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We have applied thermodynamic stability analysis to derive the stability and causality conditions for
conventional relativistic viscous hydrodynamics and spin hydrodynamics. We obtain the thermodynamic
stability conditions for second-order relativistic hydrodynamics with shear and bulk viscous tensors,
finding them identical to those derived from linear mode analysis. We then derive the thermodynamic
stability conditions for minimal causal extended second-order spin hydrodynamics in canonical form, both
with and without viscous tensors. Without viscous tensors, the constraints from thermodynamic stability
exactly match those from linear mode analysis. In the presence of viscous tensors, the thermodynamic
stability imposes more stringent constraints than those obtained from linear mode analysis. Our results
suggest that conditions derived from thermodynamic stability analysis can guarantee both causality and
stability in linear mode analysis.
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I. INTRODUCTION

In relativistic heavy ion collisions, two nuclei are
accelerated to speeds close to that of light, collide with
each other, and generate a hot and dense matter known as
the quark-gluon plasma (QGP) [1–4]. The evolution of the
QGP is well described by relativistic hydrodynamics.
Relativistic hydrodynamics serves as amacroscopic effective
theory for relativistic many-body systems in the long-wave-
length and low-frequency limit. The main equations of
relativistic hydrodynamics are the conservation equations
for the energy-momentum tensor and other conserved
currents in the gradient expansion, e.g., the Israel-Stewart
theory [5,6], the extended Baier-Romatschke-Son-Starinets-
Stephanov theory [7], the Denicol-Niemi-Molnar-Rischke
theory [8], and the more recently established Bemfica-
Disconzi-Noronha-Kovtun theory [9–13]. For additional
studies and developments, we refer the reader to the recent
review papers [14,15] and the references therein.
In the early stages of noncentral collisions, the nuclei

possess a huge initial orbital angular momentum, on the
order of 107ℏ. This initial orbital angular momentum is
transferred to the spin polarization of quarks and sub-
sequently to the final-state particles through spin-orbital
coupling. This mechanism leads to the spin polarization of
Λ and Λ̄ hyperons and the spin alignment of vector mesons
[16–18]. The STAR collaboration has observed both the

global and local polarization of Λ and Λ̄ hyperons [19,20],
as well as the spin alignment of ϕ and K0;� mesons [21].
On the theoretical side, the global polarization can

be well described by various phenomenological models
[22–34] through the combination of the modified Cooper-
Frye formula [35,36] with hydrodynamic simulations
under the assumption that the system is close to global
equilibrium. To understand local polarization, effects
beyond global equilibrium, such as shear-induced polari-
zation [37–44], spin Hall effects [34,45,46], weak magnetic
fields induced polarization [47] and the corrections due to
the interactions between quarks and back ground fields [48],
need to be considered. Although hydrodynamic simulations
can qualitatively describe local polarization as functions of
azimuthal angle, understanding the dependence on centrality
and transverse momentum remains challenging [20,49,50].
Therefore, it is necessary to consider the evolution of
spin during collisions. Recently established spin hydro-
dynamics, which integrates the total angular momentum
conservation equation with conventional relativistic hydro-
dynamic equations, has been developed from various theo-
retical frameworks, such as from effective action [51,52],
entropy principle [53–63], kinetic theory [64–80], hologra-
phy [81,82], and quantum statistics [83]. For recent reviews
on this topic, see Refs. [84–86].
As a fundamental requirement, both conventional relativ-

istic hydrodynamics and spin hydrodynamics must exhibit
causality and stability. In pioneering works [87,88], linear
mode analysis was implemented to study the causality and
stability of hydrodynamic systems. Through linear mode
analysis, the causality and stability conditions for various
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types of hydrodynamics are derived [87–101]. These con-
ditions establish inequalities that constrain the range of
transport coefficients. Recently, it was found that the conven-
tional causality criterion [102] used in linearmode analysis is
insufficient to guarantee causality. Consequently, several
studies [103–108] have proposed new causality criteria that
also explore the deep connection between causality and
stability [13,107,109].
Very recently, Ref. [96] has systematically studied the

causality and stability for the minimal extended second-
order spin hydrodynamics in the linear mode analysis.
Later, Ref. [101] also investigates the impact of other
second-order terms. It was revealed that the system appears
to be unstable at finite wavelengths, even though it satisfies
asymptomatic stability conditions derived for both large
and small wavelengths [96]. To address this issue, it is
essential to explore the stability of spin hydrodynamics
through an alternative approach.
In this work, we apply thermodynamic stability analysis

[110–113], which is grounded in the second law of
thermodynamics and the principle of maximizing total
entropy in equilibrium states [114], to spin hydrodynamics.
We will derive stability conditions from this thermody-
namic stability analysis and compare them with those
obtained through linear mode analysis.
The structure of this paper is organized as follows: In

Sec. II, we briefly review thermodynamic stability analysis.
Next, we apply this analysis to conventional relativistic
viscous hydrodynamics as a test case in Sec. III. In Sec. IV,
we analyze the thermodynamic stability conditions for spin
hydrodynamics and compare the results with those
obtained from linear mode analysis. We conclude with a
summary in Sec. V.
Throughout this work, we choose the metric gμν ¼

diagfþ;−;−;−g and define the projector Δμν ¼
gμν − uμuν with uμ being the fluid velocity. For an arbitrary
tensor Aμν, we introduce the notations AðμνÞ ¼
1
2
ðAμν þ AνμÞ, A½μν� ¼ 1

2
ðAμν−AνμÞ, and Ahμνi≡ 1

2
½ΔμαΔνβþ

ΔμβΔνα�Aαβ− 1
3
ΔμνðΔαβAαβÞ.

II. BRIEF INTRODUCTION TO THE
THERMODYNAMIC STABILITY

In this section, we briefly review the main idea in
Ref. [113]. Consider an isolated system near thermody-
namic equilibrium, consisting of a fluid connected to a
sufficiently large heat-particle bath. According to the
second law of thermodynamics, the entropy of the entire
system, S, must not decrease, i.e., the variation of entropy
ΔS follows:

ΔS ¼ ΔSF þ ΔSB ≥ 0; ð1Þ

where SF;B stand for the entropy for fluid and bath,
respectively. Equation (1) is the original condition for
the thermodynamic stability.
Now, let us consider conserved quantities Qa and their

thermodynamic conjugates αa in the system, where a ¼
1; 2;… label different conserved quantities. For example, if
the total number is conserved, thenQ andα correspond to the
total number and μ=T, respectively, with μ and T being the
chemical potential and temperature.While, if the total energy
is conserved, Q and α are total energy and −1=T, respec-
tively. Then, the variation of entropy can be expressed as

dS ¼ −
X
a

αadQa: ð2Þ

TheQa can be divided as the part for fluidQa
F and the one for

the bath Qa
B, with the following relationship:

dQa
B ¼ −dQa

F: ð3Þ
Then the variation of total entropy becomes

ΔS ¼ ΔSF þ
X
a

αaBΔQa
F ≥ 0: ð4Þ

If defining

Ψ≡ SF þ
X
a

αaBQ
a
F; ð5Þ

then Eq. (4) implies that the functionΨ should bemaximized
in the equilibrium state.
One can also define the information current Eμ as

