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In this work, we demonstrate that the mixing of scalar and vector condensates produces
spatially oscillating, but exponentially damped correlation functions in fermionic theories at finite
density and temperature. We find a regime exhibiting this oscillatory behavior in a Gross-Neveu-type
model that also features vector interactions within the mean-field approximation. The existence of this
regime aligns with expectations based on symmetry arguments that are also applicable to QCD at finite
baryon density. We compute the phase diagram including both homogeneous phases and regions with
spatially oscillating, exponentially damped correlation functions at finite temperature and chemical
potential for different strengths of the vector coupling. Furthermore, we find that inhomogeneous
condensates are disfavored compared to homogeneous ones akin to previous findings without vector
interactions. We show that our results are valid for a broad class of (2þ 1)-dimensional models with local
four-fermion interactions.
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I. INTRODUCTION

Quantum field theories (QFTs) with fermionic
four-point interactions—so-called four-fermion (FF)
models—and Yukawa models are often used as qualitative
descriptions of fermionic matter in various branches
of physics, mostly high-energy and condensed matter
physics [1–35]. An important application is the phenom-
enological low-energy description of chiral symmetry
breaking in quantum chromodynamics (QCD) at finite
temperature T and chemical potential μ. Although origi-
nally designed as models for the strong interaction
between nucleons, a common example for QCD-inspired
models are the Nambu-Jona-Lasinio (NJL) and the quark-
meson (QM) model, which describe the interaction of
fermions through the exchange of light mesons, such as,
e.g., pions [36–38]. When formulated in the chiral limit,
i.e., without a bare mass term for the fermions, these
models typically feature an homogeneous broken phase
(HBP) with a chiral condensate hψ̄ψi ≠ 0 acting as a
dynamically generated mass term in the vacuum. Above a
critical temperature, a second-order phase transition from
the HBP to the symmetry-restored phase (SP) occurs

where chiral symmetry is restored—in consistency with
the chiral crossover of QCD with physical quark masses1

[40]. The effective model description is of particular
relevance for phenomenological predictions at nonvanish-
ing density, since QCD suffers from complex Boltzmann
weights appearing in the partition function at μ ≠ 0 [41].
The complex weights in the partition function signifi-
cantly complicate first-principle calculations, e.g., using
lattice field theory. Therefore, the development of tech-
niques with access to the QCD phase diagram in the ðμ; TÞ
plane is an active field of research [42–49].
Thus, except for regions of the QCD phase diagram at

μ ¼ 0 and small μ=T, theorists have relied on effective
models for the study of the phase diagram of strongly
interacting matter at intermediate densities and temper-
atures, see, e.g., Refs. [1,3]. Model studies are often carried
out in the mean-field approximation where bosonic quan-
tum fluctuations are suppressed—in order to reduce the
complexity of the calculations. With respect to the chiral
phase transition, computations assuming homogeneous
ground states typically discuss the scenario of a first-order
phase transition including a critical end point at non-
vanishing μ—in consistency with investigations of QCD
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1In the case of formulating these models with a nonvanishing
bare quark mass, the chiral symmetry is also only approximate
and a crossover is observed instead of a second-order phase
transition. The explicit symmetry breaking can then be compen-
sated at high temperature and chemical potential in a super
restoration phase boundary, as found in Ref. [39].
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using functional methods [42,43]. When allowing for
inhomogeneous condensates in these model calculations
the first order phase transition region is replaced by the
alternative scenario of a so-called inhomogeneous phase
(IP)—a phase where the chiral condensate is a function of
the spatial coordinates, i.e., hψ̄ψi ¼ fðxÞ, and translational
symmetry is spontaneously broken (see Ref. [50] for a
review). A phenomenon expected to be closely related to
the IP is the so-called moat regime—where a negative
bosonic wave function renormalization is obtained.
Accordingly, a modified dispersion relation with a minimal
energy at a nonvanishing momentum is obtained [51],
which is the reason that the moat regime is also called a
precursor phenomenon of an IP, see also Ref. [52] for an
example of a (1þ 1)-dimensional model featuring a moat
regime which is present in large parts of the IP and the SP.
In general, spatially oscillatory behavior of quantities that
are related to particles with the moat dispersion relation
should be favored within a moat regime. Scenarios, which
are alternatives to translational symmetry breaking in an IP,
include a liquid crystal-like behavior [53–58], where
correlations are oscillatory and of quasilong range order
with polynomial suppression, and a so-called quantum pion
liquid with oscillatory, but exponentially suppressed two-
point correlation functions [59–62]. Both of these scenarios
are related to some sort of disordering of the IP through
bosonic quantum fluctuations. The observation of the moat
regime in a recent functional renormalization group study
[43] as well as a few other, albeit limited and exploratory
studies of IPs in QCD [63,64] suggest that IPs or, in
general, regimes with spatially oscillatory behavior are
relevant in QCD at finite density.
Inhomogeneous phases are very common in (1þ 1)-

