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Thermodynamic stability in relativistic viscous and spin hydrodynamics
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We have applied thermodynamic stability analysis to derive the stability and causality conditions for
conventional relativistic viscous hydrodynamics and spin hydrodynamics. We obtain the thermodynamic
stability conditions for second-order relativistic hydrodynamics with shear and bulk viscous tensors,
finding them identical to those derived from linear mode analysis. We then derive the thermodynamic
stability conditions for minimal causal extended second-order spin hydrodynamics in canonical form, both
with and without viscous tensors. Without viscous tensors, the constraints from thermodynamic stability
exactly match those from linear mode analysis. In the presence of viscous tensors, the thermodynamic
stability imposes more stringent constraints than those obtained from linear mode analysis. Our results
suggest that conditions derived from thermodynamic stability analysis can guarantee both causality and

stability in linear mode analysis.
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I. INTRODUCTION

In relativistic heavy ion collisions, two nuclei are
accelerated to speeds close to that of light, collide with
each other, and generate a hot and dense matter known as
the quark-gluon plasma (QGP) [1-4]. The evolution of the
QGP is well described by relativistic hydrodynamics.
Relativistic hydrodynamics serves as a macroscopic effective
theory for relativistic many-body systems in the long-wave-
length and low-frequency limit. The main equations of
relativistic hydrodynamics are the conservation equations
for the energy-momentum tensor and other conserved
currents in the gradient expansion, e.g., the Israel-Stewart
theory [5,6], the extended Baier-Romatschke-Son-Starinets-
Stephanov theory [7], the Denicol-Niemi-Molnar-Rischke
theory [8], and the more recently established Bemfica-
Disconzi-Noronha-Kovtun theory [9-13]. For additional
studies and developments, we refer the reader to the recent
review papers [14,15] and the references therein.

In the early stages of noncentral collisions, the nuclei
possess a huge initial orbital angular momentum, on the
order of 107A. This initial orbital angular momentum is
transferred to the spin polarization of quarks and sub-
sequently to the final-state particles through spin-orbital
coupling. This mechanism leads to the spin polarization of
A and A hyperons and the spin alignment of vector mesons
[16-18]. The STAR collaboration has observed both the
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global and local polarization of A and A hyperons [19,20],
as well as the spin alignment of ¢ and K%* mesons [21].

On the theoretical side, the global polarization can
be well described by various phenomenological models
[22—-34] through the combination of the modified Cooper-
Frye formula [35,36] with hydrodynamic simulations
under the assumption that the system is close to global
equilibrium. To understand local polarization, effects
beyond global equilibrium, such as shear-induced polari-
zation [37-44], spin Hall effects [34,45,46], weak magnetic
fields induced polarization [47] and the corrections due to
the interactions between quarks and back ground fields [48],
need to be considered. Although hydrodynamic simulations
can qualitatively describe local polarization as functions of
azimuthal angle, understanding the dependence on centrality
and transverse momentum remains challenging [20,49,50].
Therefore, it is necessary to consider the evolution of
spin during collisions. Recently established spin hydro-
dynamics, which integrates the total angular momentum
conservation equation with conventional relativistic hydro-
dynamic equations, has been developed from various theo-
retical frameworks, such as from effective action [51,52],
entropy principle [53-63], kinetic theory [64—80], hologra-
phy [81,82], and quantum statistics [83]. For recent reviews
on this topic, see Refs. [84-86].

As a fundamental requirement, both conventional relativ-
istic hydrodynamics and spin hydrodynamics must exhibit
causality and stability. In pioneering works [87,88], linear
mode analysis was implemented to study the causality and
stability of hydrodynamic systems. Through linear mode
analysis, the causality and stability conditions for various
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types of hydrodynamics are derived [87—-101]. These con-
ditions establish inequalities that constrain the range of
transport coefficients. Recently, it was found that the conven-
tional causality criterion [102] used in linear mode analysis is
insufficient to guarantee causality. Consequently, several
studies [103—108] have proposed new causality criteria that
also explore the deep connection between causality and
stability [13,107,109].

Very recently, Ref. [96] has systematically studied the
causality and stability for the minimal extended second-
order spin hydrodynamics in the linear mode analysis.
Later, Ref. [101] also investigates the impact of other
second-order terms. It was revealed that the system appears
to be unstable at finite wavelengths, even though it satisfies
asymptomatic stability conditions derived for both large
and small wavelengths [96]. To address this issue, it is
essential to explore the stability of spin hydrodynamics
through an alternative approach.

In this work, we apply thermodynamic stability analysis
[110-113], which is grounded in the second law of
thermodynamics and the principle of maximizing total
entropy in equilibrium states [114], to spin hydrodynamics.
We will derive stability conditions from this thermody-
namic stability analysis and compare them with those
obtained through linear mode analysis.

The structure of this paper is organized as follows: In
Sec. II, we briefly review thermodynamic stability analysis.
Next, we apply this analysis to conventional relativistic
viscous hydrodynamics as a test case in Sec. III. In Sec. IV,
we analyze the thermodynamic stability conditions for spin
hydrodynamics and compare the results with those
obtained from linear mode analysis. We conclude with a
summary in Sec. V.

Throughout this work, we choose the metric g,, =
diag{+,—,—,—} and define the projector A* =
g — u'u” with u” being the fluid velocity. For an arbitrary
tensor A, we introduce the notations A®) =
L(Am + Am), Al =1 (Am — AW), and AW =1[AreAYP 4+
APAVTA = LA (AP A ).

