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The semi-inclusive deep-inelastic scattering (SIDIS) is the golden process for investigating the nucleon’s
transverse momentum-dependent (TMD) structure. We present the complete expression for SIDIS structure
functions in the TMD factorization formalism at the next-to-leading power. All perturbative elements of the
factorization theorem—coefficient functions and evolution kernels—are presented at one-loop accuracy.
We found several differences with earlier derivations, which are due to accounting for nontrivial kinematics
of the quark-gluon interference terms. As a side result, we present the definition and evolution of twist-three
TMD fragmentation functions, including the leading-order evolution kernel.
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I. INTRODUCTION

The transverse momentum dependent (TMD) factoriza-
tion theorem emerged from the resummation formalism
[1,2] and has since evolved into an independent and
powerful tool for studying the nucleon’s internal structure.
While the leading power (LP) TMD factorization theorem
[3–5] has proven predictive power for various processes, it
also suffers from several theoretical inconsistencies and
practical limitations (see, for instance, discussions in
Refs. [6–10]). Some of these issues are expected to be
resolved or mitigated by including power corrections. For
that reason, within the past few years, many groups have
concentrated efforts on the problem of TMD factorization at
subleading power [11–17]. In this work, we continue our
earlier development on this subject [13,16,18], and derive the
cross section for the semi-inclusive deep-inelastic scattering
(SIDIS) at next-to-leading power (NLP) TMD factorization
and next-to-leading order (NLO) perturbative accuracy.
The foundation of this work is Ref. [13], where the

general operator expression for the hadronic tensor for
Drell-Yan (DY), semi-inclusive deep-inelastic scattering

(SIDIS) and semi-inclusive annihilation at next-to-leading
power (NLP) and next-to-leading order was derived. The
method proposed in Ref. [13], named TMD operator
expansion, employs the background-field approach and
follows the concept of the operator product expansion in its
original form [19]. Being formulated in the position space,
it allows an easier treatment of higher twist operators that
have involved support properties in the momentum space.
The transition from the operator formulation to the cross
section requires several technically involved steps, the
procedure for which has been elaborated in [16,18]. In
this work, we compile previous results and obtain the
expression for the structure functions of SIDIS at NLP. Let
us emphasize that the derivation made in Ref. [13] is not
complete, in the sense that it does not prove the factori-
zation theorem formally. It is assumed that hadron wave
functions could be separated. To justify this assumption,
one must demonstrate the cancellation of Glauber regions,
such as it done for the LP case [20,21].
The primary motivation is to establish the foundation for

future phenomenological studies of power corrections in
the TMD factorization approach. The more general deri-
vation method used in the present study uncovers several
contributions overlooked in previous computations. A
notable difference is the contribution of genuine twist-three
distributions with vanishing gluon momentum. These terms
are crucial to ensure theoretical consistency and may also
have numerical significance, although it remains to be seen
if they can be observed in modern experiments [22–24].
The upcoming generation of SIDIS experiments [25,26]
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will provide an opportunity to explore these effects in
greater detail. Apart from these overlooked terms, the
results of the present work independently reproduce the
earlier computations, such as [27–29].
The inclusion of NLO terms requires a strict separation

of contributions by their field-theoretical properties. In
particular, the conventional approach of distinguishing
TMD distributions by their dynamical twist [27–31] is
inadequate, as it leads to an incomplete basis of operators
that becomes evident at NLO, where new types of operators
arise. To avoid it, we separate the contributions by the TMD
twist [13]. The TMD distributions with distinct TMD twists
are independent physical functions. Consequently, the parts
of the hadron tensor associated with different TMD twists
are self-contained, with nonmixing nonperturbative distri-
butions, independent coefficient functions, and distinct
interpretations. The scaling properties of each term are
known, which makes possible to consistently account for
QCD evolution in the phenomenology of NLP observables.
The paper accumulates all practically important informa-

tion about theNLP terms. InSec. II,weprovide a summary of
the findings from [13,18], presenting the expressions for the
hadronic tensor for SIDIS at both LP and NLP powers and
discussing their general properties. In Sec. III, we present the
relevant TMD distributions, including their definition, inter-
pretation, and evolution equations. The computation of the
SIDIS structure functions is detailed in Sec. IV, leading to the
actual results presented in Sec. IV B. Additional technical
information and intermediate results can be found in the
Appendixes. In Appendix A, we discuss the derivation of a
genuine hadronic tensor from the bare results of Ref. [13]. In
AppendixB,we present expressions for evolution kernels for
TMD parton distribution functions (TMDPDFs) and TMD
fragmentation functions (TMDFFs) of twist-three. Notably,
the evolution kernels for TMDFFs presented inAppendixB 2
are original results derived in this paper. Lastly, Appendix C
outlines the contributions to kinematic power corrections
from various sources and explains their recombination.

II. TMD FACTORIZATION AT NLP

In this section, we present the expression for the hadronic
tensor at NLP TMD factorization derived in Refs. [13,18].
We provide an explanation of its structure, but for the details
of the derivation we refer the reader to the original papers.
The expressions presented in this section are used as the
startingpoint for the followingderivationof the cross section.
The hadronic tensor for SIDIS at NLP TMD factoriza-

tion is naturally split into three terms:

Wμν ¼
Z

dx̃dz̃δ

�
x̃þ qþ

Pþ

�
δ

�
z̃ −

p−
h

q−

�Z
d2b
ð2πÞ2 e

iðqTbÞ z̃
2

×

� eWμν
LP þ eWμν

kNLP þ eWμν
gNLP…

�
; ð1Þ

where q, P, and ph are momenta of photon, target, and
produced hadrons, correspondingly. The labels � and T
stand for the light-cone and transverse components of
vectors. As usual, we denote two light-cone vectors by
nμ and n̄μ [n2 ¼ n̄2 ¼ 0, and ðnn̄Þ ¼ 1], and the light-cone
projections as vþ ¼ ðnvÞ, v− ¼ ðn̄vÞ, for any vector vμ.
The details of the definition of kinematic variables are
unimportant in this section. Therefore, we postpone their
precise definition until Sec. IVA.
In Eq. (1), the term eWμν

LP represents the LP part. The NLP
terms W̃μν

kNLP and W̃μν
gNLP represent the kinematic and

genuine power corrections, correspondingly. The dots stand
for the higher power corrections. In the following sub-
sections, we present these terms one by one providing their
explicit expressions and explaining their features and
origin.

A. LP term

The LP terms have been derived in many works; see, for
instance, [3–5,28]. It can be written in the following
compact form:

eWμν
LP ¼ jC1ðμ2; Q2Þj2

X
n;m

�
TrðγμΓ̄þ

mγ
νΓ̄−

n ÞΦ½Γþ
n �

11 ðx; b; μ; ζÞΔ½Γ−
m�

11 ðz; b; μ; ζ̄Þ

þ TrðγμΓ̄−
n γ

νΓ̄þ
mÞΦ̄½Γþ

n �
11 ðx; b; μ; ζÞΔ̄½Γ−

m�
11 ðz; b; μ; ζ̄Þ

�
: ð2Þ

Here,Φ11 (Φ̄11) andΔ11 (Δ̄11) are the TMDPDF and TMDFF of twist-two for (anti)quarks. Their field-theoretical definition
is provided in Sec. III. The variable Q2 is the hard scale of the process, associated with the photon’s invariant mass,
q2 ¼ −Q2. The scale μ is the factorization scale for the separation of hard and collinear modes. The scales ζ and ζ̄ are
factorization scale of collinear and anticollinear modes (rapidity separation) [32,33]. These scales must satisfy ζζ̄ ¼ Q4.
The factor jC1j2 is the LP hard coefficient function. The NLO expression for jC1j2 in the SIDIS case reads [the expression
for C1 is given in Eq. (A2)]

jC1ðμ2; Q2Þj2 ¼ 1þ 2asðμÞCF

�
− ln2

�
Q2

μ2

�
þ 3 ln

�
Q2

μ2

�
− 8þ π2

6

�
þOða2sÞ; ð3Þ
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where CF ¼ ðN2
c − 1Þ=2Nc [for SUðNcÞ gauge group],

as ¼ g2=ð4πÞ2 is the QCD coupling constant. Nowadays,
the expression for C1 is known as N4LO [34].
The matrices Γ� in Eq. (2) stand for the full set of Dirac

gamma matrices projecting good components of quark
spinors. The quark TMD distributions are given by matrix
elements of quark-antiquark fields whose spinor indices are
contracted as Φ½Γ� ∼ hq̄Γqi; see Eq. (23). In this work we
discuss only twist-two and twist-three TMD distributions.
These distributions incorporate only the good components
of the spinors (with respect to vector n). The space of Γ
matrices that survive in this contraction is four dimensional.
The standard basis in this space is denoted by Γþ, and the
elements of this basis are

Γþ ¼ fγþ; γþγ5; iσαþγ5g; ð4Þ

where α is a transverse index. The decomposition of any
matrix A in this space reads

A ¼ 1

2

X
n

Γ̄−
nA½Γþ

n �; A½Γ� ¼ 1

2
TrðΓAÞ; ð5Þ

where

Γ̄− ¼ fγ−;−γ−γ5;−iσα−γ5g; ð6Þ

and index n runs though all elements (4) and (6) are in one-
to-one correspondence. Conventionally, TMDPDF are
constructed with collinear, and thus projected by Γþ (4).
The TMDFFs are constructed with anticollinear fields and
thus their components projected with respect to vector n̄ by
Γ−. The matrices Γ− and Γ̄þ are obtained from (4) and (6)
replacing n ↔ n̄.

B. Kinematic NLP term

The kinematic part of NLP term reads

eWμν
kNLPðyÞ ¼ −ijC1ðμ2; Q2Þj2

X
n;m

�
n̄μTr½γρΓ̄þ

mγ
νΓ̄−

n � þ n̄νTr½γμΓ̄þ
mγ

ρΓ̄−
n �

q−
Φ½Γþ

n �
11

�
∂

∂bρ
−
∂ρD
2

ln
�
ζ

ζ̄

��
Δ½Γ−

m�
11

þ n̄μTr½γρΓ̄−
n γ

νΓ̄þ
m� þ n̄νTr½γμΓ̄−

n γ
ρΓ̄þ

m�
q−

Φ̄½Γþ
n �

n̄11

�
∂

∂bρ
−
∂ρD
2

ln

�
ζ

ζ̄

��
Δ̄½Γ−

m�
n11

þ nμTr½γρΓ̄þ
mγ

νΓ̄−
n � þ nνTr½γμΓ̄þ

mγ
ρΓ̄−

n �
qþ

Δ½Γ−
m�

n11

�
∂

∂bρ
þ ∂ρD

2
ln

�
ζ

ζ̄

��
Φ½Γþ

n �
n̄11

þ nμTr½γρΓ̄−
n γ

νΓ̄þ
m� þ nνTr½γμΓ̄−

n γ
ρΓ̄þ

m�
qþ

Δ̄½Γ−
m�

n11

�
∂

∂bρ
þ ∂ρD

2
ln

�
ζ

ζ̄

��
Φ̄½Γþ

n �
n̄11

�
; ð7Þ

where we have omitted the arguments ðx̃; b; μ; ζÞ for all
TMDPDFs, and ðz̃; b; μ; ζ̄Þ for all TMDFFs for brevity. The
derivative acts on the following term, and

∂ρD ¼ ∂

∂bρ
Dðb; μÞ ¼ 2bρ

∂

∂b2
Dðb; μÞ; ð8Þ

with D being the Collins-Soper kernel. The Collins-Soper
kernel is the nonperturbative function that describes the
evolution of TMD distributions, see Eq. (74). The second
equality in Eq. (8) is due to the fact that the Collins-Soper
kernel depends only on b2.
The terms proportional to ∂ρD are the remnants of

cancellation of the special rapidity divergences, which
appear in the (bare) genuine NLP term. These terms play
a special role in the TMD factorization—they restore the
broken boost invariance at NLP [16]. Thanks to these
terms, the expression (7) is independent on the choice of ζ
(while the ζ̄ is fixed due to ζζ̄ ¼ Q4). This can be checked
explicitly by rescaling ζ → αζ and ζ̄ → ζ̄=α, and differ-
entiating the result by α. Note that at the point ζ ¼ ζ̄ ¼ Q2,

which is commonly used for the phenomenology, these
terms vanish.
The kinematic power correction has the same non-

perturbative content and hard coefficient function as the
LP term. This is not accidental but a requirement of
electromagnetic gauge invariance (charge conservation)
for the hadronic tensor, which requires

qμWμν ¼ Wνμqμ ¼ 0: ð9Þ

For the hadronic tensor in the b space this equation reads

q̂μW̃μν ¼
�
qþn̄μ þ q−nμ þ i

∂

∂bμ

�
W̃μν ¼ 0: ð10Þ

It is straightforward to check that the LP term (2) does not
satisfy (10), since

q̂μW̃
μν
LP ¼ i

∂

∂bμ
W̃μν

LP ≠ 0: ð11Þ

In the momentum space, the expression (11) is proportional
to qT . Thus, the LP term of TMD factorization violates the
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electromagnetic gauge invariance, but the violation is next
to leading in the power counting. Taking into account the
kinematic NLP term, the gauge invariance is improved,

q̂μ

�eWμν
LP þ eWμν

kNLP

�
¼ i

∂

∂bμ
eWμν

kNLP ≠ 0: ð12Þ

Here, the violation is of N2LP order (or ∼q2T=Q in the
momentum space). The accounting of the kinematic N2LP
term would improve charge conservation up to N3LP, etc.
Complete restoration of electromagnetic gauge invariance
requires an infinite chain of kinematic power corrections.
The restoration of the gauge invariance also guarantees that
the coefficient function is equal to LP coefficient functions
at all perturbative orders. This has been checked explicitly
in Ref. [13] at NLO.

C. Genuine NLP term

The genuine NLP term contains the novel nonperturba-
tive distributions—TMDPDFs and TMDFFs of twist-three.
These are quark-gluon-quark correlators, which depend on
three momentum-fraction variables (with their sum equal to
zero). The TMDPDFs of twist-three are discussed in detail
in the dedicated work [18]. The synopsis of that study and
its extension to TMDFFs is presented in Sec. III.
The hadronic tensor for the genuine NLP term derived in

Ref. [13] could not be used as it is presented, because it
contains complex-valued functions, and distributions with
indefinite parity. Therefore, prior to operation it should be
presented in the form with explicit complex structure. The
details of this transformation are presented in Appendix A.
The resulting expression is

eWgNLP ¼ i
X
n;m

�Z
∞

−∞
dû1dû2dû3δðû1 þ û2 þ û3Þδðx̃ − û3Þ

×

�
Tμνρ
− ðn̄; nÞ

�
CRðx; û2ÞΦ½Γþ

n �
ρ;⊕Δ½Γ−

m�
11 þ πCIðx; û2ÞΦ½Γþ

n �
ρ;⊖Δ½Γ−

m�
11

�

þ iTμνρ
þ ðn̄; nÞ

�
πCIðx; û2ÞΦ½Γþ

n �
ρ;⊕Δ½Γ−

m�
11 − CRðx; û2ÞΦ½Γþ

n �
ρ;⊖Δ½Γ−

m�
11

�

þ Tμνρ
− ðn; n̄Þ

�
CRðx; û2ÞΦ̄½Γþ

n �
ρ;⊕ Δ̄½Γ−

m�
11 þ πCIðx; û2ÞΦ̄½Γþ

n �
ρ;⊖ Δ̄½Γ−

m�
11

�

þ iTμνρ
þ ðn; n̄Þ

�
πCIðx; û2ÞΦ̄½Γþ

n �
ρ;⊕ Δ̄½Γ−

m�
11 − CRðx; û2ÞΦ̄½Γþ

n �
ρ;⊖ Δ̄½Γ−

m�
11

��

þ
Z

∞

−∞

dŵ1dŵ2dŵ3

jŵ1j
δ

�
1

ŵ1

þ 1

ŵ2

þ 1

ŵ3

�
δðz̃ − ŵ3Þ

×

�
Tμνρ
− ðn̄; nÞC2ðz; ŵ2ÞΦ½Γþ

n �
11 Δ½Γ−

m�
ρ;⊕ − iTμνρ

þ ðn̄; nÞC2ðz; ŵ2ÞΦ½Γþ
n �

11 Δ½Γ−
m�

ρ;⊖

þ Tμνρ
− ðn; n̄ÞC2ðz; ŵ2ÞΦ̄½Γþ

n �
11 Δ̄½Γ−

m�
ρ;⊕ − iTμνρ

þ ðn; n̄ÞC2ðz; ŵ2ÞΦ̄½Γþ
n �

11 Δ̄½Γ−
m�

ρ;⊖
��

; ð13Þ

whereΔρ;⊕ andΔρ;⊖ are TMDFFs of twist-three,Φρ;⊕ andΦρ;⊖ are TMDPDFs of twist-three. All of these distributions are
the quark-gluon-quark correlators. The formal definition of these distributions is given in Sec. III A. The tensor Tμνρ

