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We study the jet quenching parameter q̂ in a nonequilibrium plasma using the QCD effective kinetic
theory. We discuss subleading terms at large jet momentum p, show that our expression for q̂ reproduces
thermal results at small and large transverse momentum cutoffs for infinite p, and construct an interpolation
between these limits to be used in phenomenological applications. Using simple nonequilibrium
distributions that model pertinent features of the bottom-up thermalization scenario, we analytically assess
how anisotropy, underoccupation, or overoccupation affect the jet quenching parameter. Our work provides
more details on the q̂ formula used in our preceding work [Phys. Lett. B 850, 138525 (2024) ] and sets the
stage for further numerical studies of jet momentum broadening in the initial stages of heavy-ion collisions
from QCD kinetic theory.
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I. INTRODUCTION

The goal of relativistic heavy-ion collisions performed
at the Relativistic Heavy Ion Collider (RHIC) and the
LHC is to achieve a better understanding of the quark-
gluon plasma (QGP) that is created in the collisions. In
particular, much attention has been directed to the non-
equilibrium initial stages of this state of matter. While in
general the theoretical description of the early stages
requires a solution to nonperturbative nonequilibrium
quantum field theory, a description based on weak-
coupling methods becomes appropriate in the limit of
(asymptotically) high collision energies. In this limit, the
initial stages of central heavy-ion collisions follow
the bottom-up scenario of [1]. The time evolution of
the bottom-up scenario can be described through a set of
different effective descriptions that capture the important
aspects of the preequilibrium dynamics after the collision.
After a so-called glasma phase that can be described using
a classical field description [2], the system can be
described using quasiparticle degrees of freedom [3–6]
within the QCD effective kinetic theory framework [1,7],

in which all leading-order scattering processes are prop-
erly taken into account. It smoothly connects to relativistic
hydrodynamics [8,9], which is naturally encompassed in
kinetic theory [10–12] and is the standard paradigm to
describe the later spacetime evolution of the QGP.
The medium modification of jets during the non-

equilibrium evolution has recently attracted much atten-
tion [13–21]. The jet quenching parameter

q̂ ¼ dhq2⊥i
dL

ð1Þ

is an important quantity that determines the rate of change
of transverse momentum of a hard parton traveling through
a medium. This parameter q̂ is used in many models to
quantify medium effects on jet energy loss to compare with
experimental data [22–29]. In kinetic theory, the jet quench-
ing parameter is determined by the elastic scattering
collision kernel

Cðq⊥Þ ¼ ð2πÞ2 dΓel

d2q⊥
; ð2Þ

where Γel, the rate of elastic collisions, encodes the
probability of the leading jet parton to receive a transverse
momentum kick with q⊥ per unit time [30,31]. It is related
to q̂ via

q̂ ¼
Z

d2q⊥
ð2πÞ2 q

2⊥Cðq⊥Þ: ð3Þ
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The purpose of this paper—and a closely related paper [20]
—is to study the jet quenching parameter q̂ far from
equilibrium within QCD effective kinetic theory.
The jet quenching parameter has been analytically

calculated before for a weakly coupled plasma in thermal
equilibrium at leading [30,32] and next-to-leading
order [31] in weak coupling perturbative QCD (pQCD).
At strong couplings using AdS/CFT [33,34], calculations
have been performed at leading [35] and next-to-leading
order [36] in the inverse coupling. Computations also exist
in lattice QCD [37], dimensionally reduced Electrostatic
QCD (EQCD) [38], quasiparticle models in thermal
equilibrium [39,40], QCD effective kinetic theory with
an equilibrium background [41–43]. There are also extrac-
tions from experimental data by, e.g., JET [44] and
JETSCAPE [45] collaborations. While these calculations
have been done assuming (at least local) thermal equilib-
rium, which is only reached at later stages, recent studies
include modifications of the jet evolution due to inhomo-
geneous, anisotropic, and flowing systems [46–54],
and the extraction of the jet quenching parameter q̂ during
the glasma stage at the earliest times of heavy-ion
collisions [14–18]. The impact of preequilibrium dynamics
on the related case of heavy-quark diffusion has also
sparked interest in the field [17,18,55–60].
In Ref. [20] we have very recently extracted q̂ during the

anisotropic initial stages of the kinetic bottom-up scenario
[1] using QCD effective kinetic theory (EKT) [7,8]. We
found that it smoothly connects the large values in the early
glasma phase with the smaller values of the hydrodynam-
ical evolution, is consistent with experimentally extracted
values of q̂ at late times, and leads to anisotropic jet
quenching at early times. Our quantitative study of q̂ goes
beyond the parametric estimates of [1,61–64].
In this paper, we provide the explicit derivation of the

leading-order formula for the jet quenching parameter q̂
for an on-shell parton that we have used in our EKT
simulations [20], and that encodes the anisotropy of the
system. Our calculations, however, still neglect the effect
of plasma instabilities by employing an isotropic approxi-
mation to the medium propagator. It is valid for an
arbitrary jet momentum and direction and for anisotropic
particle distributions with azimuthal symmetry around the
beam axis. Since q̂ in the eikonal limit (infinite jet energy)
is logarithmically ultraviolet divergent due to its Coulomb
logarithm, our results are therefore often functions of an
ultraviolet (UV) transverse momentum cutoff Λ⊥. We
discuss the behavior of our formula of q̂ for large jet
momentum and large UV cutoff, and explicitly show that
it reproduces the known analytic limits for small and large
cutoffs in thermal equilibrium. We also assess different
(screening) approximations of the matrix elements that are
also typically employed in EKT simulations of the time
evolution and provide a new approximate form for q̂ in
thermal gluonic systems that interpolates between the

analytic expressions. We also discuss toy models of
bottom-up thermalization [1]. Different stages of this
scenario for passage from the initial state towards hydro-
dynamical evolution are characterized by either over- or
underoccupation of gluonic modes, and by an anisotropy
of the sytem related to the longitudinal expansion. Thus, to
shed light on the effects of the preequilibrium stage on
jets, we calculate q̂ for an effectively two-dimensional and
a scaled thermal distribution, respectively. Although we
restrict ourselves to on-shell partons, our formula can also
be used as an input for jet evolution models that include an
initial large virtuality phase [65,66].
The paper is organized as follows. In Sec. II, we review

the parts of the effective kinetic theory description of on-
shell (massless) partons that we will need. In Sec. III we
arrive at a formula of q̂ that is useful for EKT simulations.
We then apply it in Sec. IV to a thermal distribution and to
toy models for bottom-up thermalization. Finally, we
conclude in Sec. V. The Appendices contain details on
the q̂ formula, its derivation, properties, and evaluation
(Appendices A–D) and on the calculation of q̂ in toy
models (Appendix E).

II. THEORETICAL BACKGROUND
AND KINETIC THEORY

We use natural units c ¼ kB ¼ ℏ ¼ 1, the mostly plus
metric convention, ημν ¼ diagð−1; 1; 1; 1Þ, and denote
4-vectors with upper case letters, Qμ ¼ ðω;qÞ, 3-vectors
with bold upright symbols, e.g., q, and similarly 2-vectors
for transverse momenta q⊥. A nonbold quantity denotes
the length of the corresponding 3-vector, i.e., q ¼ jqj.
For the analytic results, we leave the number of colors NC
and the number of quark flavors nf arbitrary; for the
numerical results, we specialize to NC ¼ 3 for QCD and
nf ¼ 0, i.e., numerically, we consider a purely gluonic
system. For the axis of our coordinate system, we use the
letters x, y, and z.
We perform our calculation within the leading-order

QCD effective kinetic theory formulated in Ref. [7] that
describes the quark-gluon plasma in terms of phase-space
densities or quasiparticle distribution functions fsðpÞ for the
particle species s. In general, fsðpÞ depend on time and their
time evolution is governed by the Boltzmann equation

−
∂fsðpÞ
∂τ

¼ C1↔2
s ½fsðpÞ�þC2↔2

s ½fsðpÞ�þCexp½fsðpÞ�; ð4Þ

where C2↔2 includes elastic collisions, C1↔2 summarizes

inelastic interactions, and Cexp ¼ − pz
τ
∂fp
∂pz

accounts for the

longitudinal expansion of the plasma along the beam
direction z [67]. Here, we assume that the medium is
homogeneous in the transverse plane and we are interested
in the midrapidity region, where we assume boost invari-
ance in the longitudinal direction. Then, our quantities do
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not depend on the spatial coordinate x.1 Additionally, since
the particle production is isotropic, and the longitudinal
expansion singles out only one preferred direction, the
distribution function is independent of the azimuthal angle,
and we often write fðp; cos θpÞ ≔ fðpÞ, with θp the angle
between the z axis and p.
To calculate the jet quenching parameter q̂, we only need

the elastic collision term C2↔2. It consists of a loss term and
a gain term and reads

C2↔2
a ½fsðpÞ� ¼

1

4jpjνa
X
bcd

Z
kp0k0

jMab
cdðp;k;p0k0Þj2

× ð2πÞ4δ4ðPþK−P0−K0Þ
× ffaðpÞfbðkÞ½1� fcðp0Þ�½1�fdðk0Þ�
−fcðp0Þfdðk0Þ½1�faðpÞ�½1�fbðkÞ�g: ð5Þ

The number of spin times color states for a given particle
species a is denoted by νa ¼ 2da, where da is the
dimension of its representation. The external particles in
the 2 ↔ 2 scattering are ultrarelativistic and on shell, i.e.,
P2 ¼ 0 or P0 ¼ jpj ¼ p, and the integral measure is
defined as

Z
k
≔
Z

d3k
ð2πÞ32k : ð6Þ

The matrix elements jMab
cd j2 correspond to elastic two-

particle scattering processes summed over spins and colors
of all incoming and outgoing particles. They are calculated
in pQCD and can be found in [7]. However, due to medium
effects, for soft gluon or fermion exchange these have to be
modified by including the hard thermal loop (HTL) self-
energy. In practice, one often uses an isotropic screening
approximation [8,71–74]. Screening is also important for q̂,
and we will discuss this approximation and the HTL-
screened matrix elements in more detail in Sec. III F.
We will need several observables that can also be

computed in a kinetic theory. The energy density ϵ can
be calculated by weighing the distribution function for a
specific species with its energy,

ϵ ¼
X
s

νs

Z
d3p
ð2πÞ3 pfsðpÞ: ð7Þ

We will frequently encounter the Debye mass mD, which is
an effective gluonic screening mass given by

m2
D ¼

X
s

8dsg2
Cs

dA

Z
p
fsðpÞ: ð8Þ

In thermal equilibrium with nf quark flavors these defi-
nitions reduce to

ϵðTÞ ¼ π2T4

60
ð4dA þ 7nfdFÞ; ð9aÞ

m2
DðTÞ ¼

g2T2

3

�
NC þ nf

2

�
: ð9bÞ

The indices F and A that we used in these expressions
denote the fundamental and adjoint representation of
fermions and gluons, respectively. In particular, their
dimensions are dF ¼ NC and dA ¼ N2

C − 1with the number
of colors NC ¼ 3. Similarly, the quadratic Casimir reads
CF ¼ dA=ð2NCÞ and CA ¼ NC.

III. KINETIC THEORY FORMULA FOR q̂

In this section, we give a derivation of q̂ in the quark-
gluon plasma with fermionic and gluonic degrees of
freedom. Our final formula is given by Eq. (26) with the
details described in Sec. III C for a finite jet momentum,
and those in Sec. III H for infinite momentum p → ∞. The
corresponding matrix elements and their screening pre-
scriptions are discussed in detail in Secs. III E–III H.
The geometry of the problem we consider here is

motivated by its application to bottom-up thermalization
and illustrated in Fig. 1, but is more generally applicable to
any system with azimuthal symmetry in momentum space.
We take z to be the anisotropy direction (e.g., the beam axis)
and the momentum of the jet to be within the x–z plane. We
denote its polar angle θp, which is usually set to θp ¼ π=2
for jet propagation perpendicular to the beam axis. We
emphasize that we are not actually following the trajectory
of a jet and letting it be deflected by the medium. Rather we

FIG. 1. Geometry of jet quenching. The beam axis is the z
direction and the jet parton moves perpendicularly to the y axis in
this graphic along the x direction.

1However, we note that the EKT approach [7] is more general
and allows for spatially inhomogeneous systems [68–70].
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measure the momentum transfer rate that such a jet would
receive were it allowed to interact, performing the calcu-
lation for a jet momentum that is constant in magnitude and
angle during the time evolution of the system.

A. Derivation of q̂ðpÞ from the scattering rate

We first consider the leading hard parton of a jet with a
large but finite momentum p, which should be much larger
than all momentum scales of the plasma such that fðpÞ ≈ 0.
We start with the definition (3) and extend it to account for
anisotropies

q̂ijðpÞ ¼
Z

d2q⊥qi⊥q
j
⊥
dΓel

d2q⊥
; ð10Þ

where Γel is the rate of elastic collisions of a highly
energetic jet parton with plasma particles and q⊥ is the
transferred transverse momentum in such a single collision.
For total transverse momentum broadening q̂ we need to
sum over the directions perpendicular to the jet direction,

q̂ ¼ q̂11 þ q̂22: ð11Þ

It measures the average transverse momentum transfer
squared to the jet particle per unit time (or length, as we
are using units in which c ¼ 1). Here, 1 and 2 denote the
directions perpendicular to the jet.
We can also think of the elastic scattering rate Γel as the

decay rate of a particle with a fixed momentum p. It can be
obtained [75] by identifying it with the loss term in the
elastic collision kernel (5) that describes scatterings out of
the state p, leading to

Γel ¼
1

4pνa

X
bcd

Z
kp0k0

ð2πÞ4δ4ðPþK −P0 −K0Þ

× jMab
cdðp;k;p0;k0Þj2fbðkÞ½1� fdðk0Þ�½1� fcðp0Þ�:

ð12Þ

This formula is also valid out of equilibrium, provided that
the spectral function, which describes the relevant excita-
tions, is very narrow. In particular, the duration of the
scattering process should be much smaller than the typical
time between collisions. In fact, the same conditions as for
QCD kinetic theory [7,76] are required, which we shall
briefly summarize here for the reader’s benefit: A large
separation of scales between the medium-dependent effec-
tive screening masses [such as the Debye mass mD from
Eq. (8)] and the momenta of the relevant excitations phard
is required, phard ≫ mD. Additionally, the effective masses
should be large compared to the quark masses and ΛQCD,
as well as to the small-angle scattering rate τ−1soft. Although
Eq. (12) does not yet specify the concrete form of the
matrix element, we assume that no other contributions
need to be taken into account. For instance, the presence of

plasma instabilities might lead to additional contributions
to the scattering rate, which we neglect. Additionally,
the distribution functions fðpÞ should not vary signifi-
cantly with OðmDÞ changes in momentum, and they
should not be nonperturbatively large for the typical
momenta, fðphardÞ ≪ 1=λ.
Equation (12) is symmetric under the exchange of the

outgoing particles p0 ↔ k0 and c ↔ d, but the inclusion of
qi⊥q

j
⊥ as in Eq. (10) breaks this symmetry. We choose to

define the harder outgoing particle to be the jet particle and
label it c with momentum p0, which is also done in
previous studies, as, e.g., in [30,31,77] as well. In Ref. [41]
this arises naturally if one only considers soft momentum
exchange processes. This choice implies that p0 > k0 is
always valid. With this we can rewrite Eq. (12) with a step
function θðp0 − k0Þ and an additional factor of 2 using the
identity

Z
k0p0

gðk0; p0Þ ¼ 2

Z
k0p0

gðk0; p0Þθðp0 − k0Þ ð13Þ

for symmetric functions gðp0; k0Þ ¼ gðk0; p0Þ. We note that
this leads to more matrix elements than in Ref. [7] because
we now treat processes like qg ↔ gq differently than
qg ↔ qg. We will discuss this new complication in more
detail and list the required matrix elements explicitly in
Sec. III E.
Due to the large jet momentum, we have fðp0Þ ¼ 0, and

with p0 > k0 we obtain

q̂ij ¼ 1

2pνa

X
bcd

Z
kp0k0
p0>k0

qi⊥q
j
⊥ð2πÞ4δ4ðPþ K − P0 − K0Þ

× jMab
cdðp;k;p0;k0Þj2fbðkÞ½1� fdðk0Þ�: ð14Þ

In Appendix A, we show that kinematically one obtains the
following restrictions of the integration variables

jωj < q; p >
q − ω

2
; k >

qþ ω

2
; ð15Þ

where q is the transferred momentum and ω the transferred
energy,

q ¼ p0 − p ¼ k − k0; ð16aÞ

ω ¼ p0 − p ¼ k − k0: ð16bÞ

Using these restrictions from energy-momentum conserva-
tion, we will reduce the phase-space integration in Eq. (4)
to five integrals in Sec. III C, where we choose k, q ¼ jqj, ω
and two angles as integration variables. But before that, we
describe the coordinate frames necessary for the angular
part of the integral in the next section.
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B. Coordinate systems

For the angular integrals, it is convenient to choose
specific coordinate systems whose z-axis coincides with
either p or q. This is due to our choice of the integration
variables k, q, and ω, which kinematically fixes the angles
between p and q, and between q and k by energy
conservation; see Appendix A. However, since the
phase-space density f in our kinetic program is stored in
the “lab frame” where z is the beam direction, we need to
work out the precise rotations to connect it to the other
integration frames. We denote the vectors in this “lab
frame” by a lower subscript 1,2

p1 ¼ pðsin θp; 0; cos θpÞ; ð17aÞ

q1 ¼ qðsin θq cosϕq; sin θq sinϕq; cos θqÞ; ð17bÞ

k1 ¼ kðsin θk cosϕk; sin θk sinϕk; cos θkÞ: ð17cÞ

Because of our azimuthal symmetry around the z axis, we
can always rotate this frame such that p lies in the x–z plane.
For the angular integrals in Eq. (14) we need to choose
appropriate coordinate systems, or frames, in which we
perform them.3 Here, the jet momentum defines a distinct
direction. Therefore, we define a second frame, denoted by
a subscript 2, in which p points in the z direction and that is
obtained via a rotation of the “lab frame” around the y axis
(see Fig. 2). We refer to this frame as “p frame,”

p2 ¼ pð0; 0; 1Þ; ð18aÞ

q2 ¼ qðsin θpq cosϕpq; sin θpq sinϕpq; cos θpqÞ; ð18bÞ

k2 ¼ kðsin θpk cosϕpk; sin θpk sinϕpk; cos θpkÞ: ð18cÞ

In this “p frame” we perform the integral over q.
The k integral is performed in a third frame, in which q

points in the z direction and p lies in the x–z plane. We call
this the “q frame” and denote it by a subscript 3:

p3 ¼ pðsin θpq; 0; cos θpqÞ; ð19aÞ

q3 ¼ qð0; 0; 1Þ; ð19bÞ

k3 ¼ kðsin θkq cosϕkq; sin θkq sinϕkq; cos θkqÞ: ð19cÞ

The components of the vectors transform between the
frames according to the matrix relations

v2 ¼ Av1; A ¼ RyðθpÞ; ð20aÞ

v3 ¼ Bv2; B ¼ RyðθpqÞRzðϕpqÞ; ð20bÞ

where RyðαÞ and RzðαÞ denote the matrices corresponding
to a rotation with angle α around the y- and z-axis,
respectively. The transformation matrices read

A ¼

0
B@

cos θp 0 − sin θp
0 1 0

sin θp 0 cos θp

1
CA; ð21aÞ

B¼

0
B@
cosθpq cosϕpq cosθpq sinϕpq −sinθpq

−sinϕpq cosϕpq 0

cosϕpq sinθpq sinθpq sinϕpq cosθpq

1
CA: ð21bÞ

For the calculation of q̂ij we use the components qi⊥ of q in
the p-frame,

FIG. 2. The integration frames. Left: “lab frame.” The jet momentum p lies in the x–z plane. Center: “p frame,” obtained by rotating
the “lab frame” around the y axis, such that p points in the z direction. Right: “q-frame.”Here, q points in the z direction and p lies in the
x–z plane.

