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By utilizing a background field effective theory, we compute the collisional energy loss of a heavy quark
moving through a semiquark-gluon plasma characterized by nontrivial holonomy for Polyakov loops. We
consider the elastic scatterings between the incident heavy quark and the thermal partons with both hard
and soft momentum transfers. As compared to the energy loss obtained from the perturbation theory, the
hard processes get modified through the thermal distribution functions that depend on the background field,
while the proper treatment of the soft processes strongly relies on the use of the hard-thermal-loop
resummed gluon propagator derived from the background field effective theory. Our results show that the
heavy quark energy loss is significantly suppressed in the semiquark-gluon plasma due to a background
field that is self-consistently generated in the effective theory. On the other hand, the suppression has a
strong dependence on the temperature of the plasma, which becomes negligible above 2–3 times the critical
temperature. For a realistic coupling constant, ignoring a relatively weak dependence on the heavy quark
velocity, the suppression on the collisional energy loss can be approximated by an overall factor determined
solely by the background field. This simple conclusion is expected to be useful for phenomenological
applications in the heavy flavor physics.
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I. INTRODUCTION

Under extremely hot and dense conditions created in the
heavy ion experiments, the confined states of hadrons are
broken, resulting in a new state of matter known as quark-
gluon plasma (QGP) [1,2]. Studying the equation of state is a
crucial aspect of understanding the physical properties of the
strongly interacting matter. At asymptotically high temper-
atures, perturbative QCD works very well. Especially, the
hard-thermal-loop (HTL) resummed perturbation theory is
believed to be a powerful tool, which provides reliable
predictions on the thermodynamics of the QGP down to
several times the critical temperature Td [3,4]. On the other
hand, the hadron resonance gas model can be used to
simulate the confined hadronic phase at temperatures below
Td. However, there exists an intermediate region termed as
semi-QGP [5], from the critical temperature to a few times
that, where the physics is of particular interest. For high
energy heavy-ion experiments carried out at the Large
Hadron Collider (LHC), and especially at Relativistic
Heavy Ion Collider (RHIC), the temperatures probed are

not far from the critical temperature. Unfortunately, neither
the hadron resonance gas nor the HTL resummed perturba-
tion theory can be a reliable theoretical means to explore this
intermediate region.
The partial deconfinement in a semi-QGP is character-

ized by nontrivial holonomy for Polyakov loops. As the
order parameter for the deconfining phase transition in
SUðNÞ gauge theories, the Polyakov loop is nonzero but
less than unity in the semi-QGP region according to the
lattice simulations [6,7]. This behavior can be realized by
introducing a classical background field for the timelike
component of the vector potential A0. The resulting matrix
models [8,9], which can be considered as a background
field effective theory, give rise to a deconfining phase
transition through a competition between two different
contributions making up the effective potential in this
model. One is a perturbative term, favoring the completely
deconfined vacuum, and the other is a nonperturbative
term, driving the system to confinement. In addition, the
predicted thermodynamics is also in a good agreement with
the lattice data. Given the success made by the matrix
models, it is reasonable to adopt such an effective theory to
study some other physical quantities in a semi-QGP.
In this work, we will focus on the collisional energy loss

−dE=dx of an energetic heavy quark moving through a hot
and dense QCD plasma which is only partially deconfined.
As observed in the relativistic heavy-ion experiments, the
suppression of high transverse momentum hadrons can be
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explained by the energy loss of high energy partons in the
plasma. This phenomenon is called the jet quenching, an
excellent hard probe which provides a novel window to
unravel the fascinating properties of the deconfined nuclear
matter [10–13]. Furthermore, unlike the light quarks which
lose energy mainly through the gluon radiation, the colli-
sional energy loss of a heavy quark is comparable to the
radiated energy loss because of the dead-cone effect related
to the large quark mass [14–17]. Therefore, investigating
the collisional energy loss induced by the elastic scatterings
between the incident heavy quark and thermal medium
partons can help us to understand the measured heavy-
flavor spectra in nucleus-nucleus collisions. After the first
detailed calculation of −dE=dx for a heavy quark in the
QCD plasma made by Braaten and Thoma [18,19], many
attentions have been paid to this research topic, and there
were various theoretical developments over the past thirty
years; see Refs. [20–30] and references therein.
It is certainly interesting to consider the collisional

energy loss of a heavy quark by using a background field
effective theory when the nonperturbative physics plays an
important role and may affect the final results significantly.
Our calculation aims to provide quantitative estimates on
−dE=dx in a semi-QGP and also to assess the influence of a
nonzero background field that is self-consistently generated
within this effective theory. A previous work [26] also
focused on the same problem where the corresponding
calculations were carried out in the perturbation theory.
However, in the presence of a background field, it is
necessary to use an effective theory, which will be further
addressed in the following. On the other hand, the main
novelty in the current work is that we introduce the HTL
resummed gluon propagator for the first time to provide
quantitative predictions for the elastic energy loss of a
heavy quark in a semi-QGP. This is a crucial step for
meaningful computations as elastic scatterings are infrared-
sensitive quantities. Such a resummed gluon propagator as
derived from the background field effective theory is also
important for processes involving soft momentum
exchanges, such as the determination of the jet broadening
in a semi-QGP [31].
As a first step towards a full QCD analysis, we only

concentrate on a gluonic plasma because including dynami-
cal quarks in the effective theory is currently an open
question. The rest of the paper is organized as follows. In
Sec. II, we give the basic definition of the collisional energy
loss in QCD and review the theoretical approaches to
calculate the hard and soft contributions to −dE=dx in the
perturbation theory. In Sec. III, after introducing the
background field effective theory of a semi-QGP, we
discuss how the resummation of the usual hard thermal
loops will be modified in the presence of a background
field. In addition, the hard and soft contributions to the

energy loss are separately derived and the corresponding
analytical results are obtained in the weak coupling limit.
We show our numerical results of −dE=dx for a charm and
bottom quark in Sec. IV, where detailed discussions on the
heavy quark velocity/momentum dependence of the colli-
sional energy loss and its suppression in the semi-QGP are
also presented. Finally, a summary and outlook can be
found in Sec. V.