� is

Tμνρ
� ðn̄; nÞ ¼

�
n̄μ

q−
−
nμ

qþ

�
Tr½γρΓ̄þ

mγ
νΓ̄−

n � �
�
n̄ν

q−
−

nν

qþ

�
Tr½γμΓ̄þ

mγ
ρΓ̄−

n �: ð14Þ

For simplicity of presentation we omit the arguments of TMD distributions. They are ðû1; û2; û3; b; μ; ζÞ for all twist-three
TMDPDFs, ðŵ1; ŵ2; ŵ3; b; μ; ζ̄Þ for all twist-three TMDFFs, ðx̃; b; μ; ζÞ for all twist-two TMDPDFs, and ðz̃; b; μ; ζ̄Þ for all
twist-two TMDFFs. The variables û and ŵ are the momentum fractions of partons. In particular, the variables û2 and ŵ2 are
the momentum fractions of gluon field. The delta functions represent the conservation of momentum; they can be used to
eliminate any two integrations in a convenient manner. We do it after the determination of support ranges for TMDFFs in
Sec. III C.
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The coefficient functions are

CRðx; u2Þ ¼
1

ðu2Þþ
þ as

�
2

CF

ðu2Þþ

�
−L2 þ 2L −

11

2
þ π2

6

�

þ 2

�
CF −

CA

2

�
1

ðu2Þþ
x
u2

��
L − 2þ 1

2
ln

�jxþ u2j
x

��
ln

�jxþ u2j
x

�
−
π2

2
θð−x − u2Þ

�

þ CA
x

xþ u2

�
−
�
ln ju2j
u2

�
þ
þ ln x
ðu2Þþ

þ π2

2
δðu2Þ

��
þOða2sÞ; ð15Þ

CIðx; u2Þ ¼ δðu2Þ þ as

�
2CF

�
δðu2Þ

�
−L2 þ 2L −

15

2
þ π2

6

��

þ 2

�
CF −

CA

2

��
δðu2ÞLþ 1

ðu2Þþ
x
u2

�
θð−x − u2ÞðL − 2Þ þ θð−x − u2Þ ln

�jxþ u2j
x

���

þ CA

�
δðu2Þðln xþ 2Þ − θðu2Þ

ðu2Þþ
x

xþ u2

��
þOða2sÞ; ð16Þ

C2ðz; w2Þ ¼ 1þ as

�
2CF

�
−L2 þ 2L −

11

2
þ π2

6

�

þ 2

�
CF −

CA

2

�
w2

z

�
L − 2þ 1

2
ln

�
1 −

z
jw2j

��
ln

�
1 −

z
jw2j

�

− CA
jw2j

jw2j − z
ln

�
z

jw2j
��

þOða2sÞ; ð17Þ

where CA ¼ Nc, L ¼ lnðQ2=μ2Þ, θðxÞ is the Heaviside
theta function and “plus” distribution is defined as

Z
duðfðuÞÞþgðuÞ ¼

Z
dufðuÞðgðuÞ − gð0ÞÞ: ð18Þ

These coefficient functions are originated from a single
complex-values coefficient function given in Eq. (A3). The
derivation of these expressions from Ref. [13] is a some-
what nontrivial task and we present it in Appendix A. The
coefficient functions CR, CI , and C2 cannot be obtained
from each other despite stemming from a common origin.
Let us also stress the nontrivial contribution coming from

the imaginary parts to the hadronic tensor. The CI coef-
ficient function starts at LO with δðû2Þ, i.e. it produces
terms with vanishing gluon collinear momentum. This is
similar to the famous Qiu-Sterman contribution to the
single-spin asymmetry [35]. These contributions were
overlooked in all earlier studies of SIDIS at NLP (see,
for instance, [15,28,29]). Note that at NLO a similar
contribution appears also in the coefficient function CR.
This is expected and it can be traced to the structure of the
NLP evolution equations. The logarithm structure of
coefficient functions matches the evolution equations for
twist-three and twist-two TMD distributions. To confirm it,
one should differentiate (13), use the evolution equations

collected in Appendix B, and integrate over ûs and ŵs
where it is possible. The details of this computation can be
found in Sec. 9 of Ref. [13].
The genuine NLP term is transverse up to NNLP,

q̂μ eWgNLP ¼ i
∂

∂bμ
eWgNLP ¼ OðNNLPÞ: ð19Þ

At NNLP there are two independent kinematic power
correction parts. One contains only TMD distributions of
twist-two and is responsible for the restoration of QED
gauge invariance, see Eq. (12). The second kinematic
power correction contains a TMD distribution of twist-
two and a TMD distribution of twist-three and restores the
gauge invariance of W̃gNLP, see Eq. (19). In this sense each
genuine NkLP term is the first term in the series of
kinematic power corrections. The coefficient functions of
such series are the same for all terms (but different for each
series).

III. TMD DISTRIBUTIONS
OF SUBLEADING POWER

The description of SIDIS requires two types of corre-
lators: TMDPDF correlators and TMDFF correlators. Their
operator definitions are similar, yet they exhibit fundamen-
tal differences in their properties and evolution. The NLP
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cross section incorporates TMD distributions of twist-two
and twist-three. The guiding principle for such decom-
position is the scaling properties of distributions. If any two
distributions do not mix under the evolution they are
entirely independent nonperturbative functions. In our
formulation we use the notion of TMD twist [13] to
decompose the operator into independent parts. So, the
twist-two distributions Φ11 are independent objects com-
pared to twist-three distributions Φ⊕ and Φ⊖.
In the twist-two case, the TMD distributions are simply

the correlators of quark fields (multiplied by semi-infinite
Wilson lines), so Φ11 ∼ hPjq̄…qjPi. There are eight
TMDPDFs and two TMDFFs (for spinless particle)
[28,30]. In the twist-three case, the operator has an addi-
tional insertion of the gluon field,Φμ

⊕ ∼ hPjq̄…Fμþ…qjPi.
The gluon field can be inserted at either light-cone
operators, which lead to a plethora of distributions with
various properties. In total there are 32 TMDPDFs (for
spin-1=2 particle) and eight TMDFFs (for spinless par-
ticle). Luckily, only some of them appear in the SIDIS at
NLP. The TMDPDFs of twist-three and their properties are
discussed in great detail in a dedicated work [18]. On the
contrary, the TMDFFs of twist-three are practically
unstudied.

A. Formal definition of twist-three distributions

The guiding principle for the computation of power
corrections is the twist decomposition, which separates the
distributions into the independent nonperturbative func-
tions. In expressions (7) and (13), this separation is done
using the geometric definition of the TMD twist. The
(geometric) TMD twist is a conserving QCD quantum
number, and thus TMD distributions of different TMD
twists are strictly independent nonperturbative functions.
The set of TMD distributions with definite TMD twist is
complete, in the sense that no other distributions could
mix with it, and any factorization theorem (of correspond-
ing power) could be described solely in their terms. The
theory of TMD-twist decomposition was developed in
Refs. [13,18]. The formal definition of twist-three TMD
distributions is rather involved, and in fact, unnecessary for
a practice. Nonetheless in this section, we present the main
details of the formal definition, for completeness. For an
extended discussion, we refer the interested reader to
original works.
All TMD matrix elements have a common general

structure. They are correlators of two light-cone operators
separated by the transverse distance. This is a consequence
counting rules that lead to the TMD factorization. The
light-cone operators are semicompact, in the sense that they
contain semi-infinite Wilson lines that continue to the light-
cone infinity and have an open color index. The light-cone
operators can be ordered with respect to geometrical twist,
which is the “dimension-minus-spin” of the operator. The
TMD twist is the pair of numbers (N,M), where N and M

are the twists of each semicompact operator. We use the term
“twist-three” as a general indication of TMD-twist-(1,2) or
TMD-twist-(2,1) when the distinction is inessential.
At NLP only the following semicompact operators

appear:

U1;iðλ;bÞ¼W�ðbÞ½�n∞þb;λnþb�qiðλnþbÞ;
Uμ

2;iðλ2;λ1;bÞ¼W�ðbÞ½�n∞þb;λ2nþb�gFμþðλ2nþbÞ
× ½λ2nþb;λ1nþb�qiðλ1nþbÞ;

Ū1;iðλ;bÞ¼ q̄iðλnþbÞ½λnþb;�n∞þb�W†
�ðbÞ;

Ūμ
2;iðλ1;λ2;bÞ¼ q̄iðλ1nþbÞ½λ1nþb;λ2nþb�gFμþðλ2nþbÞ

× ½λ2nþb;�n∞þb�W†
�ðbÞ;

ð20Þ

where λs are coordinates along the light-cone directions,
b is the transverse vector (bþ ¼ b− ¼ 0), � is selected
depending on the process, Fμν is the gluon-field-strength
tensor, and i is the spinor index of the quark field. In the
above definitions, the gauge link is defined along the
straight path,

½a; b� ¼ P exp

�
−ig

Z
1

0

dtðbμ − aμÞAμðbtþ að1 − tÞÞ
�
:

ð21Þ

W is the transverse gauge link that is required to restore the
QCD gauge invariance [36,37]

W�ðbÞ ¼ P exp

�
−ig

Z
1

∞
dtbμAμðbt� n∞Þ

�
: ð22Þ

The subscripts 1 and 2 of the semicompact operators refer
to the twist of these operators. Importantly, only the “good”
spinor components of the operators (20) have twist 1. These
components can be projected by γ−γþ=2. This projection
reduces the space of possible Dirac combinations to the
basis (4). The bad spinor components do not have definite
geometrical twist and could be simplified using QCD
equations of motions. The operators (20) are defined along
the light-cone direction n, but the same definition is valid
for any direction.
In the case of SIDIS the Wilson lines within the

definition of TMDPDFs are pointing to the þ∞n, while
it is −∞n for Drell-Yan process. The Wilson lines of
TMDFFs are pointing to the −∞n, while it is þ∞n for the
annihilation process.
The TMDPDF of TMD-twist-(1,1) is defined as

Φ½Γ�
11 ðx; bÞ ¼

Z
∞

−∞

dλ
2π

e−ixλP
þhP; sjŪ1ðλ; bÞ

Γ
2
U1ð0; 0ÞjP; si;

ð23Þ
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where jP; si is the hadron state with large component of momentum Pþ. The twist-three TMDPDFs can have TMD-twist-
(1,2) or (2,1), and they are defined as

Φ½Γ�
μ;21ðx1; x2; x3; bÞ ¼

Z
∞

−∞

dλ1dλ2
ð2πÞ2 eiðx1λ1þx2λ2ÞPþhP; sjŪμ;2ðλ1; λ2; bÞ

Γ
2
U1ð0; 0ÞjP; si; ð24Þ

Φ½Γ�
μ;12ðx1; x2; x3; bÞ ¼

Z
∞

−∞

dλ1dλ2
ð2πÞ2 eiðx1λ1þx2λ2ÞPþhP; sjŪ1ðλ1; bÞ

Γ
2
Uμ;2ðλ2; 0; 0ÞjP; si; ð25Þ

where x3 ¼ −x2 − x1. The three-variable notation is a bit redundant, but it is convenient for discussion of properties of
TMD distributions. Generally, x1, x2, and x3 can be thought of as the collinear momentum fractions of antiquark, gluon, and
quark correspondingly. However, since xi do not have definite sign, this interpretation is correct only for a specific sign
combination. We review the interpretation in Sec. III B.
The distributions Φ̄ are associated with the antiquark distributions and have inverted order of quark fields

Φ̄½Γ�
11 ðx; bÞ ¼

Z
∞

−∞

dλ
2π

e−ixλP
þ
TrhP; sjΓ

2
U1ðλ; bÞŪ1ð0; 0ÞjP; si; ð26Þ

Φ̄½Γ�
μ;21ðx1; x2; x3; bÞ ¼

Z
∞

−∞

dλ1dλ2
ð2πÞ2 eiðx1λ1þx2λ2ÞPþ

TrhP; sjΓ
2
Uμ;2ðλ1; λ2;bÞŪ1ð0; 0ÞjP; si; ð27Þ

Φ̄½Γ�
μ;12ðx1; x2; x3; bÞ ¼

Z
∞

−∞

dλ1dλ2
ð2πÞ2 eiðx1λ1þx2λ2ÞPþ

TrhP; sjΓ
2
U1ðλ1; bÞŪμ;2ðλ2; 0; 0ÞjP; si; ð28Þ

where Tr contracts spinor and color indices. Notice that for all TMDPDFs, the products of operators could be collected into
common T ordering [38]. It gives us the relations

Φ̄11ðx; bÞ ¼ Φ11ð−x;−bÞ;
Φ̄12ðx1; x2; x3; bÞ ¼ Φ21ð−x3;−x2;−x1;−bÞ;
Φ̄21ðx1; x2; x3; bÞ ¼ Φ12ð−x3;−x2;−x1;−bÞ: ð29Þ

The TMDFFs are defined analogously to TMDPDFs, but with the hadron moved to a final state. The twist-two TMDFF is

Δ½Γ�
11 ðz; bÞ ¼

1

2zNc

Z
∞

−∞

dλ
2π

ei
λpþ
z

X
X

Trh0jΓ
2
U1ðλ; bÞjp; Xihp; XjŪ1ð0; 0Þj0i; ð30Þ

where 1=ð2zNcÞ is a conventional prefactor [39]. The twist-three TMDFFs are

Δ½Γ�
21 ðz1; z2; z3; bÞ ¼

1

2jz1z2z3jNc

Z
∞

−∞

dλ1dλ2
ð2πÞ2 e−ið

λ1
z1
þλ2

z2
Þpþ

×
X
X

Trh0jΓ
2
U2ðλ1; λ2;bÞjp;Xihp;XjŪ1ð0; 0Þj0i; ð31Þ

Δ½Γ�
12 ðz1; z2; z3; bÞ ¼

1

2jz1z2z3jNc

Z
∞

−∞

dλ1dλ2
ð2πÞ2 e−ið

λ1
z1
þλ2

z2
Þpþ

×
X
X

Trh0jΓ
2
U1ðλ1; bÞjp;Xihp;XjŪ2ðλ2; 0; 0Þj0i; ð32Þ

where

1

z1
þ 1

z2
þ 1

z3
¼ 0: ð33Þ
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The factor 1=ð2jz1z2z3jNcÞmimics the 1=ð2zNcÞ factor for the twist-two distributions, and it is assigned such that the cross
section for LP and genuine NLP have the same common factors. The presence of absolute values is needed since at least one
of the zi is negative.
The barred TMDFFs are associated with antiquark fragmentation and are defined by exchanging U ↔ Ū. One has

Δ̄½Γ�
11 ðz; bÞ ¼

1

2zNc

Z
∞

−∞

dλ
2π

ei
λpþ
z

X
X

h0jŪ1ðλ; bÞ
Γ
2
jp;Xihp;XjU1ð0; 0Þj0i; ð34Þ

Δ̄½Γ�
21 ðz1; z2; z3; bÞ ¼

1

2jz1z2z3jNc

Z
∞

−∞

dλ1dλ2
ð2πÞ2 e−ið

λ1
z1
þλ2

z2
Þpþ

×
X
X

h0jΓ
2
Ū2ðλ1; λ2; bÞjp; Xihp; XjU1ð0; 0Þj0i; ð35Þ

Δ̄½Γ�
12 ðz1; z2; z3; bÞ ¼

1

2jz1z2z3jNc

Z
∞

−∞

dλ1dλ2
ð2πÞ2 e−ið

λ1
z1
þλ2

z2
Þpþ

×
X
X

h0jΓ
2
Ū1ðλ1; bÞjp;Xihp;XjU2ðλ2; 0; 0Þj0i: ð36Þ

Unlike the TMDPDF case, the TMDFF operator cannot be
combined into a single T-ordered operator because of the
hadron in the final state. For this reason, there is no formal
relation similar to (29) between Δ̄ and Δ.
The NLP factorization theorem, formulated in terms of

(renormalized) distributions of twist-three, is a well-defined
and finite expression. However, individually the terms of
the factorization theorem could diverge in the regime of the
gluon momentum fraction x2 (or 1=z2) approaching zero.
This is a rapidity divergence (according to the general
definition of rapidity divergences [40]), but of a different
nature in comparison to usual rapidity divergences of TMD
factorization. For this reason, it is named “special” rapidity
divergence. To eliminate the special rapidity divergences,
and to make each term of the factorized expression finite,
one should add and subtract certain asymptotic terms. This
lead to the physical TMD distributions of twist-three. We
define [18]

Φ½Γ�
μ;12ðx1; x2; x3; bÞ ¼ Φ½Γ�

μ;12ðx1; x2; x3; bÞ
− ½R12 ⊗ Φ11�½Γ�μ ðx1; x2; x3; bÞ;

Φ½Γ�
μ;21ðx1; x2; x3; bÞ ¼ Φ½Γ�

μ;21ðx1; x2; x3; bÞ
− ½R21 ⊗ Φ11�½Γ�μ ðx1; x2; x3; bÞ; ð37Þ

whereR are kernels that could be computed perturbatively,
and⊗ is an integral convolution. These kernels involve the
derivative of the Collins-Soper kernel. The LO expressions
for kernelsR are given in Ref. [18]. In the following, we do
not emphasize the difference between Φ and Φ, using
everywhere the usual font, but assuming the physical
distributions (with subtraction terms).