2Although we do not need the expressions for p, q, and k in
this frame and in the following discussions, we list them here for
completeness and convenience, since this illustrates the naming
convention of the angles, out of which we will only later need ϕp,
ϕkq, and ϕpq.

3In typical EKT implementations [8,72–74,78], the q integral
is evaluated in the “lab frame” and all other integrals in a frame
in which q points in the z direction. In this case, because of the
“wedge” function discretization [71], also an integral over p
(in our case the jet momentum) is performed. Here, similarly to
Ref. [79], we choose to proceed differently.

JET QUENCHING PARAMETER IN QCD KINETIC THEORY PHYS. REV. D 110, 034019 (2024)

034019-5



q1 ¼ ðq2Þ1 ¼ q sin θpq cosϕpq ð22aÞ

q2 ¼ ðq2Þ2 ¼ q sin θpq sinϕpq ð22bÞ

q3 ¼ ðq2Þ3 ¼ q cos θpq: ð22cÞ

In this way the components of q̂ are defined relative to p.
Thus the components 1 and 2 are perpendicular to p and
quantify the momentum broadening transverse to the jet.
Having taken the Dirac delta functions in Eq. (14) into

account, we choose ϕpq, ϕkq, k, ω, and q as independent
integration variables. Therefore, we need to express all
other quantities in terms of them. The value of cos θpq,
for example, is actually set by kinematic constraints (or
the delta function in Appendix A), as can be seen easily
via jk0j2 ¼ jk − qj2 ¼ ðk − ωÞ2. Similarly, together with
jk0 þ qj2 ¼ ðk0 þ ωÞ2, we find

cos θkq ¼
ω

q
−
ω2 − q2

2kq
; ð23aÞ

cos θpq ¼
ω

q
þ ω2 − q2

2pq
; ð23bÞ

cos θk0q ¼
ω

q
þ ω2 − q2

2k0q
: ð23cÞ

The distribution functions fðkÞ and fðk0Þ in (14) are
numerically stored in the “lab-frame.” Thus we need a
way to express their polar angles θk and θk0 in terms of the
integration variables. The azimuthal angles ϕk and ϕk0 are
not needed due to azimuthal symmetry. Becausewe perform
the k-integral in the “q-frame” and need cos θk in the
“lab-frame,” we need to work out their relation via (20a)
and (20b), thus k1 ¼ ATBTk3. From ðk1Þz we can read off

cos θk ¼ sinϕkq sinϕpq sin θkq sin θp − cosϕkq sin θkq

× ðcosϕpq cos θpq sin θp þ cos θp sin θpqÞ
þ cos θkqðcos θp cos θpq − cosϕpq sin θp sin θpqÞ;

ð24Þ

and a similar expression holds for cos θk0,

cos θk0 ¼ sinϕkq sinϕpq sin θk0q sin θp − cosϕkq sin θk0q

× ðcosϕpq cos θpq sin θp þ cos θp sin θpqÞ
þ cos θk0qðcos θp cos θpq − cosϕpq sin θp sin θpqÞ:

ð25Þ

The azimuthal angle is ϕk0q ¼ ϕkq because k0 ¼ k − q and
q points in the z direction in the “q-frame.”

C. Formula for q̂ðpÞ
We are now ready to give the formula for the components

of q̂:

q̂ij¼ 1

29π5νa

X
bcd

Z
dΓqiqj

jMab
cd j2

p2
fbðk;vkÞð1�fdðk0;vk0 ÞÞ;

ð26Þ

where we use the abbreviation of v… ¼ cos θ…. The phase-
space integration measure can be written as a product of
two angular integrals and three additional integrals that are
different depending on the order of integration and inte-
gration variables,

Z
dΓ ¼

Z
2π

0

dϕpq

Z
2π

0

dϕkq

Z
dΓ3; ð27Þ

with the three equivalent versions (Appendix A)

Z
dΓ3 ¼

Z
∞

0

dk
Z

k

−p−k
2

dω
Z

minð2pþω;2k−ωÞ

jωj
dq; ð28aÞ

Z
dΓ3 ¼

Z
∞

0

dk
Z kþp

2

0

dk0
Z

minðpþp0;kþk0Þ

jk−k0j
dq; ð28bÞ

Z
dΓ3 ¼

Z
∞

0

dq
Z

q

max ð−q;q−2p;q−2p
3

Þ
dω
Z

pþ2ω

qþω
2

dk: ð28cÞ

The components qi of Eq. (26) in the “p-frame” read

q1 ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2pq

q
cosϕpq; ð29aÞ

q2 ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2pq

q
sinϕpq; ð29bÞ

q3 ¼ qvpq: ð29cÞ

The angles between p, q, k, and k0 are then given by

vpq ¼
ω

q
þ t
2pq

; ð30aÞ

vkq ¼
ω

q
−

t
2kq

; ð30bÞ

vk0q ¼
ω

q
þ t
2k0q

; ð30cÞ

and the polar angles of k and k0 in the “lab-frame” by
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vk ¼ sinϕkq sinϕpq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2kq

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2p

q
− cosϕkq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2kq

q
×

�
cosϕpqvpq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2p

q
þ vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2pq

q �

þ vkq

�
vpvpq − cosϕpq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2pq

q �
; ð30dÞ

vk0 ¼ sinϕkq sinϕpq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2k0q

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2p

q
− cosϕkq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2k0q

q
×

�
cosϕpqvpq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2p

q
þ vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2pq

q �

þ vk0q

�
vpvpq − cosϕpq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− v2pq

q �
; ð30eÞ

and

k0 ¼ k − ω; ð30fÞ

t ¼ ω2 − q2; ð30gÞ

s ¼ −
t

2q2

�
ðpþ p0Þðkþ k0Þ þ q2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4pp0 þ tÞð4k0kþ tÞ

p
cosϕkq

�
; ð30hÞ

u ¼ t
2q2

�
ðpþ p0Þðkþ k0Þ − q2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4pp0 þ tÞð4k0kþ tÞ

p
cosϕkq

�
; ð30iÞ

p0 ¼ pþ ω: ð30jÞ

Recall that νa ¼ 2dR, where dR is the dimension of the
representation of the jet particle. The upper sign in
Eq. (26) is to be used when the d particle is a boson
(gluon), and the lower sign if it is a fermion (quark). Here
the Mandelstam variables s, t, and u are defined as in
Ref. [7] with respect to the momenta corresponding to the
particles with labels a, b, c, d,

s¼−ðPþKÞ2; t¼−ðP0−PÞ2; u¼−ðK0−PÞ2: ð31Þ

The expressions for s, u as in Eqs. (30h) and (30i) can also
be found in [79]. Note that we defined the components q̂ij

with respect to the jet direction. If the jet moves
perpendicular to the beam-axis z in the x-direction as in
Fig. 1, then vp ¼ cos θp ¼ 0 and q̂yy ¼ q̂22 is the momen-
tum broadening in the y direction and q̂zz ¼ q̂11 is the
momentum broadening in the beam direction, which sum
to the usual q̂ ¼ q̂11 þ q̂22. We can also express momen-
tum broadening along the jet direction, i.e., longitudinal
momentum broadening, by q̂L ¼ q̂33. If we replace q̂iq̂j by
ω in (26), we obtain collisional energy loss.

D. Symmetries of q̂ij

Obtaining the symmetries of the matrix q̂ij is compli-
cated by the fact that the angle ϕkq appears both in the
matrix element (via s and u), and in the distribution
functions fðkÞ and fðk − qÞ through vk and vk0 . They
also depend on ϕpq, which enters qi. Nevertheless, in the
case of a spherically symmetric phase-space density fðkÞ it
is easy to see that

q̂12 ¼ q̂13 ¼ q̂23 ¼ 0; q̂11 ¼ q̂22; ð32Þ

due to (29a) and (29b).
For a phase-space density that is azimuthally symmetric

around the z-axis (beam direction), i.e., the most general
case we are considering here with fðk; vkÞ, we also find that

q̂12 ¼ q̂23 ¼ 0: ð33Þ

If the jet is additionally moving in the x direction, i.e.,
vp ¼ 0, we also obtain q̂13 ¼ 0. For a jet moving in the
beam direction, vp ¼ 1, the quantity vk does not depend on
ϕpq any longer and one has q̂13 ¼ 0 as well. In summary,
we have

q̂13 ¼ 0; if vp ¼ 0 or vp ¼ 1: ð34Þ

The fact that q̂12 ¼ q̂23 ¼ 0 can be seen by rewrit-
ing the angular integrals

R
2π
0 dϕpq

R
2π
0 dϕkqgðϕpq;ϕkqÞ ¼R

π
−π dϕpq

R
π
−π dϕkqgðϕpq;ϕkqÞ and then splitting the ϕpq

integral into the integral from ð−π; 0Þ and ð0; πÞ to arrive atZ
2π

0

dϕpq

Z
2π

0

dϕkqgðϕpq;ϕkqÞ

¼
Z

π

0

dϕpq

Z
π

−π
dϕkq½gð−ϕpq;−ϕkqÞ þ gðϕpq;ϕkqÞ�:

The angles ϕkq and ϕpq appear in vk and vk0 , which are not
changed by simultaneously replacing ϕkq → −ϕkq and
ϕpq → −ϕpq. In the matrix element, ϕkq appears in s
and u in the cosine argument, which is an even function.
The only change happens in q22 → −q22, which results
in q̂12 ¼ q̂23 ¼ 0.
To see that q̂13 ¼ 0 for vp ¼ 0, we can look at

ϕpq → ϕpq þ π, which, for vp ¼ 0 changes vk → −vk,
but fðk;−vkÞ ¼ fðk; vkÞ and thus this only results in
q1 → −q1. Thus we obtain q̂13 ¼ 0.

E. Matrix elements

We started our derivation of q̂ with the collision term
C2↔2 of Ref. [7] and thus started with the same matrix
elements. They are symmetric under the exchanges
ðabcdÞ→ðcdabÞ, ðabcdÞ→ðbacdÞ, and ðabcdÞ→ðabdcÞ.
Thus, the matrix element labeled there “q1g ↔ q1g” also

JET QUENCHING PARAMETER IN QCD KINETIC THEORY PHYS. REV. D 110, 034019 (2024)

034019-7



describes the processes “q1g ↔ gq1,” “gq1 ↔ q1g,”
and “gq1 ↔ gq1.”
Due to our choice p0 > k0, we break the symmetry of

exchanging the outgoing particles, ðabcdÞ → ðabdcÞ,
which means that we now have to distinguish between
“q1g ↔ q1g” and “q1g ↔ gq1.” This enlarges the number
of matrix elements. We obtain them from [7] by relabeling
p0 ↔ k0 and c ↔ d, which effectively means [see (31)]

s → s; t → u; u → t: ð35Þ
The resulting matrix elements are still symmetric under
ðabcdÞ → ðbadcÞ and are listed in Table I.

F. Screening using HTL

Screening becomes important when the Mandelstam
variable t becomes small s ≫ t ∼Oðm2

DÞ. This concerns
the underlined terms with inverse powers of t in the matrix
elements listed in Table I, which need to be modified to

account for medium screening [7]. Due to our requirement
p0 > k0 we could only have juj ≪ s when k ≫ p, which is
highly suppressed by the fact that we are choosing p to be
hard and k to be a medium particle. This we have also
checked numerically. Thus, unlike in Ref. [7], we only
need to consider for screening the terms with t in the
denominator.
We follow the prescription of Ref. [7] to include medium

modifications by replacing4 the singly underlined terms in
the matrix elements in Table I by

M0 ¼
ðs−uÞ2

t2

→ jGRðP−P0ÞμνðPþP0ÞμðKþK0Þνj2≡Mscreen; ð36Þ
whereGR denotes the retarded gluon propagator in the HTL
approximation. It should be noted that, as also discussed
in [7], for anisotropic systems, this prescription in general
leads to instabilities [47,49,80,81]. It is currently unknown
how to properly treat these instabilities in kinetic theory.
Note however that there is numerical evidence that suggests
that the quantitative effect of the instabilities on the plasma
evolution is less dramatic [63,64] than expected from power
counting arguments [62]. Here, we will use two different
approximations, such that these instabilities are not present:
First, we will use the isotropic gluon propagator, which
includes the isotropic HTL expressions for the self-energy.
Second, we will use a simple screening prescription that is
also commonly used in EKT simulations [71].
All the singly underlined terms in Table I can be

rewritten in terms of the same unscreened gluon propagator
M0,

s2 þ u2

t2
¼ 1

2
þ 1

2
M0;

su
t2

¼ 1

4
−
1

4
M0: ð37Þ

In the following, we will use different screening approx-
imations for the retarded HTL propagator Mscreen. First, we
use the full isotropic HTL propagators, which can be
expressed as (see Appendix B for details)

MHTL ¼
c21

A2þB2
þ c22
C2þD2

−
2c1c2ðACþBDÞ

ðA2þB2ÞðC2þD2Þ ; ð38Þ

where A, B, C, D are obtained from the real and imaginary
parts of the retarded HTL self-energies and are explicitly
given by

A ¼ q2 þm2
D

�
1þ ω

2q
ln
q − ω

qþ ω

�
; ð39aÞ

TABLE I. Matrix elements for q̂, obtained from the matrix
elements from Ref. [7] by breaking the symmetry of exchanging
outgoing particles. They are obtained by replacing c ↔ d and
t ↔ u. Singly-underlined denominators indicate infrared-sensi-
tive contributions from soft-gluon exchange and double-under-
lined denominators from soft-fermion exchange. The group
constants are given by dF ¼ CA ¼ NC, dA ¼ N2

C − 1, and
CF ¼ dA=ð2NCÞ.

ab ↔ cd jMab
cd j2=g4

q1q2 ↔ q1q2

8
d2FC

2
F

dA

�
s2þu2

t2

�q1q̄2 ↔ q1q̄2
q̄1q2 ↔ q̄1q2
q̄1q̄2 ↔ q̄1q̄2

q1q2 ↔ q2q1

8
d2FC

2
F

dA

�
s2þt2

u2

�q1q̄2 ↔ q̄2q1
q̄1q2 ↔ q2q̄1
q̄1q̄2 ↔ q̄2q̄1

q1q1 ↔ q1q1
8
d2FC

2
F

dA

�
s2þu2

t2 þ s2þt2

u2

�
þ 16dFCF

�
CF − CA

2

�
s2
tuq̄1q̄1 ↔ q̄1q̄1

q1q̄1 ↔ q1q̄1 8
d2FC

2
F

dA

�
s2þu2

t2 þ t2þu2

s2

�
þ 16dFCF

�
CF −

CA
2

�
u2
st

q1q̄1 ↔ q̄1q1 8
d2FC

2
F

dA

�
s2þt2

u2 þ u2þt2

s2

�
þ 16dFCF

�
CF −

CA
2

�
t2
su

q1q̄1 ↔ q2q̄2
8
d2FC

2
F

dA

�
t2þu2

s2

�
q1q̄1 ↔ q̄2q2

q1q̄1 ↔ gg 8dFC2
F

�
u
t þ t

u

�
− 8dFCFCA

�
t2þu2

s2
�

q1g ↔ q1g −8dFC2
F

�
u
s þ s

u

�
þ 8dFCFCA

�
s2þu2

t2

�
q̄1g ↔ q̄1g

q1g ↔ gq1 −8dFC2
F

�
t
s þ s

t

�
þ 8dFCFCA

�
s2þt2

u2

�
q̄1g ↔ gq̄1

gg ↔ gg 16dAC2
A

�
3 − su

t2 −
st
u2 −

tu
s2

�

4It is easy to see that inserting the free propagator G0ðQÞμν ¼ημν
Q2 yields ðs − uÞ2=t2. As argued in Ref. [7], due to the spin
independence of the matrix elements at leading order, one can use
a theory with fictitious scalar quarks for the infrared screening of
the matrix elements. Then this prescription arises naturally.
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B ¼ −
m2