Eμ ≡ −δsμF −
X
a

αaFδJ
a;μ
F ; ð6Þ

where sμF is the entropy current of the fluid and Ja;μF is the
conserved current associated with Qa

F, and the symbol δ
denotes the small perturbations from the thermodynamic
equilibrium state.
Given that the whole system is near thermodynamic

equilibrium and the heat-particle bath is sufficiently large,
we can assume that the chemical potential and temperature
in the fluid are equal to those in the bath, i.e., αaF for the
fluid is approximately equal to αaB in the bath. Under this
assumption, αaFδJ

a;μ
F can be simplified to δðαaJa;μF Þ, where

we do not distinguish between αaF in the fluid and αaB in the
bath. Consequently, Eq. (4) can be further written as

E≡
Z

dΣEμnμ ≥ 0; ð7Þ

holds for an arbitrary spacelike three-dimensional surface Σ
and its timelike and future-directed normal unit vector nμ.
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If the thermodynamic equilibrium state is unique, i.e.,
determined solely by the thermodynamic variables,
then from Eq. (7) and the definition of Eμ in Eq. (6),
the information current Eμ must satisfy the following
conditions:

ðiÞ Eμnμ ≥ 0 for any nμ with n0 > 0; nμnμ ¼ 1;

ðiiÞ Eμnμ ¼ 0 if and only if all perturbations are zero;

ðiiiÞ ∂μEμ ≤ 0: ð8Þ

As a remark, the conditions in Eq. (8) can be treated as
criteria of thermodynamic stability [113]. It has also been
found that these criteria in Eq. (8) can guarantee the
causality of the system [113]. Moreover, when all these
conditions are satisfied in one inertial frame of reference,
the thermodynamic stability conditions in Eq. (1) are
assured across all inertial frames of Refs. [107,109].
These criteria provide us with a novel tool for analyzing
the stability and causality of the system.

III. THERMODYNAMIC STABILITY
OF THE SECOND ORDER

VISCOUS HYDRODYNAMICS

In this section, we implement the thermodynamic sta-
bility criteria (8) to the relativistic second order viscous
hydrodynamics in the gradient expansion. It can be
considered as an example to show the connection between
the constraints from the thermodynamic stability and
conventional linear mode analysis. For convenience, we
focus on the quantities for fluid and omit all the lower index
F from now on.
The energy momentum conservation equation reads

∂μTμν ¼ 0; ð9Þ

and the energy momentum tensor in the Landau or energy
frame is given by [115]

Tμν ¼ ðeþ PÞuμuν − Pgμν þ πμν − ΠΔμν; ð10Þ

where e; P; πμν;Π are energy density, pressure, shear
viscous tensor, and bulk pressure, respectively. Note that
the net baryon number density of the QGP produced in
relativistic heavy ion collisions is negligible [116]. For
simplicity, the following discussions are limited in the cases
where (baryon) currents vanish.
In order to compare the constraints from thermodynamic

stability and linear mode analysis, we choose the minimal
extension of second order viscous hydrodynamics [89].
The corresponding entropy current is given by

sμ ¼ suμ −Qμ þOð∂3Þ; ð11Þ

where Qμ stands for the possible corrections from the
second order. Following Refs. [5,6], we take

Qμ ¼ 1

2

uμ

T
ðχΠΠ2 þ χππ

ρσπρσÞ; ð12Þ

as an example. Then the entropy principle ∂μsμ ≥ 0 gives
the constitutive equations for πμν and Π as below,

τΠðu · ∂ÞΠþ Π

¼ −ζ
h
∂μuμ þ

1

2
χΠT∂ρðuρ=TÞΠ

i
;

τπΔα<μΔν>βðu · ∂Þπαβ þ πμν

¼ 2η
h
∂
hμuνi −

1

2
χπT∂ρðuρ=TÞπμν

i
; ð13Þ

where

ζ; η > 0; ð14Þ

and

τΠ ¼ ζχΠ; τπ ¼ 2ηχπ: ð15Þ

For the more comprehensive discussions on the second
order theories, we refer to Refs. [5,6]. Later, we will
compare our results from thermodynamic stability with
those from linear mode analysis [90,91]. The terms propor-
tional to χΠ; χπ on the right-hand side of Eq. (13) do not
appear in the constitutive equations in Refs. [90,91], but
these terms will not contribute to the causality and stability
conditions in linear mode analysis.
Next, we choose local rest frame uμ ¼ ð1; 0Þ and assume

the fluid reaches the thermodynamic equilibrium state, in
which Π and πμν are zero. For the macroscopic variables
φ ¼ ðe; uμ;Π; πμνÞ, we consider the perturbations near the
thermodynamic equilibrium, δφ. We can expand the
system in the power series of δφ. By using the following
relationship,

uμδuμ ¼ −
1

2
δuμδuμ;

uμδπμν ¼ −δuμδπμν;

δπμμ ¼ 0; ð16Þ
we find

δui; δπij ∼OðδÞ;
δu0; δπ0i ∼Oðδ2Þ;

δπ00 ∼Oðδ3Þ: ð17Þ
With the help of Eq. (11), the information current is then
given by [112,113]
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Eμ¼−δsμþuν
T
δTμν;

¼uμ
�
δe
T
−δs

�
þ 1

T
δuμδPþ1

2

uμ

T
ðχπδπαβδπαβþχΠδΠδΠÞ

−
1

2T
ðeþPÞuμδuνδuν−

1

T
δuνδπμνþ

1

T
δuμδΠþOðδ3Þ:

ð18Þ

By using the thermodynamic relations,

ds ¼ 1

T
de; dP ¼ sdT; ð19Þ

we find that

δs ¼ 1

T
δeþ 1

2

∂
2s
∂e2

ðδeÞ2 þOðδ3Þ;

¼ 1

T
δe −

1

2T
δP

eþ P
δeþOðδ3Þ;

¼ 1

T
δe −

1

2T
c2s

eþ P
ðδeÞ2 þOðδ3Þ; ð20Þ

where c2s is the speed of sound. Then, Eμ can be further
simplified,

Eμ ¼ 1

2T
uμc2s
eþ P

ðδeÞ2 þ c2s
T
δuμδe −

1

2T
ðeþ PÞuμδuνδuν

−
1

T
δuνδπμν þ

1

T
δuμδΠ

þ 1

2T
uμðχπδπαβδπαβ þ χΠδΠδΠÞ: ð21Þ

Let us now impose the three conditions (8) on Eμ. From
the definition (6), we have ∂μEμ ¼ −∂μδsμ, so that the
condition (iii) in Eq. (8) leads to the inequality (14), which
is consistent with the requirement from the conventional
entropy principle. To analyze the constraints from the
conditions (i) and (ii) in Eq. (8), we introduce an arbitrary
timelike future-directed vector nμ with n0 > 0; nμnμ ¼ 1.
After some tedious and straightforward calculations, we
obtain