Thematrix elements (23)–(28) are the results of the TMD-
twist decomposition. Each of (23)–(28) is renormalized
independently, i.e., the different distributions do not mix
during the evolution process. However, these distributions
are impractical. They are not the distributions which re-
present the physical process. In particular, matrix elements
Φ12 and Φ21 have indefinite complexity, and indefinite
T-conjugation parity. Under these transformations they turn
to each other with a rather complicated rules, for example,

½Φ½Γ�
12 ðx1; x2; x3; bÞ�� ¼ Φ½γ0Γγ0�

21 ð−x3;−x2;−x1;−bÞ. The full
list of rules is given inRef. [18]. For that reason, it is practical
(and physically motivated, see Sec. III B) to introduce the
following combinations:

Φ½Γ�
μ;⊕ðx1; x2; x3; bÞ

¼ Φ½Γ�
μ;21ðx1; x2; x3; bÞ þΦ½Γ�

μ;12ð−x3;−x2;−x1;bÞ
2

; ð38Þ

Φ½Γ�
μ;⊖ðx1; x2; x3; bÞ

¼ i
Φ½Γ�

μ;21ðx1; x2; x3; bÞ −Φ½Γ�
μ;12ð−x3;−x2;−x1; bÞ

2
; ð39Þ

and the same combinations for Φ̄, Δ, and Δ̄. Under the
discrete transformations, Φ⊕ and Φ⊖ transform onto them-
selves. Therefore, their components (64)–(66) are real valued
and have definite T parity, and could be used as well-defined
TMD distributions. They have a somewhat clearer interpre-
tation, and the physical process cross section is naturally
written in the terms ofΦ⊕ andΦ⊖. The drawback is thatΦ⊕
and Φ⊖ do not have definite TMD twist, and thus do not
evolve independently. Their evolution equation has a matrix
form (76), and Φ⊕ mixes with Φ⊖. Still the twist-three
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distributions do not mix with twist-two distributions, which
allows an unambiguous separation of kinematic and genu-
ine parts.
We emphasize that the formal definitions presented in

this section are important for the derivation and justification
of the factorization theorem. However, for any practical
applications one does need to take into account all of these
details. Practically, the only important information is the
parametrization and the evolution equations that are pre-
sented in the following sections.

B. Interpretation of TMDPDFs

The TMDPDFs of twist-two are usually associated with
the distribution of partons within the hadron with a given
momentum fraction x and transverse momentum kT . To
recover this interpretation, one firsts chooses a physical
gauge in which the staplelike Wilson lines become unity
(light-cone gauge with appropriate boundary conditions).
One then inserts the full set of states in between quark fields
and observes that

Φ11ðx; kTÞ ∝
Z

d2bdλeixλP
þþiðbkTÞ

hPjq̄ð0ÞjXihXjqðλnþ bÞjPi; ð40Þ

where Φ11ðx; kTÞ is the Fourier image of Φ11ðx; bÞ. The
particles in the final state must have positive energy, which
restricts 1 − x > 0. The similar analyses for Φ̄11 gives
1þ x > 0, and together with (29) results into −1 < x < 1.
The partonic process for Φ̄11 is the same as for (40) but with
exchanged quark and antiquark fields.
In this way, the TMDPDF is the squared amplitude of a

process hðPÞ → qðxPþ kTÞ þ X, i.e., are the distributions
of partons with momentum xPþ kT within the hadron. It
can be drawn as

ð41Þ

Correspondingly, the antiquark distribution Φ̄ depicts the
process

ð42Þ

So, the sign of x gives an interpretation of the underlying
process.
Avery similar consideration provides the support proper-

ties and interpretation for the TMDPDFs of twist-three. The
variables xi are subject to constraint

x1 þ x2 þ x3 ¼ 0; − 1 < x1; x2; x3 < 1: ð43Þ

Note that it implies that at least one of the xs is negative.
The twist-three distributions describe interference proc-
esses, in which, e.g., a quark-gluon pair is emitted and
only a quark is reabsorbed. For that reason they could not
be interpreted as parton densities, but are probability
amplitudes. Similarly to the twist-two case, the inter-
pretation depends on the signs of the momentum frac-
tions. Furthermore, transverse momenta of partons
associated with operator U2 or Ū2 are integrated such that
k1 þ k2 ¼ kT .
It is important to mention that the points xi ¼ 0 are

regular points of the TMDPDFs, which can be nonvanish-
ing at these points. The evolution equations (76) are
discontinuous at these points. Nonetheless, it is expected
that the subtraction term (37) makes the TMDPDFs of
twist-three continuous. At the moment, it is not clear how it
is realized practically.
Each combination of signs xi ≶ 0 (there are six such

combinations) results into a separate underlying parton
process [18,38], for Φ12 and Φ21. Here are several
examples:

ð44Þ
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ð45Þ

ð46Þ

Since the twist-three PDFs are interference processes they do not have any good properties, and are complex-value
functions.
On the contrary, the combinations⊕ and⊖ are real-valued functions, and one can expect a reasonable interpretation for

them. Indeed, combining the interpretations for Φ12 and Φ21, we find that Φ⊕ and Φ⊖ are the real and imaginary part
(respectively) of the interference processes. For instance,

ð47Þ

ð48Þ

and similarly for other combinations of signs. This inter-
pretation picture also holds for antiquark distributions
Φ̄⊕ and Φ̄⊖ but with exchange of quark and antiquark
fields.
Generally, the distributions Φ⊕ and Φ⊖ are defined for

all six sign combinations of xis (43). However, the
kinematics of the SIDIS (and also Drell-Yan) fixes
x3 ¼ x > 0. Therefore, there are only three active sectors
ðx1 < 0; x2 < 0Þ, ðx1 > 0; x2 < 0Þ, and ðx1 < 0; x2 > 0Þ.
The shape of this domain is shown in Fig. 1 (left). All
integrations that are present in the factorization theorem

(such as convolution with the coefficient functions, or
with the evolution kernel) preserve the value of x3 ¼ x,
but involve all available sectors of ðx1; x2Þ. The trajectory
of these integrations is shown in Fig. 1 by the black
line.

C. Interpretation of TMDFFs

The consideration of TMDFFs follows the same general
pattern as for the TMDPDF case. There is, however,
an important difference. Namely, there is no connection
between quark and antiquark distributions, because
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corresponding fields are separated by the produced-hadron
state and could not migrate to different sides of the cut. For
that reason, the kinematics of the partonic subprocess
restricts 0 < z < 1 for both Δ11 and Δ̄11. These partonic
processes can be depicted as

ð49Þ

ð50Þ

That is, they could be interpreted as the “probability” of a
parton with momentum P=zþ kT to fragment into the
hadron with momentum P.
In contrast to TMDPDFs, the TMDFFs of twist-three do

not possess any symmetry in their variables and they are
nonvanishing only for a single sign combination:

Δ12ðz1; z2; z3; bÞ ≠ 0; for − 1 < z1 < 0; z2;3 > 0; and
1

z1
þ 1

z2
þ 1

z3
¼ 0;

Δ21ðz1; z2; z3; bÞ ≠ 0; for 0 < z3 < 1; z1;2 < 0; and
1

z1
þ 1

z2
þ 1

z3
¼ 0: ð51Þ

The support regions for Δ̄12 and Δ̄21 are analogous. Combining Eqs. (51) with (38) and (39), we find that the support
regions for Δ⊕ is

Δ⊕ðz1; z2; z3; bÞ ≠ 0; for 0 < z3 < 1; z1;2 < 0; and
1

z1
þ 1

z2
þ 1

z3
¼ 0: ð52Þ

Furthermore, the support regions for Δ⊖, Δ̄⊕, and Δ̄⊖ coincide with (52). Note that the kinematics of SIDIS fixes
z3 ¼ z > 0 (similarly to the TMDPDF case), and the value of z3 is preserved by all integrations at NLP. The values of z1;2
are restricted as z1;2 < −z. The domain of definition is shown in Fig. 1 (right), with the integration trajectory shown by a
black line.

FIG. 1. Support regions for TMDPDF Φ•ðx1; x2; xÞ of twist-three (left) and TMDFF Δ•ðz1; z2; zÞ of twist-three (right), x > 0 and

z > 0. The • is⊕,⊖ or 21. The solid black line shows the of constant x ¼ −x1 − x2 and z ¼ z1z2
z1þz2

. The integral convolutions that appear
at NLP (in coefficient functions and in the evolution kernels) evaluates the distributions along these lines. In the case of TMDFF the
region expands to infinities with hyperbolas approaching dashed lines asymptotically.
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The inequalities in Eq. (52) are strict. It implies that

Δ12ðz1; z2; 0Þ ¼ Δ12ðz1; 0; z3Þ ¼ Δ21ð0; z2; z3Þ
¼ Δ21ðz1; 0; z3Þ ¼ 0: ð53Þ

This is linked to the fact that at these points the particles in
the intermediate state jXi must be all massless, on the mass
shell and carry no traverse momenta [41].
The fact that zs have fixed signs does not leave a lot of

possibilities for the interpretation. The Δ⊕ and Δ⊖ dis-
tributions are the real and imaginary part of the interference
amplitudes,

ð54Þ

ð55Þ

and similar (with exchange of quark and antiquark) for Δ̄ s.
In contrast to TMDPDF all other combinations of processes
are forbidden.

D. Parametrization of TMD distributions

The parametrization of the twist-two TMD correlator
was established long ago [27,42]. In the position space it
reads [43,44]

Φ½γþ�
11 ðx; bÞ ¼ f1ðx; bÞ þ iϵμνT bμsTνMf⊥1Tðx; bÞ; ð56Þ

Φ½γþγ5�
11 ðx; bÞ ¼ λg1ðx; bÞ þ iðb · sTÞMg⊥1Tðx; bÞ; ð57Þ

Φ½iσαþγ5�
11 ðx; bÞ ¼ sαTh1ðx; bÞ − iλbαMh⊥1Lðx; bÞ

þ iϵαμbμMh⊥1 ðx; bÞ

−
M2b2

2

�
gαμT
2

−
bαbμ

b2

�
sTμh⊥1Tðx; bÞ; ð58Þ

where b2 < 0, and

gμνT ¼ gμν − nμn̄ν − n̄μnμ; ϵμνT ¼ ϵμν−þ; ð59Þ

M is the mass of hadron, and sT and λ are components of
the hadron’s spin vector,

Sμ ¼ λ

�
n̄μ

Pþ

M
− nμ

M
2Pþ

�
þ sμT: ð60Þ

All TMD distributions are dimensionless real functions that
depend on b2 (the argument b is used for shortness). So,
there are eight TMD distributions of twist-two.
The parametrization of the TMDFF follows the same

pattern. The main difference is that the operator for TMDFF
is oriented along the n direction, and thus one should
replace n ↔ n̄ in (56)–(58). Also, traditionally the TMD
distributions are defined in the momentum space, where it
is imposed the signs of TMDPDF and TMDFF coincide. It
leads to the extra (−1) factor for all distributions with odd
number of bs in the position space. There are only two
TMDFF for the spinless hadron,

Δ½γ−�
11 ðz; bÞ ¼ D1ðz; bÞ; ð61Þ

Δ½γ−γ5�
11 ðz; bÞ ¼ 0; ð62Þ

Δ½iσα−γ5�
11 ðz; bÞ ¼ iϵαμT bμmhH⊥

1 ðz; bÞ; ð63Þ

where mh is the mass of the produced hadron. We follow
the standard practice [29,42] and name TMDFF analogs
of TMDPDFs by capital letters. The only exception is
unpolarized TMDFF that is denoted by D.
The parametrization for TMD distributions of twist-three

is derived in Ref. [18]. It reads

Φμ½γþ�
• ðx1;2;3; bÞ ¼ ϵμνT sTνMf•Tðx1;2;3; bÞ þ ibμM2f⊥• ðx1;2;3; bÞ

þ iλϵμνT bνM2f⊥•Lðx1;2;3; bÞ þ b2M3ϵμνT

�
gT;νρ
2

−
bνbρ
b2

�
sρTf

⊥
•Tðx1;2;3; bÞ; ð64Þ

Φμ½γþγ5�
• ðx1;2;3; bÞ ¼ sμTMg•Tðx1;2;3; bÞ − iϵμνT bνM2g⊥• ðx1;2;3; bÞ

þ iλbμM2g⊥•Lðx1;2;3; bÞ þ b2M3

�
gμνT
2

−
bμbν

b2

�
sTνg⊥•Tðx1;2;3; bÞ; ð65Þ

SIMONE RODINI and ALEXEY VLADIMIROV PHYS. REV. D 110, 034009 (2024)

034009-12



Φμ½iσαþγ5�
• ðx1;2;3; bÞ ¼ λgμαT Mh•Lðx1;2;3; bÞ þ ϵμαT Mh•ðx1;2;3; bÞ þ igμαT ðb · sTÞM2hD⊥

•T ðx1;2;3; bÞ
þ iðbμsαT − sμTb

αÞM2hA⊥•T ðx1;2;3; bÞ þ ðbμϵαβT bβ þ ϵμβT bβbαÞM3h⊥• ðx1;2;3; bÞ

þ λM3b2
�
gμαT
2

−
bμbα

b2

�
h⊥•Lðx1;2;3; bÞ þ iðb · sTÞM2

�
gμαT
2

−
bμbα

b2

�
hT⊥•T ðx1;2;3; bÞ

þ iM2

�
bμsαT þ sμTb

α

2
−
bμbα

b2
ðb · sTÞ

�
hS⊥•T ðx1;2;3; bÞ; ð66Þ

where • is ⊕ or ⊖, and x1;2;3 is the shorthand notation for
ðx1; x2; x3Þ. The notation for the TMD distributions follows
the traditional pattern used in the parametrization of leading
TMD distributions (56)–(63). Namely, the proportionality
to b is marked by the superscript⊥, and the polarization by
subscript L (for longitudinal) or T (for transverse). In the
tensor case, there are four structures ∼bμsαT , which are
denoted as hA⊥T , hD⊥

T , hS⊥T , hT⊥T for antisymmetric, diagonal,
symmetric, and traceless components.
For the TMDFFs of twist-three we use the same

convention for naming as for twist-two case. We obtain

Δμ½γ−�
• ðz1;2;3; bÞ ¼ −ibμm2

hD
⊥
• ðz1;2;3; bÞ; ð67Þ

Δμ½γ−γ5�
• ðz1;2;3; bÞ ¼ −iϵμνT bνm2

hG
⊥
• ðz1;2;3; bÞ; ð68Þ

Δμ½iσα−γ5�
• ðz1;2;3; bÞ ¼ −ϵμαT mhH•ðz1;2;3; bÞ

− ðbμϵαβT bβ þ ϵμβT bβbαÞm3
hH

⊥
• ðz1;2;3; bÞ;

ð69Þ

where z1;2;3 is the shorthand notation for ðz1; z2; z3Þ.

The barred distributions Φ̄ and Δ̄ are defined by similar
operators but with quark and antiquark fields exchanged,
compare (23)–(25) to (26)–(28). The parametrization for
barred correlators is identical to the usual ones, but with an
extra bar on the distributions letters. The unbarredΦ,Δ and
barred Φ̄, Δ̄ distributions are related to quark and antiquark
distributions correspondingly. So, all unbarred distributions
are quark distributions,

F ¼ Fq; ð70Þ

where F is TMDPDF or TMDFF of twist-two or -three (in
the case of TMDPDF of twist-three we also select x3 > 0).
To establish the relation between barred and antiquark
distributions, one needs to inspect the C-conjugation
property, see, for instance, [28,42]. It gives the relations

F̄ ¼ η½F�Fq̄; ð71Þ

where η½F� ¼ �1 depending on the type of distribution. We
found that η½F� ¼ −1 for

F∈ fg1; g⊥1T; f•T; f⊥• ; f⊥•L; f⊥•T; h•L; h•; hD⊥
•T ; hA⊥•T ; h⊥• ; h⊥•L; hT⊥•T ; D⊥

• ; H•; H⊥
• g;

and η½F� ¼ þ1 for all other cases. In other terms, for twist-
two distributions η½F½Γ�� ¼ −1 for Γ ¼ γ�γ5, while for
twist-three distributions η½F½Γ�� ¼ þ1 for Γ ¼ γ�γ5, and
opposite signs in other cases.
Despite having 32 TMDPDF of twist-three (and eight

TMDFFs) only half of them enter the factorization theorem
for SIDIS. It is related to the internal joined spin of the quark-
gluon pair. As for the twist-two TMD distributions, also

twist-three distributions divided between T-even and T-odd
distributions. The latter changes the sign upon the reorienta-
tion of theWilson line from the SIDIS to Drell-Yan case [45]

Fðx1;2;3; bÞ
����
SIDIS

¼ −Fðx1;2;3; bÞ
����
DY

: ð72Þ

The T-odd distributions that appear at NLP SIDIS are

T-odd∶ff⊥1T; h⊥1 ; f⊥⊕; g⊥⊖; f⊥⊖L; g
⊥
⊕L; f

⊥⊖T; g
⊥
⊕T; f⊖T; g⊕T; h⊖; h⊖L; hA⊥⊕T; h

D⊥
⊕Tg; ð73Þ

TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION FOR … PHYS. REV. D 110, 034009 (2024)

034009-13



and the same for TMDFF analogs. As usual, we use the
SIDIS definition as primary.

