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In proton-proton and heavy-ion collisions, the study of charm hadrons plays a pivotal role in
understanding the QCD medium and provides an undisputed testing ground for the theory of strong
interaction, as they are mostly produced in the early stages of collisions via hard partonic interactions.
The lightest open charm, D0 meson (cū), can originate from two separate sources. The prompt D0

originates from either direct charm production or the decay of excited open charm states, while the
nonprompt stems from the decay of beauty hadrons. In this paper, using different machine learning (ML)
algorithms such as XGBoost, CatBoost, and Random Forest, an attempt has been made to segregate the
prompt and nonprompt production modes of theD0 meson signal from its background. The ML models are
trained using the invariant mass through its hadronic decay channel, i.e., D0 → πþK−, pseudoproper time,
pseudoproper decay length, and distance of closest approach of D0 meson, using PYTHIA8 simulated pp
collisions at

ffiffiffi

s
p ¼ 13 TeV. The ML models used in this analysis are found to retain the pseudorapidity,

transverse momentum, and collision energy dependence. In addition, we report the ratio of nonprompt to
prompt D0 yield, the self-normalized yield of prompt and nonprompt D0, and explore the charmonium,
J=ψ to open charm, D0 yield ratio as a function of transverse momenta and normalized multiplicity. The
observables studied in this paper are well predicted by all the ML models compared to the simulation.

DOI: 10.1103/PhysRevD.110.034017

I. INTRODUCTION

To understand the fundamental nature of our Universe,
accelerator facilities such as the Relativistic Heavy-Ion
Collider (RHIC) at BNL and the Large Hadron Collider
(LHC) at CERN perform proton-proton (pp) and heavy ion
collisions at ultrarelativistic speeds [1,2]. These collisions
allow us to explore a unique state of thermalized and
deconfined medium of quarks and gluons, known as the
quark-gluon plasma (QGP) [3–6]. Understanding the QGP
medium, which mimics conditions of the microsecond-old
Universe, is crucial. Furthermore, the study of the created
matter at the extreme conditions of temperatures and energy
densities sheds light on the phase transition from the
deconfined partonic phase to the color-neutral hadronic
phase, where they are confined within the hadrons, thereby
making a testing ground for QCD strong interaction

dynamics. However, the QGP medium is extremely tran-
sient, having a lifetime of the order of 10−23 s, before the
quarks and gluons hadronize into a color-neutral state [4,5].
As a result, we can only detect the final-state hadrons after
the kinetic freeze-out. Therefore, precise probes are essen-
tial to investigate the characteristics of this deconfined
partonic medium.
One such probe for the study of the deconfined phase is

the heavy quarks (HQs), i.e., charm and beauty. The HQs
are produced in the initial hard scattering. Their production
time is characterized by Δt > ð 1

2mc;b
Þ; ∼0.1 fm=c for charm

quarks and ∼0.01 fm=c for beauty quarks, which is much
shorter than the formation time (∼0.3 fm=c) of the QGP
medium [7,8]. In addition, owing to their masses being
much larger than the temperature of the QGP medium, the
probability of thermal production and annihilation of HQs
is negligible. The HQs undergo Brownian motion in the
thermalized medium of lighter quarks (u, d, s) and
experience the entire evolution of the QGP medium.
These HQs combine with the light-flavor quarks at the
phase boundary or during the system evolution to form the
open-heavy-flavor hadrons. The most abundant of them is
the D0 meson (cū) due to its lowest mass among all the
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heavy-flavor hadrons. The D0 meson originates from two
sources following different topologies. First, the promptD0

mesons come directly from the initial hard scatterings
as the feed down from the higher excited charm states
(D�ð2007Þ0, D1ð2420Þþ). Second, the nonprompt D0

meson comprises charm quarks that are produced through
flavor-changing weak decays of beauty hadrons
(B0; Bþ) [9,10]. It is essential to separate the prompt and
nonprompt D0 to understand the relative contribution from
the charm and beauty sectors. This helps in studying the
nuclear modification factor in the charm and beauty sectors
separately, which may shed light on possible different
mechanisms of energy loss in the QCD medium [11].
Further, this facilitates the study of different phenomena
like HQ transport and thermalization in the medium
through anisotropic flow [12]. In addition, the study of
topological production of D0 meson has several physics
implications. Prompt D0 meson can help to understand
the QCD medium and can provide a testing ground for
the theory of strong interactions. Various observables are
measured in experiments from the final-state hadrons to
understand the interaction of the charm quarks in the QGP
medium, where a comprehensible insight can be gained
using prompt D0 mesons as a probe. Since the nonprompt
D0 mesons are weak decay products of beauty hadrons,
they are produced at a larger distance from the primary
interaction vertex. Thus, using nonprompt D0 mesons to
understand initial partonic interactions may not be an ideal
choice. On the other hand, the nonprompt production of the
D0 mesons can help to unveil the beauty production in both
pp and heavy-ion collision sectors [11,13].
Experimentally, the study of heavy-flavor (charm and

beauty) hadrons acts as a good testing ground for pertur-
bative quantum chromodynamics (pQCD) calculations.
The topological separation of the prompt and nonprompt
D meson is an important aspect of studying the production
and evolution of charm and beauty quarks in the QCD
medium [14]. Moreover, the azimuthal anisotropy in the
momentum space of final-state hadrons serves as an
excellent probe of the QGP medium. The second order
anisotropic flow coefficient, known as the elliptic flow
or v2, has been calculated for D mesons in ALICE, STAR,
and CMS experiments [15–19]. Recently, the elliptic flow
of the nonprompt D0 meson has been estimated for Pb-Pb
collisions at CMS and ALICE [12,20]. This helps in
studying the degree of charm and beauty quark thermal-
ization and their participation in the collective expansion of
the medium. Additionally, the nuclear modification factor
(RAA) is estimated to explore the energy loss by the HQs
through interaction with the medium, taking pp collisions
as a baseline [8,21,22]. The advancements in Run-3
detector upgrades and the high luminosity of ALICE offer
a significant opportunity for the thorough and rigorous
exploration of the charm and beauty hadron production in
hadronic and nuclear collisions.