II. BRIEF INTRODUCTION TO THE
THERMODYNAMIC STABILITY

In this section, we briefly review the main idea in
Ref. [113]. Consider an isolated system near thermody-
namic equilibrium, consisting of a fluid connected to a
sufficiently large heat-particle bath. According to the
second law of thermodynamics, the entropy of the entire
system, S, must not decrease, i.e., the variation of entropy
AS follows:

where Spp stand for the entropy for fluid and bath,
respectively. Equation (1) is the original condition for
the thermodynamic stability.

Now, let us consider conserved quantities Q“ and their
thermodynamic conjugates a“ in the system, where a =
1,2, ... label different conserved quantities. For example, if
the total number is conserved, then O and a correspond to the
total number and y/ T, respectively, with u and T being the
chemical potential and temperature. While, if the total energy
is conserved, Q and « are total energy and —1/7, respec-
tively. Then, the variation of entropy can be expressed as

ds ==Y a"dQ". (2)

The Q can be divided as the part for fluid Q% and the one for
the bath Qf%, with the following relationship:

dQf = —-dos. (3)
Then the variation of total entropy becomes
AS =ASp+ Y agAQs > 0. (4)
If defining
¥=Sp+ ) apOf, (5)

then Eq. (4) implies that the function ¥ should be maximized
in the equilibrium state.
One can also define the information current E* as

Er = =55 — Y abslg, (6)

where s%. is the entropy current of the fluid and J%* is the
conserved current associated with Q¢%, and the symbol &
denotes the small perturbations from the thermodynamic
equilibrium state.

Given that the whole system is near thermodynamic
equilibrium and the heat-particle bath is sufficiently large,
we can assume that the chemical potential and temperature
in the fluid are equal to those in the bath, i.e., a% for the
fluid is approximately equal to a in the bath. Under this
assumption, a%8J%" can be simplified to 5(a*J%"), where
we do not distinguish between a% in the fluid and a in the
bath. Consequently, Eq. (4) can be further written as

E= / dSEn, > 0, (7)

holds for an arbitrary spacelike three-dimensional surface =
and its timelike and future-directed normal unit vector n*.
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If the thermodynamic equilibrium state is unique, i.e.,
determined solely by the thermodynamic variables,
then from Eq. (7) and the definition of E¥ in Eq. (6),
the information current E¥ must satisfy the following
conditions:

=1,

(i) E*n, > 0 for any n* with ny > 0,n*n,

(ii) E¥n, = 0 if and only if all perturbations are zero,

(iii) 9,E* <0. (8)

As a remark, the conditions in Eq. (8) can be treated as
criteria of thermodynamic stability [113]. It has also been
found that these criteria in Eq. (8) can guarantee the
causality of the system [113]. Moreover, when all these
conditions are satisfied in one inertial frame of reference,
the thermodynamic stability conditions in Eq. (1) are
assured across all inertial frames of Refs. [107,109].
These criteria provide us with a novel tool for analyzing
the stability and causality of the system.

III. THERMODYNAMIC STABILITY
OF THE SECOND ORDER
VISCOUS HYDRODYNAMICS

In this section, we implement the thermodynamic sta-
bility criteria (8) to the relativistic second order viscous
hydrodynamics in the gradient expansion. It can be
considered as an example to show the connection between
the constraints from the thermodynamic stability and
conventional linear mode analysis. For convenience, we
focus on the quantities for fluid and omit all the lower index
F from now on.

The energy momentum conservation equation reads

9,1 =0, ©)

and the energy momentum tensor in the Landau or energy
frame is given by [115]

T = (e + P)u'u” — Pg" + o —TIA®,  (10)

where e, P,n*, Il are energy density, pressure, shear
viscous tensor, and bulk pressure, respectively. Note that
the net baryon number density of the QGP produced in
relativistic heavy ion collisions is negligible [116]. For
simplicity, the following discussions are limited in the cases
where (baryon) currents vanish.

In order to compare the constraints from thermodynamic
stability and linear mode analysis, we choose the minimal
extension of second order viscous hydrodynamics [89].
The corresponding entropy current is given by

st =su' — Q" + O(0°), (11)

where Q* stands for the possible corrections from the
second order. Following Refs. [5,6], we take

1ut
Q” = 5? ()(HHZ +X7rﬂpgﬂpa)’ (12)

as an example. Then the entropy principle d,s* > 0 gives
the constitutive equations for 7#* and II as below,

1
= —C [aﬂuﬂ + E)(HTap(up/T)H} B

T ATHAP (y - 0) 7oy +

— 2 [6<"u”> —% 2T, (u? /T)ﬂ””], (13)
where
Cn >0, (14)
and
m=0m T =20 (15)

For the more comprehensive discussions on the second
order theories, we refer to Refs. [5,6]. Later, we will
compare our results from thermodynamic stability with
those from linear mode analysis [90,91]. The terms propor-
tional to yp, ¥, on the right-hand side of Eq. (13) do not
appear in the constitutive equations in Refs. [90,91], but
these terms will not contribute to the causality and stability
conditions in linear mode analysis.