Dω

2q
π; ð39bÞ

C¼ q2 −ω2 þm2
D

2

�
ω2

q2
þ
�
ω2

q2
− 1

�
ω

2q
ln
q−ω

qþω

�
; ð39cÞ

D ¼ πm2
Dω

4q

�
1 −

ω2

q2

�
; ð39dÞ

and

c1 ¼ ð2pþ ωÞð2k − ωÞ; ð40aÞ

c2 ¼ 4pk sin θpq sin θkq cosϕkq: ð40bÞ

Note that, for isotropic distributions, the last term in
Eq. (38) can be dropped, since it is proportional to
cosϕkq and will thus vanish in the angular integration of q̂.
The doubly-underlined terms in Table I correspond to

soft fermionic exchange. We do not consider them here
explicitly because, as we will discuss in Sec. III H, they are
subleading in 1=p.
There is an approximation to the isotropic HTL matrix

element MHTL that is commonly used in numerical sim-
ulations of the time evolution in EKT [8,71–74,78] and that
is also computationally more efficient. This approximation,
which we will refer to as the ξ-screening prescription,
amounts to the replacement [71]

MHTL → Mξ ¼
ðs − uÞ2

t2
q4

ðq2 þ ξ2m2
DÞ2

: ð41Þ

This replacement can be justified when we are not directly
interested in the matrix element but in the (weighted)
integral over it, as in computations of q̂ or C2↔2. The
approximate matrix element Mξ agrees with MHTL at large
q, but behaves differently in the small q region. It includes a
constant ξ that is fixed such that the integral over the
approximated matrix element matches the result of the full
isotropic HTL matrix element. For transverse momentum
broadening, this integral needs to be taken in the high-
energy limit p → ∞, be weighted with q2⊥, and integrated
over d2q⊥ to obtain q̂. Thus we fix ξ by requiring such thatZ

∞

0

dq⊥q3⊥
Z

∞

−∞

dωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥ þ ω2

p Z
2π

0

dϕkqðMHTL −MξÞ ¼ 0:

ð42Þ

In [71] one is matching the longitudinal momentum transfer
rather than the transverse one, which leads to a different
value for ξ.
To evaluate these integrals we take both matrix elements

in the limit p → ∞, and additionally consider the soft limit
ω ≪ k, q⊥ ≪ k. We then first integrate over ω. For MHTL

this can, in the soft limit, be done analytically using a sum
rule [32], which we discuss in more detail in Appendix B 1.
Then we perform the q⊥ integral up to a cutoff Λ⊥ and
obtain the following condition:

2

3
ln

�
1þ Λ2⊥

m2
D

�

¼ 4 ln
Λ⊥

2ξmD
−

Λ2⊥
ðξmDÞ2

−
ðΛ4⊥ þ 2Λ2⊥ðξmDÞ2 þ 4ðξmDÞ4Þ ln Λ⊥

ξmDþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2⊥þðξmDÞ2

p

ðξmDÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2⊥ þm2

D

p
ð43Þ

where the left-hand side comes from MHTL. Expanding
both sides of the equation for large cutoff Λ⊥ ≫ ξmD
leads to

ξ ¼ e1=3

2
≈ 0.6978: ð44Þ

We show in Fig. 3 that both sides of Eq. (43) are indeed in
very good agreement for Λ⊥ ≳ 4mD, justifying the validity
of the approximation for sufficiently large momentum
cutoffs. We note that the value for ξ in Eq. (44) entering the
matrix element in q̂ is slightly different from the one
typically used in the elastic collision kernel C2↔2 in kinetic
theory simulations of the thermalization dynamics of the
quark-gluon plasma [8,71–74,78]. While the matrix
element is approximated in a similar manner as here,
for the thermalization dynamics ξ is fixed by demanding
that longitudinal momentum broadening agrees with the
one from HTL matrix elements entering C2↔2. In contrast,
q̂ requires that the transverse momentum broadening
agrees instead.

FIG. 3. Shown are the HTL sum rule results on the left-hand
side of Eq. (43) as a dashed curve and the values from the
approximated expression on its right-hand side with the param-
eter ξ given by (44) as a continuous line. The plot shows that for
Λ⊥ ≳ 4mD the screening approximation of the full HTL matrix
element provides accurate results.
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With the ξ-screening prescription, the gluonic matrix
element in Table I becomes5

jMgg
ggj2

16dAC2
Ag

4
→

11

4
−
ðs− uÞ2
4t2

q4

ðq2 þ ξ2m2
DÞ2

−
st
u2

−
tu
s2
: ð45Þ

We will investigate this approximation in Sec. IV numeri-
cally by comparing it to the HTL screened results. For
instance, we find that the largest differences occur for a
small cutoff Λ⊥ or a large coupling λ. For the physically
motivated values λ ¼ 10 and Λ⊥ ¼ T we obtain a 30%
deviation, showing that the choice of the screening pre-
scription can be important for the evaluation of q̂. To be safe
from this effect, we have used the full HTL screening
prescription for q̂ in our study of the jet quenching
parameter during bottom-up thermalization in Ref. [20].

G. Towards the limit p → ∞: NLO terms in 1=p

In the derivation of q̂, we have considered the jet
momentum p to be much larger than all other momentum
scales of the plasma. However, in the strict limit p → ∞ the
momentum diffusion coefficient q̂ has a logarithmic diver-
gence, unless the exchanged momentum is limited by a
cutoff. We will first, in this subsection, discuss the limit of
p being large, but not infinite. Then, in Sec. III H, we will
introduce a cutoff on q⊥ and take p → ∞. In the limit of
large p, only the terms su=t2 and ðs2 þ u2Þ=t2 in the matrix
elements (Table I) are ∼p2 and thus contribute.
For example, let us consider the screened gluonic matrix

element (45)

jMgg
ggj2

p2
¼ 16dAC2

A

�
2k − ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k − ωÞ2 − q2

p
cosϕkq

�
2

ðq2 þ ξ2m2
DÞ2

×
�
1þ ω

p
þO

�
1

p2

��
: ð46Þ

Here k is a medium momentum scale (the collision
integral is proportional to fðkÞ) and we can thus assume
that k ≪ p even if formally k is integrated over up to
infinity. Naïvely, we could assume that ω

p ∼Oð1pÞ.
However, p appears also in the lower integration limit
of ω [see Eq. (28a)], and we therefore consider the term
proportional to ω=pmore carefully. For positive ω one has
ω < k ≪ p, such that it becomes indeed negligible. For
negative ω, however, one has

				ωp
				 ¼ −ω

p
<

p − k
2p

¼ 1

2
−

k
2p

; ð47Þ

which does not vanish for p → ∞. However, a more
careful calculation (carried out explicitly in Appendix C)
shows that the leading large p contribution in Eq. (46)
diverges logarithmically ∼ lnp, whereas the Oðω=pÞ
contribution becomes constant in p. Thus indeed the
leading behavior is obtained by assuming p ≫ ω term
in the matrix element.
In summary, we now know, that for large jet energies

Ejet ¼ p, the jet quenching parameter is given by

q̂ðp ≫ TεÞ ≃ ap lnpþ bp: ð48Þ

Here, Tε is the characteristic momentum scale of plasma
particles, e.g., the temperature in thermal equilibrium. For
nonequilibrium systems, such a scale can be obtained, for
example, as the temperature of an equilibrium system with
the same energy density. The coefficient ap for isotropic
distributions is derived explicitly in Appendix C as

ap=CR ¼ CAg4

4π3

Z
∞

0

dk k2fgðkÞ

þ
X
f

dFCFg4

4π3dA

Z
∞

0

dk k2ffðkÞ; ð49Þ

where fg is the gluon distribution function and the subscript
f in ff labels different quark species. q⊥ < Λ⊥, then for
p → ∞ it becomes indeed sufficient to only consider the
leading order contribution in Eq. (46) since the other terms
are then suppressed.

H. Limit p → ∞ with a momentum cutoff

Let us now introduce a cutoff for the transverse compo-
nent of the momentum exchange in the scattering

q2⊥ ¼ q2 − ω2 < Λ2⊥: ð50Þ

Compared to the case without the cutoff, q⊥ is now not
restricted by the large p but by Λ⊥ and we do not need to
worry about the ω ∼ p region as in Sec. III G. The behavior
of the phase-space integral with a cutoff q⊥ < Λ⊥ is also
analyzed in more detail in Appendix C.
We now directly take the limit p → ∞ in the matrix

element, which considerably simplifies the calculation. The
required matrix elements are written down in Table II. Now
only t-channel gluon exchanges contribute, as depicted in
Fig. 4. Apart from that, few changes need to be made to the
formula of q̂ presented in Sec. III C. Equation (26) remains
valid, i.e.,

q̂ij¼ 1

29π5νa

X
bcd

Z
dΓqiqj

jMab
cd j2

p2
fbðk;vkÞð1�fdðk0;vk0 ÞÞ;

ð51Þ
5The unusual value of the constant 11=4 stems from rewriting

su=t2 according to Eq. (37).
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with the integration measure
R
dΓ in (27). However, the

term
R
dΓ3 of the measure given by Eq. (28) and the

kinematic variables need adjustments. As before, the upper
and lower signs in the term ð1� fdÞ denote bosonic
particles (gluons) and fermionic particles (quarks),
respectively.
In particular, in (28a) and (28b) we just need to adjust the

upper integration limit of the q integral. For (28c) we
implement the condition (50) in the ω integral,
ω2 > q2 − Λ2⊥, which only changes the integral boundaries
for q > Λ⊥. We can thus write the integration measures as

Z
dΓ3 ¼

Z
∞

0

dk
Z

k

−∞
dω
Z

min ð2k−ω;
ffiffiffiffiffiffiffiffiffiffiffi
ω2þΛ2⊥

p
Þ

jωj
dq ð52aÞ

¼
Z

∞

0

dk
Z

∞

0

dk0
Z

min ðkþk0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−k0Þ2þΛ2⊥

p
Þ

jk−k0j
dq ð52bÞ

¼
 Z

∞

Λ⊥
dq


Z
−
ffiffiffiffiffiffiffiffiffiffi
q2−Λ2⊥

p

−q
dωþ

Z
qffiffiffiffiffiffiffiffiffiffi
q2−Λ2⊥

p dω

�

þ
Z

Λ⊥

0

dq
Z

q

−q
dω

!
×
Z

∞

qþω
2

dk: ð52cÞ

In this limit, one needs to replace (30a) by vpq ¼ ω=q (see
Appendix C) and the few nonvanishing matrix elements for

limp→∞
jMj2
p2 that are given in Table II are expressed in terms

of the same screening matrix element. Thus we do not need
the explicit expressions (30h) and (30i) for s, u in terms of
our phase space integration variables. From the matrix
elements in Table II and (26), one finds Casimir scaling

q̂gluon

CA
¼ q̂quark

CF
: ð53Þ

The screening in M̃screen in the matrix elements in
Table II is implemented as detailed in Sec. III F. In the
p → ∞ limit, the isotropic HTL matrix element from
Eq. (38) becomes

M̃HTL ¼
c̃21

A2þB2
−

c̃22
C2þD2

þ 2c̃1c̃2ðACþBDÞ
ðA2þB2ÞðC2þD2Þ ; ð54Þ

with the parameters A, B, C, and D given by (39) and

c̃1 ¼ lim
p→∞

c1
p

¼ 2ð2k − ωÞ; ð55aÞ

c̃2 ¼ lim
p→∞

c2
p

¼ 4k sin θpq sin θkq cosϕkq: ð55bÞ

Again, for isotropic systems, we do not need to include the
last term in (54), since it vanishes in the angular integral
when calculating q̂ij. We refer to Appendix B for details of
the derivation.
For the ξ-screening approximation, we obtain [cf., (41)]

M̃ξ ¼ 4

�
2k − ω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2k − ωÞ2 − q2

p
cosϕkq

�
2

ðq2 þ ξ2m2
DÞ2

; ð56Þ

with ξ ¼ e1=3=2 as before.

I. Limiting behavior for large cutoff

The jet quenching parameter q̂ exhibits a logarithmic
behavior when the cutoff Λ⊥ exceeds the typical hard
momenta Tε of the plasma constituents.

q̂ðΛ⊥ ≫ TεÞ ≃ aΛ⊥ lnΛ⊥ þ bΛ⊥ ; ð57Þ

where for isotropic distributions

aΛ⊥=CR ≃
CAg4

2π3

Z
∞

0

dk k2fgðkÞ

þ
X
f

dFCFg4

2π3dA

Z
∞

0

dk k2ffðkÞ: ð58Þ

TABLE II. The matrix elements for q̂ as in Table I in the limit
p → ∞. Here M̃screen ¼ limp→∞Mscreen=p2 denotes the appro-
priate screening terms M̃HTL or M̃ξ as explained in Sec. III F and
Appendix B, and quark flavors are labeled by the index i.

ab ↔ cd limp→∞jMab
cd j2=ðp2g4Þ

q1qi ↔ q1qi 4
d2FC

2
F

dA
M̃screen

q̄1qi ↔ q̄1qi
q1q̄i ↔ q1q̄i
q̄1q̄i ↔ q̄1q̄i

q1g ↔ q1g 4dFCFCAM̃screen
q̄1g ↔ q̄1g

gg ↔ gg 4dAC2
AM̃screen

FIG. 4. Feynman diagram for the t-channel gluon exchange
processes that dominate the matrix element for q̂ in the high-
energy limit p → ∞. In the internal gluon propagator, medium
effects should be included as explained in Sec. III F.
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This is the same logarithmic behavior as in Eq. (49),
keeping in mind that now the phase space is limited by Λ2⊥
rather than p, and thus lnp gets replaced by 2 lnΛ⊥.
For thermal equilibrium, this yields

q̂thermðΛ⊥ ≫ TÞ≃CR

π3
g4ζð3ÞT3

�
NCþ

3

4
nf

�
lnΛ⊥þ const;

ð59Þ

which is Eq. (C35) in Appendix C 5 and agrees with [30],
as we will later discuss around Eq. (81a).
As discussed further in Appendix C 5, for anisotropic

systems Eq. (58) only gives a rough estimate for the
coefficient aΛ⊥ . For anisotropic distributions one still
expects a logarithmic behavior q̂iiðΛ⊥ ≫ QÞ ≃ ðaΛ⊥Þi×
lnΛ⊥ þ ðbΛ⊥Þi, but with different coefficients depending
on the direction.

J. Interpreting the momentum cutoff

A peculiar feature of the jet quenching parameter q̂ is its
dependence on a transverse momentum cutoff Λ⊥. Let us
discuss here briefly how to interpret this cutoff in physical
terms and how its value could be chosen. In our kinetic
picture, the cutoff stems from employing the eikonal limit,
which means taking the jet momentum p → ∞. In this
case the jet particle can inject an unrestricted amount of
transverse momentum in the collision, leading to a loga-
rithmic divergence that has to be regulated by introducing a
cutoff Λ⊥, which restricts transverse momentum transfer
q⊥ < Λ⊥. Practically all analytic calculations that rely on
quasiparticles or hard-thermal loop frameworks, but even
with different interaction potentials, need to employ this
cutoff (as, e.g., in [30,31,44,45,53,77,82]).
A simple way of setting the cutoff is to use the relation

between the coefficient aΛ⊥ for large cutoff Λ⊥ and the
coefficient ap for large (finite) jet energy p [see Eqs. (49)
and (58)]. Requiring that the dynamics of jet quenching
calculated with a cutoff in the p → ∞ approximation
would have the same leading logarithmic behavior as a
kinematically more accurate one with a finite p, we should
choose the cutoff such that

Λkin⊥ ∼
ffiffiffiffiffiffiffi
pT

p
; ð60Þ

where p is the energy of the jet parton and T is an additional
dimensionful scale (e.g., the temperature in equilibrium).
This kinematic cutoff Λkin⊥ is widely used in the literature
[43–45,65,77,83–85].
While this is a straightforward result of our definition for

q̂ in Eq. (1), it encodes only the momentum diffusion due to
elastic 2 ↔ 2 scattering processes, and competing inelastic
effects like splittings or gluon emissions are neglected.
Which effects one needs to include, and thus, which cutoff
to use, depends in fact on the type of process where the

value of q̂ is used. For radiative energy loss calculations, one
can restrict the cutoff by considering the rate of momentum
exchange processes and comparing it with the “lifetime” of
the leading parton under consideration. During an LPM
splitting process this corresponds to the “formation time”
tform. We are therefore interested in the accumulated trans-
verse momentum until a splitting occurs. To calculate
radiative energy loss of the leading parton, typical calcu-
lations (e.g., within the BDMPS-Z formalism [22–24] or
related approaches [25]) use the so-called harmonic oscil-
lator approximation, in which the jet quenching parameter q̂
naturally appears in the expansion of the interaction
potential in position space, vðbÞ ≃ 1

4
q̂b2. In the leading-

log approximation, it is sufficient to use a momentum cutoff
Λ⊥ of the order of the typical total momentum transfer Q⊥
during the formation time [25]. By definition, it is given
by Q2⊥ ∼ q̂tform, where for a small medium with length L <
tform one should replace tform by L. The formation time of
the splitting p → p1 þ p2 can be estimated as
ðtformÞ2 ∼ Ei=q̂, with Ei being the energy of the emitted
gluon. It has been argued [30,86] that energy loss is
dominated by processes in which both daughters share a
similar energy fraction p1 ∼ p2 ∼ p, which enables us to
use the leading-parton energy in the formation time esti-
mate. With the parametric relation q̂ ∼ g4T3, we obtain for a
large medium L > tform the expression

ΛLPM⊥ ∼ gðpT3Þ1=4: ð61Þ

In order to present our results in a form that can be
applied in different pictures of energy loss, we give our
results as functions of Λ⊥. In our companion paper [20] we
study the values of q̂ with a time-dependent cutoff during
bottom-up thermalization, and present results using both
scaling choices (60) and (61).

