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The emergence of the Efimov effect in the D�D�D� system is explored under the assumption that the
heavy partner of the Tþ

cc exists as a D�D� molecule with ðIÞJP ¼ ð0Þ1þ. The three-to-three relativistic
scattering amplitude is obtained from the ladder amplitude formalism, built from an energy-dependent
contact two-body potential where the molecular component of the T�

cc state can be varied. We find that
ðIÞJP ¼ ð1

2
Þ0− three-body bound states can be formed, with properties that suggest that the Efimov effect

can be realized for reasonable values of the molecular probability and binding energy of the T�
cc.

DOI: 10.1103/PhysRevD.110.034015

When two particles form a nearly resonant bound state
due to short-range attractive forces, an effective
long-range three-body emerges giving rise to an infinite
number of three-body bound states with a discrete scale
invariance. This remarkable phenomena, called the
Efimov effect, was first described in the 1970’s by
Efimov [1,2]. The Efimov effect has been mostly studied
in atomic physics [3–7], due to its experimental obser-
vation in Cesium atoms in 2006 [8]. However, its
relevance has also been explored in nuclear physics,
e.g., in the 12C three-α structure, the triton formation or
the nuclear halo of 14Be, 22C, and 20C nuclei [9–14].
For sufficiently shallow two-body states the system

becomes universal, i.e., it is insensitive to the details of
the short-range interaction and can be characterized by its
S-wave scattering length asc. In this limit, the three-body
effective potential is proportional to 1=ρ2, where ρ is the
hyperspherical radius related to the separation among the
three particles [15–17]. For three identical bosons of mass
m interacting via a short-range two-body potential the
effective potential is attractive, so when asc → �∞ an
infinite family of three-body bound states appears with a
scaling factor λ ¼ eπ=js0j ≈ 22.7. The binding energies of
the trimer states scale as B3 → Q−2B3 with asc → Qasc,
where Q → λ in the unitarity limit, i.e.,

Bðnþ1Þ
3

BðnÞ
3

→ λ−2 ≈
1

515
: ð1Þ

For large but finite scattering lengths the spectrum is not
infinite, but few shallow Efimov states may emerge if some
conditions are met [15,18]. In this case, the scaling law may
also deviate from the universal value [19,20], so Q ≠ λ.
The existence of three-body systems and the possible

appearance of the Efimov effect in hadronic physics has
been also suggested in the recent literature [16,21–24],
specially since the discovery of the Xð3872Þ state [25], a
loosely-boundD�0D̄0 þ H:c: molecule with quantum num-
bers JPC ¼ 1þþ. The properties of the Xð3872Þ, unfortu-
nately, rule out the existence of the Efimov effect [16].
However, the recent discovery of the Tþ

cc [26,27] can
renew this interest. In 2021, the LHCb Collaboration
discovered a new tetraquarklike state in the D0D0πþ
invariant mass spectrum [26] with minimum quark content
ccū d̄, named Tþ

cc. The resonance is slightly below the
D�þD0 threshold, with a binding energy estimated to
be δmpole ¼ ð360� 40þ4

−0Þ keV=c2 [27]. Its scattering
length has a value of aLHCbsc ¼ −7.15ð51Þ fm and the
experimental Weinberg factor1 is Z < 0.52ð0.58Þ at 90
(95)% CL. These properties of the Tþ

cc are compatible with
a state with a sizable DD� molecular compound (for a
review of the experimental and theoretical status of the Tþ

cc
see, e.g., Ref. [28] and references therein).
The announcement of the Tþ

cc has already stimulated the
study of three-body states containing charmed mesons. For
example, in Ref. [29] the authors explore the DDD�
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1This factor estimates the probability of finding a compact
component in the wave function of a particle, with Z ¼ 0 for a
pure molecular state and Z ¼ 1 for a pure compact state.
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system, finding a bound state of few hundred keV with
ðIÞJP ¼ ð1