II. THE DEFINITION OF COLLISIONAL
ENERGY LOSS IN QCD

When a high energy heavy quark propagates through a
plasma consisting of light quarks and gluons in thermal
equilibrium, it may lose energy by interacting with the
thermal partons. The rate of energy loss per distance
traveled is given by [18]

−
dE
dx

¼ 1

v

Z
∞

mQ

dE0ðE − E0Þ dΓðEÞ
dE0 ; ð1Þ

where E and v ¼ p=E denote the energy and velocity of the
incident heavy quark with mass mQ. In addition, the
interaction rate ΓðEÞ reads

ΓðEÞ ¼ 1

2E

Z
d3p0

ð2πÞ32E0

Z
d3k

ð2πÞ32knðkÞ

×
Z

d3k0

ð2πÞ32k0 ð1− nðk0ÞÞð2πÞ4δ4ðPþK −P0 −K0Þ

×

�
1

2

X
spins

1

3

X
color

jMj2
�
: ð2Þ

In the above equation, P ¼ ðE;pÞ and P0 ¼ ðE0;p0Þ are the
four-momenta of the incoming and outgoing heavy quark,
respectively. The four-momenta of the medium partons,
which scatter off of the heavy quark, are denoted by K ¼
ðk;kÞ and K0 ¼ ðk0;k0Þ. For quark-gluon scattering, the
phase space is weighted by a Bose-Einstein distribution
nðkÞ ¼ ðek=T − 1Þ−1 and a factor 1 − nðk0Þ accounting for
the Bose enhancement.
The matrix elementM can be determined by computing

the corresponding Feynman diagrams for the elastic scat-
tering processes. It is straightforward to obtain the tree-
level contributions as shown in Fig. 1 where, however, an
infrared divergence stemming from the t-channel diagram
emerges when integrating over the transferred momentum
q ¼ p − p0. Following Braaten and Yuan [32], one can
introduce an arbitrary scale q� for the momentum trans-
ferred by which one defines the so-called hard and soft
contributions to −dE=dx. The hard contributions account
for scatterings with momentum transfer larger than q� and
can be expressed as
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−
�
dE
dx

�
QgðtÞ

hard
¼ ð4πÞ3α2s

v

Z
d3k
ð2πÞ3

nðkÞ
k

Z
d3k0

ð2πÞ3
1þ nðk0Þ

k0
δðω − v · qÞ

× θðq − q�Þ 4ω

ðω2 − q2Þ2
�
ðk − v · kÞ2 þ 1 − v2

2
ðω2 − q2Þ

�
; ð3Þ

where αs ¼ g2=ð4πÞ and ω≡ E − E0. Unless otherwise stated, we set the number of colors N ¼ 3 in the following. For the
quark-gluon scattering, contributions from the s- and u-channels are finite for small momentum exchange; therefore, there
is no need to introduce the cutoff q�. The corresponding result reads

−
�
dE
dx

�
QgðsþuÞ

hard
¼ ð4πÞ3α2s

2v

Z
d3k
ð2πÞ3

nðkÞ
k

Z
d3k0

ð2πÞ3
1þ nðk0Þ

k0
δðω − v · qÞ ωð1 − v2Þ2

ðk − v · kÞ2 : ð4Þ

To obtain the above equations, we consider the thermal
partons with typical momentum k, k0 ∼ T and assume the
mass and velocity of the heavy quark satisfy mQ ≫ T and
v ≫ T=E. Consequently, contributions suppressed by
T=mQ or T=p have been dropped in jMj2. Notice that
under the above assumptions, interferences between t- and
s=u-channel become negligible and the energy conserva-
tion in Eq. (2) reduces to δðω − v · qÞ. Further simplifica-
tion can be made by realizing the fact that in Eqs. (3)
and (4), terms involving the product nBðkÞnBðk0Þ are odd
under the interchange k ↔ k0, and thus do not contribute
to the energy loss after integrating over the momenta.
The interaction rate Γ in Eq. (2) can be also expressed in

terms of heavy quark self-energy [18]. For the soft
contribution to −dE=dx, the above mentioned infrared
divergence can be eliminated by using the HTL resummed
gluon propagator in the calculation of the heavy quark self-
energy. It has been shown that [33] the resulting soft
contribution to −dE=dx is equivalent to the energy loss
obtained in the classical plasma physics where −dE=dx is
caused by the Lorentz force due to the chromoelectric field
induced by the incident heavy quark, namely [20,34]

�
dE
dt

�
soft

¼ Re
Z

d3x Jaextðt;xÞ ·Ea
indðt;xÞ; ð5Þ

where the current Jaextðt;xÞ ¼ cavδð3Þðx − vtÞ represents
the propagation of the heavy quark with color charge ca

defined by
P

caca ¼ g2CF. For SUð3Þ, the Casimir invari-
ant CF ¼ 4=3. Using the Vlasov-Maxwell equations, the

induced chromoelectric field in the momentum space can
be written as

Ei;a
indðQÞ ¼ iω½ΔijðQÞ − Δij

0 ðQÞ�Jj;aextðQÞ; ð6Þ

withQ ¼ ðω;qÞ. In the above equation,ΔijðQÞ denotes the
HTL resummed gluon propagator in the temporal axial
gauge while Δij

0 ðQÞ is the corresponding temperature-
independent free propagator. Explicitly, we have

ΔijðQÞ ¼ 1

ω2 − q2 −m2
DΠTðω̂Þ

Aij þ 1

ω2 −m2
DΠLðω̂Þ

Bij;

Δij
0 ðQÞ ¼ 1

ω2 − q2
Aij þ 1

ω2
Bij; ð7Þ

where the transverse and longitudinal structure functions
read

ΠTðω̂Þ ¼
ω̂2

2

�
1 −

ω̂2 − 1

2ω̂
ln
ω̂þ 1

ω̂ − 1

�
;

ΠLðω̂Þ ¼ ω̂2

�
−1þ ω̂

2
ln
ω̂þ 1

ω̂ − 1

�
; ð8Þ

and the two projectors are defined as

Aij ¼ δij − qiqj=q2; Bij ¼ qiqj=q2: ð9Þ

In addition, ω̂ ¼ ω=q and the Debye screening mass
m2

D ¼ Ng2T2=3. Combining the above equations, we arrive

FIG. 1. Tree level Feynman diagrams for the scattering process Qg → Qg.
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at the following form for the soft contribution to the energy
loss:

−
�
dE
dx

�
soft

¼ 16παs
3v

Im
Z

d3q
ð2πÞ3 ðv ·qÞv

i½ΔijðQÞ−Δij
0 ðQÞ�

×vjθðq�−qÞ
���
ω¼v·q

; ð10Þ

where the cutoff q� regulates the logarithmic divergence for
large momentum transfer. Such an unphysical behavior
appears because Eq. (5) is only valid for soft processes with
a typical momentum transfer q ∼ gT.

III. THE COLLISIONAL ENERGY LOSS
OF A HEAVY QUARK IN A SEMI-QGP

In this section, we study the collisional energy loss of a
heavy quark in a semi-QGP, where the focus will be put on
the influence of a background fieldQ on the corresponding
−dE=dx. In Sec. III A, we review some basics of the
effective theory adopted in our calculation and derive the
Q-dependent resummed gluon propagator. The hard and
soft contributions to −dE=dx in the presence of a back-
ground field will be discussed in Secs. III B and III C,
respectively.