dimensional models at least within the mean-field approxi-
mation [52,65–71]. However, in recent literature there is an
ongoing discussion whether IPs persist when allowing for
bosonic quantum fluctuations [72–78]. In (3þ 1) dimen-
sions, IPs have been observed in various models over the
last decades [79–85]. However, recent studies [86,87] show
an inherit dependence of the IP on the regulator value and
the choice of the regularization scheme in the NJL model
caused by the chemical potentials and momenta of the
inhomogeneous condensates being in the order of the
regulator. Thus, one can argue that there is no predictive
power of the NJL model results with respect to IPs,2 as long
as there is no good argument that an effective theory for
QCD at finite density could behave as a low-dimensional or
strongly regulated NJL model [88,89]. In contrast, the moat
regime seems to be a stable feature of the NJL model [87]
—as will be reported on in an upcoming publication
following Ref. [87].

Due to the nonrenormalizability of FF models in (3þ 1)
dimensions and the problems arising from this nonrenor-
malizability as well as due to the application to condensed
matter systems, it is common to study these models in
(2þ 1) dimensions [90–100], where FF models are renor-
malizable. In a preceding work [101], we have shown the
absence of IPs and moat regimes in a variety of FF models
and Yukawa models by analyzing the stability of homo-
geneous ground states. These results are in consistency
with previous findings that minimize the effective action of
the (2þ 1)-dimensional Gross-Neveu (GN) model on the
lattice [102–105] and generalizes this result to the whole
class of models with Lorentz-scalar interaction channels.
In this work, we expand on the analysis in Ref. [101] by

including vector interactions ∼ðψ̄γνψÞ2. In contrast to
nuclear matter, where the Walecka model—featuring inter-
actions with vector mesons—is commonly used, the
inclusion of vector interactions is often not part of effective
model calculations of QCD matter except for a few studies
[106–110]. However, the fundamental QCD action gives
rise to Yukawa-type interactions between fermions and
vector mesons, such as the ω meson, arising from a
resonance of the FF interaction in the corresponding vector
channels [111–113]. At nonvanishing μ, the temporal
component of the ω meson couples directly to the density
hψ†ψi via the Yukawa interaction ∼ψ†ω0ψ . Thus, this
interaction is expected to play an important role in finite
density QCD.
In the present work, we focus on the effects of mixing

between scalar and vector condensates on the ðμ; TÞ phase
diagram by analyzing the stability of homogeneous ground
states. For this sake a FF model including both scalar and
vector interactions is defined in Sec. II. The renormalization
of the FF interaction and the methods for the computation
of homogeneous condensates are briefly described in
Secs. III A and III B. The stability analysis including the
computation of the Hessian matrix in field space—featuring
mixing of different condensates—is presented in Sec. III C.
Symmetries of the Hessian matrix and their relation to finite
density QCD are discussed in Sec. III D. Further implica-
tions of the analysis regarding oscillatory correlations
functions are presented in Sec. III E. In Sec. IVA, we
present original results on the homogeneous phase diagram
of the theory. The appearance of oscillatory correlation
functions in a quantum pion liquid regime as well as the
absence of IPs are discussed in Sec. IV B. In Sec. V,we show
that our results are generic for all models with local FF
interactions based on a similar argumentation as in
Ref. [101] before concluding in Sec. VI.

II. FERMIONIC MODEL WITH SCALAR-VECTOR
MIXING

In order to study mixing induced by the interplay of a
repulsive vector and an attractive scalar interaction, we
study the action

2It is probably necessary to explore the regularization depend-
ence of the IP in models where the regulators can be tuned to
higher values than in the NJL—such as, e.g., the QM model.
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Smix½ψ̄ ;ψ � ¼
Z

β

0

dτ
Z

d2x

�
ψ̄ð∂þ γ3μÞψ

−
�
λS
2N

ðψ̄ψÞ2þ λV
2N

ððψ̄ iγ3ψÞ2þðψ̄ iγ⃗ψÞ2Þ
��

;

ð1Þ

where ψ contains N four-component spinors, describing a
generic fermion field without a bare mass, μ is the chemical
potential and γν ¼ ðγ3; γ⃗Þ are the 4 × 4 Dirac matrices,3

where γ⃗ ¼ ðγ1; γ2Þ. The spacetime integration goes over a
(2þ 1)-dimensional Euclidean spacetime volume, where
the inverse temperature determines the temporal extent
β ¼ 1=T. Our conventions for the Wick rotation are given
in Appendix A.
Introducing auxiliary bosonic fields in an inverse, shifted