2
Þ1−. Reference [30] analyzes the existence

of hadronic molecules composed of a Tð�Þ
cc compact

tetraquark and a D̄ð�Þ meson finding several candidates,
while Refs. [31,32] study theD�D�D� andDD�D� systems
finding many potential three-body candidates in the
JP ¼ 0−, 1−, and 2− with isospins 1

2
and 3

2
. However, no

exploration of the Efimov effect in these systems has been
suggested yet.
In this study we will explore the universality of the

D�D�D� meson system in the JP ¼ 0− sector with I ¼ 1
2
,

assuming that the isoscalar heavy partner of the Tþ
cc,

dubbed T�
cc, exists close and below the D�D� threshold,

which is a prediction of heavy-quark spin symmetry
(HQSS) [33]. HQSS implies that the heavy-meson inter-
actions are insensitive to the spin of the heavy quark, so
the interaction of the D�D� system is identical to the DD�

one for the ðIÞJP ¼ ð0Þ1þ sector (up to 1=MQ corrections).
Actually, the T�

cc state has been predicted by many groups
[34–46], with a binding energy around few MeV.
The existence of the T�

cc with a small binding energy
would favor the appearance of Efimov states in this sector.
If confirmed, it would be the first manifestation of the
Efimov effect in hadronic physics, so it is worth exploring
this system. The choice of the D�D�D� system instead of
the DD�D� is that it allows us to work with identical
bosons, simplifying the calculations. For three identical
bosons, any two-body wave function must be symmetric.
Then, the JP ¼ 0− sector is selected because all the
symmetric D�D� pairs in S waves are in a relative
ðIÞJP ¼ ð0Þ1þ, whereas for JP ¼ 1− and 2− other iso-
spin-spin D�D� pairs are also allowed, such as the
ð1Þ2þ and ð1Þ0þ, adding repulsion to the three-body
interaction [32]. Then, in this sector, all the allowed
D�D� pairs interact via an attractive potential, condition
needed for the Efimov effect to emerge.
The starting point is the analysis of the D�D� two-

body system with a given binding energy B2, that is
taken as a parameter. The two-body amplitude is obtained
by solving the Bethe-Salpeter equation in the on shell
approximation [47],

T −1
2 ðsÞ ¼ V−1ðsÞ − GðsÞ; ð2Þ

where VðsÞ is the two-meson interaction and G is the
relativistic two-meson loop function

GðsÞ ¼ i
Z

d4q
ð2πÞ4

1

q2 −m2
1 þ iε

1

ðP − qÞ2 −m2
2 þ iε

; ð3Þ

being P the total initial four-momentum of the D�D�
meson system. This loop function is regularized via a

sharp cutoff [48], i.e., assuming a maximum trimomentum
module jq⃗j ≤ Λ. The value of the cutoff will be taken as
Λ ¼ 0.7 GeV. However, we will analyze the sensitivity of
the results by varying the cutoff between Λ ¼ 0.5
and 1 GeV.
We consider the same mass for D�0 and D��, with

m ¼ 1
2
ðmD�0 þmD��Þ ¼ 2008.55 MeV. Then, for equal

meson masses m1 ¼ m2 ¼ m, the loop function takes
the form,

GðsÞ ¼ 1

ð4πÞ2

8<
:σ log

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

Λ2

q
þ 1

σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m2

Λ2

q
− 1

− 2 log

"
Λ
m

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

Λ2

r !#9=
;; ð4Þ

with σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2=s

p
. The prescription for the logarith-

mic function is such that ImðGÞ is given by

ImðGÞ ¼ −
k

8π
ffiffiffi
s

p Θðs − 4m2Þ; ð5Þ

with k the relativistic on shell momentum for theD�D� pair
in its c.m. frame, k ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s − 4m2

p
.