Next, we choose local rest frame u* = (1,0) and assume
the fluid reaches the thermodynamic equilibrium state, in
which IT and ##* are zero. For the macroscopic variables
¢ = (e, w11, "), we consider the perturbations near the
thermodynamic equilibrium, 6¢p. We can expand the
system in the power series of d¢. By using the following
relationship,

1
u“5uﬂ = —Eéu/‘éuw
M”5ﬂ"w = —5uﬂ6ﬂ””,
67# =0, (16)

we find
ou', 61 ~ O(5),
ou®, 67% ~ O(8?),
or%0 ~ O(8°). (17)

With the help of Eq. (11), the information current is then
given by [112,113]
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EHf ——8s ﬂ+ 6T”” where ¢? is the speed of sound. Then, E# can be further
s1mp11ﬁed
0 1
— (78—&) + OSP4 +—— (1 w7745+ ynOTISTI)
~ L (et PYursu,ou —léu o OuSTI+O(5"). w o LW (8¢)? + S Sunge L e+ Pyursu,ou
2T 2Te+ P T 2T v
1 1
(18) o
By using the thermodynamic relations, 1 o
+ T Ut (y 01 61,5 + yOIIGIT). (21)
1
ds = ?de, dP = sdT, (19)
we find that Let us now impose the three conditions (8) on E*. From
the definition (6), we have 9,E* = —9,ds", so that the
1 1 s condition (iii) in Eq. (8) leads to the inequality (14), which
bs = ?5 +§ﬁ( )’ +0(&), is consistent with the requirement from the conventional
1 1 sp entropy principle. To analyze the constraints from the
=70 =55 % se + O(8%), conditions (i) and (ii) in Eq. (8), we introduce an arbitrary
T Te+P timelike future-directed vector n* with ny > 0,n"n, = 1.
_ l _L i ( 56)2 +O( 53) (20) After some tedious and straightforward calculations, we
T 2Te+ P ' obtain
|
2noTE'n 2 N 2 2 1 2
0 L Z [577” - n(iéuj>] L [57111 + =672 + (n3dus — nduy)
e+ P ’7(€+P) i<j noY z (6+P) NoX =
Sl PR (n30us + ny6uy — 2n,0u,) 2+25: (54,)? (22)
D EE—— T niou niouy — 2Zn,0U a; i
dn(e + P) Ingy, 30 10Uy 20Uy g 4iloAi

where the exact expressions for a; and 5A; can be found in
Appendix B. Imposing the conditions (i) and (ii) in Eq. (8)
leads to'

2
5, Tt > 0,

2 4n g

> 0,
(e + P)

(23)

which are exactly the same as those derived from linear
mode analysis in the previous literature [90,91,118].

In general, if the baryon or other conserved current is
considered, e.g., j* = nu* +1* with n and * being
number density and diffusive current, the independent
fields become ¢ = (e,u*, 11, 7", n,1*) [119]. In these
cases, the thermodynamic relations (19), constitutive rela-
tions (11)—(13), and information current (18) will be

1n this work, we assume ¢ + P > 0, while Ref. [117] also
explores cases where e + P < 0. Additionally, we note that the
treatment of oz** in Eq. (22) is different with Eq. (C14) of
Ref. [117], since the number of independent components of 7+
is 5.

|
modified. More constraints for thermodynamic stability
would occur and the final constraints become different with
Eq. (23). For the general analysis including baryon cur-
rents, one can refer to Refs. [112,113,117,119].

IV. THERMODYNAMIC STABILITY
OF SPIN HYDRODYNAMICS

In this section, we implement the thermodynamic sta-
bility criteria (8) to the spin hydrodynamics. First, let us
briefly review the spin hydrodynamics in the canonical
form. Besides the energy momentum conservation, we also
have the conservation equations for the total angular
momentum, 1.€.,

0,0 = 0,
0,0m = (24)

where J#* and ®* are the total angular momentum tensor
and energy momentum tensor in canonical form, respec-
tively. The constitutive equations of J#* and @* are
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O = (e + P)u'u* — Pg" + 2qWu) + ¢ + o — TIA™,
J/l,ub — X/A@/Iu _ xu@/l,u + 2/1/41/7 (25)

where g, ¢** are related to the spin and X** is the spin

tensor. In the following, we will limit our considerations to

the cases where (baryon) currents vanish and, therefore, the

terms for (baryon) number density do not contribute to

constitutive relations and thermodynamic relations.
Inserting Eq. (25) into Eq. (24) yields

0,3 = 2@, (26)

The spin tensor ** is usually decomposed as [53,54]
TV = yrSHY 4 oM, (27)
where $* is named as spin density and &* is

perpendicular to the fluid velocity. We follow Ref. [54]
to consider the power counting of the spin tensor,

Analogy to charge chemical potential, one can introduce the
spin chemical potential @**, which modifies the thermody-
namic relations in the presence of spin density [53,54],

e+P=Ts+w,5",
de =Tds + w,,dS",
dP = sdT + S"dw,, . (29)

The entropy current in Eq. (11) can also be extended as
1
st = sut + ?q" - QK. (30)
The complete second order terms for the entropy current is

complicated, see e.g., Ref. [63]. For simplicity, we write
down the Q" analogy to Eq. (12),

1
QM = ﬁ u! ()(qqub +)(</)¢aﬁ¢a/} +)(HH2 +)(7r”aﬂﬂa[)’)'

(31)
s~ 0(), o ~ 0(d"). (28) " From the second law of thermodynamics, we can get
|
A (u- 0 v = a|wa,uw — TAMG, - — dwvu, + Ly 10, (%
Ty (u' )qu+q - uwo,u” — v?_ ub+§)(q P 7 qu |-
1 »
T¢A““A”ﬂ(u . a)¢aﬂ + ¢/ll/ = 275A/40£Al/ﬂ [G[auﬂ] + 2(0aﬁ - E)(d)Tap <u7) ¢aﬂ:| s (32)
I
with the transport coefficients, U, /T = b, + w,,x", (34)
T, = Mg Ty = 2475 Ay >0. (33)  where b, and w,, = —w,, are space-time independent,

The equation for ##* and II are the same as Eq. (13). We
notice that the terms proportional to y, v, on the right-hand
side of Eq. (32) differs with the constitutive equations for
g¢" and ¢*¥ in the minimal causal extended second order
theory in Ref. [96]. However, these new terms proportional
to x4, X4 Will not contribute to the causality and stability
conditions in linear mode analysis.