Gaussian integration yields the partially bosonized model

S½ψ̄ ;ψ ; σ;ων� ¼
Z

d3x

�
ψ̄ Qψ þ ωνων

2λV
þ σ2

2λS

�
;

Z ¼
Z Y

ϕ¼fψ̄ ;ψ ;σ;ωνg
Dϕ e−S½ψ̄ ;ψ ;σ;ων� ð2Þ

with the Dirac operator

Q½σ;ων� ¼ γν∂ν þ γ3μþ σ þ iγνων: ð3Þ

The scalar field σ and the vector field ων ¼ ðω3; ω⃗Þ are
linked to fermionic expectation values via

hσiðxÞ ¼ −
λS
N
hψ̄ψiðxÞ; hω3iðxÞ ¼ −

λV
N

ihψ̄ γ3 ψiðxÞ;

hω⃗iðxÞ ¼ −
λV
N

ihψ̄ γ⃗ ψiðxÞ: ð4Þ

Assuming that the theories’ invariance under rotations of
the spatial coordinates x ¼ ðx1; x2Þ remains intact, only
condensation of the scalar field σ and the temporal
component of the vector field ω3 is allowed. Thus, this
assumption implies that hω⃗i ¼ 0. An inhomogeneous
chiral condensate, however, can violate rotational invari-
ance, which would invalidate the assumption of hω⃗i ¼ 0. In
this work, however, a stability analysis about homogeneous
condensates is used, which respects the invariance of
the theory under spatial rotations as it only depends on
the absolute value of the spatial momentum vector q of the
inhomogeneous perturbation by derivation, see Sec. III of
Ref. [103] and Appendix B of Ref. [101]. No assumptions
on the functional form of σðxÞ or ωνðxÞ are made and the
analysis only requires the insertion of homogeneous ground
states as expansion points. Thereby, rotational invariance is

respected by this analysis such that the assumption of
hω⃗i ¼ 0 remains valid whenever information about the
thermodynamic ground state of the system is obtained. A
nonvanishing expectation value of σ indicates the breaking
of the discrete chiral symmetry of this model [90,103,104],
since it acts as a dynamically generated mass term for the
fermions. This mass term is parity even, while there is also
the possibility for a parity-odd mass term in (2þ 1)
dimensions [101,114]. Thus, we often refer to hσi as the
chiral condensate, since it is directly linked through Eq. (4)
to hψ̄ψi. Also, we note that in our conventions (compare
Appendix A) the quark number density is given by nðxÞ ¼
−hψ̄γ3ψiðxÞ=N and, thus, ω3 is required to be a purely
imaginary field with Imω3ðxÞ ¼ λVnðxÞ=N in order for the
baryon density to be real valued. This is directly linked to
the repulsive nature of the Yukawa interaction between
quarks and the vector meson ω3 and the corresponding FF
interaction.

A. Mean-field approximation

For the remainder of this work, we use the so-called
mean-field approximation, which in this context means the
suppression of bosonic quantum fluctuations in the parti-
tion function (2). In the case of FF models such as Eq. (1),
this suppression can directly be obtained by taking the limit
of the parameter N → ∞. Since the fermion fields appear
only as bilinears in Eq. (2), one can integrate their
fluctuations out. The obtained effective action4

1

N
Seff ½σ;ων� ¼

Z
d3x

�
ωνων

2λV
þ σ2

2λS

�
− Tr lnQ ð5Þ

is then a functional of the bosonic fields only. In the mean-
field approximation, observables can be computed by
evaluating them on the global minimum of the effective
action,5 denoted by σ ¼ Σ̄ and ων ¼ Ων. Since the inter-
actions do not mix between the N fermion fields, the
effective action is proportional to N and the minimization
of Seff is independent of N. Hence, the obtained phase
diagram would be identical when using the mean-field
method as a semiclassical approximation of the QFT with
any integer number of N. The mean-field approximation

3These fulfill the Clifford algebra with the Euclidean metric
diagð1; 1; 1Þ.

4In the mean-field approximation, the effective action is
directly proportional to the quantum effective action, usually
defined as the Legendre transform with respect to of the logarithm
of the partition function.

5In the case of multiple, degenerate global minima, which are
linked through a symmetry transformation, one has to formally
introduce a small symmetry breaking parameter h and extrapolate
to a vanishing h. In the mean-field approximation, this can be
directly implemented by picking one of the degenerate minima.
In the case of obtaining a point in the phase diagram with a first
order phase transition, where this issue can lead to ambiguities,
we will refrain from evaluating any observables depending on the
minimum of the effective action. We refer to Ref. [101] for a
similar discussion.
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has turned out to be a decent starting point for inves-
tigations of phase diagrams, since ordered phases as, e.g.,
an HBP or an IP, are typically weakened through bosonic
quantum fluctuations, see, e.g., Refs. [72–76,99]. Thus, if
an HBP or an IP does not exist in the mean-field
approximation, it is very likely that those phases also do
not exist in the full QFT.