A. Effective theory of a semi-QGP

According to the previous discussions, it is possible to
introduce a classical background field Acl

0 to describe the
nontrivial Polyakov loop in the deconfining phase tran-
sition for SUðNÞ gauge theories. The background field is
assumed to be constant in spacetime and given by a
diagonal matrix in color space,

ðAcl
0 Þab ¼

1

g
Qaδab: ð11Þ

Furthermore, it satisfies the traceless conditionP
N
a¼1Q

a ¼ 0 with a; b ¼ 1;…; N.
The Wilson line in the temporal direction is defined as

L ¼ P exp

�
ig
Z

β

0

Acl
0 dτ

�
; ð12Þ

where P denotes the time ordering, τ is the imaginary time
and β≡ 1=T is the inverse temperature. Accordingly, the
gauge invariant Polyakov loop takes the following form:

l ¼ 1

N
TrL: ð13Þ

One can also define higher loops, ð1=NÞTrLn, and there are
N − 1 independent loops for SUðNÞ.
After taking into account the classical background field,

the effective potential in general SUðNÞ gauge theories can

be computed in the perturbation theory. The one-loop
result is

Vpt ¼
2π2T4

3

X
ab

Pab;baB4ðjqabjÞ: ð14Þ

The dependence on the background field Q is given by the
fourth Bernoulli polynomials B4ðxÞ ¼ x2ð1 − xÞ2 − 1=30.
For later use, we also need the second Bernoulli poly-
nomials B2ðxÞ ¼ x2 − xþ 1=6. Notice that the argument x
should be understood as x − ½x� with [x] the largest integer
less than x, which is nothing but the modulo function. In the
above equation, a and b run from 1 to N when summing
over the color indices. In addition, we define qab ¼ qa − qb

with qa ≡Qa=ð2πTÞ and the projection operator Pab;cd in
the double line basis reads

Pab;cd ¼ Pab
dc ¼ δadδ

b
c −

1

N
δabδcd: ð15Þ

It is more convenient to perform the calculation in the
double line basis when a background field is present. In this
basis, color indices in the fundamental representation are
denoted by a; b; � � � ¼ 1; 2;…; N, while in the adjoint
representation, they are denoted by a pair of fundamen-
tal indices, ab. The generators of the fundamental repre-
sentation are given by ðtabÞcd ¼ 1ffiffi

2
p Pab

cd, normalized as

TrðtabtcdÞ ¼ 1
2
Pab;cd. More details about the double line

basis can be found in Refs. [35,36].
The equation of motion for the background field

based on Eq. (14) indicates that the system is always in
a fully deconfined phase with vanishing background
field, and no phase transition could happen. It can also
be shown that after including the two-loop perturbative
corrections [37–41], one still has Q ¼ 0 as the vacuum. To
drive the system to confinement, a nonperturbative con-
tribution needs to be added to the effective potential. It is
expected to play an important role near the critical temper-
ature where the confined vacuum is favored. One possible
way to generate such a contribution is to include a
mass scale in the dispersion relation for gauge bosons,
ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
, then expand the resulting effective poten-

tial in the high temperature limitM ≪ T. The leading order
term in the expansion is nothing but the perturbative Vpt as
given in Eq. (14), and the next-to-leading order term
appears as the desired nonperturbative contribution in
the effective potential which takes the following form [8]:

Vnpt ¼
M2T2

2

X
ab

Pab;baB2ðjqabjÞ: ð16Þ

An alternative way to generate the above nonperturbative
contribution is to embed a two-dimensional ghost field
isotropically in four dimensions [9]. In this case, the mass
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scale in Eq. (16) should be considered as an upper limit for
the transverse momentum of the embedded fields. It
indicates that the ghost field is two-dimensional at short
distances; however, for distances larger than the scale of
confinement, it becomes fully four-dimensional field.
The combination of Eqs. (14) and (16) leads to an

effective theory for studying the semi-QGP. One can derive
the equation of motion for the classical background field in
this theory, and a nonzero and temperature dependent
background field arises. At low temperatures, the solution
qa ¼ ðN − 2aþ 1Þ=ð2NÞ minimizes the effective poten-
tial,1 which corresponds to the confining vacuum with
vanishing Polyakov loop. When the temperature gets very
large, qa ∼M2=T2 indicates a perturbative vacuum where
the Polyakov loop approaches to unity. By requiring the
phase transition to occur at the critical temperature Td, the
mass scale M, which is the only parameter in the effective
theory can be determined. For the SUð3Þ gauge theory, by
parametrizing the background field as

q⃗ ¼ ðq; 0;−qÞ; ð17Þ

the explicit T-dependence of the background field in the
deconfined phase can be determined from its equation of
motion as the following:

q ¼ 1

36

�
9 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81 − 80ðTd=TÞ2

q �
; ð18Þ

whereM=Td ¼ 2
ffiffiffiffiffi
10

p
π=9 has been used. It is worth noting

that besides the nontrivial behavior of the Polyakov loop in
the deconfining phase transition, the above effective theory
is also capable of qualitatively reproducing the lattice
simulations on the thermodynamics for the SUðNÞ gauge
theories. Further improvements have been proposed,
leading to various versions of the matrix models for
deconfinement [42–45].
In this work, we will investigate the influence of the

background field on the heavy quark collisional energy loss
when it passes through the hot and dense medium. For the
hard scatterings, only thermal distributions of the medium
partons are affected by the background field. The resulting
Bose-Einstein distribution functions are given by [5,46]

nðk0; qabÞ ¼
8<
:

1

ejk0 j=T−2πiqab−1
≡ nabþ ðk0Þ for k0 > 0

1

ejk0 j=Tþ2πiqab−1
≡ nab− ðk0Þ for k0 < 0

: ð19Þ

On the other hand, for scatterings with soft gluon exchange,
it becomes necessary to use the HTL resummed gluon
propagator which regulates the infrared divergence. In the

presence of a background field, the resummed propagator
obtained from the Dyson-Schwinger equation gets modi-
fied through the Q-dependent gluon self-energy.
Within the framework of perturbation theory, it was found

that the HTL approximated gluon self-energy is not trans-
verse due to the appearance of an anomalous term at nonzero
Q [35,47]. In addition, this anomalous term also results in an
ill-defined gluon resummed propagator [48] as well as an
unexpected discontinuity in the free energy at higher order in
the coupling constant [49,50]. These known issues further
justify the necessity of employing an effective theory to
properly incorporate the effect of a background field. After
taking into account the contributions from the aforemen-
tioned two-dimensional ghosts, the anomalous term is
completely canceled and the resulting gluon self-energy
has the same Lorentz structure as its counterpart at Q ¼ 0,
and thus preserves the transversality [9].
Based on the Dyson-Schwinger equation, the HTL

resummed gluon propagator in the effective theory was
first computed in [48] where the covariant gauge was used.
For our purpose, we carry out a similar calculation in the
temporal axial gauge and the N2 − N off diagonal compo-
nents in color space are given by

Δab;cd
ij ðQ; q⃗Þ ¼a≠b δadδbc

�
1

ω2 − q2 − ðM2
DÞabðq⃗ÞΠTðω̂Þ

Aij

þ 1

ω2 − ðM2
DÞabðq⃗ÞΠLðω̂Þ

Bij

�
; ð20Þ

where the Q-modified screening mass can be written as

ðM2
DÞabðq⃗Þ ¼

�
3

N

XN
e¼1

�
B2ðjqaejÞ þ B2ðjqebjÞ

�
þ 3M2

4π2T2

�

×m2
D; ð21Þ

with a ≠ b and the contribution ∼M2 comes from the two-
dimensional ghost field. As compared to Eq. (7), it turns
out that the influence of the background field on the
transverse and longitudinal gluon self-energy amounts to
the same modification on the screening mass. It is simply a
Q-dependent multiplication as given by the terms in the
square bracket in Eq. (21).
In addition, the diagonal components of the HTL

resummed gluon propagator, after multiplying by the pro-
jection operator and summing over the color indices, read

