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We investigate the spin-orbital angular momentum correlations for the active quark inside the light and
heavy mesons for both the spin-0 and spin-1 cases. These correlations can be derived from the generalized
transverse-momentum-dependent distributions as well as the generalized parton distributions. We employ
the overlap representation of light-front wave functions in the light-front quark model to calculate our
analytical results. The dependence of spin-orbit correlations (SOCs) on the longitudinal momentum
fraction x as well as the transverse-momentum-dependence k⊥ is graphically presented. Even though the
SOCs have already been studied for the spin-0 pions and kaons in other approaches, no calculations for the
other light and heavy spin-0 mesons have been reported in the literature. Further, the correlations for any of
the light and heavy spin-1 mesons are studied for the first time in the present work.
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I. INTRODUCTION

Quantum chromodynamics (QCD) [1–3] describes the
production of hadrons by incorporating strong interactions
among quarks, antiquarks, and gluons. One of the most
significant problems and an avenue for improving our
comprehension of QCD and confinement is to decipher the
multidimensional structureof a hadron, thus providing insight
into several nonperturbative aspects of QCD. Hadrons pos-
sess partons inside them, and the respective partonic states can
be described by six-dimensional phase-space distributions
called Wigner distributions [4,5]. Wigner distributions are
the quantum-mechanical constructions that are closest to a
classical probability density in phase space. The probability
density of discovering a parton (gluon or quark) carrying the
parent hadron’s light-front (LF) longitudinal momentum
fraction x is described by the parton distribution function
(PDF) [4–11]. For the description of observables that are
also sensitive to the transverse kinematics of a parton, the
concept of PDFshas been extended to transverse-momentum-
dependent parton distributions (TMDs) [12–19] and gener-
alized parton distributions (GPDs) [20–27] to include the
information of transverse momentum and transverse coor-
dinate distributions, respectively. After a few phase-space

reductions, Wigner distributions reduce to TMDs and
GPDs. Both TMDs and GPDs present a three-dimensional
visualization of the hadron. The Wigner distributions
integrated over the transverse momenta reduce to the
GPDs at zero skewness (ζ ¼ 0) [28]. On the other hand,
integrating it over the transverse impact parameter, with
zero momentum transfer, they reduce to the TMDs. TMDs
can be measured in certain reactions like semi-inclusive
deep inelastic scattering [29,30], Drell-Yan processes
[16,31–34], and Z0=W� production [35–37]. GPDs
are extracted from the QCD description of hard
exclusive reactions like deeply virtual Compton scattering
[21,38–41] and deeply virtual meson production [42,43].
Analyzing the GPDs can reveal details about the quarks’
spatial distributions. Further, Wigner distributions are
Fourier transforms of the generalized transverse-
momentum-dependent distributions (GTMDs) [44,45]
from the transverse momentum transfer Δ⊥ to the impact
parameter b⊥, without integration over the LF energy.
GTMDs are functions of the LF three momentum of the
parton as well as themomentum transfer to the hadron [28].
The spin-orbit correlations (SOCs) between a hadron and

a quark can be explained on the basis of the phase-space
average of Wigner distributions. Comprehending spin
composition of hadrons has been a fascinating subject
of research lately [46–49], and understanding the multidi-
mensional structure makes it possible to analyze character-
istics such as SOCs, spin-spin correlations, quark-gluon
correlations, and other such interactions. It would be
interesting to explore the connection of the GPDs and
GTMDs of spin-0 and spin-1 mesons with their spin-orbital
angular momentum correlations and proceed to calculate
their analytical results. In particular, the correlations
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between the hadron spin and the orbital motion of partons
inside the hadron can bring much bigger insight into the
spin structure of the hadrons [50]. Given that a parton’s
orbital angular momentum (OAM) and spin contributions
have intrinsic negative parity, the only nonvanishing single-
parton (a ¼ q, G) correlations allowed by parity invariance
are Sa · SN , La · SN , and Sa ·La. Here, Lq;G represents the
quark (or gluon) OAM, SN is the spin of the hadron,
and Sq;G portrays the spin of the constituent quark (or
gluon) [50]. The initial two types of correlations are
commonly referred to as OAM and spin contributions of
parton a to the spin of the hadron, whereas the third and
final type is the parton’s SOC. We use the difference
between the right-handed and left-handed contributions of
the quark longitudinal OAM to describe the quark longi-
tudinal SOC, which is expressed by Cq

z.
Dirac, in 1949 [51], recognized that one may set up a

dynamical theory in which the dynamical variables refer to
the physical conditions on a front xþ ¼ 0. The resulting
dynamics is called the LF dynamics, which Dirac referred
to as “front-form” for brevity. The LF dynamics [30,52–54]
is a beneficial model framework, which helps us study the
internal structure of hadrons [30,51] and has direct appli-
cations in the Minkowski space [55]. LF quantization
provides a framework to describe the perturbative and
nonperturbative regimes of QCD. LF dynamics can be
realized by a number of different models, and for this work
we have adopted the LF quark model (LFQM) [56–58].
The LFQM is based on the algebra of generators of the
Lorentz group in the LF dynamics [59]. The component
quark and antiquark in a bound state must be on-mass shell
in conventional LFQM [2,60–62]. The spin-orbit wave
function is derived from the conventional time-independent
spin-orbit wave function supplied by the quantum numbers
JPC [63] using the well-known Melosh transformation,
which is independent of interactions [64]. The LFQM is
primarily concerned with the valence quarks of hadrons,
which are among the primary elements responsible for
the overall composition and properties of hadrons. With
accurate parameter choices, the model describes several
hadron characteristics, including form factors (FFs), dis-
tribution amplitudes, decay constants, etc., thus establish-
ing a phenomenological link between hadron properties
and the wave function of the quark constituents, which has
been successful in many instances.
Quark SOCs have been studied earlier for the spin-1