2n0TEμnμ
eþ P

¼ n20τπ
ηðeþ PÞ

X
i<j

�
δπij −

1

n0χπ
nðiδujÞ

�
2

þ n20τπ
ηðeþ PÞ

�
δπ11 þ 1

2
δπ22 þ 1

2n0χπ
ðn3δu3 − n1δu1Þ

�
2

þ 3n20τπ
4ηðeþ PÞ

�
δπ22 þ 1

3n0χπ
ðn3δu3 þ n1δu1 − 2n2δu2Þ

�
2

þ
X5
i¼1

aiðδAiÞ2; ð22Þ

where the exact expressions for ai and δAi can be found in
Appendix B. Imposing the conditions (i) and (ii) in Eq. (8)
leads to1

c2s ; τπ; τΠ > 0;

1 − c2s −
4η

3τπðeþ PÞ −
ζ

τΠðeþ PÞ > 0; ð23Þ

which are exactly the same as those derived from linear
mode analysis in the previous literature [90,91,118].
In general, if the baryon or other conserved current is

considered, e.g., jμ ¼ nuμ þ νμ with n and νμ being
number density and diffusive current, the independent
fields become φ ¼ ðe; uμ;Π; πμν; n; νμÞ [119]. In these
cases, the thermodynamic relations (19), constitutive rela-
tions (11)–(13), and information current (18) will be

modified. More constraints for thermodynamic stability
would occur and the final constraints become different with
Eq. (23). For the general analysis including baryon cur-
rents, one can refer to Refs. [112,113,117,119].

IV. THERMODYNAMIC STABILITY
OF SPIN HYDRODYNAMICS

In this section, we implement the thermodynamic sta-
bility criteria (8) to the spin hydrodynamics. First, let us
briefly review the spin hydrodynamics in the canonical
form. Besides the energy momentum conservation, we also
have the conservation equations for the total angular
momentum, i.e.,

∂λJλμν ¼ 0;

∂μΘμν ¼ 0; ð24Þ

where Jλμν and Θμν are the total angular momentum tensor
and energy momentum tensor in canonical form, respec-
tively. The constitutive equations of Jλμν and Θμν are

1In this work, we assume eþ P > 0, while Ref. [117] also
explores cases where eþ P < 0. Additionally, we note that the
treatment of δπμν in Eq. (22) is different with Eq. (C14) of
Ref. [117], since the number of independent components of δπμν
is 5.
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Θμν ¼ ðeþ PÞuμuν − Pgμν þ 2q½μuν� þ ϕμν þ πμν − ΠΔμν;

Jλμν ¼ xμΘλν − xνΘλμ þ Σλμν; ð25Þ

where qμ;ϕμν are related to the spin and Σλμν is the spin
tensor. In the following, we will limit our considerations to
the cases where (baryon) currents vanish and, therefore, the
terms for (baryon) number density do not contribute to
constitutive relations and thermodynamic relations.
Inserting Eq. (25) into Eq. (24) yields

∂λΣλμν ¼ −2Θ½μν�: ð26Þ

The spin tensor Σλμν is usually decomposed as [53,54]

Σλμν ¼ uλSμν þ σλμν; ð27Þ

where Sμν is named as spin density and σλμν is
perpendicular to the fluid velocity. We follow Ref. [54]
to consider the power counting of the spin tensor,

Sμν ∼Oð∂0Þ; σλμν ∼Oð∂1Þ: ð28Þ

Analogy to charge chemical potential, one can introduce the
spin chemical potential ωμν, which modifies the thermody-
namic relations in the presence of spin density [53,54],

eþ P ¼ Tsþ ωμνSμν;

de ¼ Tdsþ ωμνdSμν;

dP ¼ sdT þ Sμνdωμν: ð29Þ
The entropy current in Eq. (11) can also be extended as

sμ ¼ suμ þ 1

T
qμ −Qμ: ð30Þ

The complete second order terms for the entropy current is
complicated, see e.g., Ref. [63]. For simplicity, we write
down the Qμ analogy to Eq. (12),

Qμ ¼ 1

2T
uμðχqqνqν þ χϕϕ

αβϕαβ þ χΠΠ2 þ χππ
αβπαβÞ:

ð31Þ
From the second law of thermodynamics, we can get

τqΔμνðu · ∂Þqν þ qμ ¼ λ

�
uρ∂ρuμ − TΔμν

∂ν
1

T
− 4ωμνuν þ

1

2
χqT∂ρ

�
uρ

T

�
qν

�
;

τϕΔμαΔνβðu · ∂Þϕαβ þ ϕμν ¼ 2γsΔμαΔνβ

�
∂½αuβ� þ 2ωαβ −

1

2
χϕT∂ρ

�
uρ

T

�
ϕαβ

�
; ð32Þ

with the transport coefficients,

τq ¼ −λχq; τϕ ¼ 2χϕγs; λ; γs > 0: ð33Þ

The equation for πμν and Π are the same as Eq. (13). We
notice that the terms proportional to χq;χϕ on the right-hand
side of Eq. (32) differs with the constitutive equations for
qμ and ϕμν in the minimal causal extended second order
theory in Ref. [96]. However, these new terms proportional
to χq; χϕ will not contribute to the causality and stability
conditions in linear mode analysis.

A. Information current for spin hydrodynamics

Considering the small perturbations around thermody-
namic equilibrium φ → φþ δφ, where φ ¼ ðe; uμ;
Π; πμν; Sμν; qμ;ϕμνÞ, we can construct the information cur-
rent Eμ for spin hydrodynamics. According to the definition
of Eμ in Eq. (6), we next consider the conserved currents.
We note that different with Eq. (18), uνδΘμν=T is no

longer a conserved current in spin hydrodynamics due to
the nonvanishing antisymmetric part of δΘμν. Recalling that
uμ=T is a killing vector in thermodynamic equilibrium
state, i.e., ∂ðμðuνÞ=TÞ ¼ 0, leading to the general solutions
for uμ=T as [120]

uμ=T ¼ bμ þϖμνxν; ð34Þ

where bμ and ϖμν ¼ −ϖνμ are space-time independent,
and ϖμν is named as the thermal vorticity in spin hydro-
dynamics in the global equilibrium [53,54]. Then, we find

∂μ

�
uν
T
δΘμν

�
¼ −ϖμνδΘ½μν�; ð35Þ

indicating that uνδΘμν=T is not a conserved current.
According to Eq. (26), we notice that ∂μδΣμρσ ¼ −2δΘ½μν�,
and then construct a new conserved current uνδΘμν=
T − 1