A. Information current for spin hydrodynamics

Considering the small perturbations around thermody-
namic equilibrium ¢ — ¢ + 6p, where ¢ = (e, u,
IT, z*, S", g*, "), we can construct the information cur-
rent E* for spin hydrodynamics. According to the definition
of E* in Eq. (6), we next consider the conserved currents.

We note that different with Eq. (18), u,60*/T is no
longer a conserved current in spin hydrodynamics due to
the nonvanishing antisymmetric part of 60*. Recalling that
u,/T is a killing vector in thermodynamic equilibrium
state, i.e., dy,(u,)/T) = 0, leading to the general solutions
for u, /T as [120]

and @, is named as the thermal vorticity in spin hydro-
dynamics in the global equilibrium [53,54]. Then, we find

ul/ v v
0, (75@ ) = —1,,00, (35)

indicating that u,60**/T is not a conserved current.
According to Eq. (26), we notice that 9,63 = —250k1,
and then construct a new conserved current u, 60"/
T - %wméff"”’, which can also be written as

uy v 1 c v 1 c
OO — S, ST = b0 — e8I (36)

The b,00"* corresponds to energy and momentum con-
servation. The —%wﬂ(,éﬂ‘/’” comes from total angular
momentum conservation. Interestingly, from Eq. (36),
the thermal vorticity w,, plays a role like the chemical
potential corresponding to the total angular momentum.
Numerous studies [53,54,58,120-122] prove that the

thermal vorticity in the global equilibrium are proportional
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to spin chemical potential,

@,y = 22 (37)

The independent currents in spin hydrodynamics are
u, 60" /T -1 w,,63° and w,,6J*°. Recalling the def-
inition (6), we assume

1
E,” — _5sﬂ + ml <u_; 5@/41/ _ Ewﬂﬁéy/)(y) + mzwpaé‘]”p”,

(38)

with two constants m; . Since the leading order of E* is
O(8%) [112,113], Eq. (38) implies that

1
S5t = m, <”_75 SO — Ewpa(gypa> + myw,, 6747, (39)

holds at order O(5). By contracting #, on both sides of
Eq. (39), we derive

1 1
B = =3 0,00 — 1, ST,

1 ¢?

:ﬁe—FP

2
(Se)*u* + C—Yféeéu” +

2T

c? 1
T(e+ P)

2
55 = T (66 = 0e65") + 2 0y (2371, 500 + 55°),

po

(40)

where the identity (37) is used. Comparison of Eq. (40)
with the thermodynamic relations (29) yields m; = 1 and
my = 0, resulting in

u 1
Er = —6sH + 7”5@’“’ — ?a)pgéi‘/‘/’ . (41)

Following the same strategy as in Sec. III, we will choose
the rest frame of the fluid without rotation and assume the
irrotational system reaches the thermodynamic equilibrium,

{¢".¢" ™. 5"} = 0. (42)
The perturbation ds in Eq. (20) becomes

1 1 2
S5 = e — —— "
T 2T e+ P

1
(6€)° = 5760557 + O(8°). (43)

With the above results and Egs. (25), (29), and (30), the
information current can be expressed as

8e3q" + —— 6w, 565 ut

2T

1 1 1 1 1
—— (e + P)u"bu,éu” + ?&tyéq”u” — ?5%54)/‘” - ?51/{‘/571"”/ + ?5H5u"

1
+ T ut (y ,6q"6q, + ){¢5¢“ﬂ Opap + xmiolISII + Py 67 yp), (44)

where we have used

u,6q" = —éu,oq",

u, 0Pt =

—Su, 5" . (45)

As a cross-check, we derive Eq. (44) by using a different approach shown in Appendix A.

Again, let us take u* = (1,0). For arbitrary n* with ny > 0 and n¥n

, = 1, we can get

2nyTE"n 2 oo 2 2 1 1 :
0 u_ % Z {571.11 __n(iguj>] +M [57711 +—6m?t + (n3éus — nléul)]
e+P  nle+P)e o n(e+ P) 2 210) x
3nlt 2 nr ‘ 1 c? 2
07522 5 Suy —2ny8 — 09 N sgi - —— ( —2—Sen; + nydu;
In(e + P) { T +3n0)(”(n3 uy +nouy —2n, uz)} +/1(e+P)Z q nory \e + P en; + noou;
2 2 10
L S (64 ———nyou; R AP 050 +3 " a;(8A;)2 + O(8), (46)
j/s<€+P) i<j nO)(qS o €+P * i—6 l l
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where the expressions for a; and 6A; are presented in
Appendix B. Next, we analyze the thermodynamic stability
in two cases: with and without viscous tensors, 7z and
ITA#¥. The main reason is as follows. In the previous study
by some of us [96], we find that there exist zero modes in
the linear mode analysis for the spin hydrodynamics with
vanishing viscous tensors. Such zero modes disappear once
we turn on the finite viscous tensors. It is questionable
whether the spin hydrodynamics can be stable and causal
with vanishing viscous tensors. Therefore, it is necessary to
study the thermodynamic stability with and without viscous
tensors separately.