III. METHODS FOR COMPUTING THE PHASE
DIAGRAM IN THE PRESENCE OF MIXING

In this chapter, we present methods for computing the
phase diagram of the FF model with mixing, see Eq. (1).

A. Homogeneous condensates

As a starting point for the investigation of the phase
structure of the model (1), the thermodynamic ground state
with the assumption of homogeneous condensates σ ¼ σ̄;

ω3 ¼ ω̄3 is determined. We assume that the spatial com-
ponents of the vector field respect the invariance of the
partition function (2) under spatial rotations, i.e., ⃗ω̄ ¼ 0.
With this assumption one can compute the homogeneous
effective potential at fixed μ and T

Ūðμ;TÞðσ̄; ω̄3Þ ¼
1

N
Seff ½σ̄;ω3�

βV
ð6Þ

using standard techniques of thermal field theory.
Inspecting Eq. (2) under the assumption of ω3 ¼ ω̄3, it
is convenient to absorb the vector condensate into an
effective chemical potential μ̄ ¼ μþ iω̄ ¼ μ − λVn̄, where
n̄ is the homogeneous quark number density per fermion
species, see the discussion below the Ward identity (4). The
homogeneous effective potential is given by

Ūðμ;TÞðσ̄; ω̄3Þ ¼
ω̄2
3

2λV
þ σ̄2

2λS
−
Nγ

2

Z
d2p
ð2πÞ2

�
Eþ 1

β
½ln ð1þ e−βðEþμ̄ÞÞ þ μ̄ → −μ̄�

�
; ð7Þ

where the last two terms are identical to the effective
potential of the GN model at chemical potential μ̄ and
temperature T, as, e.g., studied in Refs. [52,90,91,102,103].
In Eq. (7), summation over fermionic Matsubara frequen-
cies was already performed and E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þ σ̄2

p
, where p⃗

are the spatial momenta. The dimensionality of the spinors
is denoted by Nγ ¼ 4.
The computation of homogeneous condensates is stan-

dard in the literature, see, e.g., Refs. [50,52,65,90,115]. In
order to determine the extrema of the effective potential (7)
with respect to σ̄ and ω̄3, we use the so-called gap equations

∂Ūðμ;TÞ

∂σ̄
¼ 0

↔ σ̄

�
1

λS
− l1ðμ; T; σ̄; ω̄3Þ

�
¼ 0; ð8Þ

where

l1ðμ; T; σ̄; ω̄3Þ ¼
Nγ

2

Z
d2p
ð2πÞ2

1 − nFðEÞ − nF̄ðEÞ
E

; ð9Þ

and

∂Ūðμ;TÞ

∂ω̄
¼ 0 ↔

ω̄3

λV
− in̄ðμ; T; σ̄; ω̄3Þ ¼ 0 ð10Þ

with

n̄ðμ; T; σ̄; ω̄3Þ ¼
Nγ

2

Z
d2p
ð2πÞ2 ½nFðEÞ − nF̄ðEÞ�: ð11Þ

In the above expressions, nFðxÞ ¼ ð1þ eβðx−μ̄ÞÞ−1 and
nF̄ðxÞ ¼ ð1þ eβðxþμ̄ÞÞ−1. Note that the gap equation for
ω̄3 does not contain a vacuum contribution from the
Dirac see by derivation, such that ω̄3 ¼ 0 is the only
solution of Eq. (10) for μ ¼ 0. Solving this set of coupled
equations, one computes all extrema of Ū with respect to σ̄
and ω̄3 and determines the global minimum, denoted as
ðΣ̄ðμ; TÞ; Ω̄3ðμ; TÞÞ, respectively, by inserting the all found
extrema back into the effective potential (7).
The absorption of ω̄3 into a chemical potential μ̄ can be

useful for the interpretation of results as well as for
computational purposes. As there is no way to distinct
the dynamical contribution to the chemical potential
through the condensation of the vector field Ω̄3 experi-
mentally, μ̄ is also the phenomenologically relevant quan-
tity. Thus, one could argue to use μ̄ and T as external
parameters of the model and, instead, treat the effective
potential as a function of σ̄ and μ, such as done in
Refs. [106,107]. This is also advantageous for the mini-
mization of the effective potential Eq. (7), since one can
directly solve Eq. (8) at fixed μ̄ and T. Inserting the solution
Σ̄ into Eq. (10), it is possible to directly compute Ω̄3 and,
thus, the chemical potential from μ ¼ μ̄ − iΩ̄3. However,
this procedure leads to ambiguities in the ðμ; TÞ phase
diagram, as multiple ðΣ; μ̄Þ pairs can belong to the same
chemical potential μ. Then, one would need to iterate
through all computed tuples ðσ; μ̄Þ to get the correct global
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minimum of Ū for a certain ðμ; TÞ and draw a correct
picture of the phase diagram. Thus, in our numerical setup
we keep σ̄ and ω̄3 as variables.