Typically, D0 meson is reconstructed through its had-
ronic decay channel D0 → πþK−. The inclusive D0 is
dominated by prompt D0 contributions, with only a small
fraction being nonprompt D0. Figure 1 provides a sche-
matic diagram of D0 production and D0 → πþK− decay
topology. The decay length represents the distance between
theD0 decay vertex and the primary vertex. The distance of
the closest approach of theD0 meson (DCAD0) is measured
by taking the distance between the primary vertex and
the reconstructed D0 momentum vector p⃗D0. The beauty
hadrons undergo a weak decay into a D0 meson, which
further decays into a πþK− pair, whereas the prompt D0

mesons are produced much closer to the primary vertex.
The involvement of the weak interaction in the decay
topology of the nonpromptD0 meson increases the distance
between the primary vertex and D0 decay vertex.
Consequently, the DCAD0 for the nonprompt D0 mesons
is higher than the prompt counterparts.
In this study, we take advantage of the machine learning

(ML) techniques to separate the contribution from the
charm and beauty sector by classifying the prompt and
nonprompt D0 mesons using final-state observables as
input features. The ML algorithms, with proper training,
can map a correlation between the input features and
output. This is achieved through building a classification
model from sample inputs, which allows the machine to
learn independently and build a correlation between the
inputs and outputs. The ML algorithms are categorized into
supervised, unsupervised, semisupervised, and reinforce-
ment learning, each having its unique approach and
application. In the case of experimental high-energy phys-
ics, the potential of machine learning lies in its ability to
discover correlations in large datasets. The ML techniques
have been in use in the field of high-energy for the last few
decades [23–25]. It is successfully deployed for studies like
jet measurements [26–29], particle identification [30–32],
impact parameter estimation [25,33,34], and flow coeffi-
cient measurements [35–37]. Recently, classification prob-
lems, such as classifying prompt and nonprompt J=ψ in
forward rapidity [38] and segregating electrons coming
from different sources [39] were successfully addressed.

FIG. 1. Schematic diagram of D0 meson production and decay
topology in hadronic and nuclear collisions.
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For our study of prompt and nonprompt classification
of D0, we simulate pp collisions at

ffiffiffi

s
p ¼ 13 TeV using

PYTHIA8 and train three different ML algorithms, namely
XGBoost, CatBoost, and Random Forest. On successful
training, we use our MLmodels to predict the production of
prompt and nonprompt D0 mesons for pp collisions at
ffiffiffi

s
p ¼ 5.02 TeV and 900 GeV. The novelty of the work is
reflected in the model’s robustness in distinguishing between
prompt and nonprompt D0 particles throughout the entire
energy range of the LHC. On separating the prompt and
nonprompt D0 mesons, we attempt to understand their
production dynamics with respect to the production of
charged particles and the charmonium state (J=ψ).
The remainder of the paper is organized as follows:

in Sec. II, we briefly discuss the methodology of the
work. Section III starts with a discussion of the training and
evaluation of the models, followed by the results and
discussion in Sec. IV. Finally, we summarize and conclude
our findings in Sec. V.

II. METHODOLOGY

In this section, we present a brief introduction to event
generation using PYTHIA8, followed by ML algorithms.
Additionally, the production cross sections of prompt and
nonprompt D0 meson obtained from simulation are com-
pared to published measurements from ALICE to quality
check the tunes and settings used in PYTHIA8.

A. PYTHIA8

Event generators are used to simulate hadronic and
heavy-ion collisions with greater control over the evolution
stages and to test various phenomenological models.
These generators use Monte Carlo simulation techniques
to mimic the actual collisions involving a variety of physics
processes. PYTHIA8, a Monte Carlo event generator, is
commonly employed to simulate ultrarelativistic hadronic,
leptonic, as well as heavy-ion collisions across a wide range
of energy. It provides a comprehensive explanation of the
pQCD-based particle production, including charm and
beauty production. In this study, we use PYTHIA8 to
simulate events for the training of ML algorithms to
distinguish prompt and nonprompt particles.

PYTHIA8 consists of particle production mechanisms
involving soft and hard processes, initial and final state
parton shower, string fragmentation, hadronic rescattering
and decay, color reconnection, beam remnants, and multiple
parton interactions (MPI). This is an improved version of
PYTHIA6 that incorporates a scenario based on MPI.
In this scenario, 2 → 2 hard processes have the potential
to generate heavy quarks such as charm and beauty. For this
study, we have used PYTHIA 8.308, with 4C tune [40]
(tune∶pp ¼ 5) and considering only inelastic and nondif-
fractive components (HardQCD∶all ¼ on), to generate
two billion minimum bias events for pp collisions at

ffiffiffi

s
p ¼ 13 TeV. Furthermore, we generate one billion mini-
mum bias events for pp collisions at