B. Case I: With vanishing viscous tensors

By simply setting oz and SI1 to zero in Eq. (46), we
find that the sufficient and necessary conditions for
thermodynamic stability (8) are

1Y ATy Ty, 8w as8SYP > 0,

1- A - Ys >0,
t,(e+P) 14(e+P)
3¢+ 1)
1_0%_w>0' (47)
7,(e + P)

The last two inequalities can be rewritten as
2y'z,
(21',1 =)ty

c%(ZTq +3%)
<
2t, =X ’

0< <1,

0<

where

,_ 24 F_ Vs
e+ P’

= 49
e+ P 4 (49)

We find that the conditions (48) are exactly the same as the
causality conditions derived by linear mode analysis [96].

The stability conditions from linear mode analysis are
given by [96]

C%, ys’j'v ThsTgs Xss —Xb >0,
2z, =1 >0,
xe =0, (50)

where % and y,, y, are the spin susceptibilities with
respect to e and S%, S, i.e.,

50" = 4Vide + 1,58,
Sw'l = y5e + 3,851, (51)

The inequality 2z, > 1’ can be directly derived from the
thermodynamic stability conditions (47).

With the parametrization (51), the inequalities y;, < 0
and y, > 0 are necessary conditions for 6w(,,35S"/’ > 0 in
Eq. (47). However, y% = 0 does not arise immediately
from the thermodynamic stability conditions. In fact, the
spin susceptibility y%” introduced in Eq. (51) is a high order
correction in our setup. Let us consider the equations of
state,

e=e(T,w"), St = SH(T, ). (52)
For simplicity, let us focus on $ and ®™, and assume
other components of $* and w*” are vanishing. Since the
@™ ~O(d") is the quantum correction to the thermody-
namic variables, the equations of state can be expressed as
power series of @™ based on symmetry considerations,”

( e ) B ( an T3 alza)"yT2>< oT )
58w ) a) oV T  ayT? o™
+ O(wi, 60", w3,6T), (53)

where a;; are dimensionless constants and a;;, ay # 0.

The inverse of Eq. (53) gives

< 5T ) 1 ( a22T —(llza)XyT> < 56 >
Sw™ ) apanT* \ —ayw™  a;T? 5§
+ O(w3,be, w3, 65" ). (54)

We find that y;’ o« @. When the system reaches irrota-
tional equilibrium state shown in Eq. (42), yi’ « 6™,
therefore y;”Se ~ O(8%) are high order corrections. While
s ~ 1/(anT?) ~ O(8°) can survive. Hence, the condition
1. = O(5) does not arise from stability demand but rather
from our choice of an irrotational background.

Taking the parameterization (51) with x4 = O(5), the
inequalities y;, < 0 and y, > 0 now become equivalent to
5a),,/,v6S“/’ > 0. Consequently, in the case of I1, z#* = 0, the
thermodynamic stability conditions align with the stability
and causality conditions derived from linear mode analysis
in Ref. [96]. It also indicates that the zero modes in the
dispersion relations appeared in linear mode analysis [96]
will not lead to instabilities.

C. Case II: With finite viscous tensors

Let us consider the full form of E# shown in Eq. (44).
Imposing the thermodynamic stability conditions (8) yields

2Here, we assume the absence of characteristic or external
tensors. In other words, the system is considered “isotropic.”
Clearly, this assumption implies y;” ~ @** by considering the
antisymmetric tensor structure of y&”. If this assumption does not
hold, then y.* may be nonzero even if @ = 0.
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AV STy Ty T T =X Xs > 0, (55)

o4y 1
l————"—=——QCy—4y,) >0, 56
2, 3r, 3TH( v —4r1) (56)
/‘{/ !/
A S S} (57)
2t, 1, 7y
- (1+3c2)¥
$ 27,
2t, —c2))[4 + 7,3y —4
67,7,Tn
2+3c2)) 4 + 17,3y — 4
2_C%_( + 3¢3) _Aritn 7 (3y) h)>0’ (59)

2z, 3,7t

where we have used the parametrization (51) and the
shorthand notations (49) and

sn+¢
"= e+ P’

n
=t 60
v e+ P (60)
We now compare these conditions (55)—(59) to those
derived from linear mode analysis [96]. The causality
conditions in linear mode analysis are given by

2Tq (Y/Tzr + YJ_Tqﬁ)

0
= (2t, = X)7,7y

<1, (61)

by* + (by — by)'?

0
= 6(27, — V)t

<1, (62)

where b, , are defined as

b}/z =8y 7, +1,[2t,(3y —4y.) + 3tpc? (34 + 27,)],
by = 120?/1/(2% =)t T [Tn(37u —4yy) +4y Tl (63)

It is straightforward to show that the inequality (61) can be
derived from inequalities (55), (57). Similarly, one can
derive (62) by using inequalities (55), (59). We then
conclude that the causality in linear mode analysis is
ensured by thermodynamic stability conditions.

The stability conditions derived by linear mode analysis
are [96]

C%’A"ys’n’C’Tq’T(ﬁ’TmTﬂ’_)(bi)(s >0, (64)

2, -1 >0, (65)
by > by > 0, (66)
C2
— >0, 67
2> (67)

where the definitions of ¢, 3 are presented in Appendix C.
After performing the calculations detailed in Appendix D,
we show that the inequalities (66), (67) can be derived from
(64), (65). Consequently, the independent stability con-
ditions in linear mode analysis reduce to Egs. (64) and (65).
It is worth noting that the inequality (64) aligns precisely
with inequality (55) under the parameterization (51), while
inequality (65) can be derived from either inequality (56)
or (57).

