower under the condition of Vq00
y ¼ 0 with VQ

x ¼
VQ
y ¼ 0 is computed as

MQqQ

xx;Vq00
y ¼0

¼ MQqQ
xx −MQqQ

yx Lq

Vq00
y ¼0

: ð81Þ

When the magnetic field is turned off, the expressions of
transport coefficients become equivalent under various

transverse condition: ∇yαq ¼ 0 and Vq00
y ¼ 0. Similarly,

the magneto-thermoelectric modified diffusion coefficient

under the condition of Vq00
y ¼ 0 with VQ

x ¼ VQ
y ¼ 0, is

computed as

κ̃Qqq00

xx;Vq00
y ¼0

¼ κ̃Qqq00
xx − κ̃Qqq00

yx Lq

Vq00
y ¼0

: ð82Þ

D. Thermal averaged relaxation time

Comparing Eqs. (25) and (26), the mutual interaction
information of all particle species is encoded in the
relaxation time, τa. For the binary elastic collisions
aðpaÞ þ bðp0

bÞ → aðp00
aÞ þ bðp000

b Þ, the inverse of τa is
given as

τ−1a ¼
X
b

γab

Z
dΓ0

bdΓ00
adΓ000

b Wabðpa; p0
bjp00

a; p000
b Þ

× f̄0
0

b ð1� f̄0
00

a Þ ð1� f̄0
000

b Þ
1� f̄0a

; ð83Þ

where the transition rate is given as

Wab ¼
ð2πÞ4δ4ðpa þ p0

b − p00
a − p000

b Þ
16ϵ0aϵ

00
b ϵ

000
a ϵ0

00
d

jM̄ab→abj2: ð84Þ

Here, jM̄j is the dimensionless transition amplitude aver-
aged over the spin degeneracy factor in both initial and final
states [77]. This is necessary to balance the degeneracy
factors in the dΓa. To simplify the estimation of relaxation

time, ð1� f̄0
00

a Þ ð1�f̄0
000
b Þ

1�f̄0a
≃ 1, and we utilize the formula of

scattering cross section [78]

σab ¼
R
dΓ00

adΓ000
b ð2πÞ4δ4ðpa þ p0

b − p00
a − p000

b ÞjM̄j2

16ϵ0
00

a ϵ0
000
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpa · p0

bÞ2 −m2
am2

b

q ; ð85Þ

then we can rewrite τ−1a as

τ−1a ¼
X
b

γabρbσabvab; ð86Þ

where ρb ¼
R
dΓ0

bf̄
00
b is the number density of hadron

species b. It is worth noting that the RMF interactions
between hadrons can influence the scattering process by

modifying the number density of hadron species b.
Therefore, the number density of hadron species b needs
to be distinguished in the IHRG model and the RMFHRG
model. In Eq. (86), the relative velocity vab is defined as

vab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ0aϵ00b − pa · p0bÞ2 −m2

am2
b

q
ϵ0aϵ

00
b

: ð87Þ

We shall consider the momentum-independent relaxation
time, the thermal averaged cross section hσabvabi can be
given as

hσabvabi ¼
R
d3pad3p0

bf̄
0
af̄0

0
b σabvabR

d3pad3p0
bf̄

0
af̄0

0
b

: ð88Þ

In this study, all hadrons are regarded as hard spheres
with the same radius rh, and σab is a constant given by
σab ¼ 4πr2h ¼ 30 mb.

IV. NUMERICAL RESULTS AND DISCUSSIONS

All calculations are performed in the condition of nS ¼
0 ¼ μQ ¼ 0 [41,43], which is expected in the initial stages
of heavy-ion collision [79,80]. This specific condition gives
rise to a nonzero strangeness chemical potential, which is a
function of T and μB. In the HRG models, we include all
hadrons listed in Thermal-FIST package, with a mass
cutoff set at Λ ¼ 3.0 GeV [81]. The BES program at RHIC
covers beam energy from

ffiffiffiffiffiffiffiffi
sNN

p ¼ 3 GeV to 200 GeV, with
the baryon chemical potential ranging from μB ≃ 0.75 GeV
to 0.02 GeV [82–84]. In this investigation, we focus on
values of μB up to 0.6 GeV.