The V potential for the D�D� pair is taken as a I ¼ 0
S-wave interaction, neglecting the DD�-D�D� coupled-
channels effect and the finite width of the D�. These effects
can be modeled as a source of width for the T�

cc and the
D�D�D� trimers with little effect in the determination of the
trimer masses [31,32,36,45].
In order to evaluate the effect of the T�

cc inner compo-
sition, we follow Ref. [49] and consider the general energy-
dependent contact potential

V−1ðsÞ ¼ C0 − C1

1 − P
P

ðs −m2�Þ; ð6Þ

being C0 and C1 constants and P the molecular probability
in the T�

cc state, which ranges between 0 and 1. These C0

and C1 parameters are fixed in order to impose the
existence of a pole below the D�D� threshold in the first
Riemann sheet, with mass m� ¼ 2m − B2. Their values
are related to the loop function as C0 ≡ Gðm2�Þ and
C1 ≡ G0ðm2�Þ, so there the only free parameters are B2

and P. Depending on the molecular content in the T�
cc the

potential V changes its energy dependence, being constant
in the case of a pure D�D� hadronic molecule (P ¼ 1) and
behaving as V ∼ 1

s−m2�
for a pure compact state (P → 0).

The relativistic three-to-three scattering amplitude is built
using the so-called ladder amplitude formalism [50–52].
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In this approach, the three-body amplitude is
decomposed as2

M3ðp⃗i; p⃗fÞ ¼ Dðp⃗i; p⃗fÞ þMdf;3ðp⃗i; p⃗fÞ; ð7Þ

where D is called the ladder amplitude, which contains
the sum over all possible pairwise interactions connected
through a sequence of one-particle exchanges, and Mdf;3

encodes all the contributions that arise when short-range
three-particle interactions are present. The latter amplitude
Mdf;3 depends on the Kdf;3 matrix, which represents the
short-range three-body interactions [20]. The p⃗i (p⃗f) is the
initial (final) momentum of one of the mesons, which is
denoted as the spectator. The other two remaining mesons
associated with the given spectator are, then, called a pair or
dimer. If three-body short-range interactions are negligible,
Kdf; 3 ¼ Mdf; 3 ¼ 0 and the ladder amplitude describes
the full three-to-three scattering amplitude, M3 ¼ D. In
Refs. [53,54] it was shown that there is a clean cancellation
between the off shell parts of the two-body T matrix and the
three-body forces in the framework of chiral Lagrangians.
In this work we will make explicit use of this cancellation
and neglect three-body forces, that is, Kdf;3 ¼ 0. The
equivalence of this method with alternative three-particle
scattering formalism, e.g., the nonrelativistic Faddeev
equations, has been shown in Ref. [55].
In this work we assume that all the two-body subsystems

are in a partial S wave only, due to the proximity of the T�
cc

state to the D�D� threshold, which will suppress higher
partial waves. At the same time, the dimer-spectator system
is also assumed to be in L ¼ 0, which is the expected
dominant partial wave [31,32]. Indeed, in Ref. [31] the
authors studied the D�D�D� system in all possible con-
figurations with L ≤ 2 and found a small effect of the S-D
mixing compared to a S-wave only calculation.
The D ladder amplitude is defined by the integral

equation,

Dðp⃗i; p⃗fÞ ¼ −M2ðpiÞGðp⃗i; p⃗fÞM2ðpfÞ

−M2ðpiÞ
Z

d3q⃗
ð2πÞ32ωðqÞGðp⃗i; q⃗ÞDðq⃗; p⃗fÞ;

ð8Þ

which is diagrammatically shown in Fig. 1.
Here, G is the long-range interaction between the

dimer and the spectator, mediated by a particle exchange,
and M2 is the relativistic 2 → 2 scattering amplitude
describing the meson-meson interaction in the dimer. The
dimer energy is fixed by the momentum of the spectator,

s2ðpÞ ¼ ð ffiffiffi
s

p
− ωðpÞÞ2 − p2, with ωðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
and

p ¼ jp⃗j. The M2 amplitude is proportional to the two-
body T matrix in Eq. (2) as M2 ¼ −2T 2.
For all pairs in the S wave, the one-particle exchange

propagator (OPE) G can be written as

Gðpi; pfÞ≡ −
Hðpi; pfÞ
4pipf

log

�
zðpi; pfÞ − 2pipf þ iϵ

zðpi; pfÞ þ 2pipf þ iϵ

�
;