E. Evolution

TMD distributions depend on the scales μ and ζ,
which are hard and rapidity factorization scales. Con-
sequently, each distribution satisfies two evolution equa-
tions [33,46,47]. Herewith, rapidity evolution is universal
for all TMD distributions at NLP. The evolution with μ is
distinct for TMD distributions of twist-two, TMDPDFs of
twist-three, and TMDFFs of twist-three.
The evolution of TMD distributions with respect to the

scale ζ is the same for all distributions of twist-two and
twist-three. It reads [13,15]

ζ
∂

∂ζ
Fðb; ζ; μÞ ¼ −Dðb; μÞFðb; ζ; μÞ; ð74Þ

where Dðb; μÞ is the Collins-Soper kernel [2], and F is any
TMD distribution of twist-two or twist-three. The Collins-
Soper kernel is a universal nonperturbative function, which
describes the soft-interaction in between partons. At small b, it
can be computed perturbatively [48] and known up to N4LO
[49]. At large b, it is dominated by QCD vacuum effects [50].
The latest determinations of Collins-Soper kernel can found in
Refs. [51,52] (from the data), [53,54] (from the lattice
simulations), and [55] (from parton shower generator).
The evolution equation with respect to parameter μ is

different for twist-two and twist-three cases. All TMDPDFs
and TMDFFs of twist-two evolve with the equation

μ2
dFðx; b; μ; ζÞ

dμ2
¼
�
Γcusp

2
ln

�
μ2

ζ

�
−
γV
2

�
Fðx; b; μ; ζÞ;

ð75Þ

where Γcusp is the anomalous dimension of lightlike cusp
of Wilson lines, and γV is the anomalous dimension
associated with the vector form factor of the quark. At
LO, these anomalous dimensions are Γcusp ¼ 4CFas and
γV ¼ −6CFas.
The evolution of TMDPDFs of twist-three is rather

involved. The full description and derivation of the
following equation is given in Ref. [18]. The main
complication arises from the sign indefiniteness of
variables xi. Because of it, a part of the anomalous
dimension (for distributions Φ12 and Φ21) is complex,
and proportional to the direction of the Wilson line. In
the terms of distributions Φ⊕ and Φ⊖, the complex part
transforms into a mixing term. The evolution equation
reads

μ2
d
dμ2

�
F1

F2

�
¼
�
Γcusp

2
ln

�
μ2

ζ

�
þϒx1x2x3

��
F1

F2

�

þ
�

2PA 2πΘx1x2x3

−2πΘx1x2x3 2PA

��
F1

F2

�
;

ð76Þ

where all distributions are functions of ðx1; x2; x3; b; μ; ζÞ.
The functions ϒ and Θ are multiplicative, while the
kernel PA is the integral kernel that acts on the
TMDPDF. The function Θ is discontinuous at xi ¼ 0,
and the function ϒ has logarithmic singularities in these
points. The LO expressions for these elements are
collected in Appendix B. The pairs ðF1; F2Þ could be
any of the following:

�
f⊕L þ g⊖L

f⊖L − g⊕L

�
;

 
f⊥⊕ þ g⊥⊖
f⊥⊖ − g⊥⊕

!
;

 
f⊥⊕L þ g⊥⊖L

f⊥⊖L − g⊥⊕L

!
;

 
f⊥⊕T þ g⊥⊖T

f⊥⊖T − g⊥⊕T

!
;

�
h⊕
h⊖

�
;

�
h⊕L

h⊖L

�
;

 
hD⊥
⊕T

hD⊥⊖T

!
;

 
hA⊥⊕T

hA⊥⊖T

!
: ð77Þ

Other functions (and orthogonal combinations of the ones
above) evolve with the evolution kernel PB [18], and do not
appear in SIDIS.
Let us mention a peculiar feature of evolution equa-

tion (76). In the pair ðF1; F2Þ (77) exactly one component is
T odd, and one is T even. This feature seems to be
inconsistent with the T invariance of QCD, because of
mixing terms in (76). Nonetheless, the T invariance is
preserved, because for the TMDPDFs with Wilson lines
pointing in the other direction (i.e. for DY-defined

TMDPDFs) the function Θ changes the sign. Therefore,
“modified” universality of naively T-odd TMD distribution
functions (72) is preserved.
The evolution equation for the TMDFFs of twist-

three has simpler structure. It is due to the impossi-
bility to mix the regions with different signs of zi (52).
For that reason the anomalous dimension is strictly real,
and components Δ⊕ and Δ⊖ evolve independently,
and with the same equation. The evolution equation
reads
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μ2
d
dμ2

Δ ¼
�
Γcusp

2
ln

�
μ2

ζ

�
þϒFF

z1z2z3 þ PFF
A

�
Δ; ð78Þ

where we omit the argument ðz1; z2; z3; b; μ; ζÞ for
TMDPDF, Γcusp is the cusp anomalous dimension,
ϒFF is the multiplicative factor, and PFF

A is the integral
kernel. The LO expressions for these terms are pre-
sented in Appendix B. The equation (78) is valid only
for TMDFF belonging to the following set:

Δ∈ fD⊥
⊕ −G⊥⊖; D⊥⊖ þG⊥

⊕; H⊕; H⊖g: ð79Þ

For the rest combinations (B12) the kernel PFF
A must

be replaced by PFF
B (B13). The evolution kernel PA

was also derived in Ref. [56], and agrees with our
expressions.
The combinations f⊥⊕ þ g⊥⊖ and f⊥⊖ − g⊥⊕ (and similar)

can be considered as a single nonperturbative function.
These combinations not only evolve as a single object, but
also appear in the factorization theorem. Also, exactly these
combinations appear in the relations between dynamical
and geometrical twist-three distributions. The complete set
of relations is given in Ref. [18], Eqs. (6.11)–(6.26).

IV. DIFFERENTIAL CROSS SECTION
FOR SIDIS AT NLP

The SIDIS is the reaction

lðlÞ þ NðPÞ → lðl0Þ þ hðphÞ þ X; ð80Þ

where l is the lepton, N is the nucleon target, and h is the
produced hadron. The four-momenta of particles are
indicated in brackets. The SIDIS process is considered
in many works. The canonical paper that systematized the
structure functions of polarized SIDIS is Ref. [29]. We use
this paper as the main reference.
In the following sections we present the computation and

the result of the cross section for the polarized SIDIS at
NLP of TMD factorization theorem, using the hadronic
tensor presented in Sec. II. The main technical difficulty in
this computation is the transformation between laboratory
frame (where the structure functions are defined), and the
factorization frame (where the factorization theorem is
derived).

A. Kinematics of SIDIS

The main kinematic variables of the SIDIS are

x ¼ Q2

2ðqPÞ ; y ¼ ðqPÞ
ðlPÞ ; z ¼ ðphPÞ

ðqPÞ ;

γ ¼ 2Mx
Q

; γh ¼
mh

zQ
; ð81Þ

where q ¼ l − l0, Q2 ¼ −q2 > 0, M2 ¼ P2 is the mass of
target hadron, m2

h ¼ p2
h is the mass of produced hadron

and the leptons are considered massless, l2 ¼ l02 ¼ 0. We
emphasize that the factorized expression derived in this
paper is valid up to NLP. That is, it is valid up to correc-
tions ∼M2=Q2, ∼m2

h=Q
2, ∼p2

h⊥=Q2, etc. Therefore, in the
final expression we systematically drop suppressed terms.
However, in order to obtain corresponding expressions, we
start from the complete kinematic picture, which includes γ,
γh, and p⊥ terms, and drop the power suppressed terms
after the tensor convolutions. It is necessary because some
combinations have naively singular or naively vanishing
behavior at vanishing masses. Following such a nonmini-
mal procedure we safely recover all NLP corrections.
The azimuthal plane is defined as orthogonal to vectors

qμ and Pμ. The components of vectors belonging to this
plane are denoted by subscript ⊥. The corresponding
tensors are

gμν⊥ ¼ gμν −
1

Q2ð1þ γ2Þ
× ½4x2PμPν − γ2qμqν þ 2xðPμqν þ qμPνÞ�; ð82Þ

ϵμν⊥ ¼ ϵμνρσ
2xPρqσ

Q2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p : ð83Þ

We use the definition ϵ0123 ¼ þ1, which leads to ϵ12⊥ ¼
ϵ21⊥ ¼ 1. The spin vector of the target is decomposed as

Sμ ¼ Sk

�
Pμ

Q
2x

γ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2

p −
qμ

Q
γffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p �

þ Sμ⊥; ð84Þ

where Sμ⊥ ¼ gμν⊥ Sν.
The azimuthal angles between vectors are defined

according to the Trento convention [57], and shown
in Fig. 2. They can be computed using the tensors g⊥

FIG. 2. Definition of azimuthal angles for SIDIS in the
laboratory frame. The subscript ⊥ labels the transverse com-
ponents of corresponding vectors. The picture is taken
from Ref. [57].
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and ϵ⊥. The azimuthal angle for the produced hadron is
defined as

cosϕh ¼
−ðlphÞ⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2⊥p2

h⊥
p ; sinϕh ¼

−lμphνϵ
μν
⊥ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2⊥p2
h⊥

p ; ð85Þ

where ðabÞ⊥ ¼ aμbνg
μν
⊥ . The azimuthal angle for spin

vector is similarly defined as

cosϕS ¼
−ðlSÞ⊥ffiffiffiffiffiffiffiffiffiffi
l2⊥S2⊥

p ; sinϕS ¼
−lμSνϵ

μν
⊥ffiffiffiffiffiffiffiffiffiffi

l2⊥S2⊥
p : ð86Þ

The cross section for the SIDIS in the one-photon
approximation reads

dσ ¼ 2

s −M2

α2em
Q4

d3l0

2E0
d3ph

2Eh
LμνWμν; ð87Þ

where E0 and Eh are energies of final-state lepton
and produced hadrons, respectively. The leptonic tensor
Lμν is

Lμν ¼ 2ðlμl0ν þ l0μlν − ðll0ÞgμνÞ þ 2iλeϵμνρσlρl0σ; ð88Þ

where λe is the helicity of the lepton beam. The had-
ronic tensor (in the TMD factorization) is given in
Eq. (1). In the conventional variables the differential cross
section is

dσ
dx dy dz dϕh dϕS dp2⊥

¼ α2em
Q4

y
8z

LμνWμν; ð89Þ

where we have dropped the corrections of order Oðγ2γ2hÞ.
The decomposition of the cross section over the structure
functions1 is [29]

dσ
dx dy dz dϕh dϕS dp2⊥

¼ α2em
xyQ2

y2

2ð1 − εÞ
�
FUU;T þ εFUU;L þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
cosϕhF

cosϕh
UU

þ ε cosð2ϕhÞFcos 2ϕh
UU þ λe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
sinϕhF

sinϕh
LU

þ Sk
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2εð1þ εÞ
p

sinϕhF
sinϕh
UL þ ε sinð2ϕhÞFsin 2ϕh

UL

i
þ Skλe

h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
FLL þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
cosϕhF

cosϕh
LL

i
× jS⊥j

h
sinðϕh − ϕSÞ



Fsinðϕh−ϕSÞ
UT;T þ εFsinðϕh−ϕSÞ

UT;L

�
þ ε sinðϕh þ ϕSÞFsinðϕhþϕSÞ

UT þ ε sinð3ϕh − ϕSÞFsinð3ϕh−ϕSÞ
UT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
sinϕSF

sinϕS
UT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þ εÞ

p
sinð2ϕh − ϕSÞFsinð2ϕh−ϕSÞ

UT

i
þ jS⊥jλϵ

h ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
cosðϕh − ϕSÞFcosðϕh−ϕSÞ

LT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
cosϕSF

cosϕS
LT

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1 − εÞ

p
cosð2ϕh − ϕSÞFcosð2ϕh−ϕSÞ

LT

i�
; ð90Þ

where

ε ¼ 1 − y − γ2y2

4

1 − yþ y2

2
þ γ2y2

4

: ð91Þ

Note that in this decomposition the terms ∼γh are omitted.
We have checked explicitly that at NLP such terms do not
appear. The apparent asymmetry in the treatment of γ and
γh comes from working in the laboratory frame.
The TMD factorization is derived in the frame where the

target and produced hadrons are back to back [4]. This is a
critical assumption because it allows the mode separation
and counting rules for the field components; see, for

instance, [13,15]. In the present approach to the TMD
factorization, the factorization frame could not be defi-
ned for massive hadrons. This would require accounting
the target-mass corrections, and for the moment they
cannot be incorporated into the factorization formalism.
Moreover, the factorization frame is defined ambiguously,
since the vectors n and n̄ could be modified by power

1We omit the factor ð1þ γ2=2xÞ that is present in the original
expression in Ref. [29]. This factor does not follow from any
invariant decomposition of tensors, and was included in Ref. [29]
in order to match the normalization of the integrated cross
section, see also [58]. In any case, this term is N2LP and thus
irrelevant for the present work.
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corrections, the so-called reparametrization invariance
[59,60]. Both of these effects are of N2LP nature, and
thus they do not affect our computation. Simultaneously, it
grants as a freedom in the definition of the factorization
frame. We define

nμ ¼ 2xPþ

zQ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2γ2h

p �
pμ
h − Pμ 2xzð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2γ2h

p
Þ

γ2

�

¼ 2xPþ

zQ2
pμ
h þOðN2LPÞ; ð92Þ

n̄μ ¼ 1

2Pþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2γ2h

p �
Pμð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2γ2h

q
Þ − pμ

h
γ2

2xz

�

¼ Pμ

Pþ þOðN2LPÞ; ð93Þ

where on the right-hand side we present the leading
term in the power decomposition. These definitions
satisfy n2 ¼ n̄2 ¼ 0, and ðnn̄Þ ¼ 1, and the vectors
aligned along the large component of the hadrons’
momenta. The component Pþ in these expressions
remains undefined. This is not an issue since it neces-
sarily cancels in all final expressions due to the boost
invariance.
The hadron tensor in the TMD factorization is natu-

rally described in the terms of transverse components
relative to the plane ðn; n̄Þ. By definition of (92), this
plane coincides with the plane ðP; phÞ and thus the
corresponding tensors (59) are orthogonal to Pμ and pμ

h,

gμνT ¼ gμν −
1

Q2ð1 − γ2γ2hÞ
�
2x
z
ðPμpν

h þ pμ
hP

νÞ

−
γ2

z2
pμ
hp

ν
h − 4x2γ2hP

μPν

�
; ð94Þ

ϵμνT ¼ 2x

zQ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2γ2h

p ϵμνσρPαphρ: ð95Þ

Comparing various invariants in terms of T components
and ⊥ components, we find the translation dictionary
between frames.
As it was pointed out before, the relations between

various components are ambiguous at N2LP, therefore,
there is no reason to present them here. It is only important
to mention the key combinations of the factorization
expression,

qþ

Pþ ¼ −xþOðN2LPÞ; p−
h

q−
¼ zþOðN2LPÞ;

q2T ¼ p2⊥
z2

þOðN2LPÞ: ð96Þ

Because of it, the variables x̃ and z̃ in (1) are equal to x and
z and the present accuracy.

B. Expressions for the structure functions are NLP

The computation of structure functions is lengthy but
straightforward. We contract hadronic and leptonic tensors
(89) and obtain the expression in the terms of factorization
variables, i.e., defined by gμνT , n

μ, n̄μ. Next, we rewrite these
scalar products in terms of standard variables, and expand
the obtained expression at Q → ∞ up to the NLP term.
Since the TMD distributions depend on b2 we integrate
over the angular part of bμ, and express all Fourier
transforms via Hankel transforms. Finally, comparing with
the parametrization (90) we obtain expressions for structure
functions. The algebraic operations are rather bulky and
were performed with the help of FEYNCALC package [61].
As a result of this computation we obtain four types

of terms:
(i) The leading contribution of WLP (2). It is ∼Q0, and

produces the well-known LP TMD factorization.
(ii) The NLP contribution of WLP (2). It is ∼jp⊥j=ðzQÞ.