K. Numerical implementation

Numerically, we obtain q̂ in the limit p → ∞ with a
momentum cutoffΛ⊥ according to (51) with the integration
measure6 (52c) using Monte Carlo integration with impor-
tance sampling. For more details we refer to Appendix D.
The error bars in the figures correspond to the statistical
uncertainty of the Monte Carlo integration.
All our numerical results are obtained for a purely gluonic

plasma, i.e., nf ¼ 0. Although we extract the jet quenching
parameter for a gluonic jet, its value for a quark jet is related
via Casimir scaling, i.e., q̂quark ¼ CF

CA
q̂gluon, as can be seen

easily from Table II. Note that the number of colors NC

enters the gluonic jet quenching parameter q̂gluon only via
the coupling λ, but for q̂quark we need to specify it toNC ¼ 3

6We have checked that also (52b) gives the same result, but in
our implementation (52c) showed a faster convergence in the
Monte Carlo evaluation.
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for QCD. In the following, for numerical results we only
show q̂quark≕ q̂; for analytical results we keep the Casimir
factor CR explicitly.
Our datasets and analysis scripts can be found in

Ref. [87].

IV. EVALUATION OF q̂ IN SPECIAL CASES

In our paper [20] we have evaluated q̂ during the bottom-
up thermalization process in heavy-ion collisions. Here, in
order to shed more light on the qualitative features of the jet
quenching parameter in different equilibrium and off-
equilibrium situations, we study q̂ in some special cases.
In Sec. IVA, we first review the derivation of q̂ for thermal
systems [30,32], and compare the results with numerical
evaluations of Eq. (51). We also provide an interpolation
formula that reproduces the numerically obtained values of
the quenching parameter in thermal equilibrium q̂therm for
different couplings and momentum cutoffs.
In Sec. IV B, we then consider toy models for the

bottom-up thermalization process in heavy-ion collisions
[1]. We first study an effectively two-dimensional distri-
bution to model the large momentum-space anisotropy
encountered in the initial stages in heavy-ion collisions, and
then generalize the thermal results of Sec. IVA to a scaled
thermal distribution to model over- and underoccupied
systems that are typically encountered in the preequilibrium
evolution of the quark-gluon plasma.
We also study the different contributions to q̂ that are

linear or quadratic in the distribution function, by splitting
it into its individual components,

q̂ ¼ q̂f þ q̂ff : ð62Þ

Similarly as in Ref. [70], we can refer to q̂f as the classical
and q̂ff as the Bose-enhanced part of q̂.7

A. Thermal distribution

The equilibrium form of the particle distributions is
given by

f�ðk;TÞ ¼
1

expðk=TÞ ∓ 1
; ð63Þ

where T is the temperature. The upper signs fþ denote the
Bose–Einstein distribution and f− is the Fermi–Dirac
distribution.
In thermal equilibrium, q̂ has already been calculated for

the limiting cases of small and large cutoffs Λ⊥ in [30,31],

which we briefly summarize here. In Sec. IV B 2, we will
generalize this derivation to the case of a scaled thermal
distribution, which is obtained by rescaling a thermal
distribution.
For the evaluation of q̂, we work in the p → ∞ limit

with a transverse momentum cutoff Λ⊥, as discussed in
Sec. III H. Since the phase-space density is spherically
symmetric, one has q̂11 ¼ q̂22 and we can restrict to
q̂ ¼ q̂11 þ q̂22. Our starting point is Eq. (52c), where we
integrate over the modulus of q ¼ ðq⊥; q3Þ. For p → ∞we
obtain q3 ¼ ω and thus

q2 ¼ q2⊥ þ ω2: ð64Þ

It will be useful to change the integration variables from
ðq;ϕpq;ωÞ to ðq1; q2;ωÞ. This yields a factor q from the
Jacobian

Z
2π

0

dϕpq

Z
∞

0

dq
Z

q

−q
dωθðΛ2⊥ þ ω2 − q2Þ

¼
Z
q⊥<Λ⊥

d2q⊥
Z

∞

−∞

dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥ þ ω2

p : ð65Þ

The matrix elements in Table II do not allow for identity-
changing processes, which means that the leading parton a
and the outgoing parton c are of the same type, a ¼ c, and
similarly b ¼ d. Therefore, we can scale out the Casimir of
the jet CR, and the prefactors in front of M̃screen in Table II
neatly combine with 1=νa for the degrees of freedom of the
jet particle to

Ξþ ¼ 2NC ð66aÞ

Ξ− ¼ 4nf
dFCF

dA
¼ 2nf ð66bÞ

for scattering off a gluon and off a quark/antiquark,
respectively, which leads to Casimir scaling [cf., Eq. (53)].
There are two limiting cases in which the result for q̂ can

be found analytically, for small and large momentum
cutoffs, which we will study in the following.

1. Small momentum cutoff

For small q⊥ < Λ⊥ ≪ T, the expression for q̂ in Eq. (26)
with the integration measure (52c), the integrals (65), and
the prefactors (66) becomes

q̂ðΛ⊥Þ ¼CR

X
�
Ξ�

g4

29π5

Z
∞

0

dkf�ðkÞð1�f�ðkÞÞ

×
Z

Λ⊥

0

d2q⊥q2⊥
Z

2π

0

dϕkq

Z
∞

−∞

dωM̃HTLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥þω2

p : ð67Þ

7This Bose-enhanced term can also be considered to be a
classical field contribution because it is dominant in highly-
occupied systems f ≫ 1 that can be studied numerically using
classical-statistical simulations. This can be seen in the limit of
λ → 0 with λf held constant, in which only q̂ff survives.
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We have extended the lower boundary8 of the k-integral to
0 and approximated fðk − ωÞ ≈ fðkÞ. This is appropriate
because large values of ω are suppressed by the matrix
element M̃HTL, as can be seen from Eq. (46).
The last two integrals can be evaluated analytically using

a sum rule [32] as discussed in Appendix B 1,

q̂ðΛ⊥Þ ¼
CRg4

ð2πÞ3 2
Z
q⊥<Λ⊥

d2q⊥
2π

q2⊥
1

q2⊥ðq2⊥ þm2
DÞ

×
X
�
Ξ�

Z
∞

0

dk k2f�ðkÞð1� f�ðkÞÞ: ð68Þ

Note that until now we have not used a specific form for the
distribution function fðkÞ and assumed only spherical
symmetry. The thermal form of q̂ for a small cutoff is
then obtained by performing the integrals over the distri-
bution function,Z

∞

0

dk k2f�ðkÞ ¼ 2T3ζ�ð3Þ; ð69aÞ
Z

∞

0

dk k2ðf�ðkÞÞ2 ¼ �2T3ðζ�ð2Þ − ζ�ð3ÞÞ; ð69bÞ

where ζþðsÞ ¼ ζðsÞ is the Riemann Zeta function and
ζ−ðsÞ ¼ ð1 − 21−sÞζðsÞ denotes its fermionic counterpart
as in Ref. [30]. Using ζð2Þ ¼ π2=6, we obtain

q̂ ¼
Z
q⊥<Λ⊥

d2q⊥q2⊥ ×
g2CRT
ð2πÞ2

m2
D

q2⊥ðq2⊥ þm2
DÞ

; ð70Þ

from which we can read off the elastic scattering rate dΓel
d2q⊥

as

in (3). This leads us to the thermal form of q̂ for a small
cutoff,9

q̂thermðΛ⊥ ≪ TÞ ¼ g2

4π
CRTm2

D ln

�
1þ Λ2⊥

m2
D

�
: ð71Þ

For a thermal system, the terms containing ζ�ð3Þ cancel
if we consider the total q̂, but are important if one considers
the Bose-enhanced part separately, as in (62). Splitting off

the Bose-enhanced term as in (62), we obtain

q̂thermf ðΛ⊥ ≪ TÞ ¼ ζð3Þð12NC þ 9nfÞCL ð72aÞ

q̂thermff ðΛ⊥ ≪ TÞ ¼ ½2NCðπ2 − 6ζð3ÞÞ
þ nfðπ2 − 9ζð3ÞÞ�CL; ð72bÞ

with CL ¼ g4T3CR
24π3

ln ð1þ Λ2⊥
m2

D
Þ and the thermal Debye mass

given by Eq. (9b).

2. Large momentum cutoff

The jet quenching parameter in thermal equilibrium has
been calculated for large cutoffs in Ref. [30]. In order to
generalize this later to a scaled thermal distribution, we
briefly review the derivation here. It relies on constructing
an interpolating formula for the elastic scattering rate,

dΓel

d2q⊥
≃

CR

ð2πÞ2 ×
g4T3Fðq⊥=TÞ
q2⊥ðq2⊥ þm2

DÞ
; ð73Þ

where the function Fðq⊥=TÞ interpolates between the
known limits of this quantity [for small q⊥=T see
Eq. (70)] and can be calculated in the approximation
q ≫ mD. It is then split into gluonic (Iþ) and fermionic
(I−) contributions,

10

Fðq⊥=TÞ ¼
1

π2
ðΞþIþðq⊥=TÞ þ Ξ−I−ðq⊥=TÞÞ: ð74Þ

Following the notation in Ref. [30], we write these
contributions to the elastic scattering rate in the limit
p → ∞ and q⊥ ≫ mD as

I�

�
q⊥
T

�
¼ π2

T3

Z
dqz
2π

Z
d3k
ð2πÞ3 2πδðqz þ jk − qj − kÞ

×
ðk − kzÞ2
kjk − qj f�ðkÞ½1� f�ðk − qÞ�: ð75Þ

This formula follows directly from the t-channel matrix
element in Table I, i.e., su=t2, with t2 ¼ q4⊥ being scaled
out in (73) and s ¼ −u ¼ 2pðk − kzÞ.
As in (62) we can identify the contributions coming from

the f and f2 parts via

I�ðq⊥=TÞ ¼ If� þ Iff�ðq⊥=TÞ; ð76Þ

8The largest error of this approximation comes from the f2þ
term. It can by estimated by

R qþω
2

0 k2f2þ < qþω
2

limk→0ðk2f2þÞ,
where the k2 factor stems from M̃HTL and we approximated
the integral by the maximum value of the integrand at k ¼ 0. This
yields the error estimate T2ðqþωÞ

2
, which for q⊥ < Λ⊥ ≪ T is

much smaller than the leading-order contribution
R
∞
0 k2f2þ ¼

2T3ðζð2Þ − ζð3ÞÞ [see Eq. (69)] for q;ω ≪ T.
9This form is actually valid in general for any isotropic

distribution fðkÞ with the replacement of T → T� ¼P
s
νsCs

R
d3pfsðpÞ½1�fsðpÞ�

2
P

s
νsCs

R
d3pfsðpÞ=p

and the more generally evaluated Debye

mass mD as in Eq. (8).

10In principle, we could take Eq. (67) instead and relax
the assumption of small momentum transfer, i.e., keep
f�ðkÞð1� f�ðk − ωÞÞ. However, the strategy employed in
Ref. [30] [scaling out this factor Fðq⊥=TÞ in (73)] allows us
to evaluate the expression analytically in the large q⊥ limit,
where the matrix element does not need to be screened, and we
can use the simpler form su=t2 instead.
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where If� will turn out to be a constant. To evaluate them,
the thermal functions are written as

f�ðpÞ ¼
X∞
m¼1

ð�1Þm−1e−mp=T: ð77Þ

This can then be inserted into Eq. (75) to rewrite the
equation as a double sum,

If�

�
q⊥
T

�
¼
X∞
m¼1

ð�1Þm−1Im0ðq⊥=TÞ ð78Þ

Iff�

�
q⊥
T

�
¼
X∞
m¼1

X∞
n¼1

ð�1Þmþn−1Imnðq⊥=TÞ ð79Þ

with

Imn

�
q⊥
T

�
¼ π2

T3

Z
dqz
2π

Z
d3k
ð2πÞ3 2πδðqz þ jk − qj − kÞ

×
ðk − kzÞ2
kjk − qj e

−mk=Te−njk−qj=T: ð80Þ

In [30] I� was split in a similar way isolating the n ¼ 0

term I�ð∞Þ, which is exactly the constant If� ¼ I�ð∞Þ ¼
ζ�ð3Þ. This is a consequence of the fact that for large
momentum transfer only the f part contributes, as dis-
cussed in Sec. III I.
Performing the remaining integrals over q⊥ as in [30]

leads to a q̂ formula for large cutoffs Λ⊥ ≫ T,

q̂thermðΛ⊥ ≫ TÞ ¼ CR
g4T3

π2
X
�
Ξ�I�ðΛ⊥Þ ð81aÞ

I�ðΛ⊥Þ ¼
ζ�ð3Þ
2π

ln

�
Λ⊥
mD

�
þ ΔI�; ð81bÞ

ΔI� ¼ ζ�ð2Þ − ζ�ð3Þ
2π

ð81cÞ

×



ln

�
T
mD

�
þ 1

2
− γE þ ln 2

�
−
σ�
2π

σþ ¼ 0.386043817389949 ð81dÞ

σ− ¼ 0.011216764589789 ð81eÞ

where γE is the Euler–Mascheroni constant.
This formula (81), as opposed to the one for small

cutoffs (71), has the (unphysical) feature that the loga-
rithm lnT=mD becomes negative for T ≤ mD.

11 Normally
in perturbation theory one has T ≫ mD so that in the large

cutoff regime Λ⊥ ≫ T the form lnΛ⊥=mD is not a
problem. However, to get an analytical expression that
is well-behaved also for larger couplings, we propose to
add a constant to the argument of the logarithm, which still
preserves the leading-order accuracy at weak coupling. To
be explicit, we replace 2 ln x → lnð1þ x2Þ in both loga-
rithms, and we will denote the resulting “improved”
analytic expressions for q̂ by q̂im. Although the replace-
ment does not change the result at leading order, we find
that this choice of regularization significantly improves
the agreement with numerical evaluations of (26), as we
will discuss in Sec. IVA 3. Moreover, the Bose-enhanced
part q̂ff of (62) comes solely from ΔI� in (81b). With
these replacements in the logarithm, the contribution q̂f
has the same form as for small momentum cutoffs
(72a), q̂fðΛ⊥ ≪ TÞ ¼ q̂fðΛ⊥ ≫ TÞ.
With this procedure, the improved version of Eq. (81a)

becomes

q̂thermim ðΛ⊥ ≫ TÞ ¼ q̂thermf ðΛ⊥ ≪ TÞ þ q̂thermff;im ð82aÞ

with

q̂thermff;im ¼CRg4T3
X
�
Ξ�

�
ζ�ð2Þ−ζ�ð3Þ

4π3

×



ln

�
1þ T2

m2
D

�
þ1−2γEþ2 ln2

�
−
σ�
2π3


: ð82bÞ

3. Comparison with numerical results

Let us now compare the analytical small and large cutoff
limits of q̂ given by (71) and (81a) or the improved version
(82a) to a numerical evaluation of q̂ using (51). For
simplicity we consider a purely gluonic plasma, i.e.,
nf ¼ 0. In particular, we want to study how well these
analytic formulae describe the full numerical evaluation of
the q̂ integral, although being only valid for asymptotic
regions of the cutoff Λ⊥. We also want to compare the
expressions using the isotropic HTL matrix element (54)
with the simpler screened matrix element (56) and study
the impact of the approximation, which is also widely used
in studies of the thermalization dynamics [8,72–74,78].
In Fig. 5 we show q̂ for various momentum cutoffs Λ⊥

and different ’t Hooft couplings λ ¼ g2NC. The prefactor
λ2T3 is scaled out in the plots, leaving a nontrivial coupling
dependence that enters via the Debye mass mD in the
logarithms originating from the matrix element. The curves
show the analytical expressions for small cutoffs [dotted,
Eq. (71)], large cutoffs [dash-dotted, Eq. (81a)], and the
improved large cutoff version [dashed, (82a)], while the
numerical evaluation of q̂ is depicted by crosses for the HTL
matrix elements (54) and plus signs for the approximated
screened ones (56). In the left panel of Fig. 5, we observe
that the small cutoff form of q̂ accurately agrees with our

11In the literature, the small cutoff form (71) is also often
written just as logarithm lnΛ⊥=mD instead of the form we obtain.
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numerical evaluation using the full HTL matrix element in
the corresponding region Λ⊥ ≪ T, even for Λ⊥ → 0. We
note in passing that the frequently employed form of q̂ in

this limit with the approximation ln ð1þ Λ2⊥
m2

D
Þ → 2 ln Λ⊥

mD
(not

shown in the figure) would become negative at too-small
cutoffs Λ⊥ ∼mD.
In the region Λ⊥ ≫ T (right panel of Fig. 5), we observe

that for small couplings λ ∼ 0.05 both analytical large cutoff
expressions agree very well with the numerical values.
However, they start to differ when increasing the coupling
λ≳ 0.5. This is denoted as “shift” in Fig. 5. We find that the
values from our improved formula (82a) are closer to the
numerical values than from the original formula (81a).
However, for large couplings λ ∼ 10, our improved ana-
lytical expression still seems to underestimate q̂, with the
difference being a constant.
Turning now to a comparison of the matrix elements, we

observe in Fig. 5 that for small values of the coupling
λ ∼ 0.05 (left panel) as well as for large cutoffs Λ⊥ ≫ T
(right panel), the results with the screening approximation
(56) agree well with the full HTL matrix element (54).
However, they start deviating with growing coupling at
small cutoffs Λ⊥ ≲ T (left panel). To guide the eye, for
Λ⊥ ¼ 0.3T we explicitly denote this difference as “HTL
approximation effect.” For Λ⊥ ¼ T and λ ¼ 10 the
deviation between the approximated and the HTL matrix
elements is of the order of 30%.