ffiffiffi

s
p ¼ 5.02 TeV

and 900 GeV each. To prevent the divergence of QCD
processes, which can happen when transverse momentum,
pT → 0, we implement a pT cutoff of 0.5 GeV=c
(PhaseSpace∶pTHatMinDiverge ¼ 0.5). The data have been
simulated with color reconnection taken into consideration
(ColourReconnection∶reconnect ¼ on). Additionally, we
have utilized the mode-2 for color reconnection, indicated
by ColourReconnection∶mode ¼ 2. This mode refers to the
gluon-move model, where the gluons are moved (or flipped)
from one point to another such that the string length is
minimized [41]. For the production of prompt and non-
promptD0 mesons, we have enabled all the charmonium and
bottomonium production processes via Charmonium∶all ¼
on and Bottomonium∶all ¼ on. A detailed description of the
physics processes and their implementation in PYTHIA8 are
provided in Refs. [41,42].
To mimic the real-world experiments, we enable the

spread of the primary interaction vertex following a
Gaussian distribution (Beams∶allowVertexSpread ¼ on)
as also done in Ref. [38]. The mean and standard deviation
of the distribution in the Cartesian coordinate are taken from
Ref. [43]. Following the experimental methods, we have also
taken a cutoff at the z component of the interaction vertex,
i.e., jVzj < 10 cm. We have allowed the decay of D0

through all the possible decay modes. In PYTHIA8,
we examine the mother of the reconstructed D0 meson to
classify it into prompt or nonprompt D0. In Fig. 2, we
compare the PYTHIA8 generated pT spectra with recent
ALICE results [44,45]. It is noteworthy that the CMS and
LHCb experiments have measured only prompt D0 in pp
collisions, and their kinematic ranges are different [46,47].
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FIG. 2. Upper panel shows the prompt and nonprompt D0

meson production cross section in pp collisions at
ffiffiffi

s
p ¼ 13 TeV

generated with PYTHIA8, compared with ALICE data [44,45]. The
lower panel depicts the PYTHIA8 to ALICE data ratio.
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One can readily observe that the normalized yield of the
promptD0 is around ten times higher than the production of
nonprompt D0. The similar difference is continued up to the
high-pT range of around 12 GeV=c. PYTHIA8 underestimates
the ALICE data, and hence, a factor of 2.0 and 2.8 is
multiplied by the prompt and nonprompt yield, respectively
to match the spectral shape. The trend of the pT spectra
shown by PYTHIA8, with all the above-mentioned tunes, is
comparable with ALICE data as seen from the lower ratio
plot. However, for the rest of the results, we do not apply any
scaling factor to the PYTHIA8-generated spectra.

B. Machine learning algorithms

With the introduction of ML tools, drawing significant
conclusions from a large set of experimental data has
become easier and more reliable. This is achieved by
properly taking care of the correlations among the input
features. In experimental high-energy physics, one of the
most complex problems is understanding the underlying
physical processes in particle production in the subatomic
realm. With the detected final state particles, one can use
their four-momenta as input features to the ML algorithm.
In this study, we use three ML algorithms, namely,
CatBoost (v1.2), Random Forest (v1.3.0), and XGBoost
(v1.7.3). These techniques are very efficient for classifi-
cation problems, each with its unique strength.
These three models are often preferred over others due to

their robustness, efficiency, and the fact that they can easily
handle a variety of data types. They also have the ability to
model complex nonlinear correlations, which adds to their
versatility and utility in many real-world applications [48].
For training and prediction, we use Python 3.11 as well as
computing and plotting the confusion matrix, importance
score, and learning curve.

1. CatBoost

CatBoost (CB) stands for Categorical Boosting. It is a
high-performance ML algorithm that has gained popularity
due to its ability to handle categorical data directly, with no
need for manual one-hot encoding [49,50]. It also imple-
ments ordered boosting, a permutation-driven alternative
to the classical algorithm, which improves the model
prediction. It is an implementation of gradient boosting
designed to combat the problem of overfitting by imple-
menting a novel algorithm for calculating leaf values.
CatBoost also supports Graphics Processing Unit accel-
eration, which can significantly speed up the training
process. It provides a wide range of hyperparameters that
can be fine-tuned to improve the model’s performance.

2. Random Forest

Random Forest (RF) is a versatile and widely used ML
algorithm that operates by constructing multiple decision
trees during training. It gives the output as the class, i.e., the

mode of the classes for classification or mean prediction for
regression tasks [51]. It is highly flexible and efficient, even
without hyperparameter tuning. One of the key advantages
of Random Forest is that it can be used for both regression
and classification tasks. It provides a good indicator of the
feature’s importance, handles high-dimensional spaces well,
and can deal with unbalanced datasets. Random Forest is
also less likely to overfit than individual decision trees.

3. XGBoost

XGBoost (XGB), which stands for extreme gradient
boosting, is a highly regarded and extensively utilized
ML algorithm [52,53]. It is particularly effective in dealing
with large datasets and excels in both classification and
regression tasks. XGB is an advanced version of gradient-
boosting decision trees and includes several improvements,
such as parallel computing and tree pruning. These enhance-
ments expedite the training process, enabling XGB to
manage large datasets efficiently. Furthermore, XGB offers
a broad range of hyperparameters that can be fine-tuned to
enhance the performance of the model.

III. TRAINING AND EVALUATION

In this section, the topological features used as inputs for
the ML models are defined, followed by data preprocessing
and model training. Finally, a few quality assurance plots
are presented to demonstrate the classification accuracy of
the ML models.