A. Results for vanishing magnetic field

To better understand the behaviors of the diffusion
coefficient matrix later, we first thoroughly discuss the T
and μB dependence of the scaled conductivity matrix
σqq

0
=T, which is given as

σqq
0

T
¼

X
a

daβ2

3

Z
d3pa

ð2πÞ3 τa
p2a

ðϵ0aÞ2
q0aqaf̄0að1� f̄0aÞ: ð89Þ

It is closely related to the diffusion coefficient matrix. At
μB ¼ 0, σqq

0
=T is equal to κqq

0
=T2. The variation of σqq

0
=T

with respect to T and μB is determined by the interplay
between charge number density (or distribution function)
and scattering rate (or the relaxation time τa ∼ 1=Γscatt). In
Fig. 1, we see that the magnitude of σQQ=T (σqB=T) for
μB ¼ 0 decreases (increases) monotonically as T increases,
on the other hand, both σQS=T and σSS=T first increase with
T and then decrease, which are qualitatively consistent with
the results from the SMASH simulation (symbol lines)
[85]. The negative sign of σSB=T is attributed to the
associated dominant carriers, i.e., hyperons carrying a
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positive baryon number with a negative strangeness. As
shown in Fig. 1, all scaled conductivities obtained from the
SMASH simulation using the Green-Kubo formalism are
quantitatively larger than ours. We can also see that the
effect of RMF interaction on the scaled conductivity matrix
for μB ¼ 0 is minimal. This is because the RMF correction
for μB ¼ 0 results in a small suppression of charge number
density and a slight enhancement of relaxation time, the
mutual compensation makes the RMF correction on the
conductivities negligible.
Compared to the thermal behaviors observed at

μB ¼ 0 GeV, the scaled conductivities at μB ¼ 0.3 GeV
remain largely unchanged. However, as illustrated in Fig. 1,
there is a notable enhancement in the magnitude of σqB=T.
This is because the dependence of σqB=T on μB is mainly
governed by the baryon density, which is an increasing
function of μB. Meanwhile, we observe a nominal reduction
in both σQS=T and σSS=T when comparing their values at
μB ¼ 0.3 GeV to those at μB ¼ 0 GeV. This reduction can
be explained by the fact that the primary carriers for both
σQS=T and σSS=T are kaons (K), the number density of
kaons undergo a slight enhancement due to the nonzero μS,
this enhancement is negated by the increased scattering
rates of kaons resulting from their elevated collisions with
baryons. The variation in σQQ=T at μB ¼ 0.3 GeV is
invisible compared to that at μB ¼ 0 GeV. This minimal
change is the result of a competition between meson
(primarily pions) and baryon (primarily nucleons) contri-
butions to σQQ. At μB ¼ 0.3 GeV, the decrease of pion
contribution to σQQ with μB is nearly compensated by the

increase of nucleon contribution to σQQ with μB. As μB
increases further, the baryon density becomes more sig-
nificant, resulting in pronounced changes in all conductiv-
ities at μB ¼ 0.6 GeV. We note that in comparison to the
temperature dependence at μB ¼ 0 and 0.3 GeV, the trend
of both σQB=T and σBB=T at μB ¼ 0.6 GeV can undergo a
reversal. This reversal arises because the decreasing behav-
ior of the relaxation time for predominant nucleons with T
dominates over the increasing trend of the distribution
function with T. Compared to the variation in conductivity
resulting from the RMF correction at lower μB (μB ¼ 0 or
0.3 GeV), all conductivities except σQQ=T, undergo
notable changes when the RMF correction is considered
at μB ¼ 0.6 GeV. In particular, σBQ=T, σBB=T, and
−σBS=T at μB ¼ 0.6 GeV show visible suppression due
to the substantial reduction in baryon density of the system
caused by the incorporation of the RMF correction. In
contrast, the RMF correction significantly enhances σQS=T
and σSS=T at μB ¼ 0.6 GeV. This enhancement is because
the predominant carriers for both σQS=T and σSS=T at μB ¼
0.3 GeV are still kaons, the RMF interaction between
mesons affects the kaon density, while the relaxation
time of kaons is influenced by the RMF interaction
among various hadron-hadron pairs due to colliding with
different hadrons. These effects seem to counteract each
other at μB ¼ 0.3 GeV. However, as μB rises, the increase
in kaon relaxation time caused by the RMF correction
significantly overtakes the decrease in kaon density, leading
to a substantial elevation in both conductivities at

FIG. 1. The temperature dependence of complete scaled conductivity matrix σqq
0
=T for different baryon chemical potentials, i.e.,