ð9Þ

where zðpi;pfÞ¼ð ffiffiffi
s

p
−ωðpiÞ−ωðpfÞÞ2−p2

i −p2
f−m2

and Hðpi; pfÞ is a cutoff function to ensure a finite integral
in Eq. (8). For this cutoff function we use a sharp cutoff,
which is one in the integration domain and zero elsewhere.
It is worth noticing that we are studying a system of three

vector mesons with isospin 1
2
, different from the spinless

case studied in Refs. [50–52]. The recoupling coefficient
with particles with spin is more delicate than the spinless
case [56], but for dimer-spectator systems in the Swave, the
OPE of a D� between two ð0Þ1þ dimers can be reduced to
the Eq. (9) multiplied by the spin-isospin recoupling [57],

Gðpi; pfÞ ⟶ hI2; IjI02; IihS2; SjS02; SiGðpi; pfÞ; ð10Þ

where S (I) is the total three-body spin (isospin) and Sð0Þ2
(Ið0Þ2 ) is the spin (isospin) of the initial and final dimer.
For the D�D�D� in JP ¼ 0−, this implies Gðpi; pfÞ →

1
2
Gðpi; pfÞ. In addition, an extra factor of 2 must be added

in theM2 to account for the different isospin projections of
the initial/final D�D� dimers, that’s it,M2ðpÞ → 2M2ðpÞ.
For three identical bosons, it is more convenient to work

with the amputated amplitude d,

Dðp⃗i; p⃗fÞ≡M2ðpiÞdðp⃗i; p⃗fÞM2ðpfÞ; ð11Þ
which eliminates the singularities of the dimer M2

amplitude. With this definition, the S-wave amputated
amplitude is given by

dðpi; pfÞ ¼ −Gðpi; pfÞ

−
Z

dqq2

ð2πÞ32ωðqÞGðpi; qÞM2ðqÞdðq; pfÞ;

ð12Þ

which will be numerically solved following Ref. [52].

FIG. 1. Diagrammatic representation of the ladder amplitude D
[Eq. (8)], where the blue circles represent the two-body amplitude
M2 and the diagonal black lines connecting them are the
one-particle exchange function G.

2The full 3 → 3 scattering amplitude must be properly sym-
metrized, by summing over the nine possible spectator momenta
(see, e.g., Ref. [51]), but in this work we refer to unsymmetrized
amplitudes only.
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As mentioned above, the main purpose of this work is to
evaluate the existence of Efimov states in the D�D�D� in
the ðIÞJP ¼ ð1

2
Þ0− sector, given the existence of a bound

ðIÞJP ¼ ð0Þ1þ D�D� state, T�
cc, which has been predicted

as the HQSS partner of the Tþ
cc state recently discovered.

The advantage of using this system is that we can work with
identical bosons, which favors the generation of Efimov
states when the two-body pairs have attractive nearly
resonant interactions. However, the main uncertainty are
the properties of this hypothetical T�

cc, i.e., how close we
are to the resonant limit. For this reason we evaluate the
possible D�D�D� trimer states assuming a selection of T�

cc
binding energies, B2 ¼ f0.01; 0.5; 1.0; 5.0g MeV. Then,
we will study their properties as a function of the T�

cc
molecular content P.
A first simple study that can provide useful insights into

the problem is the analysis in the leading-order effective
range expansion (ERE), that is,