2
ϖρσδΣμρσ, which can also be written as

uν
T
δΘμν −

1

2
ϖρσδΣμρσ ¼ bνδΘμν −

1

2
ϖρσδJμρσ: ð36Þ

The bνδΘμν corresponds to energy and momentum con-
servation. The − 1

2
ϖρσδJμρσ comes from total angular

momentum conservation. Interestingly, from Eq. (36),
the thermal vorticity ϖμν plays a role like the chemical
potential corresponding to the total angular momentum.
Numerous studies [53,54,58,120–122] prove that the
thermal vorticity in the global equilibrium are proportional
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to spin chemical potential,

ϖρσ ¼
2ωρσ

T
: ð37Þ

The independent currents in spin hydrodynamics are
uνδΘμν=T − 1

2
ϖρσδΣμρσ and ϖρσδJμρσ. Recalling the def-

inition (6), we assume

Eμ ¼ −δsμ þm1

�
uν
T
δΘμν −

1

2
ϖρσδΣμρσ

�
þm2ϖρσδJμρσ;

ð38Þ

with two constants m1;2. Since the leading order of Eμ is
Oðδ2Þ [112,113], Eq. (38) implies that

δsμ ¼ m1

�
uν
T
δΘμν −

1

2
ϖρσδΣμρσ

�
þm2ϖρσδJμρσ; ð39Þ

holds at order OðδÞ. By contracting uμ on both sides of
Eq. (39), we derive

δs ¼ m1

T
ðδe − ωρσδSρσÞ þ

2m2

T
ωρσð2xρuμδΘμσ þ δSρσÞ;

ð40Þ

where the identity (37) is used. Comparison of Eq. (40)
with the thermodynamic relations (29) yields m1 ¼ 1 and
m2 ¼ 0, resulting in

Eμ ¼ −δsμ þ uν
T
δΘμν −

1

T
ωρσδΣμρσ: ð41Þ

Following the same strategy as in Sec. III, we will choose
the rest frame of the fluid without rotation and assume the
irrotational system reaches the thermodynamic equilibrium,

fqμ;ϕμν;ωμν; Sμνg ¼ 0: ð42Þ

The perturbation δs in Eq. (20) becomes

δs ¼ 1

T
δe −

1

2T
c2s

eþ P
ðδeÞ2 − 1

2T
δωαβδSαβ þOðδ3Þ: ð43Þ

With the above results and Eqs. (25), (29), and (30), the
information current can be expressed as

Eμ ¼ −δsμ þ 1

T
uνδΘμν −

1

T
ωρσδΣμρσ;

¼ 1

2T
c2s

eþ P
ðδeÞ2uμ þ c2s

T
δeδuμ þ c2s

Tðeþ PÞ δeδq
μ þ 1

2T
δωαβδSαβuμ

−
1

2T
ðeþ PÞuμδuνδuν þ

1

T
δuνδqνuμ −

1

T
δuνδϕμν −

1

T
δuνδπμν þ

1

T
δΠδuμ

þ 1

2T
uμðχqδqνδqν þ χϕδϕ

αβδϕαβ þ χΠδΠδΠþ χπδπ
αβδπαβÞ; ð44Þ

where we have used

uμδqμ ¼ −δuμδqμ;

uνδϕμν ¼ −δuνδϕμν: ð45Þ

As a cross-check, we derive Eq. (44) by using a different approach shown in Appendix A.
Again, let us take uμ ¼ ð1; 0Þ. For arbitrary nμ with n0 > 0 and nμnμ ¼ 1, we can get

2n0TEμnμ
eþP

¼ n20τπ
ηðeþPÞ

X
i<j

�
δπij −

1

n0χπ
nðiδujÞ

�
2

þ n20τπ
ηðeþPÞ

�
δπ11 þ 1

2
δπ22 þ 1

2n0χπ
ðn3δu3 − n1δu1Þ

�
2

þ 3n20τπ
4ηðeþPÞ

�
δπ22 þ 1

3n0χπ
ðn3δu3 þ n1δu1 − 2n2δu2Þ

�
2

þ n20τq
λðeþPÞ

X
i

�
δqi −

1

n0χq

�
c2s

eþP
δeni þ n0δui

��
2

þ n20τϕ
γsðeþPÞ

X
i<j

�
δϕij −

1

n0χϕ
n½iδuj�

�
2

þ n20
eþP

δωαβδSαβ þ
X10
i¼6

aiðδAiÞ2 þOðδ3Þ; ð46Þ
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where the expressions for ai and δAi are presented in
Appendix B. Next, we analyze the thermodynamic stability
in two cases: with and without viscous tensors, πμν and
ΠΔμν. The main reason is as follows. In the previous study
by some of us [96], we find that there exist zero modes in
the linear mode analysis for the spin hydrodynamics with
vanishing viscous tensors. Such zero modes disappear once
we turn on the finite viscous tensors. It is questionable
whether the spin hydrodynamics can be stable and causal
with vanishing viscous tensors. Therefore, it is necessary to
study the thermodynamic stability with and without viscous
tensors separately.

B. Case I: With vanishing viscous tensors

By simply setting δπμν and δΠ to zero in Eq. (46), we
find that the sufficient and necessary conditions for
thermodynamic stability (8) are

c2s ; γs; λ; τϕ; τq; δωαβδSαβ > 0;

1 −
λ

τqðeþ PÞ −
γs

τϕðeþ PÞ > 0;

1 − c2s −
ð3c2s þ 1Þλ
τqðeþ PÞ > 0: ð47Þ

The last two inequalities can be rewritten as

0 <
2γ0τq

ð2τq − λ0Þτϕ
< 1;

0 <
c2sð2τq þ 3λ0Þ

2τq − λ0
< 1; ð48Þ

where

λ0 ¼ 2λ

eþ P
; γ0 ¼ γs

eþ P
: ð49Þ

We find that the conditions (48) are exactly the same as the
causality conditions derived by linear mode analysis [96].
The stability conditions from linear mode analysis are

given by [96]

c2s ; γs; λ; τϕ; τq; χs;−χb > 0;

2τq − λ0 > 0;

χ0ie ¼ 0; ð50Þ

where χμνe and χb, χs are the spin susceptibilities with
respect to e and S0i; Sij, i.e.,

δω0i ¼ χ0ie δeþ χbδS0i;

δωij ¼ χije δeþ χsδSij: ð51Þ

The inequality 2τq > λ0 can be directly derived from the
thermodynamic stability conditions (47).
With the parametrization (51), the inequalities χb < 0

and χs > 0 are necessary conditions for δωαβδSαβ > 0 in
Eq. (47). However, χ0ie ¼ 0 does not arise immediately
from the thermodynamic stability conditions. In fact, the
spin susceptibility χμνe introduced in Eq. (51) is a high order
correction in our setup. Let us consider the equations of
state,

e ¼ eðT;ωμνÞ; Sμν ¼ SμνðT;ωμνÞ: ð52Þ

For simplicity, let us focus on Sxy and ωxy, and assume
other components of Sμν and ωμν are vanishing. Since the
ωxy ∼Oð∂1Þ is the quantum correction to the thermody-
namic variables, the equations of state can be expressed as
power series of ωxy based on symmetry considerations,2