Ourresults reveal that the stability and causality conditions
derived in linear mode analysis can indeed be derived from
thermodynamic stability conditions. However, the reverse
does not hold in the current case. For instance, the inequality
(56) cannot be derived from the causality and stability
conditions identified in linear mode analysis. Therefore,
unlike the scenarios discussed in Secs. III and IV B, the
thermodynamic stability conditions for spin hydrodynamics
involving nonvanishing components ¢#, ¢**, I1, and z** are
more stringent than those derived from linear mode analysis.

Let us discuss the above observation. A dissipative
process is called real or on shell if it satisfies the equations
of motion, otherwise, it is called virtual or off shell. Linear
mode analysis solely considers real processes, whereas
thermodynamic stability analysis encompasses both real
and virtual processes [113,123]. If there are no virtual
processes, meaning all forms of perturbations are allowed,
then the conditions derived from thermodynamic stability
analysis and linear mode analysis coincide, as the cases in
Secs. III and IV B. However, in the presence of virtual
processes, additional conditions emerge from thermody-
namic stability analysis and are invisible in linear mode
analysis. Consequently, the thermodynamic stability are
more stringent compared to linear-mode stability. This
implies that the thermodynamic stability analysis for spin
hydrodynamics with viscous tensors may involve virtual
processes that are not allowed by linearized hydrodynamic
equations. A systematic verification of this statement is left
for our future work.

In Ref. [96], it was found that the conditions derived
from linear mode analysis might be necessary but are not
sufficient to ensure stability. In contrast, the thermody-
namic stability criteria (8) are both necessary and sufficient
for ensuring stability. The reasoning is as follows.

Clearly, the thermodynamic stability criteria (8) are
necessary to uphold the fundamental laws of stability,
specifically the second law of thermodynamics and the
principle of maximizing total entropy in the equilibrium
state. On the other hand, the functional E[S¢] defined
in Eq. (7) is positive definite and nonincreasing in time
when the criteria (8) are fulfilled. Then E[6¢p] can be
interpreted as a Lyapunov functional, which is sufficient to
guarantee the stability of the corresponding linearized
hydrodynamic equations [113,124,125]. Therefore, we
argue that the unstable modes identified in Ref. [96] would
disappear if we adopt the conditions from thermodynamic
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stability (55)—(59). A rigorous proof of this assertion will
require more general discussions on the structure of
linearized hydrodynamic equations and will be presented
elsewhere.

V. CONCLUSION

In this work, we have applied thermodynamic stability
analysis to derive the stability and causality conditions for
conventional relativistic viscous hydrodynamics and spin
hydrodynamics.

As a test, we first derived the thermodynamic stability
conditions in Eq. (23) for second-order relativistic viscous
hydrodynamics without (baryon) currents and heat currents.
We found that these conditions are consistent with those
derived from linear mode analysis in Refs. [90,91,118].

We next studied the thermodynamic stability of minimal
causal extended second-order spin hydrodynamics in
canonical form, both with and without viscous tensors.
In the absence of viscous tensors, the constraints derived
from thermodynamic stability analysis exactly match those
obtained from linear mode analysis. This indicates that the
zero modes found in the linear mode analysis will not affect
the causality and stability of the spin hydrodynamics in
this case.

As another important observation, we also note that the
inequality 5a)a/;(3S“ﬂ > 0 in Eq. (47) can be satisfied by
adopting physical equations of state. The spin susceptibil-
ities with respect to energy density, y4”, are found to be
~QO(6) and therefore can be neglected in the current setup.
This finding could help us understand the unstable modes
identified in Ref. [96] when the asymptotic stability
conditions are met in the linear modes analysis.

We then derive the thermodynamic stability conditions in
Eqgs. (55)-(59) for spin hydrodynamics in the presence of
viscous tensors. These conditions are consistent with the
causality conditions derived from linear mode analysis and
are more stringent than the stability conditions found in
linear mode analysis. Our studies suggest that the con-
ditions derived from thermodynamic stability analysis can
guarantee both causality and stability in linear mode
analysis.

In the current studies, we have only considered irrota-
tional spin hydrodynamics. The inclusion of a rotating
background will affect the analysis, as noted in Ref. [98],
and should be studied systematically in future work.
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APPENDIX A: ANOTHER APPROACH
TO DERIVE THE INFORMATION CURRENT
FOR SPIN HYDRODYNAMICS

Here we employ the method used in Ref. [119] (see
also the Supplemental Material of Ref. [113]) to derive
the information current (44) for spin hydrodynamics. This
method is based on the fact that the function ¥, defined in
Eq. (5), should be maximized in the equilibrium state. We
now introduce € to characterize a smooth one-parameter
family of solutions to hydrodynamic equations, where only
6 = 0 corresponds to the equilibrium state. Then ¥ = ¥(6)
is a function of €. Since ¥ is maximized in the equilibrium
state, we have

(A1)

where the dot represents the derivative with respect to 6.
Given an arbitrary three-dimensional spacelike Cauchy
surface X with the future-directed and timelike normal unit
vector n#, we can express ¥ as ¥ = [ dZn,y*, with the
current y* = y* () given by

RN (A2)
a

Due to arbitrariness of the Cauchy surface %, Eq. (Al)
implies that

(A3)

and y#(0) is past directed and nonspacelike. For small 6,
the information current E* can be derived through
[113,119]

1
B = ——0%*(0).

. (A4)

To calculate the information current E* using Eq. (A4),
let us first construct the current y*. According to the
discussion in Sec. IVA, there are two independent con-
served currents,

1
K, O 4 3 0K 27, &l (AS)
where «* is a killing vector and &, is an antisymmetric
constant tensor. The general form for y* is