4. Interpolation formula for q̂ in thermal equilibrium

We have now observed that the analytical expressions
(71) and (81a) describe q̂ only in certain limits and Eq. (81a)
only holds for small couplings λ≲ 0.5. For phenomeno-
logical calculations, a general formula for q̂ in thermal

equilibrium may be useful without the need of performing
the high-dimensional integral (26) numerically for the
required value of the coupling λ and transverse momentum
cutoff Λ⊥. We thus look for an interpolation formula that
reproduces the analytical results in the limits Λ⊥ ≪ T and
for Λ⊥ ≫ T and agrees with our numerical evaluation.
From (71) and (81a) we know the behavior of q̂ for

small Λ⊥ ≪ T and large cutoffs Λ⊥ ≫ T. As discussed
before, (81a) differs from the numerical evaluation of q̂ by a
constant shift for larger values of the coupling λ≳ 0.5. Our
strategy is to find an empirical fit function that smoothly
interpolates in between

q̂emp

CRT3
¼
�
c̃ lnð1þ Λ2⊥=m2

DÞ; for Λ⊥ ≪ T

ã lnðΛ⊥=mDÞ þ b̃; for Λ⊥ ≫ T:
ð83Þ

The switching between those two cases will be done using a
hyperbole tangent that smears out a step function with
width parameter d̃,

θd̃ðxÞ ¼
1þ tanh ðd̃xÞ

2
; ð84Þ

which approaches the usual step function for d̃ → ∞.
This leads to the following form for the fit formula

q̂emp

CRT3
¼ c̃ ln

�
1þ Λ2⊥

m2
D

�
θd̃

�
ẽ − ln

Λ⊥
T

�

þ
�
ã ln

Λ⊥
mD

þ b̃

�
θd̃

�
ln
Λ⊥
T

− ẽ

�
: ð85Þ

For the coefficients c̃ and ã, we use the prefactors of (71)
and (81a), which read for a gluonic plasma

FIG. 5. The coefficient q̂ for a quark jet in thermal equilibrium for different ’t Hooft couplings λ ¼ g2NC and transverse momentum
cutoffs Λ⊥, with (left:) small Λ⊥ ≲ T (logarithmically scaled axis), and (right:) large Λ⊥ ≳ T. The dotted curve, labeled “limit
(Λ⊥ ≪ T)” shows the analytical limiting expression of (71), the dash-dotted curve “limit (Λ⊥ ≫ T)” illustrates (81a), and “improved
(Λ⊥ ≫ T)” denotes (82a). The small þ-symbols show our numerical results with the approximated matrix element (56), whereas the
×-symbols show our results with the full HTL matrix element (54). The curves that are not valid in the respective limit are displayed with
lighter color but still shown, because (71) is often also used at large Λ⊥ as an approximation.
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c̃ ¼ λ2

12πNC
; ã ¼ λ2ζð3Þ

π3NC
: ð86Þ

This leaves only three fit parameters: The constant b̃
encodes the linear shift in the large Λ⊥=T region, while
d̃ and ẽ describe the width and position of the switching
between the two limiting cases in (83). We first fit the
coefficient b̃, such that it correctly reproduces q̂ ≃
ã lnΛ⊥=T þ b̃ in the large Λ⊥=T region. We then

determine the coefficients d̃ and ẽ by fitting them to our
numerical data.
Our results for the remaining fit parameters in Eq. (85)

are listed in Table III for the couplings λ ¼ 0.5–20. The
resulting q̂ are shown in Fig. 6 as continuous lines. For
comparison, we have included the numerically evaluated
values as crosses, and the limiting expressions for hard and
soft cutoffs, Eqs. (71) and (81a), respectively, as dashed and
dotted lines. Consistently with the construction of the fit
formula, its values are seen to agree well with our numeri-
cally evaluated q̂ in the left panel of Fig. 6 and in the inset

TABLE III. Fitted coefficients for the interpolation formula for q̂ in Eq. (85). The values were obtained by
numerically integrating (51) with measure (52c) and the HTL-screened matrix element (54), then numerically fitting
the coefficient b̃ in the region Λ⊥ ≫ T, and finally fitting d̃ and ẽ in the range 0.1T < Λ⊥ < 15T using SciPy [88].

λ b̃ d̃ ẽ

0.5 0.0011944� 0.0000020 4.114� 0.013 −0.76919� 0.00058
1.0 0.0037772� 0.0000062 2.4910� 0.0029 −0.24707� 0.00041
1.5 0.007379� 0.000013 2.0956� 0.0018 0.03349� 0.00032
2.0 0.011905� 0.000021 1.9636� 0.0014 0.20498� 0.00029
2.5 0.017295� 0.000031 1.8987� 0.0012 0.32796� 0.00028
3.0 0.023563� 0.000042 1.8653� 0.0010 0.42226� 0.00026
3.5 0.030716� 0.000054 1.84570� 0.00096 0.49864� 0.00025
4.0 0.038770� 0.000067 1.83331� 0.00088 0.56271� 0.00024
4.5 0.047761� 0.000082 1.82484� 0.00080 0.61789� 0.00023
5.0 0.057714� 0.000099 1.81902� 0.00075 0.66626� 0.00022
5.5 0.06864� 0.00012 1.81444� 0.00071 0.70960� 0.00021
6.0 0.08061� 0.00014 1.81130� 0.00069 0.74868� 0.00020
6.5 0.09362� 0.00015 1.80845� 0.00067 0.78441� 0.00020
7.0 0.10772� 0.00017 1.80584� 0.00066 0.81733� 0.00020
7.5 0.12296� 0.00020 1.80380� 0.00065 0.84781� 0.00019
8.0 0.13933� 0.00022 1.80168� 0.00064 0.87635� 0.00019
8.5 0.15687� 0.00024 1.80026� 0.00064 0.90313� 0.00019
9.0 0.17562� 0.00026 1.79871� 0.00064 0.92836� 0.00019
9.5 0.19569� 0.00029 1.79776� 0.00063 0.95195� 0.00019
10.0 0.21701� 0.00031 1.79691� 0.00063 0.97442� 0.00019
10.5 0.23960� 0.00034 1.79628� 0.00063 0.99579� 0.00019
11.0 0.26361� 0.00036 1.79589� 0.00063 1.01605� 0.00019
11.5 0.28894� 0.00039 1.79532� 0.00063 1.03544� 0.00019
12.0 0.31570� 0.00042 1.79489� 0.00063 1.05399� 0.00019
12.5 0.34386� 0.00045 1.79432� 0.00062 1.07188� 0.00019
13.0 0.37349� 0.00048 1.79405� 0.00062 1.08902� 0.00019
13.5 0.40461� 0.00052 1.79343� 0.00062 1.10557� 0.00019
14.0 0.43722� 0.00054 1.79316� 0.00062 1.12149� 0.00019
14.5 0.47134� 0.00058 1.79241� 0.00062 1.13694� 0.00019
15.0 0.50704� 0.00061 1.79162� 0.00061 1.15192� 0.00019
15.5 0.54431� 0.00066 1.79053� 0.00061 1.16651� 0.00019
16.0 0.58324� 0.00070 1.78988� 0.00060 1.18054� 0.00020
16.5 0.62381� 0.00074 1.78933� 0.00060 1.19420� 0.00019
17.0 0.66613� 0.00078 1.78922� 0.00060 1.20734� 0.00019
17.5 0.71013� 0.00081 1.78864� 0.00059 1.22017� 0.00019
18.0 0.75590� 0.00085 1.78805� 0.00059 1.23280� 0.00019
18.5 0.80337� 0.00090 1.78734� 0.00058 1.24516� 0.00019
19.0 0.85257� 0.00094 1.78699� 0.00058 1.25721� 0.00019
19.5 0.90367� 0.00099 1.78674� 0.00058 1.26879� 0.00019
20.0 0.9565� 0.0010 1.78563� 0.00058 1.28029� 0.00019
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showing the small cutoff behavior at Λ⊥ ≪ T. The right
panel of Fig. 6 shows the interpolation region Λ⊥ ∼ T. We
find a very good agreement with our numerics for λ ≥ 1,
while for smaller couplings λ≲ 0.5 deviations grow in this
region. Note that our fit formula provides a smooth
interpolating expression for q̂ with improved accuracy in
this region as compared to the previous limiting forms.
Our expression (85) together with the coefficients in

Table III can thus be used to obtain q̂ in thermal equilibrium
for any transverse momentum cutoff Λ⊥ and the listed
couplings λ in the weak coupling leading-order pQCD limit.

B. Toy models for bottom-up thermalization

Our current weak coupling understanding of how the
nonequilibrium quark-gluon plasma created in heavy-ion
collisions reaches local thermal equilibrium is based on the
bottom-up thermalization scenario of Ref. [1]. Strictly
speaking, it is only valid in the extremely weak coupling
limit, where soft gluon radiation and the LPM effect play an
important role and need to be included in the analysis.
However, we believe that this picture can also shed light on
what happens at intermediate couplings at least at a
qualitative level. It consists of several stages. The first stage
is characterized by a large anisotropy in momentum space as
well as an overoccupation of hard gluon modes. Due to the
longitudinal expansion along the beam axis, the anisotropy
further increases. As the occupancy of these hard gluons
drops below unity, we enter the second stage, in which the
momentum anisotropy remains roughly constant, while
producing soft gluons through branching, which form a
thermal bath. A significant amount of the total energy is still
carried by the remaining small number of hard gluons,
which, in the third stage, lose energy through multiple hard
branchings, until equilibrium is reached.

As toy models for this thermalization process, we
consider first an effectively two-dimensional distribution
in Sec. IV B 1. We then compute q̂ analytically in Sec. IV
B 2 using an isotropic scaled thermal distribution, which
can be understood as modeling key features of the over- and
underoccupied bottom-up stages.

1. Effectively two-dimensional distribution

As a model for the large anisotropies encountered at
early times in the bottom-up thermalization scenario, let us
calculate q̂ in a system brought to its extreme anisotropic
limit with vanishing kz momentum,

fðkÞ ¼ Bðkx; kyÞδðkz=QÞ; ð87Þ

where B is an arbitrary function of kx and ky, and Q is an
energy scale. Due to its vanishing momentum in beam
direction kz ¼ 0, such a state is similar in spirit to the
glasma, which is often studied within classical-statistical
simulations due to its large field values [14–17].
Let us focus on the Bose-enhanced part q̂ff in kinetic

theory, which agrees with q̂ in a classical-statistical
framework since there is no q̂f contribution in the classical
field limit. By inserting the extremely anisotropic distri-
bution (87) into the q̂ integral (26) with the measure (52a),
one immediately finds

q̂zzff ¼ 0; ð88Þ

due to its proportionality to
R ðqzÞ2δðkzÞδðk0zÞ. Note that this

is true regardless of the precise form of the matrix element
or screening prescription. Thus, a purely two-dimensional
momentum distribution remains two dimensional in the
classical field limit of kinetic theory, if only elastic
processes are considered.

FIG. 6. Left: the interpolation formula (85) for q̂ with the fitted coefficients listed in Table III is shown as continuous lines for different
couplings λ. The numerical results from (26) are shown as crosses, the limiting expressions for soft (71) and hard cutoffs (81a) as dotted
and dashed curves. The inset shows the behavior at small momentum cutoffs. Right: focus on the interpolation regionΛ⊥ ∼ T. For λ ≥ 1
we see very good agreement with the numerical results.
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We can also consider a special case of (87) that we can
solve analytically: if additionally all particles have a
specific momentum k̃,

fðkÞ ¼ Aδ

�
k2x þ k2y − k̃2

Q2

�
δðkz=QÞ: ð89Þ

With a jet perpendicular to the beam direction and using the
approximated gluonic matrix element (56), one obtains (see
Appendix E 1 for details)

q̂zzff ¼ 0 ð90Þ

q̂yyff ¼ dAC2
AA

2g4

27π5dRk̃
3
Q6

�
4k̃2
�

2

ξ2m2
D
−

1

4k̃2 þ ξ2m2
D

�

þ ln
ξ2m2

D

4k̃2 þ ξ2m2
D


; ð91Þ

where m2
D ¼ A g2Q3

π2k̃
according to (8).

Indeed we have observed in Ref. [20] that in the
overoccupied and anisotropic earliest stage of bottom-up
thermalization one has q̂zz < q̂yy and that this is due to
q̂zzff < q̂yyff , which is consistent with the simple toy model
presented here. In Ref. [20], we then showed that q̂yyff
quickly becomes similar to q̂zzff and that both become much
smaller than q̂f .

2. Scaled thermal distribution

Let us now study another aspect encountered during
bottom-up thermalization: over- and underoccupied sys-
tems. For simplicity, we use an isotropic toy model and
consider a scaled thermal distribution, i.e., we scale the
amplitude of the thermal distribution (63) with N�. Here
Nþ denotes the scaling parameter of the Bose–Einstein
distribution and N− the scaling parameter of the Fermi–
Dirac distribution,

f�ðk;TÞ ¼
N�

expðk=TÞ ∓ 1
: ð92Þ

This allows us to easily generalize the results obtained in
Sec. IVA for q̂ in a thermal medium, and we start with q̂
given by Eq. (68). Splitting the f and ff contributions and
using the integrals (69) over thermal distributions, we
obtain for small cutoff

q̂ðΛ⊥ ≪ T;N�Þ ¼
g4T3CR

24π3
ln

�
1þ Λ2⊥

m2
D

�
× ðπ2ð2NCðNþÞ2 þ nfðN−Þ2Þ
þ ζð3Þ½9nfN−ð1 − N−Þ
− 12NCNþðNþ − 1Þ�Þ; ð93Þ

which generalizes the equilibrium (N� ¼ 1) result in
Eq. (71). Similarly, we can generalize the large cutoff
formula (81a) to

q̂ðΛ⊥ ≫ T;N�Þ ¼ CR
g4T3

π2
X
�
Ξ�I�ðΛ⊥; N�Þ ð94aÞ

I�ðΛ⊥; N�Þ ¼
N�ζ�ð3Þ

2π
ln

�
Λ⊥
mD

�
þ ðN�Þ2ΔI�; ð94bÞ

with ΔI� given by Eq. (81c), which is entirely deter-
mining q̂ff ,

q̂ffðΛ⊥ ≫ T;N�Þ ¼ CR
g4T3

π2
X
�
ðN�Þ2Ξ�ΔI�: ð94cÞ

Furthermore, similarly to our discussion for the thermal
result in Sec. IVA 2, by replacing 2 lnðΛ⊥=mDÞ → lnð1þ
ðΛ⊥=mDÞ2Þ in (94b), we obtain an “improved” formula
valid for large cutoffs that is finite even at small Λ⊥ and
generalizes Eq. (82a). Then we can again split off the Bose-
enhanced contribution as in (62), q̂ ¼ q̂f þ q̂ff , and realize
that q̂fðΛ⊥Þ has the same form for small and large cutoffs,

q̂fðΛ⊥; N�Þ ¼ ζð3Þð12NþNC þ 9nfN−ÞCLðΛ⊥Þ; ð95aÞ

with, as before, CLðΛ⊥Þ ¼ g4T3CR
24π3

ln ð1þ Λ2⊥
m2

D
Þ. In contrast,

the Bose-enhanced terms differ

q̂ffðΛ⊥ ≪ T;N�Þ¼ ½2NCðNþÞ2ðπ2−6ζð3ÞÞ
þnfðN−Þ2ðπ2−9ζð3ÞÞ�CLðΛ⊥Þ ð95bÞ

q̂ff;imðΛ⊥ ≫ T;N�Þ ¼ CRg4T3
X
�
Ξ�ðN�Þ2

×

�
ζ�ð2Þ− ζ�ð3Þ

4π3



ln

�
1þ T2

m2
D

�

þ 1− 2γE þ 2 ln2

�
−

σ�
2π3


: ð95cÞ

The Debye mass entering these expressions for the scaled
thermal distributions is given by [see Eq. (8)]

m2
D ¼ g2T2

3

�
NþNC þ N−nf

2

�
: ð96Þ

Thus, mD scales with
ffiffiffiffiffiffiffiffiffi
λN�

p
. For large occupancies Nþ,

this may pose a problem for the validity of perturbation
theory that assumes mD ≪ T and that our arguments and
the derivations in [30] were based on. The occupation of
fermions N− cannot become large due to Pauli blocking.
We can estimate the breakdown scale by requiring
mD ≪ T, which leads to
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Nþ ≪
1