X
ab

Paa;bbΔaa;bb
ij ðQ; q⃗Þ

¼
XN−1

σ¼1

�
1

ω2 − q2 − ðM2
DÞσðq⃗ÞΠTðω̂Þ

Aij

þ 1

ω2 − ðM2
DÞσðq⃗ÞΠLðω̂Þ

Bij

�
: ð22Þ

1This is true under the straight line ansatz where the back-
ground fields qa with a ¼ 1; 2;…; N have constant spacing and
automatically satisfy the traceless condition.
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Similarly, the influence of a nonzero background field is fully
encoded in the modified screening masses which can be
written as

ðM2
DÞσðq⃗Þ ¼

�
1þ 3M2

4π2T2
þ 6

N
λσ
�
m2

D; ð23Þ

where terms in the bracket represent the background field
modifications and λσ with σ ¼ 1; 2;…; N − 1 denote a set of
Q-dependent functions. For SUð3Þ gauge theory, the explicit
form of λσ can be obtained as

λ⃗ ¼ ð3q2 − 3q; 9q2 − 5qÞ: ð24Þ

In fact, only the color sum
P

abcd P
ab;cdΔab;cd

ij is relevant
for studying the soft scattering processes. Combining the
above results of the diagonal and off diagonal contribu-
tions, we arrive at the following compact form:

X
abcd

Pab;cdΔab;cd
ij ðQ; q⃗Þ

¼
X
ab=σ

�
1

ω2 − q2 − ðM2
DÞab=σðq⃗ÞΠTðω̂Þ

Aij

þ 1

ω2 − ðM2
DÞab=σðq⃗ÞΠLðω̂Þ

Bij

�
; ð25Þ

where
P

ab=σ ¼
P

ab þ
P

σ denotes a sum over both
diagonal and off diagonal gluons and for general SUðNÞ,
a; b ¼ 1; 2;…; N with a ≠ b and σ ¼ 1; 2;…; N − 1. For
vanishing background field, it reduces to2

X
abcd

Pab;cdΔab;cd
ij ðQ; q⃗Þ

¼Q¼0 ðN2 − 1Þ
�

1

ω2 − q2 −m2
DΠTðω̂Þ

Aij

þ 1

ω2 −m2
DΠLðω̂Þ

Bij

�
; ð26Þ

which indicates that the N2 − 1 gluons have equal con-
tribution to the above result. For nonzero background field,
on the other hand, both the N2 − N off diagonal gluons and
N − 1 diagonal gluons acquire different Q-dependent
modifications, and thus become distinguishable by their
associated screening masses. Notice that according to our
parametrization Eq. (17), there are only two different
screening masses for the six off diagonal gluons in
SUð3Þ gauge theory.

B. The hard scattering processes
in the background field

In this subsection, we calculate the hard contributions to
the collisional energy loss in the background field. As
already mentioned before, the influence of a nonzero Q is
reflected in the distributions of the thermal partons as given
in Eq. (19). A special feature of such a Q-dependent
distribution is that the gluons are denoted by a pair of the
color indices, ab. Accordingly, the color structures of
the squared matrix element jMj2 need to be recomputed
in the double line basis. We list the corresponding Feynman
rules in the axial gauge in Fig. 2.
It is found that for nonvanishing background field, the

energy loss −dE=dx due to quark-gluon scattering can be
obtained from Eqs. (3) and (4) by the replacement,

FIG. 2. The Feynman rules in the axial gauge relevant to our calculations. Here, nμ is a unit vector and the structure constant
fab;cd;ef ¼ iðδadδcfδeb − δafδcbδedÞ= ffiffiffi

2
p

.

2Temperature independent contributions ∼M2 in Eqs. (21)
and (23) are negligible in the high temperature limit where the
background field vanishes.
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4

Z
d3k
ð2πÞ3

nðkÞ
k

Z
d3k0

ð2πÞ3
1−nðk0Þ

k0

→
X

abcdef

1

6
fab;cd;effba;dc;fe

Z
d3k
ð2πÞ3

�
nabþ ðkÞþnab− ðkÞ

	
=2

k

×
Z

d3k0

ð2πÞ3
1−

�
ncdþ ðk0Þþncd− ðk0Þ

	
=2

k0
; ð27Þ

where 4 is the color factor in zero background field.
Analogous to the Q ¼ 0 case, the above form indicates
that terms involving the product nab� ðkÞncd� ðk0Þ don’t
contribute to the energy loss. This can be seen by
interchanges of the momenta k ↔ k0 and the color indices
ab ↔ cd. Thus, for nonzero background field, we arrive at
the following expressions for the hard contributions
to −dE=dx:

−
�
dE
dx

�
QgðtÞ

BF;hard
¼ 2πg4

v

X3
a;b¼1

�
1 −

1

3
δab

�Z
d3k

ð2πÞ3k
nabþ ðkÞ þ nab− ðkÞ

2

Z
d3k0

ð2πÞ3k0 δðω − v · qÞ

×
ω

ðω2 − q2Þ2
�
ðk − v · kÞ2 þ 1 − v2

2
ðω2 − q2Þ

�
θðq − q�Þ; ð28Þ

−
�
dE
dx

�
QgðsþuÞ

BF;hard
¼ πg4

4v

X3
a;b¼1

�
1−

1

3
δab

�Z
d3k

ð2πÞ3k
nabþ ðkÞþnab− ðkÞ

2

Z
d3k0

ð2πÞ3k0 δðω−v ·qÞωð1−v2Þ2
ðk−v ·kÞ2 : ð29Þ

The energy loss due to the s- and u-channel scatterings can
be obtained analytically, which reads

−
�
dE
dx

�
QgðsþuÞ

BF;hard
¼ α2sπT2

X
ab

�
1 −

1

3
δab

�
B2ðjqabjÞf1ðvÞ

¼ α2sT2

π

X∞
n¼1

jTrLnj2 − 1

n2
f1ðvÞ; ð30Þ

where

f1ðvÞ ¼
1

v
−
1 − v2

2v2
ln
1þ v
1 − v

: ð31Þ

To get the above result, we used

X
ab

Z
∞

0

knab� ðkÞdk ¼ T2
X∞
n¼1

jTrLnj2
n2

¼ π2T2
X
ab

B2ðjqabjÞ: ð32Þ

Our results show that for the s- and u-channel scatterings,
the modification of a background field is simply given by
the factor

P
abð1 − δab=3ÞB2ðjqabjÞ. In the case of SUð3Þ,

it equals 4ð1 − 3qÞ2=3, which reduces to 4=3 for vanishing
background field as expected. However, integrals appearing
in the t-channel scattering turn out to be more involved. To
proceed further, we make the following change of the
integral variables:

1

2ð2πÞ2
Z

d3k
k

Z
d3k0

k0
→

Z
∞

1þv
2
q�
dk

Z 2k
1þv

q�
qdq

Z
vq

−vq
dω

þ
Z

∞

1þv
2
q�
dk

Z 2k
1−v

2k
1þv

qdq
Z

vq

q−2k
dω

þ
Z 1þv

2
q�

1−v
2
q�

dk
Z

2k
1−v

q�
qdq

Z
vq

q−2k
dω: ð33Þ

The above integral intervals are determined to meet the
constraint condition that −1 ≤ cos θ ≤ 1, where θ denotes
the angle between k and k0 and cosθ¼ðk2þðωþkÞ2−q2Þ=
ð2kðkþwÞÞ. Further constraints due to the two theta
functions θðq − q�Þ and θðv2q2 − ω2Þ have also been taken
into account in Eq. (33). The second theta function
arises after averaging the integrand over the direction of v,
which is valid because the energy loss is independent of
the incident direction of the heavy quark in an isotropic
medium.
The cutoff q� was introduced to eliminate the infrared

divergence associated with soft momentum transfer. In fact,
in the limit q� → 0, only the first integral over q in Eq. (33)
becomes divergent, and thus needs to be regulated.
Consequently, a simplified version of Eq. (33) can be
obtained as

1

2ð2πÞ2
Z

d3k
k

Z
d3k0

k0
→

Z
∞

0

dk
Z

2k
1þv

q�
qdq

Z
vq

−vq
dω

þ
Z

∞

0

dk
Z

2k
1−v

2k
1þv

qdq
Z

vq

q−2k
dω; ð34Þ
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which coincides with the variable change as used in [18] and leads to an analytical form for the energy loss even for nonzero
background field. The result can be expressed as

−
�
dE
dx

�
QgðtÞ

BF;hard
¼ 2α2s

π

X
ab

�
1 −

1

3
δab

�Z
∞

0

kdk
nabþ ðkÞ þ nab− ðkÞ

2

�
f2ðvÞ þ f1ðvÞ

�
lnðk=q�Þ − 1

2

��

¼ 2α2sT2

π

X∞
n¼1

jTrLnj2 − 1

n2

�
f1ðvÞ

�
ln

T
q�

þ 1

2
− γ − ln n

�
þ f2ðvÞ

�
; ð35Þ

where

f2ðvÞ ¼
�
1

2
−
1

2
lnð1 − v2Þ þ ln 2

�
f1ðvÞ −

1 − v2

4v2

�
Li2

�
1þ v
2

�
− Li2

�
1 − v
2

�
þ 1

2
ln
1 − v2

4
ln
1þ v
1 − v

�
−
2

3
v; ð36Þ

and Li2ðxÞ is the polylogarithm. As we can see in the limit
q� → 0, the above result has a logarithmic divergence∼ ln q�
and the background field modification on this divergent part
is the same as that on the s- and u-channel contributions. On
the other hand, for the finite part, besides the term ∼k in the
integral over k, there is also a term ∼k ln k, which leads to a
more involved Q dependence of the energy loss which
cannot be described simply by the Bernoulli polynomial.

It can also be shown that the hard contribution in Eq. (28)
is always positive when varying q�. However, Eq. (35)
may lead to a negative energy loss at large q� because of
the simplification used in Eq. (34). Therefore, Eq. (34) is
only a good approximation when q� ≪ T. For an arbitrary
cutoff, one should adopt Eq. (33) to change the integral
variables for mathematical rigour. Thus, Eq. (28) can be
written as

−
�
dE
dx

�
QgðtÞ

BF;hard
¼ 3α2s

πv2
X
ab

�
1 −

1

3
δab

�Z Z Z
sum

dkdqdω
nabþ ðkÞ þ nab− ðkÞ

2

ω

q2

×

�
k2 þ kωþ ω2=4

q2
−

1 − v2

q2 − ω2

k2 þ kωþ q2

3
−
v2

12

�
; ð37Þ

where we use the shorthand notation ∭sumdkdqdω to denote
the sum of the three triple integrals as given in Eq. (33).
Consequently, the integral over k needs to be carried out
numerically. Similar to theQ ¼ 0 case discussed in [20], the
energy loss based on Eq. (37) is always positive for an
arbitrarycutoff and agreeswithEq. (35) in the smallq� region.

C. The soft scattering processes
in the background field

The soft contributions to the collisional energy loss can
be studied based on Eq. (10), where the influence of the
background field amounts to a modification on the gluon
propagator. In the double line basis, the gluon propagator is
not diagonal in the color space and summing over the color
indices becomes nontrivial. In order to explicitly show the
color structures, we rewrite Eq. (10) as

−
�
dE
dx

�
BF;soft

¼
X
abcd

4παs
v

1

2N
Pab;cd

× Im
Z

d3q
ð2πÞ3 ðv · qÞv

i½Δab;cd
ij ðQ;qÞ

− ðΔ0Þab;cdij ðQÞ�vjθðq� − qÞ
���
ω¼v·q

: ð38Þ

In the above equation, ðΔ0Þab;cdij ðQÞ is not the usual bare
propagator in perturbation theory. It actually corresponds to
the zero temperature limit of the resummed propagator in
the effective theory and can be written as

ðΔ0Þab;cdij ðQÞ ¼ Pab;cd

�
1

ω2 − q2 − 3g2M2

4π2
ΠTðω̂Þ

Aij

þ 1

ω2 − 3g2M2

4π2
ΠLðω̂Þ

Bij

�
: ð39Þ

The usual bare propagator can be recovered by setting
M2 ¼ 0 in the above equation which has no contribution to
the energy loss because of a vanishing imaginary part.
However, the propagator as given in Eq. (39) leads to an
extra contribution which as we will see, is important to
ensure the cancellation of the cutoff dependence in the
weak coupling limit although such a contribution is
temperature independent.
In the limit Q → 0, the resummed gluon propagation

Δab;cd
ij ðQ; qÞ is also proportional to Pab;cd, and the sum

over the color indices in Eq. (38) can be easily carried out,
which leads to the following color factor:
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X
abcd

1

2N
Pab;cdPab;cd ¼ CF ¼ 4

3
; ð40Þ

for SUð3Þ. On the other hand, when Q ≠ 0, based on the resummed gluon propagator as given in Sec. III A, the following
compact form can be found for the collisional energy loss due to soft scatterings,

−
�
dE
dx

�
BF;soft

¼ αs
12πv2

X
ab=σ=s

Im
Z þv

−v
dω̂

v2 − ω̂2

ω̂

�
ω̂2

ð1 − ω̂2Þ2 F
ab=σ=s
T ðω̂; q⃗Þ ln ð1 − ω̂2Þðq�Þ2 þ Fab=σ=s

T ðω̂; q⃗Þ
Fab=σ=s
T ðω̂; q⃗Þ

þ 1

v2 − ω̂2
Fab=σ=s
L ðω̂; q⃗Þ lnF

ab=σ=s
L ðω̂; q⃗Þ − ðq�Þ2ω̂2

Fab=σ=s
L ðω̂; q⃗Þ

�
; ð41Þ

where we used d3q ¼ 2πq2dqdω̂=v and the integral over q
has been done analytically. Furthermore, the shorthand
notation of the color sums is defined as