B. Renormalization and parameter fixing

As can be seen from Eq. (8), the computation of
homogeneous condensates in the model (1) involves the
evaluation of integrals with linear UV divergences that
require regularization. As originally demonstrated in
Refs. [91,116], FF interactions are renormalizable order
by order in 1=N in (2þ 1) dimensions. Thus, we can
remove the divergences by imposing a renormalization
condition. By fixing the dynamically generated fermion
mass in the vacuum Σ̄ðμ ¼ 0; T ¼ 0Þ ¼ Σ̄0, one can absorb
the divergence using the coupling λS through the gap
equation (8) in the vacuum. Using a sharp UV cutoff Λ
for the spatial loop momenta, we determine

l1ð0; 0; σ̄; 0Þ ¼
Nγ

4π
ðΛ − jσ̄jÞ ð12Þ

such that

1

λS
¼ Nγ

4π
ðΛ − jΣ̄0jÞ: ð13Þ

Note that we used that ω̄3 ¼ 0 in the vacuum, as can be read
off directly from Eq. (10). Using this procedure and
sending Λ → ∞, we obtain

L1ðμ;T; σ̄;ω̄3Þ≡ 1

λS
−l1ðμ;T; σ̄; ω̄3Þ

¼Nγ

�jσ̄j− jΣ̄0j
4π

þ
Z

d2p
ð2πÞ2

nFðEÞþnF̄ðEÞ
2E

�
;

ð14Þ
which is finite and is all that is required to render the
observables of interest in this work finite. Thus, the chiral
condensate in the vacuum Σ̄0 will be used as the physical
scale to construct dimensionless ratios for all other quan-
tities in this work.
The gap equation for ω̄3 (10) does not contain a

divergent vacuum contribution, such that imposing a
renormalization prescription in the common way is not
possible.6 Moreover, the Eq. (10) yields ω̄3 ¼ 0 as the only
solution in the vacuum. Thus, λV can only be fixed by
working at μ ≠ 0, e.g., by imposing a value for ω̄3 at a
nonvanishing μ and T ¼ 0. Since we consider the action (1)
as a toy model for the mixing of scalar and vector modes,
we do not fix λV but treat it as a free parameter to study its
influence on the phase diagram of the theory similar to
Refs. [106,107].

C. The Hessian matrix and bosonic two-point vertex
functions in the presence of mixing

In order to compute the phase structure of the theory,
the ground state ðσ;ωνÞ ¼ ðΣðxÞ;ΩνðxÞÞ needs to be
determined. Without specifying a particular ansatz
for the dependence of the condensates on the
spatial coordinates, this is a difficult functional mini-
mization problem, that was so far not consistently
solved in the literature. However, an efficient strategy
to test whether, e.g., an IP is favored compared to
homogeneous ground states Φ⃗j is to perform a stability
analysis, where the homogeneous condensates are
perturbed by arbitrary functions of infinitesimal ampli-
tude δϕjðxÞ. References [52,77] give an in-depth
discussion of the method and its advantages and draw-
backs on the example of a model with an analytical
solution for ΣðxÞ in the whole ðμ; TÞ plane. For a (2þ 1)-
dimensional model, the same method was used in
Refs. [101,103]. Additional implications of the analysis,
which are not discussed in Refs. [52,77], will be subject
of Sec. III E.
The main idea of the method is to determine whether the

nonvanishing leading-order coefficients in an expansion
with respect to the Fourier mode δϕ̃jðqÞ of an inhomo-
geneous perturbation is negative and, thus, leads to a lower
free energy. Thereby, q denotes the spatial momentum
vector. In this case there is an instability of homogeneous
condensates Φ̄j (or linear combinations of the condensates)
towards an IP. The first nonvanishing contribution when
perturbing around solutions of the gap equations (8) and
(10) is of second order in the bosonic fields, since the
first order contribution is proportional to the gap equations
[52]. In the case of multiple bosonic fields, the second
order contribution is given by a Hessian matrix Hϕjϕk

,
which needs to be diagonalized in field space by finding

its eigenvalues Γð2Þ
φj and eigenvectors φj, where, in general,

φj ≠ ϕj. In the case at hand, the eigenvalues as well as the
elements of the Hessian matrix itself do not depend on the
direction of q, but only on its absolute value q ¼ jqj as
first derived in Ref. [103] for a (2þ 1)-dimensional FF
model. This is caused by the locality of the fermion self-
energy stemming from incorporating only local inter-
actions in Eq. (1), as discussed in Sec. IV of Ref. [48]. In
practice, one obtains this result when performing the
Fourier transformation of the second order correction as
described in Sec. III of Ref. [103]. In Ref. [101] multiple
examples of the diagonalization procedure are given. The

eigenvalues Γð2Þ
φj of the Hessian matrix are called the

bosonic two-point vertex functions7 and are typically

6Also, to the knowledge of the author, there is no alternative
way of renormalizing this coupling in the literature.