T 2ðpÞ ¼
8π

ffiffiffiffiffiffiffiffiffiffiffi
s2ðpÞ

p
iq2ðpÞ þ 1=asc

; ð13Þ

with q2ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðpÞ=4 −m2

p
the relative momentum of

the particles in the dimer. In this case, the phenomenology
of the three-body states only depend on theD�D� scattering
length asc ¼ 2ℏc=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 −m2�

p
. The results of this

approach are given in Table I. For the four B2 under
evaluation we find, at least, two bound-state trimers. For
B2 ¼ 0.01 MeV and 0.5 MeV a third bound and virtual
trimer state is also found, respectively. Of course, the
smaller the binding energy, the closer we are to the resonant
limit. These results agree with the Efimov states analyzed in
Ref. [20] for the general case of three identical bosons, both
their energies and the ratios of subsequent binding energies.
This suggests that, indeed, the Efimov effect can be present
in the D�D�D� system.
The results are, though, more interesting when the full

two-body potential introduced in Eq. (6) is used. In this
case, the first three Efimov trimers are also found, but their

masses depend on the molecular probability of the T�
cc.

The masses of the D�D�D� trimers for B2 ¼ 0.01 MeV
and 5 MeV are shown in the upper and lower panels of
Fig. 2, respectively. Generally, the larger P and B2 in the
T�
cc, the deeper the binding energy of the trimers. For

P > 20% the first trimer emerges as a bound state, while
the second emerges between 60% and 80%, depending on
B2. Contrary to the ERE results, three Efimov states are
found for all binding energies, but P values above 96%
are needed in order to have three bound states, so it is
unlikely that the third trimer will exist unless the T�

cc is a
pure molecule.

TABLE I. Properties of the trimer states in the effective range
expansion approach for the two-body amplitude. First column:
Two-body binding energy, in MeV; Second column: Two-body
scattering length, in fm; Third to fifth columns: Binding energies
of the ith trimer state, BðiÞ

3 ¼ 3m − EðiÞ, with EðiÞ the three-body
mass of the ith trimer, in MeV; Sixth column: Ratio of the second
to first trimer binding energies.

B2 asc Bð1Þ
3 Bð2Þ

3 Bð3Þ
3 Bð2Þ

3 =Bð1Þ
3

0.01 44.03 54.592 0.185 0.011 0.003
0.5 6.23 64.158 0.980 0.620a 0.015
1.0 4.40 69.099 1.557 � � � 0.023
5.0 1.97 91.365 5.521 � � � 0.060

aIt indicates a virtual state (pole in the second Riemann sheet).

FIG. 2. Binding energies of the first D�D�D� trimers
(B3 ¼ 3m − E3) for B2 ¼ 0.01 MeV (upper panel) and B2 ¼
5 MeV (lower panel) as a function of the T�

cc composition,
ranging from a purely two-body molecular state (P ¼ 100%) to a
purely compact T�

cc state (P ¼ 0%). The central lines show the
results for Λ ¼ 0.7 GeV cutoff in the two-body amplitude. The
color error bands indicate the results for the cutoff range
Λ ¼ ½0.5; 1� GeV. Solid lines represent bound states, whereas
dashed lines represent virtual states. The dot marks the value of P
where the pole changes the Riemann sheet. The dotted horizontal
gray line shows the two-body binding energy B2, which acts as
the threshold for the trimer states.
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It should be recalled that the three-body binding
energies are reduced with P because the coupling of
the T�

cc with the remaining D� drops to zero as P → 0, as
it does the scattering length asc. This formalism does not
include any interactions between a given compact com-
ponent of the T�

cc and the charmed meson, which could
add further sources of attraction or repulsion as explored
in Ref. [30]. Needless to say, if the T�

cc is a compact
tetraquark the T�

ccD� system becomes a two-body prob-
lem and no Efimov state would manifest.
The ratios of the binding energies of the first and

second trimer are shown in Fig. 3. The results indicate
that the ratio increases as the T�

cc becomes more compact,
with a small valley that gets shallower as B2 increases. The
bottom of this valley approaches the Efimov scaling law
λ−2 ∼ 1=515 ∼ 0.0019 the smaller B2 and it is expected to
reach it for B2 → 0. This deviation from the λ−2 universal
value appears because we are not exactly in the unitarity
limit [20]. Furthermore, the addition of possible compact
components in the T�

cc wave function that mix with the
D�D� pairs further modifies this scaling.
As we have seen, the upper limit for the trimer states

is the T�
ccD� threshold. Actually, this channel can be a

potential detection mechanism. Indeed, the existence of the
T�
cc allows us to evaluate the scattering length of the T�

cc
andD�, which will be called aTD. This can be calculated by
using the dimer-spectator scattering amplitude MTD,
which encodes the information of the T�

ccD� → T�
ccD�

reaction and is obtained by expanding the three-body
amplitude M3 in the vicinity of the two-body bound
state m� [51],