μB ¼ 0 (blue), 0.3 GeV (orange) and 0.6 GeV (red) in the IHRG model (dashed lines) and RMFHRG model (solid lines). The symbol
lines are the estimations in the full SMASH simulation using the Green-Kubo formalism at zero μB [85].
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μB ¼ 0.6 GeV. For purely electric conductivity σQQ=T, it is
nearly unaffected by the RMF correction even at high
values of μB. The reason behind this is that the RMF
correction on the meson and baryon contributions to
σQQ=T exactly cancel each other out. Overall, the μB
and T dependence of all conductivities is unaltered by
introducing RMF interactions.
Armed with the knowledge presented above, we can

easily comprehend the results of the diffusion coefficient
matrix. In Fig. 2, we display the T and μB dependence of the
complete scaled diffusion coefficientmatrix, κqq

0
=T2, within

both the IHRG and RMFHRG models. Akin to the con-
ductivity matrix, the diffusion coefficient matrix elements
κqq

0
and κq

0q exhibit symmetry. The integrand of Eq. (47)
decomposes the diffusion coefficient matrix element intoP

a½qaq0a þ ϵ̃2a
nqn0q
ω2 þ q0aϵ̃a

nq
ω þ qaϵ̃a

n0q
ω �f̄0að1� f̄0aÞ. Within

the considered T and μB region, the dominant values of
ϵ̃a in Eq. (47) are lower than ω=nq. Consequently, the
qualitative behaviors of the scaled diffusion coefficient
matrix are similar to the corresponding scaled conductivity
matrix. From Fig. 2, we see that the off-diagonal elements
can reach a magnitude comparable to the diagonal terms.
Our results within the IHRG model align quantitatively and
qualitativelywith the results obtained byDas et al. [43] (for a
more detailed analysis, see the Appendix). We note that the
values of κBB=T2 and κQB=T2 for high T is larger at μB ¼
0.4 GeV than at μB ¼ 0.6 GeV in the IHRG model. As the
temperature rises sufficiently, κQB=T2 at μB ¼ 0.2 GeV can
even surpass that at μB ¼ 0.4 GeV. The decreasing

dependence of κBB and κQB on μB in high T regions is
consistent with the results in the QGP within dynamical
quasi-particle model [42] and holographic model [86,87].
Strikingly different from the σBB=T, the κBB=T2 is nearly
unaffected by the RMF interactions at μB ¼ 0.6 GeV, as
depicted in Fig. 2. This phenomenon can be attributed to the
near cancellation between the decrease in σBB=T and the
increase in the integral of

P
a ϵ̃

2
an2B=ðω2T2Þf̄0að1� f̄0aÞ

caused by the RMF correction in Eq. (47). In Fig. 2, it is
also evident that the RMF correction can increase −κBS=T2

atμB ¼ 0.6 GeV,which contrastswith the trend of−σBS=T2

at μB ¼ 0.6 GeV, shown in Fig. 1. This can be well under-
stood from Eq. (47), in which the integral term related to
−
P

a Saϵ̃anB=ðωT2Þf̄0að1� f̄0aÞ is enhanced by the inclu-
sion of RMF correction, and this enhancement can over-
whelm the reduction in−σBS caused by the RMF correction,
thereby leading to an enhancement in −κBS=T2. It is worth
mentioning that, although in the statement of Refs. [40–42],
the matching condition in the local rest frame is imposed
during the derivation of diffusion coefficient matrix, the
obtained formula bear similar to the ηqq

0
T given in Eq. (48)

excluding the quantum statistic effect and repulsive mean-
field effect (for a detailed discussion, see the Appendix).
Until now, our analysis confines the scenario where the

gradients of conserved charge densities are completely
directly converted to diffusion currents. However, as
mentioned in the introduction, these gradients can also
generate an electric field, subsequently influencing the
diffusion currents of conserved charges. To exhibit the

FIG. 2. The temperature dependence of scaled diffusion coefficient matrix κqq
0
=T2 at μB ¼ 0.2 GeV (orange), 0.4 GeV (purple),