A. Input to the machine

In this study, a few topological features are selected as
the inputs to the ML models. Our goal is to utilize such
features that can identify the topological production
dynamics of prompt and nonprompt D0 mesons. First,
the inclusiveD0 meson signal has to be identified over the
background, followed by the identification of the prompt
and nonprompt production modes. One can identify the
inclusive D0 meson signal from the background with the
help of its invariant mass (mπK), where a peak in the mπK

distribution is observed around the D0 mass. The iden-
tification of prompt and nonprompt D0 can then be
performed by looking at the variables sensitive to their
decay topology. For example, as the prompt D0 mesons
are produced closer to the primary vertex as compared to
the nonprompt case, this eventually leads to a larger
decay length for the D0 mesons coming from the decay
of beauty hadrons. The topological variables associated
with the displaced production vertex of the D0 mesons
are the pseudoproper time (tz) [54], the pseudoproper
decay length (cτ) [55], and the angle (θ) between the D0

momentum vector and the vector joining the D0 decay
vertex to the primary vertex [56]. The pseudoproper time
is defined as [54],
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tz ¼
ðzD0 − zPVÞ ×mD0

pz
; ð1Þ

where zD0 and zPV are the coordinates of the D0 decay
vertex and primary vertex along the beam direction
(z axis), mD0 ≃ 1865 MeV is the mass of the D0 meson
taken from the Particle Data Group [57], and pz is the
momentum in the z direction. The decay topology of the
D0 meson in the longitudinal direction is quantified by tz,
where tz is expected to have a higher value for the
nonprompt D0 mesons as compared to the prompt D0

mesons that are produced closer to the primary vertex.
Similarly, one can also quantify the decay topology of

the particles in the transverse plane using pseudoproper
decay length (cτ). One can write the pseudoproper decay
length as [55]

cτ ¼ cmD0L⃗:p⃗T

jpT j2
; ð2Þ

where L⃗ is a vector pointing from the primary vertex
toward the D0 decay vertex, i.e., L⃗ ¼ V⃗ − S⃗. Here,
V⃗ ¼ ðVx; Vy; VzÞ is the position of the primary vertex

and S⃗ ¼ ðSx; Sy; SzÞ is the position of D0 meson decay
vertex with respect to the global origin, i.e., (0, 0, 0). As
already mentioned in Sec. II A, we have used a Gaussian
profile to randomize the position of the primary vertex in
three dimensions to be consistent with an experimental
scenario. In experiments, we can reconstruct the D0 decay
vertex as the middle point on the distance of the closest
approach between the candidate pion and kaon trajectories.
However, in PYTHIA8, this is not trivial, and therefore, we
need to estimate theD0 decay vertex (S⃗). One can calculate
the same by using the following expression [38]:

Si ¼
ðt1 þ di;1m1=pi;1Þ − ðt2 þ di;2m2=pi;2Þ

m1=pi;1 −m2=pi;2
; ð3Þ

where i ¼ x, y, z is the spatial index, andm1 andm2 are the
masses of the two decay products of the D0 meson. di;1
and di;2 are the distances covered by the decay products in
time t1 and t2 with momentum pi;1 and pi;2, respectively.

Thus, using V⃗, and S⃗, one can obtain the value of L⃗ and
consequently estimate the value of cτ.
Finally, we use DCAD0 , which is well estimated in

experiments, as another topological input variable to the
ML models. DCAD0 is defined in terms of the decay length
and sine of the angle between L⃗ and the D0 momentum
vector p⃗D0 as [56]

DCAD0 ¼ jL⃗j × sin θ: ð4Þ

As discussed earlier, due to the difference in the production
topology of prompt and nonprompt D0 mesons, we can
expect larger DCAD0 for the nonprompt D0 meson. Thus,
we proceed to train the MLmodels withmπK , and the above
discussed topological variables such as tz, cτ and DCAD0

of the reconstructed πþK− pairs as the input variables
to the machine. The training is performed using 600 million
minimum bias pp collisions at

ffiffiffi

s
p ¼ 13 TeV.

B. Preprocessing and training

The task of the ML models is to classify the prompt and
nonprompt D0 mesons from the background using the
topological features of the reconstructed πþK− pairs.
However, the number of prompt πþK− pairs is naturally
smaller than that of uncorrelated background pairs.
Similarly, the πþK− pairs coming from nonprompt D0

meson are even smaller as compared to the prompt pairs
owing to the smaller production cross section of charm
quarks from beauty decays than the direct charm produc-
tion as shown in Fig. 2. Hence, an ML model trained with
such a dataset shows a bias toward the most populated
class, in our case, the background class. Therefore, the
trained model will show a higher degree of inaccuracy by
frequently predicting the most populated class when
applied to a testing set. This is known as the class
imbalance problem. Thus, the preprocessing of the input
dataset becomes essential to avoid this class imbalance
problem, which also enhances the quality of the training
data. This leads to unbiased training that improves the
classification accuracy of the ML models.
The class imbalance problem is often addressed via

sampling techniques. We could use different sampling
techniques to preprocess our training data, such as the
oversampling or undersampling methods. Undersampling
involves reducing the number of samples from the majority
class to balance the number of instances from each class
in the dataset. However, this has a serious downside as it
can discard potentially useful data during the process by
reducing the training statistics. Oversampling, on the other
hand, involves increasing the samples in the minority class.
This is achieved by duplicating the samples in the minority
class. However, creating duplicate copies of the data may
sometimes lead to overfitting. In this study, we use the
synthetic minority oversampling technique (SMOTE) to
create new samples for the minority classes [58]. SMOTE
creates synthetic samples from the minority class instead of
creating copies. By doing this, SMOTE provides better
information to the model about the minority class. Before
oversampling, the ratio background:prompt:nonprompt
was 50∶20∶1, which changed to 15∶5∶1 after oversam-
pling using SMOTE. Moreover, for training, testing, and
validation purposes, we split our input data into a 8∶1∶1
(train:test:validation) set. To test the stability of SMOTE
oversampling, we compared the results with random
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oversampling and weighted random oversampling meth-
ods, and observed similar levels of prediction accuracy.
With this preprocessed data and class imbalance chal-