7In the mean-field approximation, this quantity is precisely the
two-point-one-particle-irreducible vertex function, as it is often
defined in QFT textbooks.
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expressed as functions of the bosonic momentum q
corresponding to the respective Fourier mode of δφj.

8

The stability analysis is equivalent to a saddle point
approximation of the partition function (2) with respect
to the bosonic fields. Investigations of this type have
recently been used a lot in the literature, see, e.g.,
Refs. [84,88,89,101,103,104,117].
For a detailed derivation of the bosonic two-

point vertex functions in models with multiple FF or
Yukawa-type interactions we refer to Appendix A of
Ref. [101]. The focus of this section is on the important
differences in the analysis compared to the one in
Ref. [101] caused by the included vector interactions.
As discussed in the aforementioned Refs., the Hessian
matrix can be derived by considering all second-order
functional derivative terms with respect to the bosonic
fields ϕj. One then has to find a basis transformation
mapping ϕj on a field basis φj diagonalizing H such that
the eigenvalues of H are the two-point vertex functions

Γð2Þ
φj ðqÞ. With Lorentz-scalar interaction, one usually finds

φj ¼ ϕj. This is not the case, when studying a model with

vector interactions, such as Eq. (2) with ϕ⃗ ¼ ðσ;ωνÞ.
Then, not only φj ≠ ϕj but also the eigenvectors of H in
field space have to be determined for every value of q,
i.e. φjðqÞ ¼

P
k cj;kðqÞϕk.

In a model with a repulsive vector interaction, as
mediated by ω3, the situation gets even more complicated.
As discussed above, the homogeneous condensate ω̄3 ∼ in̄
is purely imaginary. In contrast to the real-valued con-
densate σ̄ being analyzed by studying its stability with
respect to real valued perturbations δσ, one has to treat
fluctuations δω3 about ω̄3 in the complex plane. As
recently discussed in Ref. [110], fluctuations must be
in the direction of the steepest descent of the effective
action corresponding to the stable Lefshetz thimble. The
analysis of fluctuations about the homogeneous ground
state is equivalent to saddle point approximation of
the path integral, which in turn is only well defined when
the stable Lefshetz thimble is used [118]. Inspecting the
effective action Eq. (2) under these aspects reveals that
one has to consider real-valued fluctuations δω3 about the
purely imaginary ω̄3. This is demonstrated in a similar,
NJL-type model with vector interactions in (3þ 1)
dimensions in Ref. [119]. In Fig. 5 therein, the
Lefshetz thimble in the field space of the temporal vector
component is depicted.

The resulting Hessian for model (2) is given by

Hϕjϕk
ðqÞ ¼ δϕj;ϕk

�
δϕj;σ

λS
þ 1 − δϕj;σ

λV

�

þ 1

β

X
n

Z
d2p
ð2πÞ2 tr½Sðνn; p⃗þ q⃗ÞcjSðνn; p⃗Þck�;

ð15Þ

where we define the propagator of a free fermion with mass
Σ̄ at chemical potential μ̄ ¼ μþ iΩ̄3 and temperature T as

S ¼ ðQ̂½Σ̄; Ω̄3δν;3�Þ−1; ð16Þ

where Q̂ denotes the Fourier transform of Q½σ;ων�,
compare Eq. (3). Also, νn ¼ 2πðn − 1

2
ÞT are fermionic

Matsubara frequencies, q⃗ ¼ ðq; 0Þ, where the spatial
momentum integration can be chosen such that q is aligned
along one coordinate axis and we defined the bare vertices
c⃗ ¼ ð1;−γ3; iγ1; iγ2ÞT . Note that purely imaginary pertur-
bations about ω̄3 would correspond to a vertex iγ3 instead
of −γ3. From Eq. (15), the cyclic property of the trace gives
Hϕjϕk

¼ Hϕkϕj
. Formulas for the evaluation of Hϕjϕk

ðqÞ
can be found in Appendix B. We note that Eq. (15)
describes a fermionic one-loop diagram with amputated
bosonic legs [compare Eq. (36) in Ref. [52]] already
incorporating mixing effects between the bosonic fields
in the mean-field approximation. One finds Hσων

∝ Σ̄,
such mixing between the scalar and the vector mode is
only relevant within the HBP. In practical computations, we
compute Hϕjϕk

ðqÞ for a fixed q and diagonalize the
resulting matrix numerically using Python3 with various
libraries [120–122].