NC

�
3

g2
−
N−nf
2

�
: ð97Þ

This is consistent with the usual limitations of perturbation
theory, which breaks down at nonperturbatively large
occupation numbers f ≳ 1=g2.
Let us now assess the expressions derived above by

comparing them to the numerical evaluation of q̂ using
Eq. (26), before applying the formulae to initial stages in
heavy-ion collisions. We start with q̂f=λ and q̂ff in Eq. (95),
which are functions of the combination λNþ (we refer to
Appendix E 2 for details), i.e.,

q̂ðΛ⊥; Nþ; λÞ ¼ λ

�
q̂f
λ

�
ðΛ⊥; λNþÞ þ q̂ffðΛ⊥; λNþÞ: ð98Þ

These contributions are plotted in Fig. 7 for small (left) and
large (right) cutoffs Λ⊥ ¼ 0.2T and 10T, respectively,
divided by the prefactor

q̂f ∼ λðλNþÞT3; q̂ff ∼ ðλNþÞ2T3: ð99Þ

We observe that their values deviate significantly from the
simple estimates in Eq. (99). This is a consequence of
screening effects and the scaling of the Debye mass. In
particular, one finds for sufficiently small cutoffs Λ⊥ ≲
mD; T and large occupancies that

q̂f
λ2NþT3

∼
q̂ff

λ2N2þT3
∼
Λ2⊥
m2

D
∼ ðλNþÞ−1; ð100Þ

which is visible in the left panel of Fig. 7 for sufficiently
large λNþ. Note that for a sufficiently large λNþ ≫ 1 the

effective kinetic theory description used here ceases to be
valid. Similarly to the equilibrium case discussed in Sec. IV
A and particularly in Fig. 5, the expression for small cutoffs
(93) nicely agrees with the numerical values in the small
cutoff asymptotic region, plotted in the left panel of Fig. 7.
In the right panel, for large cutoffs, we observe that our
analytical form for q̂f in Eq. (95a) remains a very good
description coinciding with our numerical values, whereas
the analytical estimate for q̂ff in Eq. (94c) [and its improve-
ment Eq. (95c)] ceases to describe the data for nonpertur-
batively large occupancies λNþ ≳ 1. This is expected from
the condition (97), and we see sizable deviations already
at λNþ ≳ 0.1.
The full HTL screening and the approximation with a

constant ξmD regulator (56) nicely agree with each other at
large cutoffs for the whole λNþ range despite the afore-
mentioned limitations concerning q̂ff . On the other hand, for
small cutoffs (left panel), the ξmD screening approximation
shows large deviations from the full HTL screening, albeit
in the large λNþ region that should be taken with caution, as
discussed above. The resemblance to the thermal case here
is of course no coincidence since by setting Nþ ¼ 1 we
recover the thermal results.
Recombining the contributions from q̂f and q̂ff , we show

q̂ in Fig. 8 for the couplings λ ¼ 0.5, 1, 2, 5, and 10 as
functions of the occupancy Nþ, for the small cutoff
Λ⊥=T ¼ 0.2 in the left panel and the large cutoff Λ⊥=T ¼
10 in the right panel. The values are shown scaled by the
effective temperature Tε that represents the temperature
of a thermal system with the same energy density,
ε ¼ νgπ

2T4
ε=30 [cf., (9a)], and thus

Tε ¼ ðNþÞ1=4T: ð101Þ

FIG. 7. The individual components q̂f (green) and q̂ff (blue) as defined in (62) and rescaled according to their parametric estimates
in (99) as functions of their only argument λNþ for Λ⊥=T ¼ 0.2 (left) and Λ⊥=T ¼ 10 (right). The numerical HTL values from our
calculation are shown with ×-symbols, and the numerical values using the ξ-approximated matrix element (45) are labeled
“approximation” and shown by þ-symbols. Our analytic estimate for q̂f, Eq. (95a), and for q̂ff, Eq. (95b) for Λ⊥ ≪ T, and (94c)
forΛ⊥ ≫ T. In the left panel, we show the small cutoff form (95b) for q̂ff and Eq. (95a) for q̂f labeled as “Λ⊥ ≪ T.” In the right panel, we
show both high-cutoff expressions (95a) for q̂f and (94c) for q̂ff labeled “limit Λ⊥ ≫ T” and its improved version (95c) labeled as
“improved Λ⊥ ≫ T.”
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For comparison, we plot the analytic predictions for small
(93) and large cutoffs (94) as well as their improved
expression (95). Similarly as for q̂f and q̂ff , we observe for
q̂ in Fig. 8 that the small cutoff expression agrees well with
our (HTL-)screened data points while the large cutoff
expressions describe the data points until Nþ ≲ 1=λ.
Moreover, the improved formula for large cutoffs increases
the validity of the analytic result only to slightly larger
occupancy Nþ. This plot emphasizes the importance of
screening effects that prevent the naïve scaling with Nþ or
N2þ. We therefore have to be cautious when we want to use
such analytic expressions to describe overoccupied sys-
tems with typical occupanciesNþ ∼ 1=λ. Instead, transport
coefficients in such systems can be studied using classical
statistical lattice simulations [14,15,18,58]. In particular, it
has been shown [58] that nonperturbative corrections can
be substantial. Interestingly, as visible in Fig. 8, increasing
the occupancyNþ does not appear as drastically increasing
the value of the jet quenching parameter q̂. In particular, for
small cutoff Λ⊥=T ¼ 0.2 visible in the left panel, we
observe that the scaled q̂ in fact decreases with increasing
occupancy. Even for large cutoffs (right panel), increasing
the occupancy by several orders of magnitude only leads to
a slight increase in the jet quenching parameter. This
behavior is due to a combination of two effects. The first
effect is that the increasing occupation number also
increases the Debye mass mD. Thus one conclusion of
our analysis is that a detailed understanding of screening
effects is particularly important for a quantitative analysis
of q̂. The second effect is that we are dividing the value of
q̂ with the third power of the effective temperature, which
increases with the occupancy Tε ∼ N1=4

þ when the hard
momentum scale T is kept fixed.
In Fig. 9 we provide an overview of the numerical values

of q̂ for the phenomenologically relevant coupling λ ¼ 10

in heavy-ion collisions. Different values of the cutoff Λ⊥
are color coded and written in the circle markers in the
figure. We observe the same behavior at small and large
cutoffs that we have found in Fig. 8. This involves a fast
(power-law) decrease with growing occupancy Nþ at small
cutoffs as q̂=ðλ2T3

εÞ ∼ N−3=4
þ , and a slow growth at high

cutoffs. We additionally see how q̂ interpolates smoothly
between these two behaviors at small and large cutoffs.
From a physical point of view, this confirms the observa-
tion that for small cutoffs, jet quenching in an overoccupied
(isotropic) system similar to a scaled thermal distribution
may be strongly suppressed. However, we repeat our note
of caution below (100) that these parameters may lie

FIG. 8. The momentum broadening coefficient q̂ for a scaled thermal distribution (92) as a function of Nþ for different values of λ for
Λ⊥=T ¼ 0.2 (left) and Λ⊥=T ¼ 10 (right). As in Fig. 7, the numerical HTL values from our calculation are shown with ×-symbols, and
the values using the ξ-approximated matrix element (45) are shown as þ-symbols. In the left panel, we show the small cutoff form (93)
labeled as “Λ⊥ ≪ T.” In the right panel, we show both the high-cutoff expression Eq. (94a) labeled as “limit Λ⊥ ≫ T” and the improved
version obtained by summing Eqs. (95a) and (95c) labeled as “improvement.”

FIG. 9. Numerical values of q̂ for a scaled Bose–Einstein
distribution (92) as a function of its amplitude Nþ for
different momentum cutoffs Λ⊥ (numbers in circle markers)
and coupling λ ¼ 10.
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beyond the range of applicability of our original integral
formula for q̂ (26).
Let us finally apply our analytical results and conclu-

sions of this section to the initial stages in heavy-ion
collisions, and in particular to the bottom-up thermalization
scenario, whose over- and underoccupied stages we wish to
qualitatively understand using the scaled thermal distribu-
tion as a toy model. Although we have reported recently in
Refs. [20,60] about numerical kinetic theory simulations
during bottom-up thermalization where we have studied
transport coefficients including the jet quenching parameter
q̂, in the present work, we are able to provide more insight
into its preequilibrium features by using our analytical
expressions.
In Fig. 10 we compare q̂=ðλ2T3

εÞ for scaled thermal
distributions representing an underoccupied system
(Nþ ¼ 0.1), thermal equilibrium (Nþ ¼ 1) and overoccu-
pancy (Nþ ¼ 4), and plot its value as a function of the
momentum cutoff Λ⊥ in the large Λ⊥ region [Eq. (95)]. We
find that for underoccupied systems and small cutoff, q̂ is
larger than its thermal value, whereas for large cutoffs this
is reversed. This confirms our numerical simulation results
of bottom-up thermalization in Ref. [20]. One implication
is that for relatively small cutoffs Λ⊥ ≳ T, which are
comparable to the momentum carried by gluons in the
plasma, collisional momentum broadening is more efficient
in underoccupied plasmas than in thermal equilibrium at
the same energy density. While our analytical result for
large cutoffs but small occupancies agrees with the numeri-
cal evaluation of q̂ in (26), this does not imply that jets
experience less broadening than in thermal equilibrium. In
fact, as explained in Ref. [20] and discussed in Sec. III J, the
momentum cutoff should be rather taken as a function of
the jet energy and plasma temperature. It turns out that for
realistic models of the momentum cutoff like (60) and (61),

q̂ exceeds the thermal value for the same energy density
even in the underoccupied phases of bottom up.
The main difference between the scaled thermal distri-

butions and Ref. [20] is that in the latter the system is
characterized by a large momentum anisotropy, while our
scaled thermal distribution is isotropic. For overoccupied
systems similar to those encountered initially in the bottom-
up scenario, our analytical study using the scaled thermal
distribution suggests that q̂ is always smaller than its
thermal value. However, in [20] we do not find this specific
ordering during the early overoccupied stage in our numeri-
cal simulations. We take this as a numerical indication that a
scaled thermal distribution does not describe this stage
accurately.
In the underoccupied phase, on the other hand, we see an

enhancement of q̂ for small Λ⊥ and a suppression at large
Λ⊥, compared to a thermal system at the same energy
density. This is consistent with our observation in Ref. [20]
and indicates that using a scaled thermal distribution as a
model of the underoccupied stage of bottom up is a better
approximation.

V. SUMMARY AND CONCLUSIONS

In this paper we have generalized the calculation of the
jet quenching parameter q̂ to an anisotropic nonequilibrium
plasma, using QCD effective kinetic theory. We describe in
detail the treatment of the phase space needed for the
calculation and implement the integration numerically in a
kinetic theory simulation. This generalizes the usual form
of q̂ to a tensor that encodes momentum broadening in
different directions relative to the jet, which is important for
nonequilibrium systems. In Ref. [20] we used the expres-
sions obtained here to study q̂ during the initial stages of
heavy-ion collisions.
We use an isotropic hard thermal loop (HTL) screening

prescription as well as a simple approximation thereof and
provide a formula for finite jet energy and arbitrary jet angle
with respect to the beam axis. Additionally, we provide
expressions in the limit of infinite jet momentum, in which a
transverse momentum cutoff needs to be introduced to
render q̂ finite. As a part of the derivation, we have
investigated different screening prescriptions for t-channel
gluon exchange. We give an explicit expression for the HTL
form of the matrix element entering q̂ and compare this full
HTL matrix element to a simple screening prescription that
is typically employed in EKT simulations. In particular, we
find that matching the simple screening prescription to HTL
in the case of transverse momentum broadening requires
regulating the gluon propagator by a scale ðξmDÞ2 with
ξ ¼ e1=3=2. This value is different than the value used in
previous studies for the elastic scattering kernel. Even with
this matching value of ξ, for small momentum cutoffs Λ⊥
there are in some cases sizeable deviations up to 30% in the
values of q̂ in thermal systems.

FIG. 10. Jet momentum broadening parameter q̂ for a scaled
thermal distribution with various scaling coefficients Nþ
and coupling λ ¼ 2 as a function of the transverse momentum
cutoff Λ⊥.
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We also study in detail the leading logarithmic behavior
of the scattering term in the Boltzmann equation in the
forward scattering limit. We show explicitly how a loga-
rithmic divergence in p arises from the integral of the
scattering matrix element at large p. Due to this divergence,
in eikonal limit p → ∞ a momentum transfer cutoff
Λ⊥ > q⊥ must be introduced. We show how, conversely,
q̂ at p → ∞ depends logarithmically on the cutoff,
q̂ ¼ a lnΛ⊥ þ b, and we find a simple expression for the
coefficient a.
We then move to study the value of q̂ in specific cases.

We first recover known results in limiting values for the
cutoff Λ⊥ in a thermal distribution. By evaluating q̂
numerically in a thermal distribution for arbitrary values
of Λ⊥, we provide an explicit interpolation formula in
Eq. (85) with fitted coefficients listed in (86) and Table III,
that smoothly interpolates between analytical results at
small and large momentum cutoffs. Our formula provides
an accurate approximation of q̂ in thermal equilibrium for
all cutoffs Λ⊥ and various couplings 0.5 ≤ λ ≤ 20.
As a background for our study of bottom-up thermal-

ization in Ref. [20], we then study toy models for aspects of
the thermalization process. We first confirm that for a
maximally anisotropic plasma with no longitudinal momen-
tum, only terms linear in the distribution function can
contribute to q̂zz. This feature is clearly visible in the
simulation of Ref. [20], where q̂zz becomes larger than q̂yy

when the system transitions from the overoccupied to the
underoccupied regime. We then calculate q̂ analytically for
a scaled thermal distribution to obtain improved insight into
the under- and overoccupied plasma dynamics during the
initial stages. Generalizing previous results in thermal
equilibrium, we derive and discuss analytic formulas of
the components entering q̂ as functions of the bosonic and
fermionic scaling occupancies N�. We discuss their range
of validity and compare to our numerically computed q̂. We
observe that at large cutoffs, the ratio q̂=ðλ2T2

εÞ, with a
Landau-matched temperature Tε, grows slowly with Nþ. At
small cutoffs, the ratio q̂=ðλ2T2

εÞ decreases rapidly with Nþ.
This implies that for underoccupied systems Nþ ≪ 1 the
value of q̂ exceeds the value of a thermal system with the
same energy density at small cutoffs, and is smaller at large
cutoffs. This provides further insight into the calculation
during bottom-up thermalization in Ref. [20].
Our computation of q̂ with full isotropic HTL self-

energies goes beyond typical screening approximations
with a constant mass regulator ξmD usually employed in
EKT simulations and is leading-order accurate for

isotropic systems. However, we note that our screening
formulation does not capture the dynamics of plasma
instabilities consistently, since these have not been incor-
porated into the EKT implementations yet. There have
been recent efforts to tackle the problem of anisotropic
screening [49,89,90], and we leave the task of including it
into q̂ to future studies.
Although this paper focuses on transverse momentum

broadening, the integral expression (26) can also be used to
describe longitudinal momentum broadening, q̂L ¼ q̂33 and
collisional energy loss, which we plan to study. In future
work, we also want to investigate the differences between
the finite p expressions of q̂ and the p → ∞ limit with
cutoff Λ⊥. Our expressions have already been used in [20]
to study the initial stages in heavy-ion collisions. Together
with the present work, this paves the way for further kinetic
theory studies of jet quenching in anisotropic and preequi-
librium systems.
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APPENDIX A: BOUNDARIES
OF THE PHASE-SPACE INTEGRATION

Here we give a detailed derivation of the boundaries for
the phase-space integrals of q̂. We start with (14), which we
can rewrite using four-dimensional integrals,

q̂ij ¼ 1

2pνa

X
bcd

Z
d4Kd4P0d4K0

ð2πÞ5 qi⊥q
j
⊥δð4ÞðPþ K − P0 − K0ÞjMab

cdðp;k;p0;k0Þj2

× δðK2ÞδðP02ÞδðK02ÞθðK0ÞθðP00ÞθðK00ÞfbðkÞ½1� fdðk0Þ�θðp0 − k0Þ: ðA1Þ
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We eliminate the K0 integration using the energy-
momentum conserving delta function, but will still write
K0 or k0 as a short notation for Pþ K − P0 or pþ k − p0.
We will proceed similarly as in [79]. We introduce
Qμ ¼ ðω;qÞμ as in (16) via

Q ¼ P0 − P ⇔ q ¼ p0 − p ¼ k − k0

ω ¼ p0 − p ¼ k − k0: ðA2Þ

Note that unlike the external momenta P; P0; K; K0, the
momentum transfer Q is not lightlike, i.e., Q2 ¼
q2 − ω2 ≥ 0. Then we have d4Kd4P0 ¼ d4Kd4Q and thus

q̂ij ¼ 1

2pνa

X
bcd

Z
d4Kd4Q
ð2πÞ5 qi⊥q

j
⊥jMab

cdðp;k;p0;k0Þj2

× θðp0 − k0ÞθðK0ÞθðP0 þ ωÞθðK0 − ωÞ
× δðK2ÞδððPþQÞ2ÞδððK −QÞ2Þ
× fbðkÞ½1� fdðk0Þ�: ðA3Þ

Using P2 ¼ K2 ¼ 0, P ·Q ¼ −pωþ pq cos θpq, and
K ·Q ¼ −kωþ kq cos θkq, we can rewrite the last two
delta functions as

δððPþQÞ2ÞδððK −QÞ2Þ

¼ 1

4pkq2
δ

�
cos θpq −

ω

q
−
ω2 − q2

2pq

�

× δ

�
cos θkq −

ω

q
þ ω2 − q2

2kq

�
: ðA4Þ

Because of this expression, it is beneficial to perform the q
integral in a coordinate frame in which θpq is its polar angle
and the k integral in a frame in which θkq is its polar angle.
This is one of the reasons for introducing the different
coordinate systems in Sec. III B. The delta function only
contributes if its argument becomes zero, which restricts
the integration region to the one indicated in Eq. (15),

jωj < q; p >
q − ω

2
; k >

qþ ω

2
: ðA5Þ

Subsequently performing the K0 integral yields

q̂ij ¼ 1

16p2νa

X
bcd

Z
d3kd3qdω
ð2πÞ5q2k2 q

i⊥q
j
⊥jMab

cdðp;k;p0;k0Þj2

× θðp0− k0Þθ
�
p−

q−ω

2

�
θ

�
k−

qþω

2

�
θðq− jωjÞ

× δ

�
cosθpq−

ω

q
−
ω2−q2

2pq

�
δ

�
cosθkq−

ω

q
þω2−q2

2kq

�
×fbðkÞ½1�fdðk−qÞ�: ðA6Þ

The k and q integrals are now performed in spherical
coordinates, where the polar angle integral is performed
using the delta function and the azimuthal and radial
integrals remain. For the radial integrals there are different
equivalent possibilities that implement the required con-
ditions: Z