lenge out of sight, we proceed to train the ML algorithms.
The optimum hyperparameters related to the XGBoost,
CatBoost, and Random Forest models are listed in
Tables I–III, respectively, and are briefly discussed in the
next paragraph.
In XGBoost, the booster decides the type of model that

runs at each iteration. The gbtree booster uses tree-based
models. The learning rate is a configurable hyperparameter
that determines how much the weights in the model are
adjusted during training. A higher learning rate means the
model learns faster, which could lead to overshooting the
optimal solution. Conversely, a lower learning rate means
the model learns slower, which could lead to a more precise
solution but at the cost of more Central Processing Unit
(CPU) time. The n_estimators parameter refers to the
number of gradient-boosted trees that are used in the model.
The subsample parameter is used to control the fraction of
the total training data that the model will use before it starts
building trees. However, in our case the subsample param-
eter is set to 1, allowing themodel to use all the training data.
The max_depth parameter decides the maximum depth of
the tree. Increasing this parameter will make the model
more complex and may lead to overfitting. The objective

parameter specifies the learning task and the corresponding
learning objective. Setting the objective as multi:softmax
tells the model that it is a multiclass classification problem.
The softmax function is used to convert the output of the
model into probability distributions over the classes. In
XGBoost, the eval_metric parameter is utilized to define the
evaluation metrics for the validation data. The choice of the
evaluationmetric heavily influences how the performance of
a model is measured and compared. Here,mlogloss refers to
multiclass logarithmic loss, a loss function employed for
multiclass classification problems. It is a negative logarithm
of the predicted probability of the true class; the closer the
probability is to 1, the smaller the output of the mlogloss.
Conversely, if the predicted probability of the true class is
small (i.e., the prediction is likely to be incorrect), the
mlogloss value would be large.
In CatBoost, the first hyperparameter is the learning

rate, which we have kept at a value of 0.3. The second
hyperparameter, iteration, is used to control the number of
trees to be built. Each iteration corresponds to a new tree
being added to the model. Here, depth corresponds to the
maximum depth of the trees the algorithm is allowed to
build. The loss_function and eval_metric are both taken as
MultiClass. This is the metric usually used for the training
and evaluation of the model for a multiclass classification
problem.
In a Random Forest model, the n_estimators parameter

determines the count of trees in the forest. The model’s
final prediction is derived by taking the average of the
predictions from each tree. Although increasing the tree
count can enhance the model’s effectiveness, it may also
escalate the computational demand of the model. The
max_depth serves the similar purpose of deciding the
maximum depth of the trees in the model. All other
hyperparameters that are not mentioned here are kept at
their default values.
For our study, we start from the default values of the

hyperparameters and progressively adjust them for a better
result. In the case of all the ML algorithms used in this
study, we can increase the n_estimators or max_depth to
enhance the model performance; however, the prediction
accuracy saturates with increasing the values of these two
hyperparameters leading to a considerable amount of CPU
time. Thus, we strike a balance between the accuracy of the
models and the computation time.

C. Quality assurance

After training the models, we proceed to evaluate them
on a testing dataset to check their classification accuracy.
This tells us whether we can rely upon the trained models or
not. For this classification problem, we use the confusion
matrix to benchmark the ML models. In addition, a plot
with the importance score of each input feature is shown for
the three ML models, which depicts the relative importance
of an input feature for the classification task. The relative

TABLE I. XGBoost hyperparameters.

Parameter Value

booster gbtree
learning_rate 0.3
n_estimators 20
subsample 1
max_depth 3
objective multi:softmax
eval_metric mlogloss

TABLE III. Random Forest hyperparameters.

Parameter Value

n_estimators 30
max-depth 5

TABLE II. CatBoost hyperparameters.

Parameter Value

learning_rate 0.3
iterations 30
depth 5
loss_function MultiClass
eval_metric MultiClass
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importance of an input feature may vary from one model
to the other.
In Fig. 3, the confusion matrix for target classes, such as

prompt, nonprompt, and background, for different ML
algorithms used in this study is shown. The confusion
matrix, or error matrix, is an essential benchmark in
understanding the model performance. We plot the fraction

of true pair counts from PYTHIA8 in the Y axis and the
fraction of predicted pair counts from ML models in the
X axis. The numbers shown inside the boxes represent
the corresponding fraction of πK pairs. All three ML
models are found to separate the background pairs with
an accuracy of 100%. However, while separating prompt
D0 from the nonprompt ones, the XGBoost and CatBoost
models have a better accuracy of 99% as compared to
the Random Forest model, which has an accuracy of 97%.
This means that the XGBoost and CatBoost models tag
1% of the nonpromptD0 mesons as promptD0 while this is
3% in the Random Forest model. However, owing to the
imbalance between prompt and nonprompt classes, 1% of
nonpromptD0 do not make a significant contribution to the
prompt D0 meson counts. The magnitude of this misclas-
sification is not prominent, and we expect to accurately
extract other physics variables of the predicted prompt
and nonprompt D0 mesons, which are further discussed
in Sec. IV.
The importance score, or feature importance, is a score

assigned to each input feature based on how useful it is in
making a model prediction. It depends on the number of
times the input feature is used in splitting a node. By
looking at the importance score, one can figure out the most
and least relevant features of the dataset for a particular ML
model. In Fig. 4, we show the importance score of the input
features,mπK , tz, DCAD0 , and cτ. For all three ML models,
the input features mπK and DCAD0 possess the highest
importance score. This signifies that these two input
features carry the maximum information used in separating
the background, prompt, and nonprompt classes. However,
one can observe that the XGBoost model learns only from
mπK and DCAD0 explicitly. In contrast, the Random Forest
model learns mostly from DCAD0 , but also gives significant
importance to mπK and tz. The CatBoost model learns
mostly from mπK and DCAD0 ; however, it still uses input
from tz and cτ for splitting the nodes.