0.6 GeV (magenta) in the IHRG model (dashed lines) and RMFHRG model (solid lines).
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response of the electric field to gradients in conserved
charge chemical thermal potentials, we display the varia-
tions in the diffusion thermopower matrixMqQ with respect
to T and μB within both the IHRG and RMFHRG models.
As depicted in Fig. 3, both MBQ and MSQ are increasing
functions with T, whereas the MQQ remains almost
unchanged and approaches 1. This behavior of MQQ can
well be understood from Eq. (50), wherein κQQ=T2 is
nearly equivalent in magnitude to ηQQ=T. Notably, MBQ

exhibits the smallest values, indicating a weak ability of the
hadron gas (primarily protons) to convert the gradient of
baryon chemical thermal potential into an electric field.
With increasing μB, we observe a visible increase in MBQ,
while at high T, the values of MBQ for different μB tend to

converge. The decrease ofMSQ with respect to μB in high T
regime is attributed that the strong dependence of κSQ=T2

on μB dominates over the decreasing trend of T=ηQQ with
respect to μB. Furthermore, as evident from Fig. 3, the RMF
correction notably augments MSQ and diminishes MBQ at
high μB. These responses primarily originate from κSQ and
κBQ, respectively.
To intuitively illustrate the impact of the thermoelectric

effect on the diffusion coefficient matrix, a comparison
between κqq

00
=T2 and κ̃qq

00
=T2 within the RMFHRG model

is given in Fig. 4. When the thermoelectric effect is
considered, diffusion coefficients in the electric current
sector vanish, only those in the baryon and strangeness
current sectors exist. Let us first explore the diffusion

FIG. 3. The temperature dependence of conserved charge diffusion thermopower matrix MqQ at μB ¼ 0.2 GeV (green), 0.4 GeV
(orange), 0.6 GeV (red) in the IHRGmodel (dashed lines) and RMFHRGmodel (solid lines). The total induced electric field is presented
as E ¼ EB þ EQ þ ES with Eq being the induced electric field by the gradient in conserved charge chemical potential μq.

FIG. 4. The comparison between scaled diffusion coefficients matrix κqq
00
=T2 (solid lines) and scaled thermoelectric modified

diffusion coefficient matrix κ̃qq
00
=T2 (dot-dashed lines) in the RMFHRG model at μB ¼ 0.2 GeV (green), 0.4 GeV (orange), 0.6 GeV

(blue). The below left panel represents the degree of asymmetry between κ̃BS and κ̃SB.
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coefficients in the baryon current sector. From the upper
panel of Fig. 4, it is evident that κBB is nearly unaffected by
the thermoelectric effect. This observation can be well
understood from Eq. (52), where the product of MBQ and
ηBQ is comparatively small compared to κBB. Different
from κBB=T2, the inclusion of the thermoelectric effect
obviously diminishes κSS=T2. Additionally, the thermo-
electric effect enhances−κSB=T2, which further reduces the
net baryon current. Remarkably, the thermoelectric effect
significantly suppresses κQB=T2 (κQS=T2), making κ̃QB

(κ̃QS) much smaller than κBQ (κSQ) and even altering its
sign. These findings indicate that the thermoelectric effect
significantly weakens the correlation between electric
current and baryon (strangeness) current, rendering the
gradient of electric chemical potential insignificant for
baryon (strangeness) diffusion. As a consequence, the
baryon diffusion current can be decreased by the thermo-
electric effect, resulting in VB ≈ κ̃BB∇αB þ κ̃BS∇αS if
gradients are of comparable magnitudes. As depicted in
the lower left panel of Fig. 4, the inclusion of thermoelec-
tric effect does not explicitly break the symmetry between
κ̃SB and κ̃BS. We remark that the T and μB dependence of
κ̃qq

00
=T2 is still consistent with that of κqq

00
=T2.

B. Results for finite magnetic field

We also study the magneto-thermoelectric effect of
hadronic matter and examine its impact on both the

magnetic field-dependent diffusion coefficient matrix

(κQqq0
xx ) and the Hall-like diffusion coefficient matrix

(κQqq0
yx ). So far, the realistic time evolution of the initial

magnetic field remains unclear. Based on the simple
parametrization eHð ffiffiffiffiffiffiffiffi

sNN
p Þ ¼ 0.021

ffiffiffiffiffiffiffiffi
sNN

p
m2

π (mπ is the
pion mass) for Auþ Au collisions with fixed collision
parameter b ¼ 10 fm [88], and using eH ¼ eH0ðτ0=τÞa
with a ¼ 1 as well as eH ∼ 4m2