∞

0

dq
Z

q

max ð−q;q−2p;1
3
ðq−2pÞÞ

dω
Z

pþ2ω

qþω
2

dk; ðA7Þ

Z
∞

0

dk
Z

k

−p−k
2

dω
Z

minðpþp0;kþk0Þ

jωj
dq; ðA8Þ

Z
∞

0

dk
Z p−k

2

0

dk0
Z

minðpþp0;kþk0Þ

jk−k0j
dq: ðA9Þ

APPENDIX B: ISOTROPIC HTL MATRIX
ELEMENT

Here we derive explicitly the expression for the full
isotropic HTL matrix element (54), which is needed for
infrared-sensitive contributions in the matrix elements
arising from soft gluon exchange. We start with Eq. (36),

MHTL ¼ jGRðP − P0ÞμνðPþ P0ÞμðK þ K0Þνj2; ðB1Þ

where we insert the HTL retarded propagator in strict
Coulomb gauge12 [92]

G00
R ðQÞ ¼ i

q2 þ Π00
R ðω=qÞ ; ðB2Þ

Gij
RðQÞ¼

�
δij−

qiqj

q2

�
GT

RðQÞ¼
−i
�
δij− qiqj

q2

�
q2−ω2þΠT

Rðω=qÞ
ðB3Þ

with x ¼ ω=q and the self-energies

ReΠ00
R ðxÞ ¼ m2

D

�
1 −

x
2
ln

				 xþ 1

x − 1

				
�

ðB4Þ

12By Coulomb gauge we mean using ∂iAi as the gauge
function and by strict we mean enforcing it strictly, i.e.,
∂iAi ¼ 0, which amounts to setting ξ ¼ 0 in the Faddeev-Popov
procedure [91].
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ImΠ00
R ðxÞ ¼ xm2

Dπ

2
θð1 − jxjÞ ðB5Þ

ReΠT
RðxÞ ¼

m2
D

2
−
1

2
ð1 − x2ÞReΠ00

R ðB6Þ

ImΠT
RðxÞ ¼ −

1

2
ð1 − x2ÞImΠ00

R : ðB7Þ

Due to jxj ¼ jωj=q < 1 in our case [cf., (15)], their
imaginary parts are always nonzero. Note that GRð−QÞ
corresponds to the advanced propagator, which has a
different imaginary part in the self-energy, ImΠRð−QÞ ¼
−ImΠRðQÞ. Let us further abbreviate

G00
R ð−QÞ≕ zL ¼ i

Aþ Bi
; GT

Rð−QÞ≕ zT ¼ −i
CþDi

;

ðB8Þ

A ¼ q2 þ ReΠ00
R ðxÞ; B ¼ ImΠ00

R ð−xÞ; ðB9Þ

C ¼ q2 − ω2 þ ReΠT
RðxÞ; D ¼ ImΠT

Rð−xÞ: ðB10Þ

It will turn out that B and D only appear quadratically or as
a product. Thus we do not need to distinguish them from
ImΠRðxÞ. We can now split the retarded propagator in (B1)
into its temporal and spatial parts and use the expressions
for p, q, and k in the q-frame, i.e., using their para-
metrizations (19a)–(19c), to obtain

MHTL ¼ jc1zL þ c2zT j2
¼ c21jzLj2 þ c22jzT j2 þ c1c2ðzLz̄T þ z̄LzTÞ; ðB11Þ

where z̄ means taking the complex conjugate of z and c1 ¼
ð2pþ ωÞð2k − ωÞ and c2 ¼ 4pk sin θpq sin θkq cosϕkq.
This leads to jzLj2 ¼ jG00

R ðQÞj2 ¼ ðA2 þ B2Þ−1, jzT j2 ¼
jGT

RðQÞj2 ¼ ðC2 þD2Þ−1, and

z̄LzT þ zLz̄T ¼ −2ðACþ BDÞjzLj2jzT j2; ðB12Þ

eventually yielding

MHTL ¼ c21jzLj2 þ c22jzT j2 − 2c1c2jzLj2jzT j2ðACþ BDÞ:
ðB13Þ

For isotropic distributions fðkÞ the last term is proportional
to cosϕkq and may therefore be dropped.
We also need the rescaled matrix element M̃ ¼

limp→∞MHTL=p2 in the limit p → ∞. We obtain it by
scaling out p [see Eq. (55)]

c̃1 ¼ lim
p→∞

c1=p ¼ 2ð2k − ωÞ; ðB14Þ

c̃2 ¼ lim
p→∞

c2=p ¼ 4k sin θpq sin θkq cosϕkq; ðB15Þ

which yields

M̃HTL ¼ c̃21jzLj2 þ c̃22jzT j2 − 2c̃1c̃2jzLj2jzT j2ðACþ BDÞ:
ðB16Þ

Similarly as before, for isotropic distributions fðkÞ the last
term does not contribute.

1. Sum rule

In this appendix, we show that one can analytically
perform the ω integral over the HTL matrix element (B16),Z

∞

−∞

dω
q

M̃HTL; ðB17Þ

using the sum rule from Ref. [32]. The latter allows us to
evaluate the integral over a spectral function

Z
1

0

dω
x

2ImΠðxÞ
ðzþ ReΠðxÞÞ2 þ ðImΠðxÞÞ2

¼ π



1

zþ ReΠð∞Þ −
1

zþ ReΠð0Þ
�
; ðB18Þ

provided that the function ΠðxÞ fulfills the conditions
ImΠð0Þ ¼ 0, ImΠðxÞ ¼ 0 for x ≥ 1, and ReΠðxÞ ≥ 0
for x ≥ 1.
Our analysis applies to the small Λ⊥ limit, i.e., we

assume only soft momentum transfer q⊥ ≪ k, with k ∼ T.
Additionally, we take p → ∞, which means q2 ¼ q2⊥ þ ω2,
and consider isotropic distributions, for which we may
neglect the term in the matrix element ∼ cosϕkq. The
matrix element then reads

M̃HTL¼16k2
�
jG00

R j2þ
�
1−

ω2

q2

�
2

cos2ϕkqjGT
Rj2
�
; ðB19Þ

where, as compared to (54) we have neglected the term
linear in cosϕkq and odd powers of ω, and also used
ω2=k2 ≪ 1 and q2⊥=ð2kqÞ ≪ ω=q. Note that only the
condition jωj ≪ k allows us to perform the ω integral
without taking the distribution functions into account since
otherwise ω also appears in the Bose-enhancement factor,
even in the isotropic case where k0 ¼ k − ω [see Eq. (26)].
We have checked numerically that including ω2=k2 leads to
only little changes. This is because although jωj can
become arbitrarily large in the integral, these regions are
suppressed by the large denominators appearing in the
propagators.
To use the sum rule (B18), we write jGRj2 in terms of the

self-energy ΠR, and expand the fraction with the imaginary
part of the self-energy,
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jG00
R j2 ¼ 2q

ωm2
Dπ

ImΠ00
R ðxÞ

ðq2 þ ReΠ00
R Þ2 þ ðImΠ00

R Þ2 ðB20aÞ

jGT
Rj2¼

4q
ωm2

Dπð1−x2Þ
ImΠT

RðxÞ
ðq2⊥þReΠT

RÞ2þðImΠT
RÞ2

: ðB20bÞ

A similar trick is used in [41] to rewrite jGRj2 in terms of
the spectral function ρ. Together with the substitution
dω
ω ¼ dx

xð1−x2Þ, this results in

Z
∞

−∞

dω
q
M̃HTL¼

32k2

m2
D



1−2cos2ϕkq

q2⊥þm2
D
3

−
1

q2⊥þm2
D
þ2cos2ϕkq

q2⊥

�
:

ðB21Þ

For the longitudinal propagator jG00
R j2 the factor ð1 − x2Þ

from the coordinate transformation needs to be absorbed
into the self-energy Π̃00

R ðxÞ ¼ ð1 − x2ÞΠ00
R ðxÞ. The relevant

limits read

ReΠT
Rð0Þ ¼ 0; ReΠ̃00

R ð0Þ ¼ m2
D; ðB22aÞ

ReΠT
Rð∞Þ ¼ m2

D

3
; ReΠ̃00

R ð∞Þ ¼ m2
D

3
: ðB22bÞ

Integrating over ϕkq and q⊥ leads to the cancellation of the
terms involving the plasmon mass and the familiar resultZ

Λ⊥

0

dq⊥ q3⊥
Z

2π

0

dϕkq

Z
∞

−∞

dω
q

MHTL

¼ 32k2

m2
D

Z
Λ⊥

0

dq⊥ q3⊥
m2

D

q2⊥ðq2⊥ þm2
DÞ

ðB23Þ

¼ 16k2 ln

�
1þ Λ2⊥

m2
D

�
: ðB24Þ

A similar result is obtained in [31,32] in thermal equilib-
rium, where also the integral over the distribution functions
fðkÞð1þ fðkÞÞ is automatically included. Here, we have
shown explicitly that the matrix element itself gives rise to
the form (B24). In the soft limit, this enables us to perform
the integral over the distribution function separately,
allowing a straightforward generalization to nonequili-
brium systems. Finally, we note that we use this sum
rule in Sec. III F to set the ξ parameter in the approximate
ξ-screening prescription.

APPENDIX C: BEHAVIOR OF q̂ FOR LARGE
JET MOMENTA

In this appendix, we study the behavior of the jet
quenching parameter q̂ for large jet momentum p and in
particular, how to correctly perform the limit p → ∞. We

will show that taking the term at a naïve leading order in
1=p in the integrand of q̂ij is indeed sufficient to obtain the
correct leading-order contribution. This is not trivial since p
also appears in the integration boundaries and this analysis
requires caution. Thus, there are two possible sources for
large-p contributions to q̂: the integrand and the integral
boundaries. Our strategy here will be to expand the
integrand in orders of 1=p and then perform the integrals.
We will illustrate the large p behavior of q̂ using the

gluonic matrix element,

q̂ ∼
Z

∞

0

dk
Z

k

−p−k
2

dω
Z

minðpþp0;kþk0Þ

jωj
dq

× q2ð1 − v2pqÞ
jMgg

ggj2
p2

fbðkÞð1� fdðk0ÞÞ: ðC1Þ

The distribution function fðkÞ provides an upper limit for
the momentum of the plasma constituent k, which we
assume to be much smaller than the jet momentum p, thus
k ≪ p. Thus the minimum of ðpþ p0; kþ k0Þ ¼ ð2pþ
ω; 2k − ωÞ is always 2k − ω, because 2k − ω < 2pþ ω for
ω > k − p, which is always fulfilled due to the lower
boundary of the ω-integral, ω > k−p

2
. Then the only p

dependence in the integration boundaries of Eq. (C1)
comes from the lower limit of the ω integral.
Therefore, we will be interested in the region ω < 0,

where jωj is very large. In particular, we will assume jωj >
Λω ≫ k with a new scale Λω, which will lead to simpli-
fications in the matrix element. Additionally, the Bose-
enhanced term q̂ff that includes fðkÞfðk0Þ does not
contribute in this limit, since fðk0Þ ≈ 0. Focusing only
on relevant terms, i.e., disregarding the k-integral since it
cannot contribute to any large p behavior, we analyze

q̂ ∼
Z

−Λω

−p−k
2

dω
Z

2k−ω

jωj
dq q2ð1 − v2pqÞ

jMgg
ggj2

p2
: ðC2Þ

1. The integrand of q̂ for large p

Now let us expand the integrand in (C2) for large p
explicitly.

a. The limit of vpq
First, we consider vpq ¼ cos θpq in the limit p → ∞. Our

starting point is Eq. (30a),

vpq ¼
1

q

�
ωþ ω2 − q2

2p

�
: ðC3Þ

Using Eq. (15), i.e., q < 2k − ω, one has

q2 − ω2

2p
<

4kðk − ωÞ
2p

≪ jωj; ðC4Þ
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which leads for p → ∞ to

vpq ¼
ω

q
: ðC5Þ

However, considering the term 1 − v2pq that appears in (C2)
is more subtle, because the seemingly leading term in a 1=p
expansion, ω=q, is close to unity. This leads to the
corrections

1 − v2pq ¼ 1 −
ω2

q2
þ ωðq2 − ω2Þ

pq2
þ…

¼
�
1 −

ω2

q2

��
1þ ω

p
þ…

�
; ðC6Þ

where the correction term ω=p can in principle
become large at the lower boundary of the ω integral,
ω > −ðp − kÞ=2.

b. Matrix element for large jωj
For large jωj, and therefore also large q, we do not need

to take into account screening effects OðmDÞ in the matrix
element, such that (38) reduces to Mscreen ≈M0 ¼
ðs − uÞ2=t2. The contribution from the transverse propa-
gator in the sum in (38) is negligible for large jωj, and we
are left with

jMgg
ggj2

g4p2
¼ 16dAC2

A
ω2

q4

�
1þ ω

p
þ…

�
: ðC7Þ

Collecting the pieces, we can rewrite the relevant integrand
in (C2) as

q2ð1 − v2pqÞ
jMgg

ggj2
g4p2

¼ 16dAC2
A
ðq2 − ω2Þω2

q4

�
1þ 2ω

p
þ…

�
: ðC8Þ

2. Integral over a more generic integrand

The integrand relevant for determining the large p
dominant behavior for q̂ is a sum of terms qnωm, as can
be seen from (C8). Let us therefore analyze a general
integrand of this form and define the integral Inm,

InmðpÞ ¼
Z

−Λω

−p−k
2

dω
Z

2k−ω

−ω
dq qnωm: ðC9Þ

Although jωj ≫ 2k, we cannot neglect 2k in the upper
integration boundary of the q integral, which additionally
complicates our analysis. With ω̃ ¼ −ω > 0 we get rid of

additional minus signs and obtain for n ≠ −1

InmðpÞ ¼ ð−1Þm
Z p−k

2

Λω

dω̃
Z

2kþω̃

ω̃
dq qnxm; ðC10Þ

¼ ð−1Þm
nþ 1

Z p−k
2

Λω

dω̃ xm½ð2kþ ω̃Þnþ1 − ω̃nþ1�: ðC11Þ

We expand the first term in a power series using the
Binomial series

ðxþ yÞr ¼
X∞
k¼0

�
r

k

�
xr−kyk; x; y∈R; ðC12Þ

with jxj > jyj and r∈C. We thus obtain

Inm ¼ ð−1Þm
nþ 1

Z p−k
2

Λω

dω̃

× ω̃m

"X∞
j¼0

�
nþ 1

j

�
ω̃nþ1−jð2kÞj − ω̃nþ1

#
ðC13Þ

¼ ð−1Þm
nþ 1

Z p−k
2

Λω

dω̃
X∞
j¼1

�
nþ 1

j

�
ω̃nþmþ1−jð2kÞj ðC14Þ

¼ ð−1Þm
nþ 1

 X∞
j¼1

j≠nþmþ2

�
nþ 1

j

�
ω̃nþmþ2−j

nþmþ 2 − j

				
p−k
2

ω̃¼Λω

ð2kÞj

þ
�

nþ 1

nþmþ 2

�
ln

�
p − k
2Λω

�
ð2kÞnþmþ2

!
: ðC15Þ

Since we are interested in the behavior at large p, we drop
the lower boundary ω̃ ¼ Λω and take only the leading-
order (LO) terms with the largest powers of p into account.
Those are obtained for j ¼ 1, for which the (generalized)
binomial coefficient yields nþ 1. It will be useful to also
consider the next-to-leading order (NLO) terms in p. We
obtain, up to an additive constant,

ILOnm ≃

( ð−1Þmð2kÞ
nþmþ1

�
p−k
2

�
nþmþ1

; nþmþ 1 ≠ 0

ð−1Þmð2kÞ lnðpÞ; nþmþ 1 ¼ 0
ðC16aÞ

INLOnm ≃

8>>><
>>>:

ð−1Þmð2kÞ2
ðnþ1ÞðnþmÞ

�
nþ 1

2

��
p−k
2

�
nþm

; nþm ≠ 0

ð−1Þm
nþ1

�
nþ 1

2

�
ð2kÞ2 lnðpÞ; nþm ¼ 0:

ðC16bÞ

Note that the inclusion of k in ðp − kÞnþmþ1 in the LO term
is because it will contribute at NLO.
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3. Behavior of q̂ for large p

Gathering the results of the previous sections and
applying them to the integral of q̂ in (C2) with the integrand
(C8), we obtain

q̂LO ∼ I−2;2 − I−4;4 ¼ ð2kÞ2 lnpþ const; ðC17aÞ

q̂NLO ∼
1

p
ðI−2;3 − I−4;5Þ ¼ constþO

�
1

p

�
: ðC17bÞ

Note that here with NLO we denote the terms propor-
tional to 1=p in the integrand. For both cases, nþm is
constant, thus the leading terms (C16a) cancel and we need
the next-to-leading terms (16b). Indeed we observe that,
due to the logarithmic enhancement of the leading-order
contributions q̂LO, the next-to-leading order contributions
q̂NLO become negligible13 for sufficiently large p, and q̂ can
be written in the form of Eq. (48),

q̂ðp ≫ QÞ ≃ ap lnpþ bp: ðC18Þ

Therefore, for sufficiently large jet momenta p, it is in
principle enough to expand the matrix element and the
integrand for large p and take only the leading-order
contribution in p. Note, however, that to obtain the constant
term it is not enough to use the leading large p behavior, but
one must use the full matrix element.
Let us now see how we can obtain the coefficient of the

logarithm, ap. Until now, we have not considered the exact
form of the distribution function fðkÞ and merely used that
it provides an upper cutoff for the k integral. The numerical
value of the coefficient ap will depend on the exact form
of fðkÞ.
Let us consider a gluon jet scattering off a gluon in the

plasma and start with Eq. (26),

q̂ ≃
16g4C2

A

210π5

Z
2π

0

dϕpq

Z
2π

0

dϕkq

Z
∞

0

dk

×
Z

k

−p−k
2

dω
Z

2k−ω

jωj
dq fðkÞω

2ðq2 − ω2Þ
q4

; ðC19Þ

where we have taken the leading term in the large p
integrand (C8) that leads to the logarithmic behavior.
Additionally, as explained below Eq. (C1), it is sufficient
to use 2k − ω as the upper boundary of the q integral.