X
ab=σ=s

¼
X
ab

þ
X
σ

−
X
s

; ð42Þ

where the first two sums on the right-hand side have
already appeared in Eq. (25). Notice the minus sign for the
last sum which is related to the contribution associated with
ðΔ0Þab;cdij ðQÞ in Eq. (38). In the high temperature limit
where Q → 0, such a contribution becomes negligible as
compared to the contributions from the first two sums.
However, near the critical temperature, the three sums in
Eq. (42) give comparable contributions to the energy loss.
In addition, we have

Fab=σ=s
T=L ðω̂; q⃗Þ ¼ ðM2

DÞab=σ=sðq⃗ÞΠT=Lðω̂Þ; ð43Þ

where ðM2
DÞs ¼ 3g2M2=ð4π2Þ is independent on the color

index s and for SUðNÞ, s ¼ 1; 2;…; N2 − 1. Therefore, the
purpose of introducing such a trivial sum over s is merely to
make the form of Eq. (41) compact.
By assuming q� ≫ gT ∼mD, one can expand the log-

arithm in Eq. (41). Keeping only the leading order terms
in the expansion, an analytical expression for the

q�-dependent part can be obtained which in the case of
SUð3Þ reads

αs
12

X
ab=σ=s

ðM2
DÞab=σ=sf1ðvÞ ln q�

¼ 8πα2sT2

3
f1ðvÞð1 − 3qÞ2 ln q�: ð44Þ

Furthermore, the q�-dependent part of the hard contribution
in Eq. (35) can be written as

−
2α2sT2

π

X∞
n¼1

jTrLnj2 − 1

n2
f1ðvÞ ln q�

¼ −
8πα2sT2

3
f1ðvÞð1 − 3qÞ2 ln q�: ð45Þ

Clearly, the cutoff dependence cancels between the hard
and soft contributions, which is similar to the case of zero
background field as studied in Ref. [18]. Notice that the
above cancellation does not depend on the details of the
background field, namely, a specified temperature depend-
ence as determined by Eq. (18) is not needed to make the
cancellation happen. Here, contributions from the last sum
in Eq. (42) are important to ensure the exact cancellation.
One can also get the full leading order result of the soft

contributions when expanding Eq. (41) with q� ≫ gT,
which is given by

−
�
dE
dx

�
BF;soft

¼ 8πα2sT2

3
ð1 − 3qÞ2
f1ðvÞ lnðq�=mDÞ − f3ðvÞ

�
−
αs
24

f1ðvÞ
X

ab=σ=s

ðM2
DÞab=σ=s ln

�ðM2
DÞab=σ=s=m2

D


: ð46Þ

In the high temperature limit where q → 0, the second term in the above equation can be neglected, and we get the
corresponding result at zero background field [19]

−
�
dE
dx

�
BF¼0;soft

¼ 8πα2sT2

3



f1ðvÞ lnðq�=mDÞ − f3ðvÞ

�
; ð47Þ

where
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f3ðvÞ ¼
1

v2

Z
v

0

dω̂ ω̂2

�
v2 − ω̂2

2ð1 − ω̂2Þ2 ðGTðω̂Þ þ lnðπω̂=4ÞÞ

þ ðGLðω̂Þ þ lnðπω̂=2ÞÞ
�
; ð48Þ

with

GT=Lðω̂Þ ¼ QT=Lðω̂Þ
�
π

2
− arctanðQT=Lðω̂ÞÞ

�

þ 1

2
lnð1þQ2

T=Lðω̂ÞÞ; ð49Þ

and

QTðω̂Þ ¼
1

π

�
ln
�
1þ ω̂

1 − ω̂

�
þ 2ω̂

1 − ω̂2

�
;

QLðω̂Þ ¼
1

π

�
2

ω̂
− ln

�
1þ ω̂

1 − ω̂

��
: ð50Þ

The above result also indicates that the background field
modification on the soft contributions is not simply an
overall factor ð1 − 3qÞ2 due to the appearance of the second
term in Eq. (46). Similar behavior has already been found
in the t-channel contribution in the hard scatterings; see
Eq. (35).
We should point out that the simplification used in

Eq. (34) is valid when q� ≪ T, while the expansion of
Eq. (41) is ensured to be convergent if q� ≫ gT. Therefore,
the above cancellation of the cutoff dependence requires a
very small coupling constant in order to meet the
assumption gT ≪ q� ≪ T which is also the prerequisite
to use the energy loss obtained in Eqs. (35) and (46).
Similar to the negative energy loss obtained from Eq. (35)
for very large q�, Eq. (46) also leads to a negative result
when the cutoff becomes too small as compared to the
screening mass. On the other hand, when extrapolating to a
realistic value of the coupling constant, the above
assumption cannot be well satisfied. Consequently, for
an arbitrary cutoff, we need to use Eq. (33) to carry out the
integrals for the hard contributions and evaluate the soft
contributions by Eq. (41) without any expansion. The
total energy loss, which needs to be determined numeri-
cally, does show a q� dependence. Such an ambiguity can
be eliminated by using the principle of minimum
sensitivity [20], and thus, the cutoff q� is fixed by
minimizing the total energy loss with respect to q�.
Finally, let us focus on the Q dependence of the

collisional energy loss based on our results in the weak
coupling limit. For the hard processes, since q� ≪ T, the
dominant t-channel contribution comes from the term
∼ lnðT=q�Þ in Eq. (35). Therefore, the influence of the
background field amounts to a q-dependent factor reading

ð1 − 3qÞ2 for SUð3Þ.3 For the soft processes, keeping only
the logarithmically enhanced contribution ∼ lnðq�=mDÞ
with q� ≫ mD, the same conclusion can be drawn from
Eq. (46). As a result, the q�-independent total energy loss
equals the factor ð1 − 3qÞ2 times the corresponding result
at vanishing background field. In the weak coupling limit,
the dominant contribution in the total energy loss is
∼ lnð1=gÞ which comes from the soft processes.
Therefore, a proper treatment on the soft momentum
exchange with the hard thermal loop resummation is
necessary.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present our numerical results for the
collisional energy loss of a heavy quark in a semi-QGP
which consists of the hard contributions from Eqs. (30)
and (37) as well as the soft contributions from Eq. (41). As
already mentioned above, the cutoff dependence of the
total energy loss can be fixed through the following
equation:

−
d
dq�

�
dE
dx

�
BF

����
q�¼qpms

¼ 0; with

−
�
dE
dx

�
BF

≡ −
�
dE
dx

�
BF;soft

−
�
dE
dx

�
BF;hard

;

ð51Þ

and thus, the resulting −dE=dx serves as a lower bound for
the heavy quark energy loss. We consider the collisional
energy loss above the critical temperature Td ¼ 270 MeV
for the SUð3Þ gauge theory. Like the zero background field
case, our numerical evaluations suggest that the energy
loss shows a weak q� dependence as we decrease the
coupling constant and eventually the energy loss coincides
with the result given by the sum of Eqs. (30), (35), and (46)
in the weak coupling limit where the q� dependence
vanishes. For simplicity, we fix the coupling constant
αs ¼ 0.3, corresponding to its typical value in the semi-
QGP region.
Given the temperature dependence of the background

field in Eq. (18), the collisional energy loss depends
only on the temperature of the plasma T and the velocity
of the incident heavy quark v. In the left plot of Fig. 3,
we show −dE=dx as a function of v at different temper-
atures. As we can see, the collisional energy loss increases
with increasing velocity and a very rapid growth is
observed in the large v region. Qualitatively, this coincides
with the behavior as observed at vanishing background