π for the thermalization
timescale τ0 ∼ 1 fm, we estimate that for the hadronization
timescale τ ∼ 10 fm, eH would be approximately
0.008 GeV2. In our study, we consider a magnetic field
region ranging from 0 to 0.005 GeV2, as done in Ref. [51].
All the estimations at finite magnetic fields are per-

formed using the RMFHRG model, with a fixed baryon
chemical potential μB ¼ 0.3 GeV. As illustrated in the
upper panel of Fig. 5, the temperature dependence of the
scaled magnetic field-dependent thermoelectric conduc-

tivity, specifically ηQq00Q
xx =T where q00 ∈ fB; Sg, remains

unaltered at finite magnetic fields when compared to zero
magnetic field. It is observed that ηQQQ

xx =T at finite
magnetic fields first increases with temperature and sub-
sequently decreases. This non-monotonic behavior of
ηQQQ
xx =T with respect to T is primarily attributed to the
combined effect of the magnetic field and relaxation time in
the integrand of Eq. (71), which can be well understood in
analogy with the discussion on magnetic field-dependent

FIG. 5. Upper panel: the scaled magnetic field-dependent thermoelectric conductivity matrix ηQqQ
xx =T as a function of temperature in

the RMFHRG model for different values of the magnetic field, i.e., eH ¼ 0.0 GeV2 (warm red), eH ¼ 0.001 GeV2 (warm green),
eH ¼ 0.003 GeV2 (warm blue), eH ¼ 0.005 GeV2 (warm orange) at μB ¼ 0.3 GeV. Lower panel: the scaled Hall-like thermoelectric
conductivity matrix ηQqQ

yx =T as a function of temperature in the RMFHRG model for eH ¼ 0.001 GeV2 (cool blue), eH ¼ 0.003 GeV2

(cool green), eH ¼ 0.005 GeV2 (cool purple) at μB ¼ 0.3 GeV.
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electric conductivity reported in previous studies
[44,89,90]. The dominant charge carriers for ηQQQ

xx =T are
charged pions. At low T, the scattering rate of pions is
smaller than cyclotron frequency (ωc), resulting in

τa
ðωc;aτaÞ2þ1

∼ 1=ðω2
c;aτaÞ. While, at high T, the pion scatter-

ing rate exceeds ωc, leading to
τa

ðωc;aτaÞ2þ1
∼ τa. Furthermore,

all the scaled magnetic field-dependent thermoelectric
conductivities initially decrease with increasing magnetic
field before converging at high T. From the lower panel of
Fig. 5, we also note that all scaled Hall-like thermoelectric
conductivities, denoted as ηQqQ

yx =T, exhibit a non-mono-
tonic temperature dependence. This behavior is attributed
to the complex interplay of various factors, including
relaxation time, cyclotron frequency, and the factor
nq=ω. In the hadron gas, the predominant contributions

for ηQqQ
yx =T stem from protons (p) and Sigma baryons (Σþ).

We note that ηQSQ
yx =T takes on negative values. This can be

understood through Eq. (71), where the dominant term in
the integrand, ∼

P
a SaQaϵ̃anQ=ωf̄0að1þ f̄0aÞ, determine

the sign of ηQSQ
yx =T. This sign is predominantly influenced

by Sigma baryons. The dependence of ηQBQ
yx =T on the

magnetic field is nonmonotonic. This is because, the
predominant proton scattering rate in low T region is much
smaller than the corresponding ωc;a, resulting in

ωc;aτ
2
a

ðω2
c;aτaÞ2þ1

∼ 1=ωc;a. While in high T regions, the proton

scattering rate plays a dominant role with ωc;aτa ≪ 1,

leading to ωc;aτ
2
a

ðωc;aτaÞ2þ1
∼ ωc;a. In contrast, the dependence of

ηQSQ
yx =T on the magnetic field appears almost monotonic
since the scattering rate of predominant Sigma baryons is
always larger than ωc;a in the entire T region considered.
Additionally, we note the magnetic field dependence of
ηQQQ
yx =T is akin to that of ηQBQ

yx =T, but its sign differs at low
and high T. This variance is attributed to the shifting
predominant contribution from protons at lower T and
Sigma baryons at higher T.
Next, we discuss the qualitative behaviors of both

magnetic field-dependent diffusion thermopower matrix,
MQqQ

xx , and Hall-like diffusion thermopower matrix,MQqQ
yx ,

with respect to temperature and magnetic field, respec-
tively. As shown in the upper panel of Fig. 6, the
application of a magnetic field enhances both MQBQ

xx and
MQSQ

xx in low T region, which means the ability of the
hadron gas to convert baryon and strangeness chemical
potential gradients into an electric field is strengthened by
adding a magnetic field. Whereas the MQQQ