D. Symmetries of the Hessian

In the following, we will analyze the structure of the
Hessian (15). A similar discussion can be found in the
recent work [110], where a Polyakov-loop QM model
with vector mesons has been studied using a static stability
analysis, i.e., the Hessian was studied at q ¼ 0 only.
Since ων are components of a vector field, they pick up
a sign under charge conjugation, i.e., CωνC−1¼−ων [see
Ref. [123] for a construction of the charge conjugation
operation on four-dimensional spinors in (2þ 1) Euclidean
spacetime dimensions]. This breaking of charge conjuga-
tion symmetry is expected at finite density due to the excess
of particles over antiparticles. Since Hσω3

¼ Hω3σ is non-
vanishing at μ ≠ 0 and purely imaginary, we conclude that
the Hessian is non-Hermitian when C symmetry is broken.
On the level of homogeneous condensation the breaking of
C-symmetry is realized through ω̄3 ≠ 0 at μ ≠ 0, as will be
discussed in Sec. IVA. However, the homogeneous con-
densates as well as the Hessian are still invariant under the
combined operation of the linear C transformation and

8The two-point function does not depend on the direction of
the vector q⃗, because the computation involves the integration
over loop momenta, which can always be rotated such that the
resulting integrals only depend on the absolute value of q
respecting rotational invariance.
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antilinear transformation of complex conjugation K. A
remaining invariance under a combined antilinear CK
operation while the charge conjugation symmetry is broken
at finite density can also be found in QCD itself as well as
other QCD-inspired theories, such as Polyakov-NJL mod-
els [110,124,125].
Due to the invariance under the CK operation the Hessian

obeys the relation H ¼ AH�A, where � denotes complex
conjugation and A ¼ diagð1;−1; 1; 1Þ. It directly follows
thatHðqÞ possesses the same set of eigenvalues λj asH�ðqÞ
and, consequently, the eigenvalues are either real valued or
come in complex-conjugate pairs. In the case of real-valued
λjðqÞ, their interpretation as bosonic two-point vertex

functions Γð2Þ
φj ðqÞ has been extensively discussed in the

previous section and also in Ref. [101]. However, it has
recently been demonstrated that the competition between
repulsive and attractive interactions can induce complex-
conjugate eigenvalue pairs in the stability analysis based
on the study of mixing in Euclidean field theories with
PT -type symmetries9 [59,61,62]. The existence of com-
plex-conjugate eigenvalue pairs leads to bosonic correla-
tion functions with spatial sinelike modulations in
addition to the ordinary exponential decay and is directly
related to the invariance under a combination of an linear
and an antilinear symmetry operation, such as the CK
operation [124].

E. Accessing properties of bosonic two-point correlation
functions within the mean-field approximation

using the Hessian matrix

The arguments for the existence of these oscillating
bosonic correlation functions in the literature and the
validity of the analysis in the case of the present model
are briefly recapitulated here.

1. Recapitulation of the literature on Hessian matrix
analysis in bosonic field theories

As discussed in Refs. [59,61], the inverse propagator
matrix of dynamical bosonic fields is given by

q2 þHð0Þ; ð17Þ

where the q2 term comes from an a priori kinetic term as
included in Refs. [59,61,62] and Hð0Þ is the static Hessian

matrix (equivalent to the mass matrix in the discussed
theories in these references). This expression stems from
the fact that the inverse of the bosonic correlation functions
can be expressed as a sum of the tree-level contributions
and self-energy contributions stemming from the bosonic
one-loop analysis. In this case, one can directly classify the
behavior of propagators by just inspecting the eigenvalues

Γð2Þ
φj ð0Þ of the static Hessian Hð0Þ. The classifications stem

from the fact that roots of the expression q2 þHð0Þ
correspond to poles of the corresponding propagators of
the dynamical bosonic fields in the one-loop analysis.
Ordinary, stable homogeneous phases with exponentially
decaying propagators yield Hessian matrices with positive
eigenvalues. An even number of negative eigenvalues
corresponds to a stable ground state with respect to
homogeneous perturbations but instable with respect to
inhomogeneous ones. Based on this analysis, one can
obtain indications about IPs without including the full-
momentum dependence of H. For an uneven number of
negative eigenvalues in the static Hessian, the system is
completely unstable against both homogeneous and inho-
mogeneous perturbations corresponding to a set of field
values, which are not a stable minimum of the system. The
complex-conjugate eigenvalues give rise to what is defined
in Ref. [62] as modulated exponential decay, where one
finds spatial oscillations with a momentum scale related to
the imaginary part of the eigenvalue of Hð0Þ. The real part
of the eigenvalue is then a scale for the exponential decay,
as it is with ordinary screening poles. This behavior [57] is
also observed when an inhomogeneous ground condensate,
such as, e.g., the chiral spiral, is destabilized through the
fluctuations of Goldstone modes of OðNÞ symmetry break-
ing [60]. This analysis can be seen as an extension of the
common stability analysis discussed before. However, it
has, to our knowledge, so far only been performed with
static modes [134].