FIG. 3. Confusion matrix for XGBoost (upper), CatBoost
(middle), and Random Forest (lower), respectively. It represents
the accuracy and discrepancy of the machine-learning models to
predict the target classes.

FIG. 4. Comparison of importance score for the input variables,
invariant mass (mπK), pseudoproper time (tz), pseudoproper
decay length (cτ), and distance of closest approach (DCAD0 )
for three different machine-learning algorithms.
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Beyond this point, for the rest of the text and figures, we
use the following abbreviations: XGB for XGBoost, CB for
CatBoost, and RF for Random Forest.

IV. RESULTS AND DISCUSSION

A. Transverse momentum and rapidity spectra

Figure 5 shows the pT-differential yield of prompt and
nonprompt D0 meson in midrapidity, jyj < 0.5, in pp
collisions at three different center-of-mass energies, i.e.,
ffiffiffi

s
p ¼ 13 TeV (upper),

ffiffiffi

s
p ¼ 5.02 TeV (middle), and

ffiffiffi

s
p ¼ 900 GeV (lower). We reconstruct D0 meson through
its hadronic decay channel, i.e., D0 → K−πþ. The plots
include the predictions from XGB (left), CB (center), and
RF (right). The PYTHIA8-generated spectra for the respec-
tive energies are also shown. All three ML models are
trained with a minimum bias dataset of pp collisions at
ffiffiffi

s
p ¼ 13 TeV simulated with PYTHIA8 and then applied to

pp collisions at lower collision energies. One can observe
that the yield of nonprompt D0 is significantly less in the
whole pT region, owing to the smaller production proba-
bility of beauty hadrons due to their higher masses.
However, as one moves toward a higher pT region, it
can be seen that the pT-spectra curves from prompt and
nonprompt D0 mesons slightly approach each other. This
indicates that the yield of nonprompt D0 relative to the
prompt D0 meson increases with an increase in pT. All
three models are found to predict the normalized D0 yield
for energies

ffiffiffi

s
p ¼ 5.02 TeV and

ffiffiffi

s
p ¼ 900 GeV reason-

ably well. It is observed that the ML models are quite
successful in predicting the pT-differential yield at different
collision energies. Thus, they appear to retain the collision
energy dependence. The ability of the models to learn and
preserve the energy dependence of prompt and nonprompt
D0 production highlights their robustness and accuracy.
This is primarily due to their learning that is largely
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s
p ¼ 5.02 TeV, and the third row illustrates the normalized yield

at
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s
p ¼ 900 GeV.
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influenced by two factors, the invariant mass (mπK) and the
distance of the closest approach (DCAD0), which are
independent of

ffiffiffi

s
p

.
Figure 6 shows the rapidity spectra of prompt

and nonprompt D0 reconstructed from candidates with
pT > 0.15 GeV=c in minimum bias pp collisions at
ffiffiffi

s
p ¼ 13 TeV (upper),

ffiffiffi

s
p ¼ 5.02 TeV (middle), and

ffiffiffi

s
p ¼ 900 GeV (lower). The results from PYTHIA8,
XGB, CB, and RF are shown. The energy dependence
of the width of the rapidity spectra is noticeable, and the
differences can be clearly observed by comparing the
highest and lowest center-of-mass energies. In addition,
the width of the rapidity spectra of the prompt D0 meson is
always greater than that of the nonprompt case at any given
energy. For

ffiffiffi

s
p ¼ 13 TeV, the midrapidity region for the

prompt D0 seems flat in log scale in the range, jyj≲ 3;
however, this flat region for the prompt D0 decreases with
decreasing the collision energy. For

ffiffiffi

s
p ¼ 5.02 TeV, the

flat region confides in a slightly smaller rapidity range of
jyj≲ 2. This region shrinks even more for

ffiffiffi

s
p ¼ 900 GeV

where a smaller plateau exists only within jyj≲ 1.
Moreover, this flat midrapidity plateau is much smaller
for the nonprompt D0 meson, as is evident from the plots.
The flat region is almost nonexistent for

ffiffiffi

s
p ¼ 900 GeV.

However, it extends to a range of jyj≲ 2 for
ffiffiffi

s
p ¼ 13 TeV.

From Figs. 5 and 6, we notice that all three ML models
predict a similar level of accuracy in the yield of D0 meson
as a function of transverse momentum and rapidity.
Consequently, beyond this point in the text, for the sake
of clarity in the plots, we will be only focusing on the
predictions from the XGB model and comparing them with
PYTHIA8 results. The XGB model shows a higher degree of
accuracy compared to the RF model in this scenario. Even
though CB shows a similar degree of accuracy, adding
predictions from two machine-learning algorithms only
clutters the figures.
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p ¼ 5.02 TeV, while the third row represents the normalized yield
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s
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B. Nonprompt to prompt ratio and self-normalized
yield of D0 meson