xx appears to be
independent of the magnetic field. All components of
MQqQ

yx exhibit a significant dependence on the magnetic
field in the studied temperature region. As seen in the lower
panel of Fig. 6, allMQqQ

yx components in magnitude display
a similar peak structure throughout the entire T region, and
these magnitudes increase as eH increases. It is worth
noting that the magnitude ofMQBQ

yx is comparable to that of
MQBQ

xx at low T.
As in the case without a magnetic field, we also compare

the magnetic field-dependent diffusion coefficient matrix

FIG. 6. Same as Fig. 5 but for magnetic field-dependent diffusion thermopower matrix MQqQ
xx and Hall-like diffusion thermopower

matrix MQqQ
yx .
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before and after accounting for the magneto-thermoelec-
tric effect. As illustrated in Fig. 7, we note that all
components of κQqq0

xx =T2, except for κQQQ
xx =T2, remain

qualitatively unchanged in the presence of a magnetic
field. The associated explanation of κQQQ

xx =T2 mirrors
that of ηQQQ

xx =T. Within the baryon current sector, κQBB
xx

and κQSB
xx appear insensitive to the magnetic field,

while the remaining terms exhibit significant reductions
in the low T region when the magnetic field is introduced.
Thus, the presence of a magnetic field can significantly
hinder the strangeness and electric diffusion, especially
when gradients of similar magnitudes are involved.
The qualitative behavior of the magneto-thermoelectric

modified diffusion coefficient matrix, κ̃Qqq00
xx , aligns with

that of the nonmodified matrix, κQqq00
xx . Furthermore,

as depicted in the inset of the upper right panel of
Fig. 7, the symmetry between κ̃QSB

xx and κ̃QBS
xx is almost

maintained.
In comparison to κQqq0

xx =T2, all Hall-like diffusion coef-

ficient matrix elements, κQqq0
yx =T2, exhibit a strong depend-

ence on the magnetic field, as shown in Fig. 8, and display a
peak structure in magnitude. The explanation for the
behavior of κQqQ

yx =T2 with respect to T and eH is akin

to that of ηQqQ
yx =T2. It is worth noting that κQqq00

yx =T2 show
obvious responses to the magneto-thermoelectric effect.

The magneto-thermoelectric effect can considerably dimin-
ish the magnitude of κ̃QQB

yx (κ̃QQS
yx ), thereby rendering the

transverse coupling between electric charge and baryon
(strangeness) charge insignificant in Hall-like baryon
(strangeness) current. Strikingly different from κQBB

xx , we
observe that the magneto-thermoelectric effect gives an
obvious enhancement in the magnitude of κQBB

yx . The eH

and T dependence of κ̃Qqq00
yx remains similar to that of κQqq00

yx .
Notably, the introduction of the magneto-thermoelectric
effect causes a significant asymmetry between κ̃QSB

yx and
κ̃QBS
yx , as depicted in the inset of the upper right panel
of Fig. 8. This asymmetry intensifies further with the
increase in μB.
The aforementioned calculations regarding magnetic

field-dependent diffusion thermopower matrix and mag-
neto-thermoelectric modified diffusion coefficient matrix in
the presence of a magnetic field were performed under the
assumption that the conserved charge chemical thermal
potential gradients are solely along the longitudinal direc-
tion, specifically with, ∇xαq ≠ 0;∇yαq ¼ 0. As stated in
Sec. III, under the condition of zero transverse diffusion

current of conserved charge, (i.e., Vq00
y ¼ 0 with

q00 ∈ fB; Sg), a transverse gradient ∇yαq can arise
from ∇xαq, subsequently inducing a transverse electric
field. Under these conditions, the magnitude of the

FIG. 7. Both complete scaled magnetic field-dependent diffusion coefficient matrix κQqq0
xx =T2 (solid lines) and complete scaled

magneto-thermoelectric modified diffusion coefficient matrix κ̃Qqq00
xx =T2 (dot-dashed lines) for eH ¼ 0.0 GeV2 (magenta), 0.001 GeV2