2

hadrons [65] and also investigated for the case of spin-0
hadrons like pions and kaons [50,66]. However, no work
has been reported for the remaining members of the spin-0
mesons. Further, the spin-1 mesons (light and heavy) have
also remained unexplored in this regard. We may obtain
special insights into the orbital motion of quarks and their
intrinsic longitudinal spin inside spin-0 and spin-1 mesons,
owing to the quark SOC [50]. In light of the successes
of the LFQM and the importance of the quark SOCs,

it becomes essential to extend this work across all members
in both the spin-0 and spin-1 meson spectrum. To make the
application of this work broader, we have included the light
as well as heavy mesons for both the spin-0 and spin-1
cases. We have utilized the conventional definition of the
leading-twist GTMD G1;1 in our calculations and have
solved the correlators for the leading-twist GPD case. To
derive the outcome for the SOC, we have integrated the
GTMD G1;1 twice in terms of transverse momentum k⊥
and fraction of momentum transfer to the active quark x
involving the entire wave function of the LFQM. We have
visualized the behavior of the spin-orbit correlator Cq

z in
our chosen model via two-dimensional plots with respect
to the longitudinal momentum fraction x and transverse
momenta of quark k⊥. We have also presented the model-
dependent results for the pion and kaon. Further, the
physical implications of the SOC for both the spin-0 and
spin-1 light and heavy mesons have been discussed.
This paper is arranged as follows. In Sec. II, we have

presented the correlation between the quark spin and OAM
inside the hadron. In Sec. III, we have quantitatively
discussed LFQM: the model employed to define our LF
wave functions (LFWFs). In Sec. IV, we have shown how
the spin-OAM correlations can be methodically derived
from the GPDs and the GTMDs. These relations have been
presented for both the light and heavy spin-0 and spin-1
mesons. Further, in Sec. V, we have defined our model
parameters and presented our model results for the SOC.
Finally, we have summarized our results in Sec. VI.

II. SPIN-ORBIT CORRELATION

The local gauge-invariant LF operators for the quark
longitudinal spin and OAM have been of unique interest
since they enter Ji’s decomposition of the total angular
momentum operator in QCD [46,50], which is given as

Ĵz ¼ Ŝqz þ L̂q
z þ ĴGz : ð1Þ

Here, L̂q
z refers to the gauge-invariant LF quark longi-

tudinal OAM, which can be further decomposed into right-
handed and left-handed quark contributions as

L̂q
z ¼

Z
d3x

1

2
ψ̄γþðx × iD

↔Þzψ ¼ L̂qR
z þ L̂qL

z ; ð2Þ

where the symmetric covariant derivative is defined byD
↔
¼

∂⃖− ∂⃗−2igA [50]. ψR;L ¼ 1
2
ðI� γ5Þψ and d3x ¼ dx−d2x⊥.

The knowledge and understanding of quark SOCs give us a
complete characterization of the hadron’s internal structure.
The local gauge-invariant correlation is described by

Ĉq
z ¼

Z
d3x

1

2
ψγþγ5ðx × iD

↔Þzψ ¼ L̂qR
z − L̂qL

z : ð3Þ
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The quark OAM operator may be represented in terms of the
gauge-invariant energy-momentum tensor as follows [65]:

L̂q
z ¼

Z
d3x

�
x1 ˆTþ2

q − x2 ˆTþ1
q

�
; ð4Þ

where ˆTμν is the energy-momentum tensor operator given by

ˆTμν
q ¼ 1

2
ψγμiD

↔ν
ψ ð5Þ

¼ ˆTμν
qR − ˆTμν

qLFq; ð6Þ

and ˆTμν
R;L ¼ 1

2
ψR;Lγ

μiD
↔ν

ψR;L. Further, the quark SOC oper-
ator is given as follows:

Ĉq
z ¼

Z
d3x

�
x1 ˆTþ2

q5 − x2 ˆTþ1
q5

�
; ð7Þ

where ˆTμν
q5 may be regarded as the parity-odd partner of ˆTμν

and can be expressed as [65]

ˆTμν
q5 ¼

1

2
ψγμγ5iD

↔ν
ψ ð8Þ

¼ ˆTμν
qR þ ˆTμν

qL: ð9Þ

The nonforward matrix components of ˆTμν
q5 inserted between

two meson states may be parametrized as a sum of two form
factors C̃qðtÞ and F̃ qðtÞ [67–70], which can be expressed as

hk0j ˆTμν
q5ð0Þjki ¼ −

P½μiϵν�þΔP

2Pþ ðC̃qðtÞ − 2F̃ qðtÞÞ
þ iϵμνΔPF̃ qðtÞ þOðΔ2Þ: ð10Þ

Substituting Eq. (10) into the matrix elements of Eq. (7),
within the symmetric LF frame (P⊥ ¼ 0⊥), we get

Cq
z ¼ hpjĈq

z jpi
hpjpi ¼ C̃qð0Þ: ð11Þ

Thus, we just need to compute the form factor C̃qðtÞ in order
to determine the quark SOCs for the mesons.