These terms appear due to the expansion of scalar
products in the factorization kinematics, and contain
only TMD distributions of twist-two.

(iii) The leading contribution of WkNLP (7). It is ∼M=Q,
and contains TMD distributions of twist-two, their
derivatives, and the derivatives of Collins-Soper
kernel.

(iv) The leading contribution of WgNLP (7). It is ∼M=Q,
and contains TMD distributions of twist-two and
twist-three.

The terms (ii) and (iii) have the same hard coefficient
function, and could be combined together. Moreover,
their structure mutually simplifies due to integration by
parts. Since these terms present a theoretical interest we
collected expressions for (ii) and (iii) in Appendix C, before
simplification.
All terms have the form of Hankel transforms of a

product of two distributions accompanied by the coefficient
function. To have a compact expression for the result, we
introduce the short-hand notation for such combination. So,
the terms of types (i), (ii), and (iii) are expressed via

J n½fD� ¼ xjC1ðμ2; Q2Þj2
X
i

e2i

Z
bdb
2π

ðbMÞnJn

×

�
bjp⊥j
z

�
fiðx; b; μ; ζÞDiðz; b; μ; ζ̄Þ; ð97Þ

where Jn is the Bessel function of the order n, f is a
TMDPDF, D is a TMDFF, and ei is the electric charge of
the quark with flavor i. The sum over flavors i runs through
quark and antiquark flavors. The coefficient function is
given in Eq. (3). The terms of type (iv) have three kinds of
structures:
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J ½2�
n ½fD•� ¼ x

X
i

e2i

Z
bdb
2π

ðbMÞnJn
�
bjp⊥j
z

�

×
Z

−z

−∞
dw2

zjw2j
jw2j − z

C2ðz; w2Þfiðx; b; μ; ζÞ

×Di•

�
−w2z
w2 þ z

; w2; z; b; μ; ζ̄

�
;

J ½R�
n ½f•D� ¼ x

X
i

e2i

Z
bdb
2π

ðbMÞnJn
�
bjp⊥j
z

�

×
Z

1−x

−1
du2CRðx; u2Þ

× fi•ð−x − u2; u2; x; b; μ; ζÞDiðz; b; μ; ζ̄Þ;

J ½I�
n ½f•D� ¼ x

X
i

e2i

Z
bdb
2π

ðbMÞnJn
�
bjp⊥j
z

�

×
Z

1−x

−1
du2πCIðx; u2Þ

× fi•ð−x − u2; u2; x; b; μ; ζÞDiðz; b; μ; ζ̄Þ;
ð98Þ

where fðDÞ is a TMDPDF (TMDFF) of twist-two and
f• (D•) is a TMDPDF (TMDFF) of twist-three. The coeffi-
cient functions are given in Eqs. (15)–(17). There is a
freedom to define the convolution for twist-three distribu-
tions by changing the integration variable. For definiteness
we integrate over the gluon momentum fraction. Note that

the integral over w2 for J
½2�
n is convergent at w2 → −z since

TMDFFs vanish once the first argument approaches zero

(53). Also note that the convolutions J ½R�
n and J ½I�

n include
positive and negative ranges of u2, and regular at u2 ¼ 0.
The final expressions for the structure functions are

FUU;T ¼ J 0½f1D1� ð99Þ
FUU;L ¼ 0 ð100Þ

Fcosϕ
UU ¼ 2M

Q

�
J 1½f̊1D1 − 2h⊥1 H⊥

1 −M2jbj2h̊⊥1 H⊥
1 �

þ J ð2Þ
1 ½f1ðD⊥⊖ þ G⊥

⊕Þ þ 2h⊥1 H⊖�
− J ðRÞ

1 ½ðf⊥⊖ − g⊥⊕ÞD1 þ 2h⊖H⊥
1 �

þ J ðIÞ
1 ½ðf⊥⊕ þ g⊥⊖ÞD1 þ 2h⊕H⊥

1 �
�

ð101Þ

Fcos 2ϕ
UU ¼ J 2½h⊥1 H⊥

1 � ð102Þ

Fsinϕ
LU ¼ 2M

Q

�
−J ð2Þ

1 ½f1ðD⊥
⊕ −G⊥⊖Þ þ 2h⊥1 H⊕�

þ J ðRÞ
1 ½ðf⊥⊕ þ g⊥⊖ÞD1 þ 2h⊕H⊥

1 �

þ J ðIÞ
1 ½ðf⊥⊖ − g⊥⊕ÞD1 þ 2h⊖H⊥

1 �
�

ð103Þ

Fsinϕ
UL ¼ −

2M
Q

�
J 1½2h1LH⊥

1 þM2jbj2h̊1LH⊥
1 �

þ J ð2Þ
1 ½g1ðD⊥

⊕ − G⊥⊖Þ − 2h⊥1LH⊖�
þ J ðRÞ

1 ½ðf⊥⊖L − g⊥⊕LÞD1 þ 2h⊖LH⊥
1 �

− J ðIÞ
1 ½ðf⊥⊕L þ g⊥⊖LÞD1 þ 2h⊕LH⊥

1 �
�

ð104Þ

Fsin 2ϕ
UL ¼ J 2½h1LH⊥

1 � ð105Þ

FLL ¼ J 0½g1D1� ð106Þ

Fcosϕ
LL ¼ 2M

Q

�
J 1 ½̊g1D1� þ J ð2Þ

1 ½g1ðD⊥⊖ þG⊥
⊕Þ þ 2h⊥1LH⊕�

− J ðRÞ
1 ½ðf⊥⊕L þ g⊥⊖LÞD1 þ 2h⊕LH⊥

1 �

− J ðIÞ
1 ½ðf⊥⊖L − g⊥⊕LÞD1 þ 2h⊖LH⊥

1 �
�

ð107Þ

Fsinðϕ−ϕSÞ
UT;T ¼ −J 1½f⊥1TD1� ð108Þ

Fsinðϕ−ϕSÞ
UT;L ¼ 0 ð109Þ

FsinðϕþϕSÞ
UT ¼ J 1½h1H⊥

1 � ð110Þ

Fsinð3ϕ−ϕSÞ
UT ¼ 1

4
J 3½h⊥1TH⊥

1 � ð111Þ

FsinϕS
UT ¼ 2M

Q

�
−J 0

�
f⊥1TD1 þ

M2jb2j
2

f̊⊥1TD1 þM2jbj2h̊1H⊥
1

�
þ J ð2Þ

0 ½jbj
2M2

2
g⊥1TðD⊥

⊕ −G⊥⊖Þ

−
jbj2M2

2
f⊥1TðD⊥⊖ þ G⊥

⊕Þ þ 2h1H⊖� þ J ðRÞ
0 ½ðf⊖T − g⊕TÞD1 þ jbj2M2hA⊥⊖TH

⊥
1 þ jbj2M2hD⊥⊖TH

⊥
1 �

− J ðIÞ
0 ½ðf⊕T þ g⊖TÞD1 þ jbj2M2hA⊥⊕TH

⊥
1 þ jbj2M2hD⊥

⊕TH
⊥
1 �
�

ð112Þ
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Fsinð2ϕ−ϕSÞ
UT ¼ −

M
Q

�
J 2

�
f̊⊥1TD1 þ 2h⊥1TH⊥

1 þM2jbj2
2

h̊⊥1TH⊥
1

�
þ J ð2Þ

2 ½g⊥1TðD⊥
⊕ −G⊥⊖Þ þ f⊥1TðD⊥⊖ þ G⊥

⊕Þ − h⊥1TH⊖�

þ J ðRÞ
2 ½ðf⊥⊖T − g⊥⊕TÞD1 − 2hA⊥⊖TH

⊥
1 þ 2hD⊥⊖TH

⊥
1 � − J ðIÞ

2 ½ðf⊥⊕T þ g⊥⊖TÞD1 − 2hA⊥⊕TH
⊥
1 þ 2hD⊥

⊕TH
⊥
1 �
�

ð113Þ

Fcosðϕ−ϕSÞ
LT ¼ J 1½g⊥1TD1� ð114Þ

FcosϕS
LT ¼ −

M
Q

�
J 0½2g⊥1TD1 þM2jbj2 ̊g1TD1� þ J ð2Þ

0 ½jbj2M2f⊥1TðD⊥
⊕ −G⊥⊖Þ þ jbj2M2g⊥1TðD⊥⊖ þG⊥

⊕Þ − 4h1H⊕�

− 2J ðRÞ
0 ½ðf⊕T þ g⊖TÞD1 þ jbj2M2hA⊥⊕TH

⊥
1 þ jbj2M2hD⊥

⊕TH
⊥
1 �

− 2J ðIÞ
0 ½ðf⊖T − g⊕TÞD1 þ jbj2M2hA⊥⊖TH

⊥
1 þ jbj2M2hD⊥⊖TH

⊥
1 �
�

ð115Þ

Fcosð2ϕ−ϕSÞ
LT ¼ M

Q

�
J 2 ½̊g1TD1� − J ð2Þ

2 ½f⊥1TðD⊥
⊕ −G⊥⊖Þ − g⊥1TðD⊥⊖ þ G⊥

⊕Þ − h⊥1TH⊕�

− J ðRÞ
2 ½ðf⊥⊕T þ g⊥⊖TÞD1 − 2hA⊥⊕TH

⊥
1 þ 2hD⊥

⊕TH
⊥
1 �

− J ðIÞ
2 ½ðf⊥⊖T − g⊥⊕TÞD1 − 2hA⊥⊖TH

⊥
1 þ 2hD⊥⊖TH

⊥
1 �
�
; ð116Þ

where

f̊ðx; b; μ; ζÞ ¼ 2

M2

�
∂

∂jbj2 þ
1

2
ln

�
ζ

ζ̄

��
∂Dðb; μÞ
∂jbj2

��
fðx; b; μ; ζÞ ð117Þ

is the dimensionless boost-invariant derivative of the
TMDPDF. In these expressions we set mh ¼ M in
the definition of TMDFFs for shortness. To restore
the proper coefficients, one should multiply TMDFFs
by factors ðmh=MÞn, where n is (1,1,2,2,3) for
ðH⊥

1 ; H•; D⊥
• ; G⊥

• ; H⊥
• Þ, correspondingly.

The structure functions related to the longitudinally

polarized photons FUU;L and Fsinðϕ−ϕsÞ
UT;L are of N2LP.

The expressions for structure functions are given in the
position space, where the TMD phenomenology is usually
performed. The passage to the momentum space is
straightforward (see, for instance, [15,43]). The position
space presentation is not unique for the kinematic power
correction since the derivative term can be integrated by
parts and presented in different ways. In our derivation we
employed the strategy to eliminate the terms ∼p⊥, which
are produced by the LP hadronic tensor. In Appendix C we
present these terms independently. The final expression is
simply expressed with the derivatives of TMDPDFs, and
this is a consequence of the definition of the azimuthal
angles ϕ and ϕS.

C. Discussion

The LP structure functions, namely FUU;T, F
cosϕ
UU , Fsin 2ϕ

UL ,

FLL, F
sinðϕ−ϕSÞ
UT;T , FsinðϕþϕSÞ

UT , Fsinð3ϕ−ϕSÞ
UT , and Fcosðϕ−ϕSÞ

LT , are

well known. In position space, the expression for them
can be found in Ref. [43] and agrees with ours. It provides
a cross-check for all the definitions and the computa-
tion code.
The NLP structure functions Fcosϕ

UU , Fsinϕ
LU , Fsinϕ

UL , Fcosϕ
LL ,

FsinϕS
UT , Fsinð2ϕ−ϕSÞ

UT , FcosϕS
LT , and Fcosð2ϕ−ϕSÞ

LT can be compared
with the literature only partially since the present formal
derivation included previously overlooked effects and the
complete NLO structure. We agree on all terms that could
be compared with earlier computations (see below). There
are two differences between our and earlier computations.
They are

(i) the part of the genuine twist-three contribution
proportional to CI ,

(ii) the terms with derivatives of the Collins-Soper
kernel.

These effects are critical for the consistency of the factori-
zation theorem.Belowwediscuss these points inmore detail.
Both of these effects were overlooked in the previous
derivations [15,27,29] due to the assumption that partons
carry strictly positive collinear momentum. This assumption
is violated for genuine higher-twist contributions, which
represent the quantum interference contribution.
For the first time, we present the complete NLO structure

for genuine terms, including evolution and coefficient
functions. We emphasize that the consistent presentation
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of the factorization theorem requires the decomposition of
twist-three distributions via quark-gluon-quark correlators
since only this basis of twist-three operators is complete
(see general discussion in Refs. [62,63]). The traditional
basis of bi-quark twist-three TMD distributions (e.g.,
[27,29,43]) is incomplete in the sense that NLO effects
induce mixing with other operators (see explicit examples
in Sec. 6 of Ref. [18]). The expression derived here is
general, and its extension to higher perturbative orders
requires only the computation of higher-order coefficient
functions.
Eliminating the new terms, we can compare the LO part

of our result with the expressions presented in the literature.
The computation in Ref. [29] was performed and presented
in momentum space and in terms of bi-quark TMD
distributions. To make the comparison, we have used the
relations between bi-quark TMD distributions and the
(geometric) twist-three distributions derived in Ref. [18].
We agree with Ref. [29]. Also, we compare the kinematic
corrections coming from the LP and NLP term with
Ref. [15], where they are presented independently (see
also Appendix C), and we agree with them as far as we can
understand the notation. Let us note that this comparison is
frame dependent, and apparently, the frames used here and
in Ref. [15] are (potentially) different only at N2LP. The
kinematic part of the expression is also known as the
Wandzura-Wilczek approximation; it has been studied in
Ref. [64] and also agrees with our result.
All TMD distributions at NLP obey the same evolution

equation with respect to the rapidity parameter ζ (74) with
the same Collins-Soper kernel. It follows from the general
consideration of rapidity divergences [40] or from the form
of soft function [15]. The same rapidity evolution is a
fortunate fact that increases the universality of the TMD
factorization approach and allows for the reuse of results of
the precise extractions (such as [51,52]) at NLP. Recently,
the universality of evolution for twist-three TMD distribu-
tions has been tested with lattice computation [53].
The field-mode decomposition is invariant under the

variation of the rapidity separation of fields. On the level of
cross section, it required the invariance under the rescaling,

ζ → αζ; ζ̄ →
ζ

α
: ð118Þ

The cross section must be independent of the parameter α,
analogously to the independence of the parameter μ. All
terms without derivatives are trivially invariant under this
transformation. Meanwhile, the terms involving the deriva-
tive with respect to b are invariant only in combinations
with the derivatives of the Collins-Soper kernel (117). That
is, the combinations f̊ðζÞDðζ̄Þ are boost invariant, which is
an important check of the result.
The evolution equations for the TMD distributions

presented in Sec. III E are the consequence of operator

structure. In that sense, they are independent entries to
the factorization theorem, and all features of evolution
should be independently realized within the coefficient
function. In particular, the factorization theorem must
provide the mixture mechanism between T-odd and T-even
TMDPDFs of twist-three (76). This mechanism is realized
by the terms proportional to CI . On the level of coefficient
functions, the mixing terms are the ones that are presented
in the second lines of (15) and (16). The confirmation of
cancellation between logarithm parts and evolution equa-
tion for TMD distributions is done in Ref. [13] and gives a
strong check of our result.
Generally speaking, all genuine NLP terms have a single

hard coefficient function. However, it can be observed only
in the position space; see Ref. [13]. The transformation to
the momentum space completely hides this universality
because of the different support for momentum fractions in
TMDPDFs and TMDFFs, producing different complex
logarithm parts. This represents the primary reason why
the coefficient function C2 (17) cannot be entirely obtained
from CR (15) (although the most part can be reconstructed
by xi → 1=zi). Furthermore, the integrand is singular at
u2 ¼ 0, and to define it completely, one needs to evaluate
the pole contribution explicitly. It results in a novel
contribution ∼CI (16), already at LO. Therefore, practi-
cally, the genuine part of the NLP factorization theorem
incorporates three different hard coefficient functions CR,
CI, and C2, contrary to the assumption made in Ref. [15].
The LO term of the coefficient function CI is δðx2Þ (16)

and thus generates a leading contribution ∼f•ð−x; 0; xÞ.
These terms are similar to the famous Qiu-Sterman
mechanism in the collinear factorization of single-spin
asymmetry [35,65]. Such contributions are present in all

structure functions via the J ðIÞ
n structures. Currently, there

are no studies of such effects in TMD physics, so there is no
criteria to estimate their size. Some of such contributions
could be zero (at LO) due to symmetries or other effects.
However, some contributions are definitely nonzero. Our
estimation is based on the small-b computation performed
in Ref. [18]. Using this computation, we can declare that
functions f⊕Tð−x; 0; x; bÞ and h⊕ð−x; 0; x; bÞ are nonzero
since they have a nonvanishing small-b limit. These
distributions contribute to Fcosϕ