Figure 7 presents the ratio of nonprompt to prompt D0

yield, at midrapidity, jyj < 0.5, in minimum bias pp
collisions at

ffiffiffi

s
p ¼ 5.02 TeV, as a function of pT. This

ratio essentially tells us about the relative yield of D0

mesons coming from beauty hadron decays, compared to
the direct charm hadron production. We compare the XGB
predictions with the ALICE [59] results. From the plot, it is
observed that PYTHIA8 underestimates the experimental
results at lower pT and starts to approach the experimental
results only toward the higher-pT bins. However, the
overall trend of PYTHIA8 is similar to that of the exper-
imental findings. Again, the nonprompt to prompt D0 yield
ratio increases linearly up to pT ¼ 12 GeV=c. This indi-
cates that the probability of charm hadron production
from beauty decays increases linearly with pT. The linear
trend holds good up to a certain pT range. Similar results
are also reported for charmonium states [38,55]. However,
the increase in nonprompt charmonium states as a
function of pT is much higher than that of the open-charm
states [38]. Moreover, for pT > 12 GeV=c, the ALICE data
is uncertain with larger error bars, and the trend appears to
become independent of pT. The predictions from XGB are
found to be in line both qualitatively and quantitatively with
the PYTHIA8 true values.
Figure 8 shows the nonprompt to prompt D0 ratio in

minimum bias pp collisions at three different center-of-
mass energies, i.e.,

ffiffiffi

s
p ¼ 13 TeV, 5.02 TeV, and 900 GeV.

One can clearly notice the increase in the ratio with
increasing pT across all the collision energies. However,
we observe an energy-dependent hierarchy in the ratio, as
the charm production from beauty decays compared to the
direct charm production is minimum for

ffiffiffi

s
p ¼ 900 GeV

and maximum for the case of
ffiffiffi

s
p ¼ 13 TeV. In addition,

toward higher pT, we see the rise of the ratio, indicating an

increase in the beauty hadron production leading to an
enhancement of the nonprompt yield.
Figure 9 shows the self-normalized pT integrated yield

of prompt and nonprompt D0 meson in midrapidity
(jyj < 0.5) as a function of normalized charged-particle
multiplicity in minimum bias pp collisions at

ffiffiffi

s
p ¼

13 TeV (upper),
ffiffiffi

s
p ¼ 5.02 TeV (middle), and

ffiffiffi

s
p ¼

900 GeV (lower). The charged-particle multiplicity is
obtained within the ALICE-V0 detector acceptance which
covers the intervals 2.8 < η < 5.1 (V0A) and −3.7 < η <
−1.7 (V0C). The charged-particle multiplicity used for the
normalized yield selection is the coincidence signal of V0A
and V0C. The selection of D0 meson and charged particle
multiplicity in two different rapidity regions is to reduce the
autocorrelation bias. The results include PYTHIA8 values
and the prediction from the XGB model. We observe an
almost linear rise for the prompt D0 meson with respect to
the charged particle multiplicity for all three collision
energies. However, the self-normalized yield of nonprompt
D0 is significantly enhanced toward higher collision energy
and follows a faster-than-linear trend with increasing
charged-particle multiplicity. A similar trend for charmo-
nium states (i.e., J=ψ) has been reported in the literature
using PYTHIA8 [38]. For the plots shown here, XGB
predictions closely follow the PYTHIA8 curves.
Finally, we study the role of center-of-mass energy inD0

meson production. We estimate the ratio of D0 yield in two
different energies. In the upper panel of Fig. 10, we plot the
ratio of D0 yield in

ffiffiffi

s
p ¼ 13 TeV to

ffiffiffi

s
p ¼ 5.02 TeV.

Here, for the prompt case, we notice a clear increase
in the ratio with an increasing pT. However, we observe
a flat trend throughout the whole pT range for the non-
prompt case. A similar trend has been observed recently at
ALICE [13]. In addition, a higher value of the nonprompt
than prompt ratio shows the abundant production of beauty
hadrons at higher center-of-mass energy. In the lower
panel, we plot the same ratio between

ffiffiffi

s
p ¼ 13 TeV and
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ffiffiffi

s
p ¼ 900 GeV. Because of a significant difference in
collision energy, we observe the increasing trend of the
ratio as a function of transverse momentum for both prompt
and nonprompt cases. Furthermore, due to the higher
difference in the center-of-mass energy, the absolute values
of the ratio go up (lower panel compared to the upper panel
of Fig. 10). Interestingly, XGB can predict the PYTHIA8

trends with very high accuracy.

In this study, we train the model with PYTHIA simulated
pp collisions, and the models can predict the results at
different energies reasonably well. However, this would not
be the case for p-Pb and Pb-Pb collisions as the final state
charged particle multiplicity is comparatively much higher
than the pp collisions. Moreover, this steep increase in the
multiplicity will affect particle production, which in turn
changes the prompt and nonprompt production dynamics.

C. Ratio of charmonium to open-charm state

It is interesting to study the production dynamics of
charmonium states relative to open-charm states. In Fig. 11,
on the upper panel, the normalized J=ψ to D0 yield as a
function of pT is shown in minimum bias pp collisions.
To understand the contribution coming from the charm and
beauty sectors, we estimate the ratio of prompt J=ψ to
prompt D0, as well as the ratio of nonprompt J=ψ to
nonprompt D0. We observe similar trends for the prompt
and nonprompt cases up to pT ≃ 5 GeV=c; a rise in the
ratio can be seen. However, the prompt J=ψ to prompt D0