MTDðsÞ ¼ g2 lim
s2ðpiÞ;s2ðpfÞ→m2�

dðpi; pfÞ; ð14Þ

where g2 is the residue of the two-body scattering ampli-
tude M2 around the T�

cc mass. Then, the T�
ccD� scattering

length can be calculated as

−
1

aTD
¼ lim

s→m2
TD

8π
ffiffiffi
s

p
ReðM−1

TDðsÞÞ ð15Þ

with mTD ¼ 3m − B2 the mass of the T�
ccD� threshold.

Results for aTD for different values of B2 and P are shown
in Fig. 4. The crossing of the T�

ccD� threshold by the
D�D�D� states is shown as an infinite in aTD, similarly to a
two-body state. Then, this parameter can give us informa-
tion about the T�

ccD� scattering and the closeness of a pole.
In this work we have analyzed theD�D�D� system in the

ðIÞJP ¼ ð1
2
Þ0− sector. The results indicate that the Efimov

effect can indeed emerge in this system. That’s it, we find a
spectrum of trimer states bound due to long-range inter-
actions as a consequence of a nearly-resonant two-body
system, explored using a general energy-dependent two-
body potential that models a mixed T�

cc state composed
of compact and molecular D�D� structures. At least one
trimer can be formed, as predicted by some studies [31,32].
The emergence of a second and third trimer depends on the
molecular percentage of the T�

cc resonance and its binding
energy. The third trimer is unlikely to be bound, but the
second one can be formed for reasonable P and B2. Thus,
this system deserves more experimental and theoretical
studies to clarify this phenomena. Of course, the first step
would be the experimental detection of the T�

cc state.
We want to remark that we do not discard this effect in

the DD�D� system. According to HQSS, the DD� and
D�D� systems have the same potential in the ð0Þ1þ sector.

FIG. 3. Ratio of the second to first trimer binding energies
for different B2 as a function of the T�

cc composition, where
P ¼ 100% denotes a pure two-body T�

cc molecule and P ¼ 0%
a pure compact state. The horizontal orange line represents the
Efimov scaling factor λ−2 ∼ 1=515 at the unitary limit asc → ∞.
A cutoff of Λ ¼ 0.7 GeV has been used in Eq. (4) for the central
line, while the color error bands indicate the results for the
cutoff range Λ ¼ ½0.5; 1� GeV.

FIG. 4. T�
ccD� scattering length normalized over the D�D�

scattering length as a function of the T�
cc composition for

different binding energies B2, using Λ ¼ 0.7 GeV. Same
legend as in Fig. 3.
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Then, the scaling law of the Efimov effect in the case of two
identical bosons M plus one particle m resonantly interact-
ing with each other is also λ ≈ 22.7. Actually, this ratio
decreases with the mass ratio M=m, but for the DD�D� the
factor is mD�=mD ≈ 1.08 and the effect will be small (See
Fig. 12 of Ref. [15]). However, a more detailed calculation
would be needed in order to fully clarify the existence of
trimers in the TccD�-T�

ccD systems.
The realization of the Efimov effect with charmed

mesons would be an exceptional discovery and a step
forward in our understanding of multimeson states, and this
system is a promising place to investigate it. In fact, an
interesting framework could be the analysis of theD�D�D�

system in nuclear medium, as some studies show signifi-

cant modifications of masses and widths of the Tð�Þ
cc

state [49], so it is possible that the resonant limit can be
modulated for specific nuclear densities.
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