III. LIGHT-FRONT QUARK MODEL

In the LF technique, a sequence of LFWFs in the Fock-
state basis are used to define the wave functions of
the meson describing a composite state at a certain LF
time [71]. The meson eigenstate jMðPþ;P⊥; SzÞi can
be expressed in terms of its component eigenstate jni
using the LF Fock-state expansion and can be expressed
as [28,66,72]

jMðPþ;P⊥; SzÞi ¼
X
n;λi

Z Yn
i¼1

dxid2k⊥iffiffiffiffi
xi

p
16π3

16π3δ

�
1 −

Xn
i¼1

xi
�
δð2Þ

�Xn
i¼1

k⊥i

�
jn; xiPþ; xiP⊥ þ k⊥i; λiiΨΛ

λ1;λ2
ðxi;k⊥iÞ: ð12Þ

Here, we denote P ¼ ðPþ; P−; P⊥Þ as the meson’s total
momentum and Sz as the longitudinal spin projection of the
target. The LF momentum coordinates and relative momen-
tum fractions of the mesonic components are denoted byk⊥i

and xi ¼ kþi =P
þ, respectively. The quark’s transverse and

longitudinal momentum fractions are represented by the
symbols k⊥ and x, respectively. In contrast, 1 − x and −k⊥,
respectively, describe the same for the antiquark spectator. λi
is the helicity, and mi is the mass of the ith constituent
correspondingly. In Eq. (12), xiP⊥ þ k⊥i ¼ p⊥i is the
physical transverse momentum. ΨΛ

λ1;λ2
ðxi;k⊥iÞ is the LFWF

with different spin and helicity projections, and λ1ð2Þ
describes the helicity of the quark (antiquark) in the meson.
Also, Λ ¼ T refers to the transverse spin projections of the
mesons. To simplify our calculations, we have considered
the minimal Fock-state description of the meson in the form
of a quark-antiquark pair and is expressed as [73]

jMðP;SÞi¼
X
λ1;λ2

Z
dxd2k⊥

16π3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1−xÞp jx;k⊥;λ1;λ2iΨΛ

λ1;λ2
ðx;k⊥Þ:

ð13Þ

The momenta of the meson (P), constituent quark (k1), and
antiquark (k2) in the LFQM are given as

P ¼
�
Pþ;

M2

Pþ ; 0⊥
�
; ð14Þ

k1 ¼
�
xPþ;

k2⊥ þm2
q

xPþ ;k⊥
�
; ð15Þ

k2 ¼
�
ð1 − xÞPþ;

k2⊥ þm2
q

ð1 − xÞPþ ;−k⊥
�
: ð16Þ

Here,mqðmq̄Þ refers to the boost invariant mass of the quark
(antiquark), andM refers to the mass of the meson, which is
given by

M2 ¼ k2⊥ þm2
q

x
þ k2⊥ þm2

q̄

1 − x
: ð17Þ

The LF meson wave function is expressed as [74,75]

ΨΛ
λ1;λ2

ðx;k⊥Þ ¼ ϕðx;k⊥ÞXΛ
λ1;λ2

ðx;k⊥Þ: ð18Þ
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Here, XΛ
λ1;λ2

ðx;k⊥Þ represents the spin wave function, and ϕðx;k⊥Þ is the momentum-space wave function of the meson,
respectively. Let us begin our discussions with spin-0 meson. The spin wave functions are derived through theMelosh-Wigner
rotation [76–78], and for spin-0 mesons, they are expressed as [79]

XSP0ðx;k⊥Þ ¼
X
λ1;λ2

K0ðx;k⊥; λ1; λ2ÞXλ1
1 X

λ2
2 ; ð19Þ

where SP0 stands for the spin-0 meson. K0ðx;k⊥; λ1; λ2Þ is the coefficient of the spin wave function. The different helicity
combinations are described as

K0ðx;k⊥;↑;↓Þ ¼ ½ðxM þmqÞðð1 − xÞM þmq̄Þ − k2⊥�=
ffiffiffi
2

p
w1w2; ð20Þ

K0ðx;k⊥;↓;↑Þ ¼ −½ðxM þmqÞðð1 − xÞM þmq̄Þ − k2⊥�=
ffiffiffi
2

p
w1w2; ð21Þ

K0ðx;k⊥;↑;↑Þ ¼ ½ðxM þmqÞkL2 − ðð1 − xÞM þmq̄ÞkL1 �=
ffiffiffi
2

p
w1w2; ð22Þ

K0ðx;k⊥;↓;↓Þ ¼ ½ðxM þmqÞkR2 − ðð1 − xÞM þmq̄ÞkR1 �=
ffiffiffi
2

p
w1w2: ð23Þ

Here, the subscripts ↑ and ↓ denote the transverse polar-
izations of the quark along the directions êx and −êx,
respectively, and

w1 ¼ ½ðxM þmqÞ2 þ k2⊥�
1
2; ð24Þ

w2 ¼ ½ðð1 − xÞM þmq̄Þ2 þ k2⊥�
1
2: ð25Þ

For the spin-1 mesons, the spin wave functions occurring
in Eq. (18) take the form for Λ ¼ TðþÞ as [80]

XTðþÞ
þ;þ ðx;k⊥Þ ¼

mqðM þ 2mÞ þ k2⊥
ðM þmqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2⊥
q ; ð26Þ

XTðþÞ
−;þ ðx;k⊥Þ ¼ −

kRðð1 − xÞM þmqÞ
ðM þmqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2⊥
q ; ð27Þ