�
δe

δSxy

�
¼

�
a11T3 a12ωxyT2

a21ωxyT a22T2

��
δT

δωxy

�

þOðω2
xyδω

xy;ω2
xyδTÞ; ð53Þ

where aij are dimensionless constants and a11, a22 ≠ 0.
The inverse of Eq. (53) gives

�
δT

δωxy

�
¼ 1

a11a22T4

�
a22T −a12ωxyT

−a21ωxy a11T2

��
δe

δSxy

�

þOðω2
xyδe;ω2

xyδSμνÞ: ð54Þ

We find that χxye ∝ ωxy. When the system reaches irrota-
tional equilibrium state shown in Eq. (42), χxye ∝ δωxy,
therefore χxye δe ∼Oðδ2Þ are high order corrections. While
χs ∼ 1=ða22T2Þ ∼Oðδ0Þ can survive. Hence, the condition
χμνe ¼ OðδÞ does not arise from stability demand but rather
from our choice of an irrotational background.
Taking the parameterization (51) with χμνe ¼ OðδÞ, the

inequalities χb < 0 and χs > 0 now become equivalent to
δωαβδSαβ > 0. Consequently, in the case of Π; πμν ¼ 0, the
thermodynamic stability conditions align with the stability
and causality conditions derived from linear mode analysis
in Ref. [96]. It also indicates that the zero modes in the
dispersion relations appeared in linear mode analysis [96]
will not lead to instabilities.

C. Case II: With finite viscous tensors

Let us consider the full form of Eμ shown in Eq. (44).
Imposing the thermodynamic stability conditions (8) yields

2Here, we assume the absence of characteristic or external
tensors. In other words, the system is considered “isotropic.”
Clearly, this assumption implies χμνe ∼ ωμν by considering the
antisymmetric tensor structure of χμνe . If this assumption does not
hold, then χμνe may be nonzero even if ωμν ¼ 0.
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c2s ; λ; γs; η; ζ; τq; τϕ; τπ; τΠ;−χb; χs > 0; ð55Þ

1 −
λ0

2τq
−
4γ⊥
3τπ

−
1

3τΠ
ð3γk − 4γ⊥Þ > 0; ð56Þ

1 −
λ0

2τq
−
γ⊥
τπ

−
γ0

τϕ
> 0; ð57Þ

1− c2s −
ð1þ 3c2sÞλ0

2τq

−
ð2τq − c2sλ0Þ½4γ⊥τΠ þ τπð3γk − 4γ⊥Þ�

6τqτπτΠ
> 0; ð58Þ

2 − c2s −
ð2þ 3c2sÞλ0

2τq
−
4γ⊥τΠ þ τπð3γk − 4γ⊥Þ

3τπτΠ
> 0; ð59Þ

where we have used the parametrization (51) and the
shorthand notations (49) and

γ⊥ ¼ η

eþ P
; γk ¼

4
3
ηþ ζ

eþ P
: ð60Þ

We now compare these conditions (55)–(59) to those
derived from linear mode analysis [96]. The causality
conditions in linear mode analysis are given by

0 <
2τqðγ0τπ þ γ⊥τϕÞ
ð2τq − λ0Þτπτϕ

< 1; ð61Þ

0 <
b1=21 � ðb1 − b2Þ1=2
6ð2τq − λ0ÞτπτΠ

< 1; ð62Þ

where b1;2 are defined as

b1=21 ¼ 8γ⊥τqτΠþ τπ½2τqð3γk−4γ⊥Þþ3τΠc2sð3λ0 þ2τqÞ�;
b2 ¼ 12c2sλ0ð2τq−λ0ÞτπτΠ½τπð3γk−4γ⊥Þþ4γ⊥τΠ�: ð63Þ

It is straightforward to show that the inequality (61) can be
derived from inequalities (55), (57). Similarly, one can
derive (62) by using inequalities (55), (59). We then
conclude that the causality in linear mode analysis is
ensured by thermodynamic stability conditions.
The stability conditions derived by linear mode analysis

are [96]

c2s ; λ; γs; η; ζ; τq; τϕ; τπ; τΠ;−χb; χs > 0; ð64Þ

2τq − λ0 > 0; ð65Þ

b1 > b2 > 0; ð66Þ
c2
c3

> 0; ð67Þ

where the definitions of c2;3 are presented in Appendix C.
After performing the calculations detailed in Appendix D,
we show that the inequalities (66), (67) can be derived from
(64), (65). Consequently, the independent stability con-
ditions in linear mode analysis reduce to Eqs. (64) and (65).
It is worth noting that the inequality (64) aligns precisely
with inequality (55) under the parameterization (51), while
inequality (65) can be derived from either inequality (56)
or (57).
Our results reveal that the stability andcausality conditions

derived in linear mode analysis can indeed be derived from
thermodynamic stability conditions. However, the reverse
does not hold in the current case. For instance, the inequality
(56) cannot be derived from the causality and stability
conditions identified in linear mode analysis. Therefore,
unlike the scenarios discussed in Secs. III and IV B, the
thermodynamic stability conditions for spin hydrodynamics
involving nonvanishing components qμ, ϕμν, Π, and πμν are
more stringent than those derived from linear mode analysis.
Let us discuss the above observation. A dissipative

process is called real or on shell if it satisfies the equations
of motion, otherwise, it is called virtual or off shell. Linear
mode analysis solely considers real processes, whereas
thermodynamic stability analysis encompasses both real
and virtual processes [113,123]. If there are no virtual
processes, meaning all forms of perturbations are allowed,
then the conditions derived from thermodynamic stability
analysis and linear mode analysis coincide, as the cases in
Secs. III and IV B. However, in the presence of virtual
processes, additional conditions emerge from thermody-
namic stability analysis and are invisible in linear mode
analysis. Consequently, the thermodynamic stability are
more stringent compared to linear-mode stability. This
implies that the thermodynamic stability analysis for spin
hydrodynamics with viscous tensors may involve virtual
processes that are not allowed by linearized hydrodynamic
equations. A systematic verification of this statement is left
for our future work.
In Ref. [96], it was found that the conditions derived

from linear mode analysis might be necessary but are not
sufficient to ensure stability. In contrast, the thermody-
namic stability criteria (8) are both necessary and sufficient
for ensuring stability. The reasoning is as follows.
Clearly, the thermodynamic stability criteria (8) are

necessary to uphold the fundamental laws of stability,
specifically the second law of thermodynamics and the
principle of maximizing total entropy in the equilibrium
state. On the other hand, the functional E½δφ� defined
in Eq. (7) is positive definite and nonincreasing in time
when the criteria (8) are fulfilled. Then E½δφ� can be
interpreted as a Lyapunov functional, which is sufficient to
guarantee the stability of the corresponding linearized
hydrodynamic equations [113,124,125]. Therefore, we
argue that the unstable modes identified in Ref. [96] would
disappear if we adopt the conditions from thermodynamic
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stability (55)–(59). A rigorous proof of this assertion will
require more general discussions on the structure of
linearized hydrodynamic equations and will be presented
elsewhere.