ratio decreases slightly after pT ≃ 5 GeV=c as compared to
the nonprompt case, which remains flat. This trend is
universal for all center-of-mass energies. It indicates that
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the relative number of J=ψ increases as compared to D0,
with an increase in pT. One can notice that the ratio of
nonprompt J=ψ to nonprompt D0 is higher than 1,
indicating a higher number of nonprompt J=ψ compared
to nonprompt D0. Assuming that the same beauty hadrons
contribute to the production of nonprompt J=ψ and non-
prompt D0 mesons, hJ=ψi=hD0i > 1 for nonprompt case
indicates that a beauty hadron would more likely to decay
into a J=ψ than to a D0 meson. In other words, the
branching fraction of beauty hadrons decaying into J=ψ is
higher than their decay to D0. However, as expected, the
ratio of prompt J=ψ to prompt D0 is less than 1, owing to
the larger mass of J=ψ . In the lower panel, we present the
hJ=ψi=hD0i as a function of normalized charged-particle
multiplicity. Here, we observe two different trends for the
prompt and nonprompt cases. We notice the nonprompt
J=ψ to D0 ratio remains almost independent of normalized
charged-particle multiplicity. However, for the prompt case,
we notice a slight increase and then a flat trend in the ratio
with the increase in the normalized charged-particle multi-
plicity. Additionally, there is a noticeable ordering in the

prompt J=ψ to D0 ratio, where the ratio increases with a
decrease in collision energy. This trend is consistent
throughout all the charged-particle multiplicities.

V. SUMMARY

In this paper, we present a novel method for track-level
(unbinned) identification and segregation of the prompt and
nonprompt D0 from the background pion-kaon pairs using
machine learning algorithms. We use experimentally meas-
urable topological variables as inputs, which include the
invariant mass (mπK), pseudoproper time (tz), pseudopr-
oper decay length (cτ), and distance of closest approach
(DCAD0). We train the XGB, CB, and RF models with
data generated using PYTHIA8 for pp collisions at
ffiffiffi

s
p ¼ 13 TeV. The XGB and CBmodels show an accuracy
up to 99% in separating prompt and nonpromptD0 mesons;
however, the RF model shows an accuracy of 97%.
The models are efficient and robust enough to predict
the results even at lower collision energies:

ffiffiffi

s
p ¼ 5.02 TeV

and
ffiffiffi

s
p ¼ 900 GeV in the complete transverse momentum

and pseudorapidity region.
Also, to understand the production of the prompt and

nonprompt D0 meson, we study the nonprompt to prompt
ratio of D0 yield as a function of transverse momenta.
Furthermore, we study the self-normalized yield of the D0

meson, where we observe a nonlinear rising trend for the
nonprompt D0 as a function of normalized charged particle
multiplicity. In addition, we have incorporated predictions
and results from several collision energies, which not only
serve as a benchmark for the predictions from the machine
learning models but also provide a collision energy
dependence study of prompt and nonprompt D0 mesons.
Finally, we explore the relative production of charmonium,
J=ψ to open-charm, D0 states as a function of transverse
momenta, and charged-particle multiplicity. In all these
studies, the predictions from XGB match the PYTHIA8

values quite well. This method has an advantage over
the conventional methods as it can perform unbinned
measurements for both prompt and nonprompt D0 by
directly tagging the decay daughters.
The ongoing ALICE Run 3 data taking with high

luminosity and better detection capabilities would pave
the way for several precise measurements for the charm and
beauty sector. The separation of charm hadron topological
production into prompt and nonprompt ones allows us to
explore the beauty sector. The ability to separate the
contribution from the beauty sector gives us a better
understanding of the dynamics of the charmed hadron
production, their interaction with the QGP, and the proper-
ties of the QCD medium. The use of machine learning
algorithms can help us replace the traditional fitting
procedures with improved track-level identification of
the prompt and nonprompt production of charm hadrons.
The production dynamics of prompt vs nonprompt
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charmonium and open charm at the LHC energies using the
ALICE upgrade would provide a test bench for QCD and
the study of multihadron production dynamics extending to
the beauty sector at the subatomic level.
This study demonstrates the efficiency of using machine

learning techniques in the topological separation of open
charm mesons using standalone PYTHIA8 Monte Carlo
event simulation. In experiments, heavy-flavor measure-
ments are greatly influenced by several track selection
criteria for their decay candidates. This makes particle
identification and reconstruction more challenging in real-
life scenarios. Thus, to conclude the working and stability
of the proposed models in this study, one should fully
reconstruct the simulated events using an identical exper-
imental detector setup, which can be performed using the
GEANT3 transport package [60]. This latter part of the
analysis can be taken as an outlook of the present study.
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APPENDIX

For a better understanding of the model training, we have
shown the learning rate of the XGB and CB models in
Fig. 12. It serves as a pivotal tool for understanding the
model’s learning trajectory and performance throughout
training. The learning curves enable us to diagnose issues
of underfitting or overfitting, hence ensuring the model’s
robustness. Moreover, they assist in the process of hyper-
parameter tuning, thereby optimizing the model’s perfor-
mance. Lastly, they provide insights into the efficiency
of the training process, potentially conserving computa-
tional resources.
However, the RF model, being an ensemble of decision

trees, does not learn iteratively. Each tree in the forest
grows independently of the others. Therefore, there is no
concept of iterations during which the model progressively
learns and improves. Thus, it is not possible to plot a
learning curve for the RF method, unlike for the XGB and
CB models. Here, one can observe that the loss functions
for the training and validation datasets are identical. This is
because we use the pp collision data simulated at PYTHIA.
However, in a more realistic scenario, we might need more
complex algorithms to obtain such a result.

Moreover, we replotted Figs. 8–10 with predictions from
all the ML models: XGB, CB, and RF, for an explicit
comparison, which is shown in Figs. 13–15.

FIG. 12. Learning curve of CB and XGB.
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