UU and FsinϕS
UT . The size of

these contributions can be estimated by comparing LO
small-b matching for f⊕T and h⊕ with the small-b
computations for twist-two distributions [44,66]. We
estimate

f⊕Tð−x; 0; x; bÞ ∼ −π−1f⊥1Tðx; bÞ;
h⊕ð−x; 0; x; bÞ ∼ π−1h⊥1 ðx; bÞ: ð119Þ

So, the Qiu-Sterman-like contribution to the structure
functions Fcosϕ

UU , FsinϕS
UT has approximately the same non-

perturbative content as LP structure functions Fcos 2ϕ
UU and
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Fsinðϕ−ϕSÞ
UT;T . The main difference is the order of the Bessel

function, which should numerically enhance the NLP
terms. So,

Fcosϕ
UU jQS−like ≳ 2M

Q
Fcos 2ϕ
UU ; FsinϕS

UT jQS−like ≳ 2M
Q

Fsinðϕ−ϕSÞ
UT;T :

ð120Þ
We conclude that the newly observed terms could produce
potentially large effects. Therefore, using the proper TMD
factorization formula instead of a simplified one can lead to
important phenomenological consequences already at LO.
A more detailed investigation of practical implications will
be done in future works.
It is instructive to investigate the integrands’ behavior in

the small-b limit since some integrals are singular at first
glance. Most TMD distributions have a regular form of
small-b expansion,

fregðx; b; μ; ζÞ ∼ ½Cðlnðμ2OPEb2; μ; ζÞ ⊗ FðμOPEÞ�ðxÞ
þOðb2Þ; ð121Þ

where f is a TMD distribution, F is a collinear distribution,
C is a coefficient function, and⊗ is an integral convolution
in momentum fractions. A similar expression holds for
TMDFFs. Note that F can be twist-two or twist-three
collinear distributions. All TMD distributions of twist-two
have regular small-b expansion [67]. Therefore, the deriv-
atives of TMDPDFs of twist-two produce a singularity (we
eliminate the double-logarithmic terms for simplicity),

f̊regðx;b;μ;ζÞ∼
asðμOPEÞ

b2
½C0ðlnðμ2OPEb2;μ;ζÞ⊗FðμOPEÞ�ðxÞ

þOðb0Þ: ð122Þ

At higher perturbative orders the singularity is stronger
∼ans lnn−1ðbÞ=b2. The structure functions are finite because
all singular terms are either accompanied by b2 [see, e.g.
(112)], or by a Bessel function of sufficiently high order
[see, e.g., (107)]. The structure functions Fcosϕ

UU and Fcosϕ
LL

have the strongest behavior. Their integrands have loga-
rithm singularity at b → 0, while integrands of all other
structure functions vanish at this point.
Some of the TMD distributions of twist-three possess a

more singular behavior,

fsingðx;b;μ;ζÞ∼
asðμOPEÞ
M2b2

½Cðlnðμ2OPEb2;μ;ζÞ⊗FðμOPEÞ�ðxÞ
þOðb0Þ; ð123Þ

where F is the collinear distribution of twist-two. In all
cases, when the TMD distribution matches the collinear
distribution with the lower twist, the mismatch in dimen-
sions of operators is compensated by powers of b. The LO

terms for small-b matching for singular distributions are
presented in Appendix C of Ref. [18]. The singular
distributions are

fsing∈fD⊥⊖ þG⊥
⊕; f

⊥⊖ − g⊥⊕; f⊥⊕L þ g⊥⊖L;h
D⊥⊖T ; h

A⊥⊖Tg: ð124Þ

Note that the distributions thatmixwithfsing by evolution are
also singular but have the leading singularity NLO ∼ a2s=b2.
Similarly to the kinematic term, we found that all singular-
ities are compensated by either b2 or by Bessel functions.
Thus, all structure functions are well defined.

V. CONCLUSION

We have presented the expression for the cross section
for the polarized SIDIS at next-to-leading power (NLP) and
next-to-leading order (NLO) in TMD factorization. The
main result of the paper is the collections of structure
functions (99)–(116). This work is the natural conclusion of
the studies made in Refs. [13,16,18], where we elaborated
the details of the TMD factorization at NLP.
Our computation nontrivially confirms the factorization

hypothesis for SIDIS at NLP, which is not proven so far but
checked at NLO. In many aspects the NLP TMD factoriza-
tion is similar to the LP one. Basically, there are only two
additional elements—the special rapidity divergences, and
the complex part of the hard coefficient function. These
elements appear during the transition from the factorized
operator expression to the momentum representation of
matrix elements. Therefore, we do not foresee any obstacles
for the NLP factorization being valid at all perturbative
orders, although the formal proof could be essentially
difficult.
The description of SIDIS at NLP involves TMD parton

distribution functions (TMDPDFs) and TMD fragmenta-
tion functions (TMDFFs) of twist-two and twist-three. The
twist-three TMD distributions are unexplored objects. The
properties of the TMDPDFs of twist-three were considered
in Ref. [18], whereas the TMDFFs of twist-three are
considered in this work for the first time, and represent
one of the original parts of this work.
The derived expressions are largely consistent with

previous computations, although some new terms have
emerged that were previously overlooked. The main new
findings are the terms with the quark-gluon-quark TMD
correlators with the vanishing collinear part of gluon’s
momentum. These contributions are present in all NLP
structure functions already at LO. The estimation of
magnitude and practical importance of these terms is left
for future works, but already now we can observe that some
of them (120) should be numerically sizable.
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APPENDIX A: COMPLEX STRUCTURE
OF GENUINE NLP TERM

Each irreducible component of the hadronic tensor has
a definite complexity, such that after convolution with
the leptonic tensor the cross section is real. However,
individually elements of NLP factorization theorem are

complex valued. This is how the hadronic tensor is
presented in the original derivation in Ref. [13]. For practical
purposes, one should rewrite this form explicitly revealing
real and imaginary components. The computation is straight-
forward. However, the final expression is rather different
from the starting one, and its origin is not transparent. Here
we present some details of this computation.
This problem concerns only the genuine power correc-

tion term, since in LP and kinematic NLP terms all
elements are real. In the notation of this work, the genuine
NLP term computed in Ref. [13] [explicitly, the second and
the third lines of (6.17)] is

eWgNLP ¼ i
X
n;m

��
n̄μ

q−
−
nμ

qþ

�
Tr½γρΓþ

mγ
νΓ−

n �
�Z

½dû�C†
2ðû1; û2ÞC1Φ

½Γþ
n �

ρ;21ðû1;2;3; bÞ
δðx − û3Þ
û2 − i0

Δ½Γ−
m�

11 ðz; bÞ

−
Z ½dŵ�

ŵ1ŵ2

C†
2

�
1

ŵ1

;
1

ŵ2

�
C1Φ

½Γþ
n �

11 ðx; bÞ δðz − ŵ3Þ
ŵ−1
2 þ i0

Δ½Γ−
m�

ρ;21ðŵ1;2;3; bÞ
�

þ
�
nμ

qþ
−
n̄μ

q−

�
Tr½γρΓ−

n γ
νΓþ

m�
�Z

½dû�C†
2ðû1; û2ÞC1Φ̄

½Γþ
n �

ρ;21ðû1;2;3; bÞ
δðx − û3Þ
û2 − i0

Δ̄½Γ−
m�

11 ðz; bÞ

−
Z ½dŵ�

ŵ1ŵ2

C†
2

�
1

ŵ1

;
1

ŵ2

�
C1Φ̄

½Γþ
n �

11 ðx; bÞ δðz − ŵ3Þ
ŵ−1
2 þ i0

Δ̄½Γ−
m�

ρ;21ðŵ1;2;3; bÞ
�

þ
�
nν

qþ
−
n̄ν

q−

�
Tr½γμΓ−

n γ
ρΓþ

m�
�Z

½dû�C†
1C2ðû3; û2ÞΦ̄½Γþ

n �
ρ;12ðû1;2;3; bÞ

δðxþ û1Þ
û2 − i0

Δ̄½Γ−
m�

11 ðz; bÞ

−
Z ½dŵ�

ŵ2ŵ3

C†
1C2

�
1

ŵ3

;
1

ŵ2

�
Φ̄½Γþ

n �
11 ðx; bÞ δðzþ ŵ1Þ

ŵ−1
2 þ i0

Δ̄½Γ−
m�

ρ;12ðŵ1;2;3; bÞ
�

þ
�
n̄ν

q−
−

nν

qþ

�
Tr½γμΓþ

mγ
ρΓ−

n �
�Z

½dû�C†
1C2ðû3; û2ÞΦ½Γþ

n �
ρ;12ðû1;2;3; bÞ

δðxþ û1Þ
û2 − i0

Δ½Γ−
m�

11 ðz; bÞ

−
Z ½dŵ�

ŵ2ŵ3

C†
1C2

�
1

ŵ3

;
1

ŵ2

�
Φ½Γþ

n �
11 ðx; bÞ δðzþ ŵ1Þ

ŵ−1
2 þ i0

Δ½Γ−
m�

ρ;12ðŵ1;2;3; bÞ
��

; ðA1Þ

where we refer to Secs. II and III for the notation. In this expression, we explicitly keep the �i0 prescription for the gluon
poles at û2 ¼ 0 and ŵ−1

2 ¼ 0. The signs of i0 are related to the directions of gauge links of TMDPDFs and TMDFFs.
The coefficient function C1 is the LP coefficient function (3). At NLO it reads

C1 ¼ 1þ asCF

�
−L2 þ 3L − 8þ π2

6

�
þOða2sÞ; ðA2Þ

where CF ¼ ðN2
c − 1Þ=2N2

c, as ¼ g2=ð4πÞ2, and

L ¼ ln

�
−q2 − i0

μ2

�
:

In the SIDIS kinematics the argument of logarithm is positive, and thus the coefficient function C1 is real valued, C1 ¼ C†
1.

The coefficient function C2 is the coefficient function for the quark-gluon-quark operator. At NLO it has been computed in
Ref. [13] [see Eq. (6.15)]. In the SIDIS kinematics, it reads

C2ða; bÞ ¼ 1þ as

�
CF

�
−L2 þL − 3þ π2

6

�
− CA

aþ b
a

ln

�
b

aþ b
− i0

�

−
�
CF −

CA

2

�
aþ b
b

ln

�
a

aþ b
− i0

��
2Lþ ln

�
a

aþ b
− i0

�
− 4

��
þOða2sÞ; ðA3Þ
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where CA ¼ Nc. Note that this formula is valid only for
SIDIS (q2 < 0). For processes with q2 > 0 (Drell-Yan or
semi-inclusive annihilation) the complex part is more
involved.
Inspecting the coefficient functions accompanying

TMDPDFs of twist-three, we observe that C†
2ðû1; û2Þ has

û1 þ û2 ¼ −x < 0, while C2ðû3; û2Þ has û3 þ û2 ¼ x > 0,
due to δ functions in (A1). The individual signs of û s are

not defined, and thus logarithms could be complex valued.
We denote

C†ðû1; û2ÞC1

u2 − i0
¼ CRðx; û2Þ þ iπCIðx; û2Þ; ðA4Þ

where x ¼ −û1 − û2. Inserting the definition of C1 and C2,
and resolving the complex structure we obtain

CRðx; u2Þ ¼
1

ðu2Þþ
þ as

�
2

CF

ðu2Þþ

�
−L2 þ 2L −

11

2
þ π2

6

�

þ 2

�
CF −

CA

2

�
1

ðu2Þþ
x
u2

��
L − 2þ 1

2
ln

�jxþ u2j
x

��
ln

�jxþ u2j
x

�
−
π2

2
θð−x − u2Þ

�

þ CA
x

xþ u2

�
−
�
ln ju2j
u2

�
þ
þ ln x
ðu2Þþ

þ π2

2
δðu2Þ

��
þOða2sÞ ðA5Þ

CIðx; u2Þ ¼ δðu2Þ þ as

�
2CF

�
δðu2Þ

�
−L2 þ 2L −

15

2
þ π2

6

��

þ 2

�
CF −

CA

2

��
δðu2ÞLþ 1

ðu2Þþ
x
u2

�
θð−x − u2ÞðL − 2Þ þ θð−x − u2Þ ln

�jxþ u2j
x

���

þ CA

�
δðu2Þðln xþ 2Þ − θðu2Þ

ðu2Þþ
x

xþ u2

��
þOða2sÞ: ðA6Þ

Here, the plus distribution is defined asZ
duðfðuÞÞþgðuÞ ¼

Z
dufðuÞðgðuÞ − gð0ÞÞ; ðA7Þ

and arises from the decomposition

1

u − i0
¼ 1

ðuÞþ
− iπδðuÞ;

lnðu − i0Þ
u − i0

¼
�
ln juj
u

�
þ
þ π2

2
δðuÞ − iπ

θð−uÞ
ðuÞþ

: ðA8Þ

Next, we observe that the coefficient functions satisfy the
relation

C†
1C2ðû3; û2Þ ¼ ðC1C

†
2ð−û3;−û2ÞÞ†; ðA9Þ

where we imposed constraints set by the δ function for these
terms. Thus, applying this relation to Eq. (A1), and changing
variablesfû1; û2; û3g → f−û3;−û2;−û1g in these integrals,
we find that coefficients of corresponding terms turn into

C†
1C2ðû3; û2Þ
û2 þ i0

→
ðC2ðû1; û2ÞÞ†
−û2 þ i0

¼ −
�
C2ðû1; û2Þ
û2 þ i0

�†

¼ −CR þ iπCI: ðA10Þ

In this way, we are able to express all coefficients in the terms
of CR and CI .
The similar procedure is done for the terms with

twist-three TMDFF. Inspecting the coefficient func-
tions accompanying TMDFF of twist-three, we observe
that C†

2ðŵ−1
1 ; ŵ−1

2 Þ has ŵ−1
1 þ ŵ−1

2 ¼ −z−1 < 0, and
C2ðŵ−1

3 ; ŵ−1
2 Þ has ŵ−1

3 þ ŵ−1
2 ¼ z−1 > 0. Analysis of the

complex structure gives

C†
1C2

�
1

ŵ3

;
1

ŵ2

�
¼ C†

2

�
−1
ŵ3

;
−1
ŵ2

�
C1: ðA11Þ

These coefficient functions are real valued because the
signs of ŵi are fixed (due to the definition of the domain of
TMDFF). We denote

C†
2

�
1

ŵ1

;
1

ŵ2

�
C1 ¼

C2ðz; ŵ2Þ
ŵ2

; ðA12Þ

where z ¼ −ŵ1ŵ2=ðŵ1 þ ŵ2Þ, and
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C2ðz; w2Þ ¼ 1þ as

�
2CF

�
−L2 þ 2L −

11

2
þ π2

6

�

þ 2

�
CF −

CA

2

�
w2

z

�
L − 2

þ 1

2
ln

�
1 −

z
jw2j

��
ln

�
1 −

z
jw2j

�

− CA
jw2j

jw2j − z
ln

�
z

jw2j
��

þOða2sÞ: ðA13Þ

Note that variable ŵ2 never reaches the point ŵ2 ¼ 0, and
does not receive the complex part from it. Performing
the same transformations as for terms with twist-three
TMDPDFs, we find common a δðz − ŵ3Þ, which set
ŵ2 < 0. It produces an extra sign factor, due to
ŵ2=jŵ2j ¼ −1.
Finally, we use the definitions (38) and (39) and replace

Φ21ðû1;2;3; bÞ ¼ Φ⊕ðû1;2;3; bÞ − iΦ⊖ðû1;2;3; bÞ; ðA14Þ

Φ21ð−û3;2;1; bÞ ¼ Φ⊕ðû1;2;3; bÞ þ iΦ⊖ðû1;2;3; bÞ; ðA15Þ

and similar for Φ̄,Δ, and Δ̄. After minor simplifications we
arrive at expression (13).

APPENDIX B: EVOLUTION OF TWIST-THREE
TMD DISTRIBUTIONS AT LO

The evolution equation for the TMD distributions of
twist-three were derived in Refs. [13,18]. Some parts of
these equations (namely, the elements of kernels P) could
be extracted from and compared with the results in the
literature [56,62,68]. The full description and derivation of
the following equations is given in Ref. [18]. Here we
present only the final expressions.
The evolution of twist-three TMD distributions with

respect to rapidity scales is given by LP equation

ζ
∂

∂ζ
Fðb; μ; ζÞ ¼ −Dðb; μÞFðb; μ; ζÞ; ðB1Þ

where F is TMDPDF or TMDFF of twist-two or twist-
three, and D is the Collins-Soper kernel [2]. The evolution

with respect to the parameter μ is different for TMDPDFs
and TMDFFs and is presented in the following sections.