V. CONCLUSION

In this work, we have applied thermodynamic stability
analysis to derive the stability and causality conditions for
conventional relativistic viscous hydrodynamics and spin
hydrodynamics.
As a test, we first derived the thermodynamic stability

conditions in Eq. (23) for second-order relativistic viscous
hydrodynamics without (baryon) currents and heat currents.
We found that these conditions are consistent with those
derived from linear mode analysis in Refs. [90,91,118].
We next studied the thermodynamic stability of minimal

causal extended second-order spin hydrodynamics in
canonical form, both with and without viscous tensors.
In the absence of viscous tensors, the constraints derived
from thermodynamic stability analysis exactly match those
obtained from linear mode analysis. This indicates that the
zero modes found in the linear mode analysis will not affect
the causality and stability of the spin hydrodynamics in
this case.
As another important observation, we also note that the

inequality δωαβδSαβ > 0 in Eq. (47) can be satisfied by
adopting physical equations of state. The spin susceptibil-
ities with respect to energy density, χμνe , are found to be
∼OðδÞ and therefore can be neglected in the current setup.
This finding could help us understand the unstable modes
identified in Ref. [96] when the asymptotic stability
conditions are met in the linear modes analysis.
We then derive the thermodynamic stability conditions in

Eqs. (55)–(59) for spin hydrodynamics in the presence of
viscous tensors. These conditions are consistent with the
causality conditions derived from linear mode analysis and
are more stringent than the stability conditions found in
linear mode analysis. Our studies suggest that the con-
ditions derived from thermodynamic stability analysis can
guarantee both causality and stability in linear mode
analysis.
In the current studies, we have only considered irrota-

tional spin hydrodynamics. The inclusion of a rotating
background will affect the analysis, as noted in Ref. [98],
and should be studied systematically in future work.
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APPENDIX A: ANOTHER APPROACH
TO DERIVE THE INFORMATION CURRENT

FOR SPIN HYDRODYNAMICS

Here we employ the method used in Ref. [119] (see
also the Supplemental Material of Ref. [113]) to derive
the information current (44) for spin hydrodynamics. This
method is based on the fact that the function Ψ, defined in
Eq. (5), should be maximized in the equilibrium state. We
now introduce θ to characterize a smooth one-parameter
family of solutions to hydrodynamic equations, where only
θ ¼ 0 corresponds to the equilibrium state. ThenΨ ¼ ΨðθÞ
is a function of θ. Since Ψ is maximized in the equilibrium
state, we have

Ψ̇ð0Þ ¼ 0; Ψ̈ð0Þ ≤ 0; ðA1Þ

where the dot represents the derivative with respect to θ.
Given an arbitrary three-dimensional spacelike Cauchy
surface Σ with the future-directed and timelike normal unit
vector nμ, we can express Ψ as Ψ ¼ R

Σ dΣnμψ
μ, with the

current ψμ ¼ ψμðθÞ given by

ψμ ¼ sμ þ
X
a

αaJa;μ: ðA2Þ

Due to arbitrariness of the Cauchy surface Σ, Eq. (A1)
implies that

ψ̇μð0Þ ¼ 0; ðA3Þ

and ψ̈μð0Þ is past directed and nonspacelike. For small θ,
the information current Eμ can be derived through
[113,119]

Eμ ¼ −
1

2
θ2ψ̈μð0Þ: ðA4Þ

To calculate the information current Eμ using Eq. (A4),
let us first construct the current ψμ. According to the
discussion in Sec. IVA, there are two independent con-
served currents,

κνΘμν þ 1

2
∂½ρκσ�Σμρσ; ξρσJμρσ; ðA5Þ

where κμ is a killing vector and ξρσ is an antisymmetric
constant tensor. The general form for ψμ is

ψμ ¼ sμ − κνΘμν −
1

2
∂½ρκσ�Σμρσ − ξρσJμρσ: ðA6Þ

By introducing another killing vector
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βν ¼ κν þ 2ξρνxρ; ðA7Þ

the expression (A6) can be equivalently written as

ψμ ¼ sμ − βνΘμν −
1

2
∂½ρβσ�Σμρσ: ðA8Þ

Substituting the constitutive equations (25) into it, we obtain

ψμ ¼
�
s − ðeþ Pþ ΠÞβνuν −

1

2
∂½ρβσ�Sρσ þ qνβν −K

�
uμ þ ðPþ ΠÞβμ − qμ

�
βνuν −

1

T

�
− ðϕμν þ πμνÞβν; ðA9Þ

where

K ¼ 1

2T
ðχqqνqν þ χϕϕ

αβϕαβ þ χΠΠ2 þ χππ
αβπαβÞ: ðA10Þ

The next step is to impose the constraint (A3) on ψμ. We find

ψ̇μ ¼
�
ṡ − ðėþ Ṗþ Π̇Þβνuν − ðeþ Pþ ΠÞβνu̇ν −

1

2
∂½ρβσ�Ṡρσ þ q̇νβν − K̇

�
uμ

þ
�
s − ðeþ Pþ ΠÞβνuν −

1

2
∂½ρβσ�Sρσ þ qνβν −K

�
u̇μ

þ ðṖþ Π̇Þβμ − q̇μ
�
βνuν −

1

T

�
− qμ

�
βνu̇ν þ

1

T2
Ṫ

�
− ðϕ̇μν þ π̇μνÞβν: ðA11Þ

Note that here uμ and u̇μ are independent, and this is true for other variables. The constraint (A3) demands

uν
T

¼ βν;
2

T
ωρσ ¼ −∂½ρβσ�; Π; qμ;ϕμν; πμν ¼ 0; ðA12Þ

in the equilibrium state. These conditions are exactly the same as those from entropy current analysis [53,54].
With the equilibrium conditions (A12), we can get

uνüν ¼ u̇νu̇ν; uνq̇ν ¼ 0; uνq̈ν ¼ −2u̇νq̇ν;

ϕ̈μνuν ¼ −2ϕ̇μνu̇ν; π̈μνuν ¼ −2π̇μνu̇ν: ðA13Þ

The thermodynamic relations (29) give

ë ¼ T ̈sþ ωρσS̈ρσ þ Ṫ ṡþω̇ρσṠρσ: ðA14Þ

With the help of these identities (A13), (A14), we derive

ψ̈μð0Þ ¼ −
�
1

T
Ṫ ṡþ 1

T
ω̇ρσṠρσ −

1

T
ðeþ PÞu̇νu̇ν þ

2

T
u̇νq̇ν

�
uμ −

1

T
ðχqq̇νq̇ν þ χϕϕ̇

αβϕ̇αβ þ χΠΠ̇2 þ χππ̇
αβπ̇αβÞuμ

−
2

T
ðṖþ Π̇Þu̇μ − 2

T2
q̇μṪ þ 2

T
ϕ̇μνu̇ν þ

2

T
π̇μνu̇ν: ðA15Þ

Notice that, for small θ, the quantity θφ̇ represent the small perturbation around the equilibrium state, i.e.,