In comparison to the general integrand we analyzed in
Eq. (C9), there appears also the distribution function
fðkÞ ¼ fðk; vkÞ, and the angle vk ¼ cos θk depends on
vkq ¼ cos θkq and vpq ¼ cos θpq as well, which are func-
tions of ω and q, as in Eq. (30d). For the large p behavior,
we are interested in the region jωj ≫ k and q ∼ jωj, which
renders vpq → −1. For vkq, however, we cannot make a
definite statement, since it changes from −1 to 1 when q
varies between its integration boundaries jωj < q <
2k − ω. Therefore, for anisotropic systems, without know-
ing the explicit form of fðkÞ, we cannot calculate the
coefficient ap. We will thus restrict ourselves to isotropic
distributions fðkÞ here that only depend on the magnitude
of k. Then, the ω and q integrations in Eq. (C19) are given
by Eq. (C17a).
For an isotropic plasma consisting of quarks and gluons

with distributions fq and fg, the coefficient ap is then given
by Eq. (49),

ap=CR ¼ CAg4

4π3

Z
∞

0

dk k2fgðkÞ

þ
X
f

dFCFg4

4π3dA

Z
∞

0

dk k2fqðkÞ: ðC20Þ

In thermal equilibrium, this reduces to

aeqp
CR

¼ g4ζð3ÞT3

2π3

�
NC þ 3

4
nf

�
: ðC21Þ

This logarithmic behavior of q̂LO implies that the limit
p → ∞ requires a UV cutoff to render q̂ finite. This is
typically done by restricting the transverse momentum
transfer, q⊥ < Λ⊥. We will show in the next section that in
this limit q̂ is finite and we only need to consider the
leading-order term in p in the integrand.

4. Large p behavior combined with a momentum
cutoff q⊥ < Λ⊥

Using a transverse momentum cutoff, q⊥ < Λ⊥ ≪ p, we
can retrace the steps in the previous sections. For large p,
apart from factors Oð1=pÞ, this amounts to q2⊥ ¼ q2 −
ω2 < Λ2⊥ [cf., (50)], and thus we modify Inm to

InmðpÞ ¼
Z

−Λω

−p−k
2

dω
Z ffiffiffiffiffiffiffiffiffiffiffi

ω2þΛ2⊥
p

−ω
dq qnωm: ðC22Þ

The upper limit in the q integral replaces 2k − ω in Eq. (C9)
for sufficiently large Λω because

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Λ2⊥

p
< 2k − ω for

−ω > Λ2⊥
4k − k, which, since −ω > Λω, can always be

fulfilled by choosing

13This is not a trivial statement: for an integrand qnωmð1þ
ω=pÞ with nþm > 0, we would obtain q̂NLO

q̂LO ¼
1
pðapnþmþ2þbÞ
cpnþmþ1þe

∼ a
c þOð1pÞ, thus the ratio NLO=LO does not neces-

sarily become 0 for p → ∞. This implies that multiplying the LO
term with ω=p and integrating over it yields a term of the same
order as the LO term.
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Λω >
Λ2⊥
4k

− k: ðC23Þ

Similarly as before, with ω̃ ¼ −ω and for n ≠ −1, we
obtain

InmðpÞ¼
ð−1Þm
nþ1

Z p−k
2

Λω

dω̃ω̃m½ðω̃2þΛ2⊥Þ
nþ1
2 − ω̃nþ1�: ðC24Þ

For the convergence of the Binomial series (C12), we need
to check that Λ2⊥ < ω̃2, which follows from (C23),14 and
thus,

Inm ¼ ð−1Þm
nþ 1

Z p−k
2

Λω

dω̃
X∞
j¼1

� ðnþ 1Þ=2
j

�
ω̃nþmþ1−2jðΛ⊥Þ2j

ðC25Þ

¼ ð−1Þm
nþ 1


 X∞
j¼1

j≠ðnþmþ2Þ=2

� ðnþ 1Þ=2
j

�
ω̃nþmþ2−2j

nþmþ 2 − 2j

					
p−k
2

ω̃¼Λω

Λ2j
⊥

þ
� ðnþ 1Þ=2
ðnþmþ 2Þ=2

�
ln

�
p − k
2Λω

�
Λnþmþ2⊥

�
: ðC26Þ

We now obtain, up to an additive constant (in p),

ILOnm ¼
8<
:

ð−1ÞmΛ2⊥
2ðnþmÞ

�
p−k
2

�
nþm

; nþm ≠ 0

ð−1ÞmΛ2⊥ lnðpÞ; nþm ¼ 0
ðC27Þ

INLOnm ¼
8<
:

ð−1ÞmΛ4⊥B
ðnþ1Þðnþm−2Þ

�
p−k
2

�
nþm−2

; nþm − 2 ≠ 0

ð−1Þm
nþ1

BΛ4⊥ lnðpÞ; nþm − 2 ¼ 0;

ðC28Þ

where B ¼ ððnþ1Þ=2
2

Þ. In this case, denoting again with NLO
the terms proportional to 1=p in the integrand, we obtain

q̂LO ∼ I−2;2 − I−4;4 ∼ constþO
�
1

p2

�
; ðC29aÞ

q̂NLO ∼
1

p
ðI−2;3 − I−4;5Þ ∼

const
p

þO
�
1

p2

�
: ðC29bÞ

Thus, with a transverse momentum cutoff Λ⊥ in place, we
can explicitly take the limit of infinite jet momentum,
p → ∞, and obtain a finite jet quenching parameter q̂.
Moreover, it is then sufficient to take the leading-order

terms in the integrand (in particular the matrix elements) in
an expansion in 1=p.

5. Large momentum cutoff Λ⊥ behavior

Removing the momentum cutoff, i.e., taking Λ⊥ → ∞,
leads to a divergent jet quenching parameter q̂. It is
reasonable to assume that this divergence will be loga-
rithmic, as it is for finite but large jet momentum. We will
now show this explicitly and calculate the coefficient of the
logarithm.
We continue working in the limit p → ∞, and thus take

only the leading-order terms in p in the integrand into
account. For that we start with Eq. (A6) with explicit step
functions and perform the coordinate transformation in
Eq. (65) to integrate over q⊥,

q̂ ∼
Z

∞

0

dk
Z
q⊥<Λ⊥

d2q⊥
Z

k−
q2⊥
4k

−∞
dω

× q2⊥fðkÞð1� fðk0ÞÞ jMgg
ggj2

p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2⊥ þ ω2

p ; ðC30Þ

where we have not included the angular integrals.
The behavior for large Λ⊥ is of course dominated by the

upper integration boundary of the q⊥ integral. For largeΛ⊥,
we now split the integral into a part 0 < q⊥ < Λω and
Λω < q⊥ < Λ⊥. We can choose the scale Λω ≫ k, such
that q⊥ ≫ k, since the momentum k has a natural upper
cutoff coming from the distribution function fðkÞ. Then,
also jωj > q2⊥

4k − k must be very large and thus fðk0Þ ≈ 0.
Hence we arrive at the scale separation

jωj ≫ q⊥ ≫ k: ðC31Þ

Using this for the integrand (C8), we obtain

q̂ ∼
Z

Λ⊥

Λω

dq⊥ q⊥
Z

k−
q2⊥
4k

−∞
dω q2⊥

1

jωj3

≈ 8k2
Z

Λ⊥

Λω

dq⊥
q3⊥
q4⊥

¼ 8k2 lnΛ⊥ þ const: ðC32Þ

We have thus shown that we can write q̂ in that limit as in
Eq. (57),

q̂ðΛ⊥ ≫ QÞ ≃ aΛ⊥ lnΛ⊥ þ bΛ⊥ : ðC33Þ

It is also possible to determine the coefficient of lnΛ⊥,
similarly as in Appendix C 3. For anisotropic systems, the
distribution function depends implicitly on ω and q⊥ via the
angle cos θk ¼ vk; see Eq. (30d). With the scale separation
(C31), we find vpq → −1, similarly as in Appendix C 3.
Additionally, vkq changes from vkq → −1 for jωj → ∞ to
vkq → 1 for jωj → q2⊥=4k − k, and similarly for vk0q → −1.

14We know that Λ2⊥ < 4kΛωð1þ k
Λω
Þ ≈ 4kΛω and thus

Λ2⊥=Λω
2 < 4k

Λω
≪ 1, which makes Λ⊥ < Λω and thus Λ⊥ < ω̃.
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Note that vkq decreases rather quickly for increasing jωj,
thus we cannot make predictions for arbitrary anisotropic
systems, and assume an isotropic distribution for calculating
aΛ⊥ . With this approximation, we can now perform the
integral in Eq. (C32).
For a plasma consisting of quarks and gluons with

distributions fq and fg, we then obtain the coefficient

aΛ⊥
CR

¼ CAg4

2π3

Z
∞

0

dk k2fgðkÞ

þ
X
f

dFCFg4

2π3dA

Z
∞

0

dk k2ffðkÞ; ðC34Þ

which reduces for thermal distributions to

aeqΛ⊥
CR

¼ g4ζð3ÞT3

π3

�
NC þ 3

4
nf

�
: ðC35Þ

This nicely agrees with Eq. (81a) that stems from [30].

APPENDIX D: MONTE-CARLO SAMPLING

In this appendix, we describe the implementation of the
Monte-Carlo integration. Our implementation can be
found in [93].
We evaluate the five-dimensional integral in (26) with

the measures (52a)–(52c) using Monte-Carlo integration
with importance sampling. For the angular parts, we sample
uniformly from 0 to 2π.
The other three integrals can be summarized into

three categories. The first one corresponds to (52b) and
is given by

I1 ¼
Z

kmax

kmin

dk
Z

∞

kmin

dk0
Z

min ðkþk0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk−k0Þ2þΛ2⊥

p
Þ

jk−k0j
dq; ðD1Þ

where we have implemented the boundaries kmin < k <
kmax coming for the finite discretization of the distribution
function fðkÞ, and similarly kmin < k0, and also used the q⊥
cutoff, q2 − ω2 < Λ2⊥. We can rewrite this equivalently as

I1 ¼
Z

kmax

kmin

dk
Z

k−kmin

−∞
dω
Z

min ð2k−ω;
ffiffiffiffiffiffiffiffiffiffiffi
ω2þΛ2⊥

p
Þ

jωj
dq; ðD2Þ

which corresponds to (52a).
For the different order of integration as in (52c) the

conditions kmin < k and kmin < k0 amount to

I2¼
Z

∞

0

dq
Z

minðq;2kmax−q;kmax−kminÞ

−q
dω
Z

kmax

maxðqþω
2
;kmin;kminþωÞ

dk;

ðD3Þ

where due to the q⊥ cutoff, for q > Λ⊥ we cut the
following region ð−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − Λ2⊥

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − Λ2⊥

p
Þ out of the

integration region of the ω integral.
For the q integral we sample q from a probability

distribution ∼ðqþmÞ−2, where m is the gluon asymp-
totic mass m ¼ mD=

ffiffiffi
2

p
. Thus we perform the integral

according toZ
qmax

qmin

dq fðqÞ ≈ qmax − qmin

Nðqmax þmÞðqmin þmÞ

×
XN
i¼1

ðqi þmÞ2fðqiÞ; ðD4Þ

where qi ¼ ð1=ðqmin þmÞ − yiÞ−1 −m and yi is sampled
uniformly in ð0; ðqmax − qminÞðqmax þmÞ−1ðqmin þmÞ−1Þ.
We sample ω uniformly and k from a 1=k distribution,Z

kmax

kmin

dk fðkÞ ≈ ln

�
kmax

kmin

�
1

N

XN
i¼1

kifðkiÞ; ðD5Þ

where ki ¼ kmineri and ri is sampled uniformly in
ð0; ln kmax=kminÞ.

APPENDIX E: DETAILS ON q̂ CALCULATIONS
IN TOY MODELS

1. Extremely anisotropic distribution

We now calculate q̂ijff for a jet going in the x direction and
the distribution (89), which we rewrite as

fðkÞ ¼ AQ3δðkzÞδðk2x þ k2y − k̃2Þ: ðE1Þ

We do not need to enforce a momentum cutoff q⊥ < Λ⊥,
since q̂ff is finite even for p → ∞. Hence, we can assume
that the transverse momentum cutoff Λ⊥ is sufficiently
large, at least Λ⊥ > 2k̃, as we will see later.
We first note that the expression for q̂zzff is proportional toR ðqzÞ2δðkzÞδðk0zÞ. The delta functions enforce kz ¼ k0z ¼ 0

and thus also qz ¼ kz − k0z ¼ 0 and q̂zzff ¼ 0. Note that we
have obtained this result without using a specific form of
the matrix element.
For q̂yyff we use (A6) and insert fðkÞ in (E1), obtaining

q̂yyff ¼ A2Q6

16p2ν

Z
d3kd3qdω
ð2πÞ5q2k2 q

yqyjMðp;k;p0;k0Þj2

× δ

�
cos θpq −

ω

q
−
ω2 − q2

2pq

�

× δ

�
cos θkq −

ω

q
þ ω2 − q2

2kq

�

× θðp0 − k0Þθ
�
p −

q − ω

2

�
θ

�
k −

qþ ω

2

�
θðq − jωjÞ

× δðkzÞδðqzÞδðk2 − k̃2Þδððk − qÞ2 − k̃2Þ: ðE2Þ
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The delta functions can be rewritten as δððk − qÞ2 − k̃2Þ ¼
δðω2 − 2ωk̃Þ ¼ 1

2k̃
ðδðωÞ þ δðω − 2k̃ÞÞ and δðk2 − k̃2Þ ¼

1
2k̃
δðk − k̃Þ. We can thus integrate out kz and qz and rewrite

the remaining integrations as a two-dimensional integral.
For p → ∞ the theta functions containing p and p0 do not
need to be written explicitly. The δðω − 2kÞ term vanishes
because then the third Heaviside function becomes
θð−q=2Þ ¼ 0. Integrating over ω enforces ω ¼ 0. Due to
the considered large-p limit, the first delta function
becomes δðcos θpqÞ ¼ qδðqxÞ, and integrating out qx as
well, we arrive at

q̂yyff ¼ A2Q6

16p2ν

Z
dkxdkydqy
ð2πÞ5qyk2

ðqyÞ2jMðp;k;p0;k0Þj2

× δ

�
cosθkq −

jqyj
2k̃

�
θ

�
k̃−

jqyj
2

�
1

4k̃2
δðk− k̃Þ: ðE3Þ

Effectively, q is parallel to the y–axis and k lies in the x–y
plane with length k̃ and ky ¼ jqyj=2. For the matrix element
we need q ¼ jqyj, k ¼ k̃, and ϕkq, which is the polar angle
of k in a frame, in which q points in the z direction and p
lies in the x–z plane; see Sec. III B. In our case, q is
orthogonal to p, thus we perform the k integration in a
frame, in which q ¼ qez3 , p ¼ −pex3 . Since k must lie in
the p − q plane, we obtain

ϕkq ∈ f0; πg: ðE4Þ

We get a factor 2 from the symmetry qy ↔ −qy and insert
the gluonic matrix element from Table II with the approxi-
mation (56), and sum over the possible values of cosϕkq, 1
and −1. Thus we obtain, for a momentum cutoff Λ⊥ > 2k̃,

q̂yyff ¼ dAC2
AA

2g4Q6

26π5νk̃3

Z
2k̃

0

dq q ðE5Þ

×
ð2k̃ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k̃2 − q2

p
Þ2 þ ð2k̃þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k̃2 − q2

p
Þ2

ðq2 þ ξ2m2
DÞ2

¼ dAC2
AA

2g4Q6

ð2πÞ5νk̃3
Z

2k̃

0

dq q
8k̃2 − q2

ðq2 þ ξ2m2
DÞ2

: ðE6Þ

The integral over q can be performed analytically, which
yields Eq. (91).

2. Evaluating q̂ for the scaled thermal distribution

Here we describe briefly a few technical details used in
the evaluation of (26) with (52c) for the scaled thermal
distribution (92) in Sec. IV B 2. As independent parameters
we have

(i) the coupling λ ¼ g2NC,
(ii) the temperature T, and
(iii) the occupancy Nþ (and N−, but here we consider a

purely gluonic plasma).
All dimensionful quantities are given in terms of the
temperature T. Then we have two independent parameters
left, on which q̂ will depend. Every matrix element comes
with a factor g4 ∼ λ2, which we can factor out. Since the
Debye mass scales with Nþλ, the scaled matrix element
then depends only on this combination,

jMab
cdðNþ; λÞj2 ¼ λ2jM̃ab

cdðNþλÞj2: ðE7Þ

Then Eq. (26) becomes

q̂ ¼
X
bcd

Z
dΓ̃q2sin2θpq

jM̃ab
cdðNþλÞj2
p2

× λ2fbðkÞð1� fdðk − ωÞÞ; ðE8Þ

where dΓ̃ denotes the integration measure and constant
factors present in (26).
In a purely gluonic plasma, we can now consider q̂f=λ

and q̂ff separately as functions of Nþλ as in Eq. (98),

q̂ ¼ λ

�
q̂f
λ

�
ðNþλÞ þ q̂ffðNþλÞ; ðE9Þ

with

λ

�
q̂f
λ

�
¼ λ

Z
dΓq2sin2θpq

jM̃gg
ggðNþλÞj2
p2

λfgðkÞ; ðE10Þ

q̂ff ¼
Z

dΓ q2sin2θpq
jM̃gg

ggðNþλÞj2
p2

λ2fgðkÞfgðk − ωÞ:

ðE11Þ

Note that f also contains a factor Nþ, which, together with
λ combines to theNþλ behavior in (98). Thus we can obtain
q̂f and q̂ff numerically with one independent parameter,
Nþλ, and then add the second independent parameter later.
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