XTðþÞ
þ;− ðx;k⊥Þ ¼

kRðxM þmqÞ
ðM þmqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2⊥
q ; ð28Þ

XTðþÞ
−;− ðx;k⊥Þ ¼ −

k2R

ðM þmqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2⊥
q : ð29Þ

Similarly, the spin wave functions occurring in Eq. (18)
take the form for Λ ¼ Tð−Þ as

XTð−Þ
þ;þ ðx;k⊥Þ ¼ −

k2L

ðmq þMÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2⊥
q ; ð30Þ

XTð−Þ
−;þ ðx;k⊥Þ ¼ −

ðxM þmqÞkL
ðM þmqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2⊥
q ; ð31Þ

XTð−Þ
þ;− ðx;k⊥Þ ¼

ðð1 − xÞM þmqÞkL
ðM þmqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2⊥
q ; ð32Þ

XTð−Þ
−;− ðx;k⊥Þ ¼

mqðM þ 2mÞ þ k2⊥
ðM þmqÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ k2⊥
q ; ð33Þ

where

kRðLÞ ¼ kx � iky:

The momentum-space wave function can be described
using the Brodsky-Huang-Lepage method as [81]

ϕðx;k⊥Þ¼Aexp

2
64−

m2
qþk2⊥
x þm2

q̄þk2⊥
1−x

8β2
−

ðm2
q−m2

q̄Þ2

8β2
�
m2

qþk2⊥
x þm2

q̄þk2⊥
1−x

�
3
75:

ð34Þ

Here, β refers to the harmonic oscillator (HO) scale
parameter and A to the normalization constant. For
mq ¼ mq̄ ¼ m, we have pionlike mesons, and for
mq ≠ mq̄, we have kaonlike mesons.

IV. CONNECTING SOC TO GPDS AND GTMDS

The energy-momentum tensor operator ˆTμν has no
fundamental probe that can couple to its parity-odd partner
ˆTμν
q5 in high energy physics. However, by connecting the

respective form FFs to the exact moments of the GTMDs or
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GPDs, we can obtain a representation of ˆTμν
q5 [50]. The

relationship between the FFs may be derived employing the
following QCD relation:

ϕγ½μγ5iD
↔ν�

ϕ ¼ 2mϕ̄iσμνγ5ϕ − ϵμναβ∂αðψ̄γβϕÞ: ð35Þ

A. GPD approach

When we focus on the matrix’s off-diagonal components
in Eq. (35), the left-hand side represents the SOC [50],
whereas the right-hand side parametrizes the vector and
tensor local correlators as [65]

hp0jϕ̄γμϕjpi ¼ Γμ
qV; ð36Þ

hp0jϕ̄iσμνγ5ϕjpi ¼ Γμν
qT; ð37Þ

where

Γμν
qT ¼ 2iϵμναβΔαPβ

M

Z
Hq

1ðx; ζ; tÞdx; ð38Þ

Γμ
qV ¼ 2Pμ

Z
Fq
1ðx; ζ; tÞdx: ð39Þ

Here, ζ ¼ −Δþ=2Pþ is the skewness variable with Δ being
the momentum transfer. The functions Hq

1ðx; ζ; tÞ ¼ H1

(for simplicity) and Fq
1ðx; ζ; tÞ ¼ F1 (for simplicity) are

defined as GPDs [82,83] of the meson. Hq
1ðx; ζ; tÞ repre-

sents the axial-vector LF quark correlator, and Fq
1ðx; ζ; tÞ

represents the tensor LF quark correlator. They are given as

1

2

Z
dy−

2π
eixP

þy−hp0jϕ̄
�
−
y−

2

�
iσjþγ5ϕ

�
y−

2

�
jpi

¼ −
iϵij⊥Δi⊥
M

Hq
1ðx; ζ; tÞ; ð40Þ

1

2

Z
dy−

2π
eixP

þy−hp0jϕ̄
�
−
y−

2

�
γþϕ

�
y−

2

�
jpi ¼ Fq

1ðx; ζ; tÞ:

ð41Þ

Hence, the SOC may be ascertained through the combi-
nations of the moments of Fq

1ðx; ζ; tÞ and Hq
1ðx; ζ; tÞ,

C̃qðtÞ ¼
Z

dx

�
mq

M
Hq

1ðx; ζ; tÞ −
1

2
Fq
1ðx; ζ; tÞ

�
: ð42Þ

Therefore, the expectation value of the SOC can be
expressed analytically in the form of GPDs as

Cq
z ¼

Z
dx

�
mq

M
Hq

1ðx; 0; 0Þ −
1

2
Fq
1ðx; 0; 0Þ

�
: ð43Þ

B. GTMD approach

The SOC can also be expressed in the form of GTMDs
[5,28,66]. We can exhibit Cq

z in the form of one of the
leading-twist-2 GTMDsG1;1ðx; ζ; k2⊥; k⊥ · Δ⊥;Δ2⊥Þ ¼ G1;1

(for simplicity) that are related to unpolarized meson states.
For the present work, we consider the case of zero skew-
ness, i.e., ζ ¼ 0. We have

Cq
z ¼

Z
dxd2k⊥

k2⊥
M2

G1;1ðx; 0;k2⊥; 0; 0Þ: ð44Þ

We consider here the TMD limit, i.e.,Δ ¼ 0, which reduces
the GTMD to a function of only x and k⊥. The GTMDs are
connected to the Wigner correlator as follows [66]:

Ŵ½γþ� ¼ F1;1; ð45Þ

Ŵ½γþγ5� ¼ −
iϵij⊥ki⊥Δi⊥

M2
G1;1; ð46Þ

Ŵ½iσjþγ5� ¼ −
iϵij⊥ki⊥
M2

H1;1 −
iϵij⊥Δi⊥
M2

H1;2: ð47Þ

Here, ϵij⊥ ¼ ϵ−þij is the antisymmetric tensor, ϵ0123 ¼ 1 and
σab ¼ i

2
½γa; γb�. The Wigner correlator is denoted by the

symbol W½Γ� and can be expressed as

W½Γ�ðx; P;Δ;k⊥Þ ¼
1

2
Tr½Wðx; P;Δ;k⊥ÞΓ� ð48Þ

¼ 1

2

Z
dz−d2z⊥
2ð2πÞ3 eik:zhp0jψ̄

�
−
z−

2

�

× ΓWψ

�
z−

2

�
jpijzþ¼0: ð49Þ

Here, W½Γ�ðx; P;Δ;k⊥Þ is the generalized parton correla-
tion function (GPCF) of the meson. W refers to the
Wilson lines, which result from the parallel transit of gauge
variables across closed loops. To simplify our present
calculations, we consider W to be equal to 1. Γ is the
operator sandwiched between the initial and final meson
states (p and p0), respectively. The GTMDs can be obtained
from the GPCFs by integrating over the quark momentum
k⊥ [84]. F1 and H1 are the GPD limits of the more general
GTMDs F1;1 and G1;1. However, the GTMD G1;1 does not
have an equivalent GPD due to its k⊥-odd property [50].
Therefore, the relation stated in Eq. (44) provides an
alternative formulation for the SOC based on a broader
parton correlation structure. In the overlap representation,
the leading-twist generalized correlator for GTMDs can be
expressed as [71,85]
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W½γþ� ¼ 1

16π3
X
λq̄

�
ϕ�
↓λq̄

ðx00;k00⊥Þϕ↓λq̄ðx0;k0⊥Þ þ ϕ�
↑λq̄

ðx00;k00⊥Þϕ↑λq̄ðx0;k0⊥Þ
�
; ð50Þ

W½γþγ5� ¼ 1

16π3
X
λq̄

�
ϕ�
↑λq̄

ðx00;k00⊥Þϕ↑λq̄ðx0;k0⊥Þ − ϕ�
↓λq̄

ðx00;k00⊥Þϕ↓λq̄ðx0;k0⊥Þ
�
; ð51Þ

W½iσjþγ5� ¼ 1

16π3
X
λq̄

�
ϕ�
↑λq̄

ðx00;k00⊥Þϕ↑λq̄ðx0;k0⊥Þ − ϕ�
↓λq̄

ðx00;k00⊥Þϕ↓λq̄ðx0;k0⊥Þ
�
: ð52Þ

The arguments of the initial-state wave functions in
Eqs. (50)–(52) are given as

x1 ¼
x − ζ=2
1 − ζ=2

;

k⊥1 ¼ k⊥ −
1 − x
1 − ζ=2

Δ⊥
2

;

and for the final-state wave functions, they are given as

x2 ¼
xþ ζ=2
1þ ζ=2

;

k⊥2 ¼ k⊥ þ 1 − x
1þ ζ=2

Δ⊥
2

:

C. Spin-0 mesons

The leading-twist GTMDs that we mention in this work
are F1;1,G1;1,H1;1, andH1;2. Using the LFWFs of the form
of Eq. (34), along with the overlap representation for W½Γ�,
we obtain the explicit expressions for the GTMDs of
mesons having disparate quark and antiquark masses [66]

F1;1 ¼
1

16π3
½k2⊥ þM2M1� ×

ϕðx1;k⊥1Þϕ†ðx2;k⊥2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j22 þ k2⊥2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21 þ k2⊥1

p ;

ð53Þ

G1;1¼−
M2

16π3
ð2−x2−x1Þ

2

ϕðx1;k⊥1Þϕ†ðx2;k⊥2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j22þk2⊥2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21þk2⊥1

p ; ð54Þ

H1;1¼−
M

16π3
½M1−M2�

ϕðx1;k⊥1Þϕ†ðx2;k⊥2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j22þk2⊥2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21þk2⊥1

p ; ð55Þ

H1;2 ¼
M

16π3

�
M1

ð1 − x2Þ
2

−M2

ð1 − x1Þ
2

�

×
ϕðx1;k⊥1Þϕ†ðx2;k⊥2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j22 þ k2⊥2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21 þ k2⊥1

p ; ð56Þ

where

M1 ¼
1 − x
1þ ζ

mq þ
xþ ζ

1þ ζ
mq̄; ð57Þ

M2 ¼
1 − x
1 − ζ

mq þ
x − ζ

1 − ζ
mq̄; ð58Þ

j21 ¼
1 − x
1þ ζ

m2
q þ

xþ ζ

1þ ζ
m2

q̄ −
ð1 − xÞðxþ ζÞ

ð1þ ζ2Þ2 ðmq −mq̄Þ2;

ð59Þ

j22 ¼
1 − x
1 − ζ

m2
q þ

x − ζ

1 − ζ
m2

q̄ −
ð1 − xÞðx − ζÞ

ð1 − ζ2Þ2 ðmq −mq̄Þ2:

ð60Þ

In this section, we have presented the quark GTMDs of
mesons with respect to the longitudinal momentum fraction
carried by quark x. Being the mother distributions, GTMDs
have the versatility to be reduced to the corresponding
GPDs and TMDs. The k⊥-even GTMDs are reduced to the
respective GPDs after integrating over k⊥ [50]. We have

Fq
1ðx; ζ; tÞ ¼

Z
d2k⊥F1;1; ð61Þ

Hq
1ðx; ζ; tÞ ¼

Z
d2k⊥

�
k⊥:Δ⊥
Δ2⊥

H1;1 þH1;2

�
: ð62Þ

Further, the antiquark GTMDs are related to the quark
GTMDs by the relation

Fuðx;k2⊥; ζ;Δ2⊥;k⊥:Δ⊥; mq;mq̄Þ
¼ Fs̄ð1 − x;k2⊥; ζ;Δ2⊥;−k⊥:Δ⊥; mq̄; mqÞ: ð63Þ

D. Spin-1 mesons

For spin-1 mesons, our spatial wave function will remain
the same, but there will be an addition of a spin wave part.
Since we are essentially dealing with TMDs, in this section
we define the explicit expression of g1ðx;k2⊥Þ T-even
TMDs [12,80] in the LFQM using the wave functions in
Eq. (34). We have
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g1ðx;k2⊥Þ ¼
M

2ð2πÞ3 ð2mq þMÞ½ð2k2⊥ þmqðM þ 2mqÞÞ þmqMð1 − 2xÞ� ð64Þ

×
jψðx;k2⊥Þj2

ω2
; ð65Þ

where

ω ¼ ðM þ 2mqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

q

q
: ð66Þ

V. NUMERICAL RESULTS

For the numerical calculations, we have taken the
input parameters of the LFQM for different quark masses
ðmq;mb;mc;msÞ with q ¼ ðu; dÞ and different variational
HO parameters (βqq̄;βqc̄;βqb̄;βqs̄;βsc̄;βbb̄;βcc̄;βsb̄;βcb̄) from
Refs. [2,50]. These parameters have been presented in
Table I and obtained by reproducing the mass spectra using
the variational principle, which has been successful in
computing various physical properties such as decay
constants, electromagnetic form factors, and distribution
amplitudes [2].
In order to compute the spin-orbit correlators using the

G1;1 GTMD for the respective meson, we have used
Eq. (44) along with the quark masses and HO parameters
from Table I. We have summarized the calculated results of
the SOC inside various spin-0 mesons in Table II. From the
table, we observe that the sign of the correlation is negative
for all spin-0 mesons, which clearly implies that the quark
longitudinal spin and quark OAM tend to be antialigned
inside the respective spin-0 meson. This correlation
between the quark spin and OAM takes into account the
effective number of quarks inside a parent hadron [5].
Therefore, it would be interesting to compare the absolute
value of the spin-0 mesons to that of the nucleons. It is
clear from the results that the magnitude of SOC for the
mesons is less than that of the nucleon (Cu=n

z ¼ −0.9 and
Cd=n
z ¼ −0.53 [65]) pointing toward a weaker correlation

inside the mesons, which seems to be due to more
effective quarks inside the nucleons in comparison to those
in the mesons.
In order to show the dependence of quark SOC on the

range of longitudinal momentum fraction x, we integrate
Cq
z over k⊥ and show the variation of Cq

z ðxÞ with respect to
x for various spin-0 mesons in Fig. 1. In Fig. 1(a), we
present the most commonly studied mesons: the pion and

the kaon. Here, it is observed that the largest contribution
for the pion and kaon comes from the region where the
longitudinal momentum fraction x is around 0.4 and 0.38,
respectively. In Fig. 1(b), we present the ηb and ηc mesons
and their highest x contribution comes at 0.5 and 0.5,
respectively. The plots in this case are symmetric, which is
due to a negligible difference in quark and antiquark
masses. However, the Cq

z values for ηb and ηc are extremely
low when compared to those of the pion and kaon.
Similarly, in Fig. 1(c), we have considered the B mesons.
The largest contribution for the B mesons Bþ, B0, B0

s , and
Bþ
c comes from regions where x is around 0.18, 0.18, 0.21,

and 0.5, respectively. The peaks shift toward higher x
values, which is due to the increasing inequality in the
quark and antiquark masses inside the Bmesons having the
quark contents as Bþðub̄Þ, B0ðdb̄Þ, B0

sðsb̄Þ, and Bþ
c ðcb̄Þ.

For the case where the quark is lighter than the other
antiquark in the meson, a smaller longitudinal momentum
fraction x is carried by the quark, hence, leading to the
distribution peak at lower values of x. Further, in Fig. 1(d)
the x dependence of Cq

z ðxÞ) for all of theDmesons has been
presented. The peak of the distribution for the D-mesons
Dþ, D0, and Dþ

s has been observed at longitudinal momen-
tum fractions of x equal to 0.7, 0.7, and 0.62, respectively.
For Dþ and D0, the quark (c) being heavier than the
antiquark (u or d) carries a larger longitudinal momentum
fraction x. This shifts the peak of the distribution to higher
values of x, and the curve is shifted to the right. For the case
of Dþ

s , the difference between the quark (c) and the
antiquark (s) is less compared to that of Dþ or D0, and
the distribution peaks at a comparatively lower x value.
Further, in Fig. 2 we have presented the dependence of

the spin-orbit contribution with transverse momentum k⊥
at fixed values of longitudinal momentum fraction x.
Figures 2(a), 2(c), and 2(e) show the dependence of
SOC on the k⊥ using the GTMD approach, whereas
Figs. 2(b), 2(d), and 2(f) show the dependence using the
GPD approach. Figure 2(a) presents the variation of πþ,
Kþ, K0, ηb, ηc at x ¼ 0.5, Fig. 2(c) presents Bþ, B0, B0

s , Bþ
c

at x ¼ 0.7, and Fig. 2(e) presents Dþ, D0, Dþ
s at x ¼ 0.3.