δφ ¼ θφ̇; ðA16Þ

where φ stands for the hydrodynamic variables T; s;Π; uμ; qμ, etc. Hence, the information current from Eq. (A4) can be
expressed as
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Eμ ¼ 1

2

�
1

T
δTδsþ 1

T
δωρσδSρσ −

1

T
ðeþ PÞδuνδuν þ

2

T
δuνδqν

�
uμ

þ 1

2T
ðχqδqνδqν þ χϕδϕ

αβδϕαβ þ χΠδΠδΠþ χπδπ
αβδπαβÞuμ

þ 1

T
ðδPþ δΠÞδuμ þ 1

T2
δqμδT −

1

T
δϕμνδuν −

1

T
δπμνδuν þOðδ3Þ: ðA17Þ

The formula (A17) works for both rotational and irrotational background.
In an irrotational background where ωμν; Sμν ¼ 0, we have

δs ¼ 1

T
δeþOðδ2Þ;

δP ¼ c2sδeþOðδ2Þ;

δT ¼ c2sT
eþ P

δeþOðδ2Þ: ðA18Þ

Plugging Eq. (A18) into Eq. (A17), we obtain the same information current as Eq. (44).

APPENDIX B: EXPRESSIONS FOR ai AND δAi IN EQS. (22), (46)

Here, we present the expressions for ai and δAi in Eqs. (22), (46),

a1 ¼ a6 ¼ ζ−1τΠðeþ PÞ;

a2 ¼
1

½1þ C1n21 þ C2ðn22 þ n23Þ�
;

a3 ¼
1þ C2ðn21 þ n22 þ n23Þ

½1þ C1ðn21 þ n22Þ þ C2n23�½1þ C1n21 þ C2ðn22 þ n23Þ�
;

a4 ¼
1þ C2ðn21 þ n22 þ n23Þ

½1þ C1ðn21 þ n22Þ þ C2n23�½1þ C1ðn21 þ n22 þ n23Þ�
;

a5 ¼
1þ ðC1 − c2sÞðn21 þ n22 þ n23Þ

1þ C1ðn21 þ n22 þ n23Þ
;

a7 ¼
1

C3 þ C4n21 þ C5ðn22 þ n23Þ
;

a8 ¼
C3 þ C5ðn21 þ n22 þ n23Þ

½C3 þ C4ðn21 þ n22Þ þ C5n23�½C3 þ C4n21 þ C5ðn22 þ n23Þ�
;

a9 ¼
C3 þ C5ðn21 þ n22 þ n23Þ

½C3 þ C4ðn21 þ n22Þ þ C5n23�½C3 þ C4ðn21 þ n22 þ n23Þ�
;

a10 ¼
fC4 − c2s ½ðC3 − 2Þ2 − ðC3 − 1ÞC4�gðn21 þ n22 þ n23Þ2

n20½C3 þ C4ðn21 þ n22 þ n23Þ�
þ ½C3 þ C4 þ ð3C3 − 4Þc2s �ðn21 þ n22 þ n23Þ þ C3

n20½C3 þ C4ðn21 þ n22 þ n23Þ�
; ðB1Þ

and
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δA1 ¼ δA6 ¼
n0

eþ P
δΠ −

ζ

τΠðeþ PÞ ðn1δu1 þ n2δu2 þ n3δu3Þ;

δA2 ¼ ½1þ C1n21 þ C2ðn22 þ n23Þ�δu1 þ ðC1 − C2Þn1ðn2δu2 þ n3δu3Þ −
c2sn0n1
eþ P

δe;

δA3 ¼ ½1þ C1ðn21 þ n22Þ þ C2n23�δu2 þ ðC1 − C2Þn2n3δu3 −
c2sn0n2
eþ P

δe;

δA4 ¼ ½1þ C1ðn21 þ n22 þ n23Þ�δu3 −
c2sn0n3
eþ P

δe;

δA5 ¼ δA10 ¼
csn0
eþ P

δe;

δA7 ¼ ½C3 þ C4n21 þ C5ðn22 þ n23Þ�δu1 þ ðC4 − C5Þn1ðn2δu2 þ n3δu3Þ þ
ðC3 − 2Þc2sn1n0

eþ P
δe;

δA8 ¼ ½C3 þ C4ðn21 þ n22Þ þ C5n23�δu2 þ ðC4 − C5Þn2n3δu3 þ
ðC3 − 2Þc2sn2n0

eþ P
δe;

δA9 ¼ ½C3 þ C4ðn21 þ n22 þ n23Þ�δu3 þ
ðC3 − 2Þc2sn3n0

eþ P
δe; ðB2Þ

where we have defined

C1 ¼ 1 −
4η

3τπðeþ PÞ −
ζ

τΠðeþ PÞ ;

C2 ¼ 1 −
η

τπðeþ PÞ ;

C3 ¼ 1 −
λ

τqðeþ PÞ ;

C4 ¼ 1 −
λ

τqðeþ PÞ −
4η

3τπðeþ PÞ −
ζ

τΠðeþ PÞ ;

C5 ¼ 1 −
λ

τqðeþ PÞ −
η

τπðeþ PÞ −
γs

τϕðeþ PÞ : ðB3Þ

APPENDIX C: EXPRESSIONS FOR c2;3 IN INEQUALITY (67)

The expressions for c2;3 in the inequality (67) are given by

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=21 � ðb1 − b2Þ1=2
6ð2τq − λ0ÞτπτΠ

s
; or −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1=21 � ðb1 − b2Þ1=2
6ð2τq − λ0ÞτπτΠ

s
;

c2 ¼ −3c41½2τπτΠ þ ð2τq − λ0Þðτπ þ τΠÞ� þ c21f6γkτq þ ð6γk − 8γ⊥Þτπ
þ 8γ⊥τΠ þ 3c2s ½2τπτΠ þ ð3λ0 þ 2τqÞðτπ þ τΠÞ�g − 3c2sγkλ0;

c3 ¼ −2c2sλ0½ð3γk − 4γ⊥Þτπ þ 4γ⊥τΠ� − 18c41ð2τq − λ0ÞτπτΠ
þ 4c21½3c2sð3λ0 þ 2τqÞτπτΠ þ 2ð3γk − 4γ⊥Þτqτπ þ 8γ⊥τqτΠ�: ðC1Þ

Note that here we have set χμνe ¼ 0, but the corresponding formulas in Ref. [96] contain nonzero χμνe .