(red), 0.003 GeV2 (green), 0.005 GeV2 (blue) at μB ¼ 0.3 GeV in the RMFHRGmodel. The inset in the upper right panel quantifies the
degree of asymmetry between κ̃QBS

xx and κ̃QSB
xx .
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magneto-thermoelectric modified diffusion coefficient

matrix might differ from that under the condition of

∇yαq ¼ 0. To intuitively quantify the impact of varying
transverse conditions, Fig. 9 illustrate the ratio of magnetic
field-dependent diffusion thermopower computed under
the conditions of VB

y ¼ 0 and VS
y ¼ 0 to that determined

under the condition of∇yαq ¼ 0. We find that imposing the

condition of Vq00
y ¼ 0 results in an obvious reduction in

MQBQ
xx within low T region, whereas bothMQQQ

xx andMQSQ
xx

exhibit almost insensitive to alterations in transverse
conditions. This result is unsurprising since, under the

condition of ∇yαq ¼ 0, the values of MQQQ
yx (MQSQ

yx ) is

much smaller than the corresponding MQQQ
xx (MQSQ

xx ), as
shown in Fig. 6. Additionally, the Lq

Vq00
y ¼0

always remains

less than 1 due to jκ̃Qqq00
yx j < jκ̃Qqq00

xx j, consequently, the
product of MQQQ

yx (MQSQ
yx ) and LQ

Vq00
y ¼0

in Eq. (81) is

negligible in comparison to MQQQ
xx (MQSQ

xx ).
Finally, we show the sensitivity of magneto-thermoelec-

tric modified diffusion coefficient matrix, κ̃Qqq00
xx , to various

choices of transverse conditions in Fig. 10. The results for
κ̃QQB
xx and κ̃QQS

xx are not presented here as they are much

FIG. 8. Same as Fig. 7 for both complete scaled Hall-like diffusion coefficient matrix κQqq0
yx =T2 and complete scaled magneto-

thermoelectric modified Hall-like diffusion coefficient matrix κ̃Qqq00
yx =T2.

FIG. 9. The ratio of magnetic field-dependent diffusion thermopower under the condition of Vq00
y ¼ 0 to that under the condition of

∇yαq ¼ 0 as a function of temperature at eH ¼ 0.001 GeV2 (red), 0.003 GeV2 (green), 0.005 GeV2 (blue). The dashed lines and solid
lines correspond to the results under the condition of VB

y ¼ 0 and the condition of VS
y ¼ 0, respectively. All the numerical calculations

are performed at μB ¼ 0.3 GeV in the RMFHRG model.
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smaller than the other terms. We observe that taking the

condition of ∇yαq ¼ 0 as a baseline, the variation of κ̃Qqq00
xx

due to changes in transverse conditions is generally small,
except that κ̃QBB

xx has a slight reduction in the condition of

VB
y ¼ 0 at low T. The qualitative features of κ̃Qqq00

xx almost
remain unchanged under various transverse conditions.

V. SUMMARY

We investigated the thermoelectric effect and diffusion
process involving multiple conserved charges in hot and
dense hadronic matter. Their corresponding diffusion
thermopower matrixMqQ and diffusion coefficient matrix
κqq

0
with q; q0 ∈ fB;Q; Sg were evaluated in both the

IHRG and RMFHRG models by solving the relativistic
Boltzmann equation under relaxation time approximation,
where the Landau-Lifshitz energy frame was adopted.
In the RMFHRG model, the repulsive interaction between
hadrons is treated as a density-dependent mean-
field potential, leading to a shift in the single-particle
energy. In the presence of a magnetic field, additional
Hall-like diffusion thermopower matrix MQqQ

yx and Hall-

like diffusion coefficient matrix κQqq0
yx emerge. We further

explored the impact of the magneto-thermoelectric effect
on both κQqq0

xx and κQqq0
yx . Additionally, we studied the

sensitivities of magnetic field-dependent diffusion ther-
mopower matrix MQqQ

xx and magneto-thermoelectric
modified diffusion coefficient matrix κ̃Qqq00

xx (where
q00 ∈ fB; Sg) to various transverse restrictions. Below,
we outline the primary findings emerging from our
research.

(i) All the scaled diffusion coefficients, except for
κQQ=T2 and κBB=T2 are sensitive to the RMF

interactions in the baryon-rich region, indicating
that the repulsive interactions between hadrons are
crucial for understanding the diffusion properties of
QCD matter created at the lower collision energies.

(ii) Both MBQ and MSQ exhibit a strong dependence on
T and μB. In contrast, the MQQ remains almost
unaffected by varying T and μB, maintaining a value
close to 1. The introduction of RMF corrections
leads to a substantial increase inMSQ and a decrease
in MBQ at large μB.