1
Yyt = s# — Kk, OH — EaL,,K(,}W“ =&, 0. (A6)

By introducing another killing vector
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ﬂv =K, + zépuxp’

the expression (A6) can be equivalently written as
l//” = s —/)) @‘U——l (3[/)/)) ]z‘ﬂpa'
v D) c

Substituting the constitutive equations (25) into it, we obtain

1 1
W= s (et P I = 3047 = K|k (P = (B =) = (@ ),

where
K = 1 v af H2 af
_ﬁ()(qq qv +Z¢¢ ¢aﬂ +xn + X7 ”aﬂ)-
The next step is to impose the constraint (A3) on yw*. We find
, . 1 . .
Yt = {s —(e+P+ID)Bu —(e+ P+1)pu" — Eaboﬂ,,]S”" + 4B, — IC} ut
1
+ |:S - (e +P+ H)ﬂyl’tb - za[ﬁﬁrf]spa + qyﬂu - K{| i
L . 1 . 1. . )
+ (P +1IDp — g pu” — 7)) q" | pu* + FT — (" + 7")B,.

Note that here u* and #* are independent, and this is true for other variables. The constraint (A3) demands

u 2
?y = ﬁyv ?wpﬂ e —a[pﬂo_]’ H’ qﬂ’ ¢MV’ ”/41/ e O’

in the equilibrium state. These conditions are exactly the same as those from entropy current analysis [53,54].

With the equilibrium conditions (A12), we can get

Ly ey o ay A b
u,it’ = u,u", u,q" =0, u,q" = -2u,4",

q.sm/uu = _2¢”yuy» ﬁﬂyuy = _27'1—”1/1;{”.
The thermodynamic relations (29) give
e =T5+ 0,8 + T 5+, 5.

With the help of these identities (A13), (A14), we derive

. 1., 1. . 1 . 2. 1 . Y ab . e
G(0) = |5 T8+ S = o (e + Phinyid + i 4" | = = (xgq" 4y + 24 Pbap + amll? + a7t i)
2 . .2 2. 2
— (P — 5§ T+ i, + it

Notice that, for small 8, the quantity 6¢ represent the small perturbation around the equilibrium state, i.e.,

o = 0¢,

(A7)

(A8)

(A10)

(Al1)

(A12)

(A13)

(A14)

(A15)

(A16)

where ¢ stands for the hydrodynamic variables T, s, I, u#, ¢*, etc. Hence, the information current from Eq. (A4) can be

expressed as
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1|1 1 1 2
Bt = 7 ?5T53 + TéwpaéS/’" -7 (e + P)ou,6u” + Tﬁu,ﬁq” ut

1
+ 3T (2409 6q, + )(¢5¢“ﬂ5¢aﬂ + yuOlISI + y,.672% O ) U

1 1 1 1
—(SP 4 SIDSut - — Sa'ST — — S Su. — — Sri? 3. Al
+T(5 + 6IT)6u +T25q 0 T6qb éu, Tﬁﬂ du, + O(5) (A17)

The formula (A17) works for both rotational and irrotational background.
In an irrotational background where @, S$*¥ = 0, we have

1
5s = — e + O(8%),

T

5P = c28e + O(8),
T

0T =—_5§ 5%). Al8
ST g + 0@ (a18)

Plugging Eq. (A18) into Eq. (A17), we obtain the same information current as Eq. (44).

APPENDIX B: EXPRESSIONS FOR a; AND 6A4; IN EQS. (22), (46)

Here, we present the expressions for a; and 0A; in Egs. (22), (46),

a; = ag = K:_]Tn(e + P),
1

a, = ,
2 [1+C1n%+C2(n%+n§)]
. 1+ Cy(nf + n3 + n3)
P+ G +nd) + O]l + Cind + Cy(n3 + nd)]
B 1+ Cy(n} +n3 +nj)
TN+ G+ G+ 2+l
1(ny +ny 2713 1(ny +ny +n3
1+ (Cy - c?)(n% + n% + n%)
as = 2 . 2 2 )
1 + Cy(ny + n3 + n3)
1
a; = 2 2 2N
e — C3+C5(n%+n%+n%)
TG+ G+ m3) + Csn3][Cs + Cyni 4 Cs(n3 + n3)]’
o — C3+C5(f’l%+n%+n§)
PTG+ Cu(nF +nd) + Csn3)[C3 + Cy(nf + n3 +n3)]’
= {Cy = c5[(C3 = 2)* = (C3 = 1)Cyl}(n] + n3 4 n3)? n [C3 4+ Cy + (3C5 — 4)c5](nf + n3 + n3) + Cs (BI)

n3[Cs + Cy(ni + n3 + nj3)] n§[Cs + Cu(ni + n3 + nj3)]

and
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n ¢
5A1 = 5A6 = v _i_OP5H - W (n15u1 + I’lz5ll2 + 7’1351/{3),

2 2 2 cinony
5A2 = [1 + C]fll + Cz(l’lz + l’l3 ]5”] + (C] - Cz)l’l] (n26u2 + n35u3) - et P 66,

C§"0”2
8A; = [1 4+ C\(n? + n}) + Cyn3|du, + (C; — Cy)nynsdus — P Se,
2

SA4 = [1+ Cy(n} + n} + n3)|dus — Cs’j:r;f de,

Cc.n
SAs = 8A 1) = ——2 e,

5 0= s e

(C3 - 2)03”1”0

de,
e+ P

6A7 = [C3 + Cyni + Cs(n3 + n3)|6u; + (Cy = Cs)ny (npuy + nzdus) +
(C3 =2)cinyng

8Ag = [C3 + Cy4(n? + n3) + Csn3louy + (Cy — Cs)nansdus + > de,
Cy —2)cinsn
6Ag = [C3 + Cy(nf + nj + n3)|ous + uﬁ#&’ (B2)
where we have defined
4 ¢
Ci=1- - :
! 3t.(e +P) e+ P)
n
C=1-—
: 7.(e + P)
A
C=1-——"
} ,(e + P)
y) 4n ¢
C,=1- _ - ,
t,(e +P) 3t,(e+P) t(e+P)
A
Cs=1- S — (B3)

t,(e +P) (e +P) 14(e+P) ’