3The same is true for the s- and u-channel contributions.
However, there is no logarithmic enhancement in Eq. (30),
therefore, as compared to the t-channel contribution, contribu-
tions from s- and u-channels can be neglected.
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field.4 It is also found that the heavy quark energy loss is
very sensitive to the temperature of the plasma, a significant
enhancement appears when the medium moves from a
region close to the critical temperature Td into the pertur-
bative deconfining region, where we choose T=Td ¼ 2.0,
corresponding to a rather small background field according
to Eq. (18). A more direct way to see the influence of the
background field is to consider the ratio of the energy loss
with and without Q which can be found in the right plot of
Fig. 3. In general, the collisional energy loss is reduced in
the presence of a background field. For a given temper-
ature, this ratio, or in other words, the suppression of the
energy loss is insensitive to the velocity as long as v is not
very large. Therefore, considering small and intermediate
incident velocities, the collisional energy loss in a back-
ground field can be well approximated with the corre-
sponding energy loss at Q ¼ 0 multiplied by an overall
T-dependent factor. Notice that without considering the
background field, the temperature dependence of the
energy loss is very simple, i.e., −dE=dx ∼ T2, when a
fixed coupling is used. This is obviously not true for
nonzero background field because the above mentioned
factor changes with T significantly. On the other hand, a
notable increase of the energy loss ratio can be found in the
large v region.5

In Fig. 4, we show the velocity dependence of the cutoff
qpms as determined by Eq. (51). No matter if a background

field is taken into account or not, at a given temperature,
qpms exhibits a very weak v-dependence for small and
intermediate velocities. However, a large increase of qpms is
found when the velocity gets large. Furthermore, for
nonzero background field, qpms=T changes when varying
the temperature T at a fixed velocity. This is very different
from theQ ¼ 0 case where qpms=T becomes a constant. We
can expect that in the high temperature limit, qpms=T would
be identical to its counterpart at vanishing background
field. Therefore, the background field has a significant
impact on the cutoff near the deconfinement point, which
gradually diminishes as the temperature increases.
It should be noted that in principle the above results are

applicable for infinitely large quark mass because of the
approximations used in our calculation. For a charm and
bottom quark, finite mass corrections become important for
very small (v → 0) and large (v → 1) velocities. On the one
hand, when the incident velocity is smaller than the thermal
velocity ∼ðT=mQÞ1=2, the heavy quark is expected to gain
energy from a collision. As a result, −dE=dx must change

FIG. 4. The velocity dependence of qpms=T with and without
the background field.

FIG. 3. Collisional energy loss in a background field (left) and the ratio of the energy loss with and without the background field (right)
as a function of the heavy quark velocity v at T ¼ 1.1Td and T ¼ 2.0Td.

4The results without considering the background field corre-
spond to those obtained in the perturbation theory. Besides setting
Q ¼ 0, the mass scale M2 in Eqs. (21) and (23) is also zero,
namely, the N2 − 1 gluons have the same screening mass mD for
SUðNÞ.

5In fact, our numerical results show that the energy loss ratio
has a turning point at a velocity very close to 1, which is not
visible in Fig. 3. However, in the ultrarelativistic limit, finite
quark mass corrections become important there and for a realistic
charm or bottom quark, calculation beyond our approximation is
needed which we will discuss in the following.
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sign at sufficiently small v [34]. On the other hand, a more
accurate treatment on the energy loss is required for
ultrarelativistic energies E ≫ m2

Q=T where the largest
momentum transfer used in Eq. (33) is no longer valid,6

and some dropped terms in the squared matrix element may
also contribute significantly [24]. A crossover energy was
estimated to be ∼1.8m2

Q=T in Ref. [32] for QCD at
vanishing background field. Accordingly, there exists an
upper bound of the heavy quark velocity given by
1 − 0.28ðT=mQÞ2, above which finite mass corrections
start to play a role. However, with the typical temperatures
achieved in the high energy heavy-ion experiments, we can
expect that for both charm and bottom quark our results are
reliable up to very large incident velocities.

In order to see the flavor dependence of the collisional
energy loss, we show in Fig. 5 −dE=dx for the charm
and bottom quark as a function of the momentum p at
different temperatures. The momentum p of the heavy
quark can be related to its velocity through the equation
p ¼ vmQ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, and we choose mc ¼ 1.3 GeV and

mb ¼ 4.7 GeV in the numerical evaluations. Similar to that
found in previous literature without considering the back-
ground field, the collisional energy loss at Q ≠ 0 grows
quickly with increasing momentum, and a charm quark
loses more energy as compared to the heavier bottom
quark. This conclusion can be understood from the fact that
the energy loss increases monotonically with increasing v
according to Fig. 3. Recall that for a given p, the incident
quark with larger quark mass has a smaller velocity, and
thus, one can naturally expect that the collisional energy
loss of a charm quark is more pronounced as compared to a
bottom quark carrying the same momentum. In Fig. 6, we

FIG. 5. Energy loss of the bottom (mb ¼ 4.7 GeV) and charm quark (mc ¼ 1.3 GeV) in a background field as a function of
momentum p at T ¼ 1.1Td (left), and T ¼ 2.0Td (right).

FIG. 6. The ratio of the energy loss with and without the background field as a function of the heavy quark momentum p for charm and
bottom at T ¼ 1.1Td (left) and T ¼ 2.0Td (right).

6The largest momentum transfer 2k=ð1 − vÞ in Eq. (33) is only
an approximation, which becomes exact when E ≪ m2

Q=T.
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also plot the energy loss ratio as a function of the heavy
quark momentum. It can be shown that before it gets
saturated at some large momentum p, the energy loss ratio
has a quick increase in the small momentum region where
the background field has a stronger impact on the sup-
pression of −dE=dx for a bottom quark. In principle, the
observed p-dependence of the energy loss ratio can be also
obtained from the corresponding v-dependence. Here, we
should mention that an approximate constant ratio existing
for v ≲ 0.5 as shown in Fig. 3 is not contradictory to the
results given in Fig. 6. In fact, such an observation indicates
that for a charm quark, the energy loss ratio is almost
independent on the momentum up to p ∼ 0.8 GeV, which
becomes p ∼ 2.7 GeV for a bottom quark. Due to a rather
narrow region, this behavior becomes invisible in Fig. 6.
On the other hand, the saturation of the energy loss ratio in
the large momentum region is actually related to the very
weak v-dependence of the momentum when it gets large.
Finally, it is worth pointing out that for a given temperature,
although the energy loss ratio shows a dependence on the
heavy quark velocity or momentum, its magnitude does not
change dramatically when varying p or v.
As the background field strongly depends on the temper-