1. Evolution of TMDPDFs of twist-three

The evolution equation for TMDPDFs of twist-three
reads

μ2
d
dμ2

�
F1

F2

�
¼
�
Γcusp

2
ln

�
μ2

ζ

�
þϒx1x2x3

��
F1

F2

�

þ
�

2PA 2πΘx1x2x3

−2πΘx1x2x3 2PA

��
F1

F2

�
;

ðB2Þ
where all distributions are functions of ðx1; x2; x3; b; μ; ζÞ.
The Γcusp is the anomalous dimension of the lightlike cusps
of Wilson lines (see, for instance, [69]). The LO expression
for the function ϒx1x2x3 is

ϒx1x2x3 ¼ as

�
3CF þ CA ln

�jx3j
jx2j
�

þ 2

�
CF −

CA

2

�
ln

�jx3j
jx1j
��

þOða2sÞ: ðB3Þ

The function Θ is discontinuous, and at LO it reads

Θx1x2x3 ¼ as ×

8>>>>>>>>>>><
>>>>>>>>>>>:

CA
2

x1;2;3 ∈ ðþ − −Þ
−CF þ CA

2
x1;2;3 ∈ ðþ −þÞ

0 x1;2;3 ∈ ð− −þÞ
− CA

2
x1;2;3 ∈ ð−þþÞ

CF − CA
2

x1;2;3 ∈ ð−þ −Þ
0 x1;2;3 ∈ ðþ þ −Þ

þOða2sÞ;

ðB4Þ
where x1;2;3 ∈ ðþ − −Þ means the region ðx1 > 0; x2 < 0;
x3 < 0Þ, and similarly for all the others. Importantly, the
equation (B2) is written for the SIDIS-like TMDPDFs
which have Wilson lines pointing to þ∞. For the case of
DY-like TMDPDFs with Wilson lines pointing to −∞, the
mixing terms Θ should be taken with opposite signs. The
kernel PA is the integral kernel that acts on the TMDPDF,

PA
x1x2Φ21ðx1; x2; x3Þ ¼ −

as
2

�
CAδx2;0Φ12ðx1; 0; x3Þ þ CA

Z
∞

−∞
dv

�
ððx2 þ vÞΦ12ðx1; x2; x3Þ − x2Φðx1 − v; x2 þ v; x3ÞÞ

×
x2Θðx2; vÞ
vðx2 þ vÞ2 − ðΦ12ðx1; x2; x3Þ −Φ12ðx1 − v; x2 þ v; x3ÞÞ

x1Θðx1;−vÞ
vðx1 − vÞ

�

− CA

Z
∞

−∞
dv

Φ12ðx1 − v; x2 þ v; x3Þ
x23

�
x22ðvþ 2x2 þ x1Þ

ðx2 þ vÞ2 Θðx2; vÞ þ
x1ð2x2 þ x1Þ

x1 − v
Θðx1;−vÞ

�
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þ 2

�
CF −

CA

2

�Z
∞

−∞
dv

Φ12ðx2 þ v; x1 − v; x3Þ
x23

�
x22

x2 þ v
Θðx2; vÞ þ

x1ðx2x1 − 2vx2 − vx1Þ
ðx1 − vÞ2

× Θðx1;−vÞ
��

þOða2sÞ; ðB5Þ

where Θða; bÞ ¼ θðaÞθðbÞ − θð−aÞθð−bÞ.
Importantly, the equation (B2) is valid only for the following pairs of TMD distributions of twist-three:

�
F1

F2

�
A

∈
��

f⊕L þ g⊖L

f⊖L − g⊕L

�
;

�
f⊥⊕ þ g⊥⊖
f⊥⊖ − g⊥⊕

�
;

�
f⊥⊕L þ g⊥⊖L

f⊥⊖L − g⊥⊕L

�
;

�
f⊥⊕T þ g⊥⊖T

f⊥⊖T − g⊥⊕T

�
;

�
h⊕
h⊖

�
;

�
h⊕L

h⊖L

�
;

�
hD⊥
⊕T

hD⊥⊖T

�
;

�
hA⊥⊕T

hA⊥⊖T

��
: ðB6Þ

The remaining distributions are

�
F1

F2

�
B

∈
��

f⊕L − g⊖L

f⊖L þ g⊕L

�
;

�
f⊥⊕ − g⊥⊖
f⊥⊖ þ g⊥⊕

�
;

�
f⊥⊕L − g⊥⊖L

f⊥⊖L þ g⊥⊕L

�
;

�
f⊥⊕T − g⊥⊖T

f⊥⊖T þ g⊥⊕T

�
;

�
h⊥⊕
h⊥⊖

�
;

�
h⊥⊕L

h⊥⊖L

�
;

�
hS⊥⊕T

hS⊥⊖T

�
;

�
hT⊥⊕T

hT⊥⊖T

��
: ðB7Þ

Their evolution equation is the same as 146 but with PA
replaced by PB. The later is given in Eq. (3.16) of Ref. [18].
The distributions (B7) do not appear in the NLP factori-
zation theorem for SIDIS or Drell-Yan.

2. Evolution of TMDFFs of twist-three

In position space, the evolution equation for TMDFF of
twist-three has identically the same form as for TMDPDF.
However, the transformation to the momentum-fraction
space makes it look different, since the support regions for
TMDPDFs and TMDFFs are different. In particular, in
the case of TMDFF the evolution preserves the sign of

momentum-fractions zs, and thus does not generate com-
plex parts. As a result, there are no mixing terms, and also
the θ-function structure simplifies.
The evolution equation reads

μ2
d
dμ2

ΔA ¼
�
Γcusp

2
ln
�
μ2

ζ

�
þϒFF

z1z2z3 þ PFF
A

�
ΔA; ðB8Þ

where TMDFFs are functions of ðz1; z2; z3; b; μ; ζÞ. The
Γcusp is the anomalous dimension of the lightlike cusps of
Wilson lines. The LO expression for the function ϒFF

z1z2z3 is

ϒFF
z1z2z3 ¼ as

�
3CF þ CA ln

�jz2j
jz3j
�
þ 2

�
CF −

CA

2

�
ln

�jz1j
jz3j
��

þOða2sÞ: ðB9Þ

Note that ϒFF
z1z2z3 ¼ ϒx1x2x3ðxi → z−1i Þ (B3). The action of the integral kernel PFF

A to TMDFF reads

PFF
A Δðz1; z2; z3Þ ¼ −

as
2

�
CA

Z
∞

−∞

dv
v

�
−
�
Δðz1; z2; z3Þ −

Δð z1
1−vz1

; z2
1þvz2

; z3Þ
ð1 − vz1Þð1þ vz2Þ2

�
θð−vÞ
1þ vz2

þ
�
Δðz1; z2; z3Þ −

Δð z1
1−vz1

; z2
1þvz2

; z3Þ
ð1 − vz1Þð1þ vz2Þ

�
θðvÞ

1 − vz1

�

þ CA

Z
∞

−∞
dv

Δð z1
1−vz1

; z2
1þvz2

; z3Þ
ð1 − vz1Þð1þ vz2Þ

z1z2
ðz1 þ z2Þ2

�
2z1 þ z2 þ vz1z2

ð1þ vz2Þ2
θð−vÞ þ 2z1 þ z2

1 − vz1
θðvÞ

�

− 2

�
CF −

CA

2

�Z
∞

−∞
dv

Δð z2
1þvz2

; z1
1−vz1

; z3Þ
ð1 − vz1Þð1þ vz2Þ

z21z2
ðz1 þ z2Þ2

�
θð−vÞ
1þ vz2

þ 1 − 2vz1 − vz2
ð1 − vz1Þ2

ΘðvÞ
��

; ðB10Þ
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where θ is the Heaviside theta function. This equation
was obtained from the universal position-space expres-
sion by computing the Fourier transform (31). It can
be compared with the kernel for TMDPDF 146 by
replacing Φða; b; cÞ → acbΔða−1; b−1; c−1Þ, and sub-
sequent replacement xi → z−1i , and multiplication by global
factor jz1z2z3j−1. Also, in derivation of (B10) we took into
account that Δ ≠ 0 only in the region z1;2 < 0 and z3 > 0.
The evolution equation (B8) is valid only for the

following TMDFFs:

ΔA ∈ fD⊥
⊕ − G⊥⊖; D⊥⊖ þ G⊥

⊕; H⊕; H⊖g: ðB11Þ

For other TMDFFs,

ΔB ∈ fD⊥
⊕ þG⊥⊖; D⊥⊖ −G⊥

⊕; H
⊥
⊕; H

⊥⊖g; ðB12Þ

the kernel PA must be replaced by the kernel PB which is

PFF
B Δðz1; z2; z3Þ ¼ −

as
2

�
CA

Z
∞

−∞

dv
v

�
−
�
Δðz1; z2; z3Þ −

Δð z1
1−vz1

; z2
1þvz2

; z3Þ
ð1 − vz1Þð1þ vz2Þ2

�
θð−vÞ
1þ vz2

þ
�
Δðz1; z2; z3Þ −

Δð z1
1−vz1

; z2
1þvz2

; z3Þ
ð1 − vz1Þð1þ vz2Þ

�
θð−vÞ
1 − vz1

�

þ 2

�
CF −

CA

2

�Z
∞

−∞
dv

Δð z2
1þvz2

; z1
1−vz1

; z3Þ
ð1 − vz1Þð1þ vz2Þ

z1
ð1 − vz1Þ2

ΘðvÞ
�
:

The kernel PB has been derived using the same technique
as the kernel PA (B10). To our best knowledge, the
evolution equations for TMDFFs of twist-three are dis-
cussed here for the first time.

APPENDIX C: KINEMATIC POWER
CORRECTIONS SEPARATELY

The kinematic power corrections have two sources.
The first source is the expansion of kinematic variables
from the contraction of the LP hadronic tensor, for
shortness we call it LP0. The second source is the
NLP hadronic tensor, for shortness we call it kNLP. In
this Appendix we present the expressions for both terms
separately, and explain the relation which helps to reduce
them to the simple form.
Expanding the contraction of LμνW

μν
LP up to NLP we

obtain the LP0 contribution (here only the terms which
produce nonzero NLP contribution):

Fcosϕ
UU jLP0 ¼ −

jp⊥j
zQ

ðJ 0½f1D1� þ J 2½h⊥1 H⊥
1 �Þ; ðC1Þ

Fsinϕ
UL jLP0 ¼ −

jp⊥j
zQ

J 2½h1LH⊥
1 �; ðC2Þ

Fcosϕ
LL jLP0 ¼ −

jp⊥j
zQ

J 0½g1D1�; ðC3Þ

FsinϕS
UT jLP0 ¼ −

jp⊥j
zQ

J 1

�
1

2
f⊥1TD1 þ h1H⊥

1

�
; ðC4Þ

Fsinð2ϕ−ϕSÞ
UT jLP0 ¼ −

jp⊥j
zQ

�
−
1

2
J 1½f⊥1TD1� þ

1

4
J 3½h⊥1TH⊥

1 �
�
;

ðC5Þ

FcosϕS
LT jLP0 ¼ −

jp⊥j
zQ

1

2
J 1½g⊥1TD1�; ðC6Þ

Fcosð2ϕ−ϕSÞ
LT jLP0 ¼ −

jp⊥j
zQ

1

2
J 1½g⊥1TD1�; ðC7Þ

where J n is defined in Eq. (97). These expression agree
with the blue-font part (denoted as kinematic corrections)
of the expressions presented in Sec. 5.2.4 of Ref. [15].
The kNLP terms read

Fcosϕ
UU jkNLP ¼

M
Q

J 1

h
f̊1D1 − f1D̊1

−M2jbj2ðh̊⊥1 H⊥
1 − h⊥1 H̊

⊥
1 Þ
i
; ðC8Þ

Fsinϕ
UL jkNLP ¼

M
Q
J 1

h
−M2jbj2ðh̊⊥1LH⊥

1 − h⊥1LH̊
⊥
1 Þ
i
; ðC9Þ

Fcosϕ
LL jkNLP ¼

M
Q

J 1 ½̊g1D1 − g1D̊1�; ðC10Þ

FsinϕS
UT jkNLP ¼

M
Q

J 0

�
−f⊥1TD1 þ 2h1H⊥

1

þ b2M2

2
ðf⊥1TD̊1 − f̊⊥1TD1Þ

þ b2M2ðh1H̊⊥
1 − h̊1H⊥

1 Þ
�
; ðC11Þ
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Fsinð2ϕ−ϕSÞ
UT jkNLP ¼

M
Q

J 2

�
−
1

2
h⊥1TH⊥

1 þ 1

2
ðf⊥1TD̊1 − f̊⊥1TD1Þ

þM2jbj2
4

ðh⊥1TH̊⊥
1 − h̊⊥1TH⊥

1 Þ
�
; ðC12Þ

FcosϕS
LT jkNLP ¼

M
Q

J 0

�
−g⊥1TD1 þ

b2M2

2
ðg⊥1TD̊1 − ̊g1TD1Þ

�
;

ðC13Þ

Fcosð2ϕ−ϕSÞ
LT jkNLP ¼

M
2Q

J 2

�̊
g1TD1 − g⊥1TD̊1

�
; ðC14Þ

where the definition of operation Å is

f̊ðx; b; μ; ζÞ ¼ 2

M2

�
∂

∂jbj2 þ
1

2
ln

�
ζ

ζ̄

��
∂Dðb; μÞ
∂jbj2

��
× fðx; b; μ; ζÞ;

D̊ðx; b; μ; ζ̄Þ ¼ 2

M2

�
∂

∂jbj2 −
1

2
ln

�
ζ

ζ̄

��
∂Dðb; μÞ
∂jbj2

��
×Dðx; b; μ; ζ̄Þ:

Here, the first equation is for TMDPDF, and the second is
for TMDFF. The expressions (C8)–(C14) agree with the
green-font part (denoted as P⊥ corrections) of expressions

presented in Sec. 5.2.4 of Ref. [15], to our best
understanding.
It is important to note that these corrections are frame

dependent. A small rotation of the vector nμ (or n̄μ) does
not alter the counting for the field mode (if the trans-
formation preserves n2 ¼ n̄2 ¼ 0), and thus preserves the
structure of factorization theorem [60]. However, some of
the LP0 and kNLP terms are frame invariant up to N2LP. We
have explicitly confirmed this statement for the Fcosϕ

UU term.
The terms J nðf1f̊2Þ can be rewritten via the terms

J nðf̊1f2Þ using the integration by parts. These relations are

J nðf1f̊2Þ ¼ −
jp⊥j
zM

J n−1ðf1f2Þ − J nðf̊1f2Þ; n > 0;

ðC15Þ

J nðjbj2M2f1f̊2Þ ¼
jp⊥j
zM

J nþ1ðf1f2Þ − 2ðnþ 1ÞJ nðf1f2Þ

− J nðjbj2M2f̊1f2Þ; n ≥ 0; ðC16Þ

where f1 and f2 are functions of jbj2. Applying these
relations, one can eliminate the contributions of LP0 terms.
We found that for all terms this can be achieved by turning
the derivative from TMDFF to TMDPDF. This operation
also eliminates some nonderivative kNLP terms. The result
is presented in Eqs. (99)–(116).

[1] J. C. Collins and D. E. Soper, Parton distribution and decay
functions, Nucl. Phys. B194, 445 (1982).

[2] J. C. Collins, D. E. Soper, and G. F. Sterman, Transverse
momentum distribution in Drell-Yan pair and W and Z
boson production, Nucl. Phys. B250, 199 (1985).

[3] T. Becher and M. Neubert, Drell-Yan production at small
qT , transverse parton distributions and the collinear
anomaly, Eur. Phys. J. C 71, 1665 (2011).

[4] J. Collins, Foundations of Perturbative QCD (Cambridge
University Press, Cambridge, England, 2013), Vol. 32.

[5] M. G. Echevarria, A. Idilbi, and I. Scimemi, Factorization
theorem for Drell-Yan at low qT and transverse momentum
distributions on-the-light-cone, J. High Energy Phys. 07
(2012) 002.

[6] R. Angeles-Martinez et al., Transverse momentum depen-
dent (TMD) parton distribution functions: Status and
prospects, Acta Phys. Pol. B 46, 2501 (2015).

[7] M. Grewal, Z.-B. Kang, J.-W. Qiu, and A. Signori,
Predictive power of transverse-momentum-dependent dis-
tributions, Phys. Rev. D 101, 114023 (2020).

[8] I. Scimemi and A. Vladimirov, Non-perturbative structure of
semi-inclusive deep-inelastic and Drell-Yan scattering at
small transverse momentum, J. High Energy Phys. 06
(2020) 137.

[9] A. Bacchetta, V. Bertone, C. Bissolotti, G. Bozzi,
F. Delcarro, F. Piacenza, and M. Radici, Transverse-
momentum-dependent parton distributions up to N3LL from
Drell-Yan data, J. High Energy Phys. 07 (2020) 117.