APPENDIX C: EXPRESSIONS FOR c¢,; IN INEQUALITY (67)

The expressions for ¢, 3 in the inequality (67) are given by

- by? £ (by = by or - b & (b — b))
! 6(2z, — )t 6(2z, — V)t

¢y = =3¢i2e,t + (21, = ¥) (7, + )] + {6y 7, + (67 = 8y1)7,
+ 8y + 3¢5 20, + (34 + 2¢,) (7 + )} — 3¢y A
c3 = =252 [y — 4y 1)t + 4y 17n) — 18¢t(2z, — V)1t
+4ct[3ci(3X + 27,) T, + 203y — 4y 1)t 7, + 8y it Tnl. (C1)

Note that here we have set % = 0, but the corresponding formulas in Ref. [96] contain nonzero y%°.

APPENDIX D: DERIVE INEQUALITIES (66), (67) FROM (64), (65)

In this appendix, we will show that the inequalities (66), (67) can be derived from (64), (65). In the following calculations,
we adopt the notations (49), (60), in which we have
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3}/H —4}@_ > 0. (Dl)

The inequalities (65), (D1) will be frequently used.
For the inequality (66), we note that

by = 126%/1/(2111 — M)t [Tn(37|| —dy,) +4yinl,
bl - bz == 9(31/ + 27:51)2'1',211'12—16';t + 47/',2][(3]/“ - 43@)7;: + 4VLTH]2
+12(2% + N, + ZT%I)T”TH[(?J)/H — 4y ), + 4y Tl (D2)

Using (64), (65), (D1), we find that b, > 0 and b; — b, > 0, proving the inequality (66).
To show the inequality (67), it is equivalent to show c,c3 > 0. Straightforward calculation gives

crc3 = fo =+ f1(b —b2)1/2» (D3)
where
fo=533 : 3f(()l)f(()2)v
97,17 (27, = A')
fi= WZ—N A7+ AP+ e + ) (D4)
with

£ =160,y n[Bcen (A% + 7,4 + 222) + 2(3y) — 4y )72] + 9cie2A (34 + 22,)?
+ 122220 By — 4y 1) (A2 + 7,4 + 202) + 40202 3y — 4y 1) + 64y o2,
FY = 126N (31 + 22,) + 642 Tty (1,2 + 7,4+ 222) + 122,78y (22, + A) (422 — 27 + 82z,)
+ 43y — 4y ) oty N + 7,20, = V)] + By — 4y )t {3citamn (20, + ) 47y — A2 + 8X'1y)
+ 16y 7,7,20 1y + 7,(27, — X)] + 16y  tn72 (27, — X))},
f&m =874y (zn—7,) + 37n7’\\}2{47¢7121[/117n +1,(2z, =) + /VTzerH(3YH —d4y,)+ Tzzqu(37’|| —4y,)(2r, =)},
£ = 6t,mnlea By = 4r1) + 4y el {723y — 4y ) 22 en (A% + 51,2 + 1022) + 423 (4 + 4e,) — 3037,
+ 4y L TH 22 T, (A% + 57,4 4 1022) + 473 (X + 47,) — 3477, ]},
£ =72y = 4y )7, + ey |22 (542 + 1027, + 822)
+9[(3y = 4rL)z +Avqy Jren (20, — A) (20, + X)) (32 + 21,),
£ = 2160744, (34 + 27,)2. (D5)

From the inequalities (64), (65), (D1), we have
fo>0. (D6)
Next we calculate
fo = Fi(by = by) = (g0 + 9265 + 64¢5)G, (D7)

where
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427}
C=533 = 7
97,17 (27, — A')

=23y — 4r1) + 4oy {ef[487,cdy | (A7 + 7,(A+ 22,)) 4+ 972cf (BA + 27,)% + 6477 7]

+ 4zt 3y — 4y L) Braci (P 4 14(A 4 27,)) + 8y wg]+4ezeg By — 4v.)*}

9o = Hy Ve, + 720, = X)) + 12[z, (27, = ) + V2] By — 4yL) Ay Lon + 7By = 4r L)%,

G = 247133y — 4y )y L ThH[AA? + 160t + (21, — A)?] + 967,77 th (442 + (27, — X)) + 48y o1y (27, + V) (27, — X)
+ 7682y tatfy + 24y 1oty By — 4y ) [447 + (20, — X)) + 24y g By — 4y 1) Qe + X)) (27, = X)
+ 67573y — 4y )44 + 84t + (27, — X)) + 3723y — 4y 1 )* (27, + 4)* (27, — '),

ga = 122 taef {4y 1t (BX + 27, + 22,) + w23y — 4y )[(BX + 27,) + 27n]}. (D8)

Again, we can find from the inequalities (64), (65), (D1) that

G’ 90,92, 94 > Ov (D9)

which leads to

fo—filbr =

Combing the results (D6) and (D10), we obtain

crcs = fo £ f1(by — by)'/2 >0,

or the equivalent form, ¢,/c; > 0, i.e., the inequality (67).

by) > 0.

(D10)

(D11)
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