On the other hand, Fig. 2(b) presents the variation of

TABLE I. Model parameters for LFQM.

mq mc ms mb βqq̄ βqc̄ βqb̄ βqs̄ βsc̄ βbb̄ βcc̄ βsb̄ βcb̄

0.22 1.68 0.45 5.10 0.523 0.500 0.585 0.524 0.537 1.376 0.699 0.636 0.906
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πþ,Kþ,K0, ηb, ηc at x ¼ 0.4, Fig. 2(d) presents Bþ, B0, B0
s ,

Bþ
c at x ¼ 0.4, and Fig. 2(f) presents Dþ, D0, Dþ

s at
x ¼ 0.6. It would be important to mention here that we
have taken different values of x for each set to project the
difference between different mesons. Keeping the same x
values will not affect the dependence but will only affect
the amplitude of the SOC. It is observed that even though
we have the same Cq

z value for both the GTMD and
GPD approaches, the transverse momentum dependence is

different for them [50]. For the GTMD case, the Cq
z ðx;k⊥Þ

is negative over the whole region of k⊥ for all the mesons,
which is in agreement with the pion case detailed in
Ref. [50]. We notice that for the mesons with light quarks,
the peaks occur at lower values of k⊥ but with a com-
paratively large amplitude. The peaks are narrow and sharp
for the light quark mesons, but as we increase the value of
k⊥, they diminish and tend to zero. For the case of heavy
quark mesons, the peaks appear at higher values of trans-
verse momentum and are broader. The amplitudes also
become quite small. Further, using the GPD approach,
Cq
z ðx;k⊥Þ comes out to be positive for higher values of k⊥

in the case of πþ, Kþ, K0, ηb, ηc presented in Fig. 2(b) for
x ¼ 0.4. As the k⊥ values decrease, the Cq

z ðx;k⊥Þ value
first decreases and then increases for the case of πþ. For ηc,
it increases with decreasing k⊥, forKþ andK0, it decreases
with decreasing k⊥, and for ηb there is a negligible increase
in value with decreasing k⊥. These results are in agreement
with the results in Ref. [50]. For the case of B mesons Bþ,
B0, B0

s , Bþ
c in Fig. 2(d), the variation of Cq

z ðx;k⊥Þ has been
presented for x ¼ 0.4. In these cases, the results are
negative throughout the k⊥ region but tend to zero for
higher values of k⊥. The SOCs for theDmesons presented
in Fig. 2(f) for x ¼ 0.6 remain positive but tend to zero
beyond k⊥ ¼ 1.00 GeV. This opposite behavior of the

FIG. 1. x dependence of Cq
z ðxÞ for πþ, Kþ and K0 (a), for ηb and ηc (b), for spin-0 B-mesons (c) and for spin-0 D-mesons (d).

TABLE II. Spin-orbit correlation Cq
z for spin-0 mesons.

Spin-0 mesons Cq=M
z

πþ −0.272
Kþ −0.251
K0 −0.251
Bþ −0.227
B0 −0.227
B0
s −0.161

Bþ
c −0.035

Dþ −0.082
D0 −0.082
Dþ

s −0.072
ηb −0.031
ηc −0.063
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Bmesons andDmesons is due to the difference in the quark
distributions having light and heavy masses, respectively.
We now compute the SOC for the case of spin-1 mesons.

We consider Eq. (44) and replace the G1;1 relation with the
expression g1ðx;k⊥Þ TMD from Eq. (64). The numerical
results of Cq

z for the spectrum of spin-1 mesons having
definite quark contents have been presented in Table III.

The sign of the correlation comes out to be positive for
spin-1 mesons implying that the quark OAM and the quark
longitudinal spin tend to be directly aligned inside the
respective spin-1 mesons. The difference between the
alignment of SOC for the spin-1 meson and the spin-0
meson is because of the spin density term in the energy-
momentum tensor defined in Eq. (35). There are only two

FIG. 2. k⊥ dependence of SOC Cq
z ðx;k⊥Þ at a fixed longitudinal momentum fraction x for spin-0 mesons. Panels (a), (c), and (e) show

the dependence of SOC on the k⊥ using the GTMD approach, whereas panels (b), (d), and (f) show the dependence using the GPD
approach.
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possibilities of the value of Cq
z , which can be either

positive or negative depending on the alignment of the
quark longitudinal spin and quark OAM. For the case of
spin-1 mesons, positive values are obtained.
In Fig. 3, we have presented the dependence of Cq

z on
longitudinal momentum fraction x for different spin-1

mesons. We discuss the cases of ρþ, K�0, and K�þ in
Fig. 3(a) where the maximum contribution of Cq

z ðxÞ for ρþ,
K�0, and K�þ is at 0.50, 0.48, and 0.48 respectively. In
Fig. 3(b), we present the SOCs for J=ψ, ϕ, and ϒ mesons.
In this case, a symmetry is observed because of a similar
quark content in the mesons. The largest contributions
come approximately around 0.50 for all the mesons in this
plot. In Fig. 3(c), we consider the Bmesons, and the largest
contribution for B�þ, B�0, B�0