[10] A. Bacchetta, G. Bozzi, M. G. Echevarria, C. Pisano, A.
Prokudin, and M. Radici, Azimuthal asymmetries in un-
polarized SIDIS and Drell-Yan processes: A case study
towards TMD factorization at subleading twist, Phys. Lett.
B 797, 134850 (2019).

[11] I. Balitsky and A. Tarasov, Power corrections to TMD
factorization for Z-boson production, J. High Energy Phys.
05 (2018) 150.

[12] M. Inglis-Whalen, M. Luke, J. Roy, and A. Spourdalakis,
Factorization of power corrections in the Drell-Yan process
in EFT, Phys. Rev. D 104, 076018 (2021).

[13] A. Vladimirov, V. Moos, and I. Scimemi, Transverse
momentum dependent operator expansion at next-to-leading
power, J. High Energy Phys. 01 (2022) 110.

[14] I. Balitsky, Drell-Yan angular lepton distributions at small x
from TMD factorization, J. High Energy Phys. 09 (2021)
022.

[15] M. A. Ebert, A. Gao, and I. W. Stewart, Factorization for
azimuthal asymmetries in SIDIS at next-to-leading power,
J. High Energy Phys. 06 (2022) 007.

TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION FOR … PHYS. REV. D 110, 034009 (2024)

034009-27

https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1140/epjc/s10052-011-1665-7
https://doi.org/10.1007/JHEP07(2012)002
https://doi.org/10.1007/JHEP07(2012)002
https://doi.org/10.5506/APhysPolB.46.2501
https://doi.org/10.1103/PhysRevD.101.114023
https://doi.org/10.1007/JHEP06(2020)137
https://doi.org/10.1007/JHEP06(2020)137
https://doi.org/10.1007/JHEP07(2020)117
https://doi.org/10.1016/j.physletb.2019.134850
https://doi.org/10.1016/j.physletb.2019.134850
https://doi.org/10.1007/JHEP05(2018)150
https://doi.org/10.1007/JHEP05(2018)150
https://doi.org/10.1103/PhysRevD.104.076018
https://doi.org/10.1007/JHEP01(2022)110
https://doi.org/10.1007/JHEP09(2021)022
https://doi.org/10.1007/JHEP09(2021)022
https://doi.org/10.1007/JHEP06(2022)007


[16] S. Rodini and A. Vladimirov, Factorization for quasi-TMD
distributions of sub-leading power, J. High Energy Phys. 09
(2023) 117.

[17] L. Gamberg, Z.-B. Kang, D. Y. Shao, J. Terry, and F. Zhao,
Transverse-momentum-dependent factorization at next-to-
leading power, arXiv:2211.13209.

[18] S. Rodini and A. Vladimirov, Definition and evolution of
transverse momentum dependent distribution of twist-three,
J. High Energy Phys. 08 (2022) 031.

[19] D. J. Gross and F. Wilczek, Asymptotically free gauge
Theories—I, Phys. Rev. D 8, 3633 (1973).

[20] J. C. Collins, D. E. Soper, and G. F. Sterman, Factorization
for short distance hadron-hadron scattering, Nucl. Phys.
B261, 104 (1985).

[21] J. C. Collins, D. E. Soper, and G. F. Sterman, Soft gluons
and factorization, Nucl. Phys. B308, 833 (1988).

[22] M. Aghasyan et al., Precise measurements of beam spin
asymmetries in semi-inclusive π0 production, Phys. Lett. B
704, 397 (2011).

[23] COMPASS Collaboration, Measurement of azimuthal ha-
dron asymmetries in semi-inclusive deep inelastic scattering
off unpolarised nucleons, Nucl. Phys. B886, 1046 (2014).

[24] HERMES Collaboration, Azimuthal single- and double-
spin asymmetries in semi-inclusive deep-inelastic lepton
scattering by transversely polarized protons, J. High Energy
Phys. 12 (2020) 010.

[25] R. Abdul Khalek et al., Science requirements and detector
concepts for the electron-ion collider: EIC yellow report,
Nucl. Phys. A1026, 122447 (2022).

[26] D. P. Anderle et al., Electron-ion collider in China, Front.
Phys. 16, 64701 (2021).

[27] P. J. Mulders and R. D. Tangerman, The complete tree level
result up to order 1/Q for polarized deep inelastic lepto-
production, Nucl. Phys. B461, 197 (1996).

[28] D. Boer, P. J. Mulders, and F. Pijlman, Universality of
Todd effects in single spin and azimuthal asymmetries,
Nucl. Phys. B667, 201 (2003).

[29] A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P. J. Mulders,
and M. Schlegel, Semi-inclusive deep inelastic scattering
at small transverse momentum, J. High Energy Phys. 02
(2007) 093.

[30] K. Goeke, A. Metz, and M. Schlegel, Parameterization
of the quark-quark correlator of a spin-1=2 hadron, Phys.
Lett. B 618, 90 (2005).

[31] S. Arnold, A. Metz, and M. Schlegel, Dilepton production
from polarized hadron hadron collisions, Phys. Rev. D 79,
034005 (2009).

[32] M. G. Echevarría, A. Idilbi, and I. Scimemi, Soft and
collinear factorization and transverse momentum dependent
parton distribution functions, Phys. Lett. B 726, 795 (2013).

[33] J.-Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, A
formalism for the systematic treatment of rapidity loga-
rithms in quantum field theory, J. High Energy Phys. 05
(2012) 084.

[34] R. N. Lee, A. von Manteuffel, R. M. Schabinger, A. V.
Smirnov, V. A. Smirnov, and M. Steinhauser, Quark and
gluon form Factors in four-loop QCD, Phys. Rev. Lett. 128,
212002 (2022).

[35] J.-w. Qiu and G. F. Sterman, Single transverse spin asym-
metries, Phys. Rev. Lett. 67, 2264 (1991).

[36] A. V. Belitsky, X. Ji, and F. Yuan, Final state interactions
and gauge invariant parton distributions, Nucl. Phys. B656,
165 (2003).

[37] A. Idilbi and I. Scimemi, Singular and regular gauges in soft
collinear effective theory: The introduction of the new
Wilson line T, Phys. Lett. B 695, 463 (2011).

[38] R. L. Jaffe, Parton distribution functions for twist four,
Nucl. Phys. B229, 205 (1983).

[39] A. Metz and A. Vossen, Parton fragmentation functions,
Prog. Part. Nucl. Phys. 91, 136 (2016).

[40] A. Vladimirov, Structure of rapidity divergences in multi-
parton scattering soft factors, J. High Energy Phys. 04
(2018) 045.

[41] S. Meissner and A. Metz, Partonic pole matrix elements for
fragmentation, Phys. Rev. Lett. 102, 172003 (2009).

[42] D. Boer and P. J. Mulders, Time reversal odd distri-
bution functions in leptoproduction, Phys. Rev. D 57,
5780 (1998).

[43] D. Boer, L. Gamberg, B. Musch, and A. Prokudin, Bessel-
weighted asymmetries in semi inclusive deep inelastic
scattering, J. High Energy Phys. 10 (2011) 021.

[44] I. Scimemi and A. Vladimirov, Matching of transverse
momentum dependent distributions at twist-3, Eur. Phys.
J. C 78, 802 (2018).

[45] J. C. Collins, Leading twist single transverse-spin asymme-
tries: Drell-Yan and deep inelastic scattering, Phys. Lett. B
536, 43 (2002).

[46] S. M. Aybat and T. C. Rogers, TMD parton distribution and
fragmentation functions with QCD evolution, Phys. Rev. D
83, 114042 (2011).

[47] I. Scimemi and A. Vladimirov, Systematic analysis
of double-scale evolution, J. High Energy Phys. 08
(2018) 003.

[48] A. A. Vladimirov, Correspondence between soft and rap-
idity anomalous dimensions, Phys. Rev. Lett. 118, 062001
(2017).

[49] I. Moult, H. X. Zhu, and Y. J. Zhu, The four loop QCD
rapidity anomalous dimension, J. High Energy Phys. 08
(2022) 280.

[50] A. A. Vladimirov, Self-contained definition of the Collins-
Soper kernel, Phys. Rev. Lett. 125, 192002 (2020).

[51] V. Moos, I. Scimemi, A. Vladimirov, and P. Zurita,
Extraction of unpolarized transverse momentum distribu-
tions from fit of Drell-Yan data at N4LL, J. High Energy
Phys. 05 (2024) 036.

[52] MAP Collaboration, Unpolarized transverse momentum
distributions from a global fit of Drell-Yan and semi-
inclusive deep-inelastic scattering data, J. High Energy
Phys. 10 (2022) 127.

[53] H.-T. Shu, M. Schlemmer, T. Sizmann, A. Vladimirov,
L. Walter, M. Engelhardt, A. Schäfer, and Y.-B. Yang,
Universality of the Collins-Soper kernel in lattice calcu-
lations, Phys. Rev. D 108, 074519 (2023).

[54] LPC Collaboration, Nonperturbative determination of the
Collins-Soper kernel from quasitransverse-momentum-
dependent wave functions, Phys. Rev. D 106, 034509
(2022).

[55] A. Bermudez Martinez and A. Vladimirov, Determination of
the Collins-Soper kernel from cross-section ratios, Phys.
Rev. D 106, L091501 (2022).

SIMONE RODINI and ALEXEY VLADIMIROV PHYS. REV. D 110, 034009 (2024)

034009-28

https://doi.org/10.1007/JHEP09(2023)117
https://doi.org/10.1007/JHEP09(2023)117
https://arXiv.org/abs/2211.13209
https://doi.org/10.1007/JHEP08(2022)031
https://doi.org/10.1103/PhysRevD.8.3633
https://doi.org/10.1016/0550-3213(85)90565-6
https://doi.org/10.1016/0550-3213(85)90565-6
https://doi.org/10.1016/0550-3213(88)90130-7
https://doi.org/10.1016/j.physletb.2011.09.044
https://doi.org/10.1016/j.physletb.2011.09.044
https://doi.org/10.1016/j.nuclphysb.2014.07.019
https://doi.org/10.1007/JHEP12(2020)010
https://doi.org/10.1007/JHEP12(2020)010
https://doi.org/10.1016/j.nuclphysa.2022.122447
https://doi.org/10.1007/s11467-021-1062-0
https://doi.org/10.1007/s11467-021-1062-0
https://doi.org/10.1016/0550-3213(95)00632-X
https://doi.org/10.1016/S0550-3213(03)00527-3
https://doi.org/10.1088/1126-6708/2007/02/093
https://doi.org/10.1088/1126-6708/2007/02/093
https://doi.org/10.1016/j.physletb.2005.05.037
https://doi.org/10.1016/j.physletb.2005.05.037
https://doi.org/10.1103/PhysRevD.79.034005
https://doi.org/10.1103/PhysRevD.79.034005
https://doi.org/10.1016/j.physletb.2013.09.003
https://doi.org/10.1007/JHEP05(2012)084
https://doi.org/10.1007/JHEP05(2012)084
https://doi.org/10.1103/PhysRevLett.128.212002
https://doi.org/10.1103/PhysRevLett.128.212002
https://doi.org/10.1103/PhysRevLett.67.2264
https://doi.org/10.1016/S0550-3213(03)00121-4
https://doi.org/10.1016/S0550-3213(03)00121-4
https://doi.org/10.1016/j.physletb.2010.11.060
https://doi.org/10.1016/0550-3213(83)90361-9
https://doi.org/10.1016/j.ppnp.2016.08.003
https://doi.org/10.1007/JHEP04(2018)045
https://doi.org/10.1007/JHEP04(2018)045
https://doi.org/10.1103/PhysRevLett.102.172003
https://doi.org/10.1103/PhysRevD.57.5780
https://doi.org/10.1103/PhysRevD.57.5780
https://doi.org/10.1007/JHEP10(2011)021
https://doi.org/10.1140/epjc/s10052-018-6263-5
https://doi.org/10.1140/epjc/s10052-018-6263-5
https://doi.org/10.1016/S0370-2693(02)01819-1
https://doi.org/10.1016/S0370-2693(02)01819-1
https://doi.org/10.1103/PhysRevD.83.114042
https://doi.org/10.1103/PhysRevD.83.114042
https://doi.org/10.1007/JHEP08(2018)003
https://doi.org/10.1007/JHEP08(2018)003
https://doi.org/10.1103/PhysRevLett.118.062001
https://doi.org/10.1103/PhysRevLett.118.062001
https://doi.org/10.1007/JHEP08(2022)280
https://doi.org/10.1007/JHEP08(2022)280
https://doi.org/10.1103/PhysRevLett.125.192002
https://doi.org/10.1007/JHEP05(2024)036
https://doi.org/10.1007/JHEP05(2024)036
https://doi.org/10.1007/JHEP10(2022)127
https://doi.org/10.1007/JHEP10(2022)127
https://doi.org/10.1103/PhysRevD.108.074519
https://doi.org/10.1103/PhysRevD.106.034509
https://doi.org/10.1103/PhysRevD.106.034509
https://doi.org/10.1103/PhysRevD.106.L091501
https://doi.org/10.1103/PhysRevD.106.L091501


[56] M. Beneke, M. Garny, R. Szafron, and J. Wang, Anomalous
dimension of subleading-power N-jet operators, J. High
Energy Phys. 03 (2018) 001.

[57] A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller,
Single-spin asymmetries: The Trento conventions, Phys.
Rev. D 70, 117504 (2004).

[58] M. Boglione, A. Dotson, L. Gamberg, S. Gordon, J. O.
Gonzalez-Hernandez,A. Prokudin, T. C.Rogers, andN. Sato,
Mapping the kinematical regimes of semi-inclusive deep
inelastic scattering, J. High Energy Phys. 10 (2019) 122.

[59] J. Chay and C. Kim, Collinear effective theory at subleading
order and its application to heavy-light currents, Phys. Rev.
D 65, 114016 (2002).

[60] A. V. Manohar, T. Mehen, D. Pirjol, and I. W. Stewart,
Reparameterization invariance for collinear operators, Phys.
Lett. B 539, 59 (2002).

[61] V. Shtabovenko, R. Mertig, and F. Orellana, FeynCalc 9.3:
New features and improvements, Comput. Phys. Commun.
256, 107478 (2020).

[62] V. M. Braun, A. N. Manashov, and B. Pirnay, Scale depend-
ence of twist-three contributions to single spin asymmetries,
Phys. Rev. D 80, 114002 (2009).

[63] V. M. Braun and A. N. Manashov, Operator product ex-
pansion in QCD in off-forward kinematics: Separation of
kinematic and dynamical contributions, J. High Energy
Phys. 01 (2012) 085.

[64] S. Bastami et al., Semi-inclusive deep inelastic scattering
in Wandzura-Wilczek-type approximation, J. High Energy
Phys. 06 (2019) 007.

[65] A. V. Efremov and O. V. Teryaev, On spin effects in
quantum chromodynamics, Sov. J. Nucl. Phys. 36, 140
(1982).

[66] F. Rein, S. Rodini, A. Schäfer, and A. Vladimirov, Sivers,
Boer-Mulders and worm-gear distributions at next-to-
leading order, J. High Energy Phys. 01 (2023) 116.

[67] V. Moos and A. Vladimirov, Calculation of transverse
momentum dependent distributions beyond the leading
power, J. High Energy Phys. 12 (2020) 145.

[68] V. M. Braun, A. N. Manashov, and J. Rohrwild, Renorm-
alization of twist-four operators in QCD, Nucl. Phys. B826,
235 (2010).

[69] S. Moch, J. A. M. Vermaseren, and A. Vogt, The three loop
splitting functions in QCD: The nonsinglet case, Nucl. Phys.
B688, 101 (2004).

TRANSVERSE MOMENTUM DEPENDENT FACTORIZATION FOR … PHYS. REV. D 110, 034009 (2024)

034009-29

https://doi.org/10.1007/JHEP03(2018)001
https://doi.org/10.1007/JHEP03(2018)001
https://doi.org/10.1103/PhysRevD.70.117504
https://doi.org/10.1103/PhysRevD.70.117504
https://doi.org/10.1007/JHEP10(2019)122
https://doi.org/10.1103/PhysRevD.65.114016
https://doi.org/10.1103/PhysRevD.65.114016
https://doi.org/10.1016/S0370-2693(02)02029-4
https://doi.org/10.1016/S0370-2693(02)02029-4
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1016/j.cpc.2020.107478
https://doi.org/10.1103/PhysRevD.80.114002
https://doi.org/10.1007/JHEP01(2012)085
https://doi.org/10.1007/JHEP01(2012)085
https://doi.org/10.1007/JHEP06(2019)007
https://doi.org/10.1007/JHEP06(2019)007
https://doi.org/10.1007/JHEP01(2023)116
https://doi.org/10.1007/JHEP12(2020)145
https://doi.org/10.1016/j.nuclphysb.2009.10.005
https://doi.org/10.1016/j.nuclphysb.2009.10.005
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://doi.org/10.1016/j.nuclphysb.2004.03.030