(iii) The thermoelectric effect generally hinders baryon
(strangeness) diffusion and significantly weakens
the correlation between electric charge and baryon
number (strangeness).

(iv) In the magnetic field, bothMQBQ
xx andMQSQ

xx increase
with the magnetic field at low T, whereas MQQQ

xx is
almost magnetic field independent. The magnitude
of the Hall-like diffusion thermopower matrix is
considerably influenced by eH and exhibits a dis-
tinct peak structure in the considered T region.
Compared to MQQQ

xx and MQSQ
xx , the magnitude of

MQBQ
xx at low T is more sensitive to variations in

transverse restriction conditions.
(v) Apart from κQBB

xx and κQSB
xx , the other diffusion

coefficients are sensitive to eH and decrease
with eH at low T, indicating that the magnetic
field can impede the electric charge and strange-
ness diffusion. Furthermore, the quantitative and
qualitative characteristics of κ̃Qqq00

xx remain rela-
tively stable under varying transverse restriction
conditions.

(vi) The full Hall-like diffusion coefficients in magnitude
reveal a similar peak structure in the considered T
region and exhibit a strong dependence on the
magnetic field. Notably, the inclusion of the mag-
neto-thermoelectric effect can result in asymmetry
between κ̃QSB

yx and κ̃QBS
yx .

These findings could offer valuable insights into the
dynamics of various conserved charges and contribute
to the development of dissipative (magneto-)hydrody-
namics frameworks that explicitly incorporate multiple
conserved charges.
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APPENDIX

In Fig. 11, we present a comparison between the
diffusion coefficient matrix result obtained in this

FIG. 10. Same as Fig. 9 but for the ratio of magneto-thermo-
electric modified diffusion coefficient under the condition of

Vq00
y ¼ 0 to that under the condition of ∇yαq ¼ 0.
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study and the one reported by A. Das et al. in Ref. [43]
within the framework of the IHRG model. The diffusion
coefficient matrix κqq

0
derived in Ref. [43] takes the

following form:

κqq
0 ¼

X
a

da
3

Z
d3pa

ð2πÞ3 τa
p2a

ðϵ0aÞ2
�
q0a − ϵ0a

n0q
ω

�

×

�
qa − ϵ0a

nq
ω

�
fð0Þa ; ðA1Þ

where fð0Þa represents the equilibrium distribution
function in the classical limit, i.e., the Boltzmann
distribution function. As illustrated in Fig. 11, our results
for the full diffusion coefficient align closely with
those reported by A. Das et al. The numerical discrep-
ancies primarily arise from the choices in degrees of
freedom and the absence of quantum statistic effect
in [43].
Alternatively, we note that the expression of κqq

0
pre-

sented in Refs. [40–42] differs from ours. In those
references, κqq

0
is expressed as

κqq
0 ¼ τ

3

X
a

d3pa

ð2πÞ3
pa2

ðϵ0aÞ2
�
q0a −

ϵ0an0q
ω

�
qaf

ð0Þ
a : ðA2Þ

In Ref. [41], a constant relaxation time τ for all the hadron
species is employed. Comparing with our thermoelectric
transport coefficient ηqq

0
from Eq. (48), we find that ηqq

0
=T

bears formal resemblance to κqq
0
=T2 derived in Refs. [40–

42], discounting the quantum statistic effect and repulsive
mean-field effect. As shown in Fig. 12, our results are
smaller than those reported in Ref. [41], and the qualitative
behaviors of ηqq

0
=T2 in the baryon diffusion current are also

slightly different from the results in Ref. [41]. It is clear that
ηBS=T in Fig. 12 is not equivalent to ηSB=T at
μB ¼ 0.6 GeV. This indicates that the symmetry of the
off-diagonal diffusion coefficients (κqq

0 ¼ κq
0q) reported in

Refs. [40,41] may not hold true when the quantum statistic
effects are considered. By comparing Fig. 2 and Fig. 12, we
observe that the quantitative and qualitative differences
between κqq

0
=T2 and ηqq

0
=T are negligible. Therefore, the

numerical discrepancy between our diffusion coefficient
matrix and that of Ref. [41] can primarily be attributed to
differences in the degrees of freedom and relaxation times.

FIG. 11. The diffusion coefficient matrix results obtained by A. Das et al. (symbol lines) [43] is compared to our results (dashed lines)
in the IHRG model with the same settings (nS ¼ 0; μQ ¼ 0) at μB ¼ 0.3 GeV and μB ¼ 0.6 GeV.
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