s , and B�þ
c mesons is for the

values of x at 0.10, 0.10, 0.12, and 0.30 for the respective
mesons. Similar to the case of the spin-0 mesons, in the
case on spin-1 mesons the quarks carry a smaller
longitudinal momentum fraction x when the quark mass
is lighter than its corresponding antiquark. This results in
a peak at lower values of x, and the curve shifts toward the
left. Finally, in Fig. 3(d), we present the D mesons. The
highest x contribution for the D mesons Dþ, D0, and Dþ

s
is found to be at x ¼ 0.22, 0.22, and 0.28, respectively.
The shifting of the peak is again due to the difference in
the quark and antiquark masses giving a peak at higher
values of longitudinal momentum fraction x when this
difference is small.
In Fig. 4, we have shown the dependence of the spin-

orbit contribution with transverse momentum k⊥ at fixed

TABLE III. Spin-orbit correlation Cq
z for spin-1 mesons.

Spin-1 mesons Cq=M
z

ρþ 0.332
J=ψ 0.241
ϒ 0.338
ϕ 0.221
K�þ 0.291
K�0 0.291
B�0 0.179
B�þ 0.179
B�0
s 0.191

B�þ
c 0.224

D�0 0.411
D�þ 0.411
D�þ

s 0.336

FIG. 3. x dependence of Cq
z ðxÞ for ρþ, K�0 and K�þ (a), for J=Ψ, Φ and Υ (b), for spin-1 B-mesons (c) and for spin-1 D-mesons (d).
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values of longitudinal momentum fraction x for the spin-1
mesons using the GTMD approach. Figure 4(a) presents the
variation of ρþ, K�0, and K�þ at x ¼ 0.5, Fig. 4(b) presents
J=ψ andϒ at x ¼ 0.5, Fig. 4(c) presents B�þ, B�0, B�0

s , and
B�þ
c at x ¼ 0.3, and Fig. 4(d) presents Dþ, D0, and Dþ

s at
x ¼ 0.7. As discussed earlier, the peak of the quark
distribution depends on the quark content of the meson.
Mesons having similar quark and antiquark masses tend to
have a higher amplitude for its distribution. For the case of
mesons having a difference in the quark and antiquark
masses, the amplitude varies in proportion to the mass
difference. It is also observed that Cq

z ðx;k⊥Þ remains
positive across the entire k⊥ region.

VI. SUMMARY AND CONCLUSION

In this work, we studied the correlation between the
quark’s orbital angular motion and the quark’s longitudinal
spin inside the light and heavy mesons with spin-0 and

spin-1. We started by defining the gauge-invariant LF quark
longitudinal OAM and decomposing it into its constituent
left-handed and right-handed quark contributions. The
quark SOC is described by the difference between the
right- and left-handed quark contributions of this longi-
tudinal OAM. We defined T̂μν

q5 and further decomposed it
into two FFs out of which one form factor is the SOC
ascertained by the form factor Cq

z. We considered two
approaches in order to calculate Cq

z . One is the GTMD
approach, where Cq

z is defined by the leading-twist corre-
lator G1;1 for the spin-0 mesons and g1ðx;k⊥Þ for the case
of spin-1 mesons. The alternative way is the GPD tech-
nique, in which the first x moments of Fq

1ðx; ζ; tÞ and
Hq

1ðx; ζ; tÞ at ζ ¼ 0, t ¼ 0 GeV2 combine to yield the
correlation’s expectation value. We calculated the analytical
results for Cq

z by considering the overlap representation of
the GPDs and the GTMDs in LFQM. We listed the
numerical results of Cq

z for both the spin-0 and spin-1

FIG. 4. k⊥ dependence of SOC Cq
z ðx;k⊥Þ at x ¼ 0.5 for ρþ, Φ and K�þ (a), at x ¼ 0.5 for J=Ψ and Υ (b), at x ¼ 0.3 for spin-1

B-mesons (c) and at x ¼ 0.7 for spin-1 D-mesons (d) using GTMD approach.
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mesons. There is a small variation in our results on
comparing them with the SOCs of the pion and kaon in
the LFQM [50,66]. This variation is due to the different HO
parameters and normalization constants. The negative sign
in the case of spin-0 mesons indicates that the OAM and
quark spin tend to be anticorrelated. The positive sign in the
case of spin-1 mesons indicates that OAM and quark spin
tend to be directly correlated. We presented the dependence
of longitudinal momentum fraction x and the transverse
momentum k⊥ for the longitudinal SOC where we con-
sidered k⊥ dependence for both the GPDs and GTMDs
while dealing with spin-0 mesons and only the GTMDs in
the context of spin-1 mesons. Since the spin-1 meson has
an added spin wave part, we found that the dependence of
longitudinal momentum fraction varies from the case of the
spin-0 case. We presented fresh insights into the SOC
inside the spin-0 and spin-1 mesons with our analysis of the
quark longitudinal spin, which has not been investigated

before except for the case of pions and kaons. This work
helps us understand the spin structure of different mesons.
Future experimental data from SPD at the NICA collider

at JINR (Dubna, Russia) [86,87] will provide deep insight
into the spin structure of the hadrons. The upcoming new
and upgraded experiments at JLab, DESY, EIC (electron-
ion collider) [88] will in the future come up as a valuable
sources in accessing the spin physics data, which will give
extensive information to probe the multidimensional struc-
ture of hadrons.
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