APPENDIX D: DERIVE INEQUALITIES (66), (67) FROM (64), (65)

In this appendix, wewill show that the inequalities (66), (67) can be derived from (64), (65). In the following calculations,
we adopt the notations (49), (60), in which we have
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3γk − 4γ⊥ > 0: ðD1Þ

The inequalities (65), (D1) will be frequently used.
For the inequality (66), we note that

b2 ¼ 12c2sλ0ð2τq − λ0ÞτπτΠ½τπð3γk − 4γ⊥Þ þ 4γ⊥τΠ�;
b1 − b2 ¼ 9ð3λ0 þ 2τqÞ2τ2πτ2Πc4s þ 4τ2q½ð3γk − 4γ⊥Þτπ þ 4γ⊥τΠ�2

þ 12ðλ02 þ λ0τq þ 2τ2qÞτπτΠ½ð3γk − 4γ⊥Þτπ þ 4γ⊥τΠ�c2s : ðD2Þ

Using (64), (65), (D1), we find that b2 > 0 and b1 − b2 > 0, proving the inequality (66).
To show the inequality (67), it is equivalent to show c2c3 > 0. Straightforward calculation gives

c2c3 ¼ f0 � f1ðb1 − b2Þ1=2; ðD3Þ

where

f0 ¼
1

9τ3πτ
3
Πð2τq − λ0Þ3 f

ð1Þ
0 fð2Þ0 ;

f1 ¼
1

9τ3πτ
3
Πð2τq − λ0Þ3 ½f

ð0Þ
1 þ c2sf

ð2Þ
1 þ c4sf

ð4Þ
1 þ c6sf

ð6Þ
1 �; ðD4Þ

with

fð1Þ0 ¼ 16τπγ⊥τΠ½3c2sτΠðλ02 þ τqλ
0 þ 2τ2qÞ þ 2ð3γk − 4γ⊥Þτ2q� þ 9c4sτ2πτ2Πð3λ0 þ 2τqÞ2

þ 12c2sτ2πτΠð3γk − 4γ⊥Þðλ02 þ τqλ
0 þ 2τ2qÞ þ 4τ2πτ

2
qð3γk − 4γ⊥Þ2 þ 64γ2⊥τ2Πτ2q;

fð2Þ0 ¼ 72c4sλ0τ3πτ3Πð3λ0 þ 2τqÞ þ 64γ2⊥τ3Πτqðτπλ0 þ τqλ
0 þ 2τ2qÞ þ 12c2sτπτ3Πγ⊥ð2τq þ λ0Þð4τ2q − λ02 þ 8λτπÞ

þ 4ð3γk − 4γ⊥Þ2τ3πτq½λ0τΠ þ τqð2τq − λ0Þ� þ ð3γk − 4γ⊥ÞτπτΠf3c2sτ2πτΠð2τq þ λ0Þð4τ2q − λ02 þ 8λ0τΠÞ
þ 16γ⊥τπτq½2λ0τΠ þ τqð2τq − λ0Þ� þ 16γ⊥τΠτ2qð2τq − λ0Þg;

fð0Þ1 ¼ 8τ2q½4γ⊥ðτΠ − τπÞ þ 3τπγk�2f4γ⊥τ2Π½λ0τπ þ τqð2τq − λ0Þ� þ λ0τ2πτΠð3γk − 4γ⊥Þ þ τ2πτqð3γk − 4γ⊥Þð2τq − λ0Þg;
fð2Þ1 ¼ 6τπτΠ½τπð3γk − 4γ⊥Þ þ 4γ⊥τΠ�fτ2πð3γk − 4γ⊥Þ½2λ0τΠðλ02 þ 5τqλ

0 þ 10τ2qÞ þ 4τ3qðλ0 þ 4τqÞ − 3λ03τq�
þ 4γ⊥τ2Π½2λ0τπðλ02 þ 5τqλ

0 þ 10τ2qÞ þ 4τ3qðλ0 þ 4τqÞ − 3λ03τq�g;
fð4Þ1 ¼ 72½ð3γk − 4γ⊥Þτπ þ 4τΠγ⊥�τ3πτ3Πλ0ð5λ02 þ 10λ0τq þ 8τ2qÞ

þ 9½ð3γk − 4γ⊥Þτ2π þ 4τ2Πγ⊥�τ2πτ2Πð2τq − λ0Þð2τq þ λ0Þ2ð3λ0 þ 2τqÞ;
fð6Þ1 ¼ 216λ0τ4πτ4Πð3λ0 þ 2τqÞ2: ðD5Þ

From the inequalities (64), (65), (D1), we have

f0 > 0: ðD6Þ

Next we calculate

f20 − f21ðb1 − b2Þ ¼ ðg0 þ g2c2s þ g4c2sÞG; ðD7Þ

where

THERMODYNAMIC STABILITY IN RELATIVISTIC VISCOUS … PHYS. REV. D 110, 034010 (2024)

034010-13



G ¼ 4λ02c4s
9τ3πτ

3
Πð2τq − λ0Þ3 ½τπð3γk − 4γ⊥Þ þ 4τΠγ⊥�fτ2Π½48τπc2sγ⊥ðλ2 þ τqðλþ 2τqÞÞ þ 9τ2πc4sð3λþ 2τqÞ2 þ 64γ2⊥τ2q�

þ 4τπτΠð3γk − 4γ⊥Þ½3τπc2sðλ2 þ τqðλþ 2τqÞÞ þ 8γ⊥τ2q�þ4τ2πτ
2
qð3γk − 4γ⊥Þ2g;

g0 ¼ 4f4γ⊥τ2Π½λ0τπ þ τqð2τq − λ0Þ� þ τ2π½τqð2τq − λ0Þ þ λ0τΠ�ð3γk − 4γ⊥Þg½4γ⊥τΠ þ τπð3γk − 4γ⊥Þ�2;
g2 ¼ 24τ3πð3γk − 4γ⊥Þγ⊥τ2Π½4λ02 þ 16λ0τΠ þ ð2τq − λ0Þ2� þ 96τπγ

2⊥τ4Π½4λ02 þ ð2τq − λ0Þ2� þ 48γ2⊥τ4Πð2τq þ λ0Þ2ð2τq − λ0Þ
þ 768λ0γ2⊥τ2πτ4Π þ 24γ⊥τ2πτ3Πð3γk − 4γ⊥Þ½4λ02 þ ð2τq − λ0Þ2� þ 24γ⊥τ2πτ2Πð3γk − 4γ⊥Þð2τq þ λ0Þ2ð2τq − λ0Þ
þ 6τ4πτΠð3γk − 4γ⊥Þ2½4λ02 þ 8λ0τΠ þ ð2τq − λ0Þ2� þ 3τ4πð3γk − 4γ⊥Þ2ð2τq þ λ0Þ2ð2τq − λ0Þ;

g4 ¼ 72λ0τ2πτ2Πf4γ⊥τ2Πð3λ0 þ 2τq þ 2τπÞ þ τ2πð3γk − 4γ⊥Þ½ð3λ0 þ 2τqÞ þ 2τΠ�g: ðD8Þ

Again, we can find from the inequalities (64), (65), (D1) that

G; g0; g2; g4 > 0; ðD9Þ

which leads to

f20 − f21ðb1 − b2Þ > 0: ðD10Þ

Combing the results (D6) and (D10), we obtain

c2c3 ¼ f0 � f1ðb1 − b2Þ1=2 > 0; ðD11Þ

or the equivalent form, c2=c3 > 0, i.e., the inequality (67).
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