ature, the most direct way to see the influence of the
background field on the collisional energy loss is to study
the energy loss ratio as a function of the temperature T. The
corresponding results are shown in Fig. 7, wherewe consider
two different heavy quark velocities. Our results suggest that
thebackground field suppresses−dE=dx and the suppression
is very significant in the entire semi-QGP region, from Td to
about 2 ∼ 3Td. Especially, at the critical temperature, the
heavy quark only losses ∼10% of the energy that would be
lost in the case where Q ¼ 0. This can be attributed to the
partial ionization of the plasma, which corresponds to a

reduced number density of the thermal partons in the presence
of a background field.On the other hand, the energy loss ratio
increases quickly with the increasing temperature, and above
the semi-QGP region, nonzero Q only shows a very weak
influence on the heavy quark energy loss. This behavior can
be understood by looking at the T dependence of the
background field. According to Eq. (18), the magnitude of
the background field drops very quickly with increasing T
and becomes negligible at temperatures larger than 2–3Td. In
addition, there is only a moderate difference between the
dashed curve for v ¼ 0.3 and the dot-dashed curve for
v ¼ 0.9; therefore, the energy loss ratio has a weak depend-
ence on the heavy quark velocity at any given temperature.
This is actually consistent with our above findings.
We also compare our results with the energy loss ratio

obtained in Ref. [26], where the authors computed the
collisional energy in a semi-QGP with the perturbation
theory. They focused on the ultrarelativistic limit, where
v → 1 and considered tree level Feynman diagrams with
bare propagators. The infrared divergence associated with
the t-channel contribution was regulated by choosing the
Debye mass mD to be the cutoff, and thus, no resummation
was considered for the soft momentum exchange.
Consequently, the modification of the background field
on the collisional energy loss turns out to be very simple,
which is entirely encoded in the q-dependent factor
ð1 − 3qÞ2 for SUð3Þ. This is exactly the same as what we
found based on the result of −dE=dx in the weak coupling
limit.7 The corresponding result in [26] is also presented.
However, in a perturbation theory, nonzero background field
cannot be generated self-consistently from the equation of
motion. Therefore, the values of the background field were
extracted from the lattice simulations on the Polyakov loop
in [26]. For a direct comparison, the solid curve in Fig. 7 is
obtained with the background field determined by Eq. (18).
It is interesting to see an agreement between the results
from [26] and our results at large velocities even for a
realistic coupling constant. As a result, we can expect a
smooth transition to the ultrarelativistic limit v → 1, where
in principle our result is no longer reliable due to the finite
quark mass. In addition, ignoring the weak dependence on
the heavy quark velocity, the energy loss ratio can be
approximated by an overall factor ð1 − 3qÞ2 and according
to our numerical results, the corresponding error is less than
10% when a realistic coupling constant is considered.

V. SUMMARY AND OUTLOOK

In this work, by utilizing a background field effective
theory, we calculated the collisional energy loss of a heavy

FIG. 7. The ratio of the energy loss with and without the
background field as a function of the temperature for different
heavy quark velocities. The result in the ultrarelativistic limit
v → 1 comes from Ref. [26] where the values of the background
field are based on Eq. (18).

7In the ultrarelativistic limit, the leading logarithmic contri-
bution from t-channel is ∼ lnðET=m2

DÞ. In addition, the u-channel
contribution cannot be neglected because it has a logarithmic
enhancement ∼ lnðET=m2

QÞ. However, in both cases, the modi-
fication due to the background field is simply given by ð1 − 3qÞ2.
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quark propagating through a semi-QGP characterized by a
nontrivial Polyakov loop. For temperatures close to the
critical temperature, nonperturbative physics played an
important role on the physical observables and such an
effective theory, which well described the thermodynamics
of the medium turned out to be an ideal tool to study the
relevant problems in a semi-QGP. We considered the
energy loss due to elastic scatterings between the incident
heavy quark and the medium partons and showed that a
nonzero background field, self-consistently generated from
the equation of motion in the effective theory, had an
important influence on both hard and soft contributions to
the collisional energy loss. For hard scatterings, it was
sufficient to use the bare propagator to compute the squared
matrix element, while the thermal distribution functions of
the medium partons were modified in the presence of a
background field. For soft scatterings, it was necessary to
take into account the HTL resummation in order to regulate
the infrared divergence. Accordingly, the Q-modified
resummed gluon propagator which carried the correct
screening information in the semi-QGP became the crucial
ingredient to evaluate the energy loss associated with the
soft processes.
Our results demonstrated that in the weak coupling limit,

the collisional energy loss was independent on the momen-
tum cutoff q�, which has been introduced to separate the
hard and soft contributions to −dE=dx. This was exactly
the same as what happened at Q ¼ 0, where the cutoff
dependence was canceled between the hard and soft
contributions. Furthermore, when Q ≠ 0, the cancellation
did not rely on the explicit form of the background field,
which was considered as a function of the temperature. It
was also found that in the limit g → 0, keeping only the
leading logarithmic contribution ∼ lnð1=gÞ in the colli-
sional energy loss, the background field modification on
−dE=dx became very simple and the total energy loss at
Q ≠ 0 was just given by a Q-dependent factor multiplied
by the corresponding energy loss at Q ¼ 0.
For a realistic coupling constant, on the other hand, the

cutoff dependence existed in the collisional energy loss,
and −dE=dx had a notable dependence on q� when the
coupling constant became large. We determined the cutoff
by minimizing the total energy loss with respect to q�, and
thus, the corresponding −dE=dx could be considered as a
lower bound for the heavy quark energy loss. The numeri-
cal results suggested that although sharing some common
properties with that at Q ¼ 0, the collisional energy loss
was reduced in the presence of a nonzero Q. Although the

suppression was not sensitive to the heavy quark velocity/
momentum, it strongly depended on the temperature of the
medium. Therefore, different from a simple ∼T2 depend-
ence at vanishing background field, −dE=dx was expected
to have a more involved T dependence in a semi-QGP. In
addition, the mass hierarchy of the energy loss, i.e., a charm
quark losing more energy than a bottom quark was also
observed at nonzero Q. With a given temperature, the
background field led to a stronger suppression effect for a
bottom quark although the magnitudes of the energy loss
ratio for a charm and bottom quark did not differ signifi-
cantly from each other. Finally, as the temperature
approached to the critical temperature from above, the fast
decrease of the energy loss ratio indicated a significant
reduction of the collisional energy loss. Especially, the
energy loss of a heavy quark was only ∼10% of that in a
vanishing background field when T ¼ Td. However, the
influence of the background field became negligible above
2–3Td, where the saturated energy loss ratio got very close
to one. Here, an interesting finding was that the simple form
ð1 − 3qÞ2 describing the Q modification on −dE=dx in the
weak coupling limit could be approximately applied to a
moderate coupling constant if we ignored the weak velocity
dependence of the energy loss ratio.
The background field effective theory is a useful theo-

retical tool to study the physics in a semi-QGP, which is
probably the most interesting region of the hot and
dense medium being explored in high energy heavy-ion
physics. Besides the heavy quark collisional energy loss
discussed in this work, it can be also adopted to study other
relevant observables, such as the photon and dilepton
production, the radiated energy loss and so on. However,
a full QCD analysis requires a nontrivial generalization of
the effective theory where one needs to nonperturbatively
include the contributions from the thermal fermions.
Further work along this line needs to be carried out in
the future.
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