2. Implications for the analysis of bosonic two-point
correlation functions within the mean-field
approximation in the four-fermion model

In contrast to the previous works [62,134], we consider
auxiliary fields and, thus, do not a priori include a kinetic
term for the bosonic fields. Then, the bosonic two-point
vertex functions Γð2Þ

φj ðqÞ are the inverse of the bosonic two-
point correlation functionsGφj

for the fields φj. This can be
obtained from studying the Dyson equation for the two-
point correlation functions, recalling that the bosonic self-
energy in the Dyson equation is given by the fermion-loop
contribution in the mean-field approximation. Then, the
inverse of the two-point correlation functions are given by
the so-called two-point (one-particle-irreducible) vertex
function given by the second functional derivative of the
quantum effective action with respect to the bosonic fields
evaluated at their expectation values, see, e.g., Ref. [135].

9Here, PT -type symmetry means symmetry under an linear
symmetry operation P and an arbitrary antilinear symmetry
operation T . Field theories with PT -type symmetries typically
describe theories that are not invariant under either P or T
separately but show invariance under their combined operation.
PT -type symmetries are also widely studied in quantum me-
chanics, optics, and condensed matter for their unique properties
[126–130]. Also, they are also known to be useful in resolving
sign problems in lattice field theory simulations, see, e.g.,
Refs. [59,131–133].
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In the mean-field approach, the quantum effective action is
approximated by the effective action (5) evaluated at its

minimum and, thus, the two-point vertex functions Γð2Þ
φj ðqÞ

in turn are equivalent to the eigenvalues of the Hessian
matrix (15), which is proportional to the second derivative
of the effective action Eq. (5) with respect to the bosonic
fields. The low-momentum expansion of the bosonic two-
point vertex functions results in

G−1
φj

¼ Γð2Þ
φj ≈ Zφj

q2 þ Γð2Þ
φj ð0Þ ð18Þ

generating a kinetic term in the quantum effective
action, where we defined the bosonic wave function
renormalization

Zφj
¼ 1

2

d2Γð2Þ
φj

dq2

				
q¼0

ð19Þ

as the coefficient of the kinetic term generated by the
fermion loop. Thus, one can perform an analysis similar to
the case of bosonic theories described by finding the roots
of Eq. (18). It is important to note that Zφj

can have a
small,10 but nonvanishing imaginary part. As one can see

from Eq. (18), both Γð2Þ
φj ð0Þ and Zφj

being real-valued leads
to purely imaginary propagator poles such that one obtains
the usual exponential decay of Gφj

. However, a non-
vanishing real part of the obtained roots yields the above
described oscillatory behavior of the propagator.
The analysis of the momentum-dependent Hessian HðqÞ

is, however, more elaborate. In Sec. IV we will obtain the
existence of regimes with complex-conjugate bosonic two-

point vertex functions Γð2Þ
φj ðqÞ at both q ¼ 0 and q ≠ 0, but

also regimes in the ðμ; TÞ phase diagram of the FF model

(2), where Γð2Þ
φj ðq ¼ 0Þ∈R but Γð2Þ

φj ðq ≠ 0Þ∈C. To our
knowledge, the interpretation ofHðqÞ developing complex-
conjugate eigenvalue pairs at q ≠ 0while the eigenvalues at
q ¼ 0 are real valued is unclear. Especially, the low-
momentum expansion of the two-point correlation function
is not meaningful at nonvanishing momenta as one com-
putes the Hessian by expanding about the homogeneous
field values ðσ;ωνÞ ¼ ðΣ̄; Ω̄3δν;3Þ. Statements with respect
to the existence of an IPs can, however, be made as
discussed above, as long as the bosonic two-point vertex
functions are real valued.

IV. PHASE DIAGRAM IN THE PRESENCE OF
MIXING

We proceed by presenting our results for the phase
diagram. Thereby, the vector coupling λV is treated as a free

parameter and is varied to study varying strengths of the
vector coupling. In order to define a scale for the strength of
the scalar coupling λRS used for comparison to the used

values of the vector coupling λV , we define λRS ¼
1=Γð2Þ

σ ðq ¼ 0Þ in the vacuum. Since the Hessian Eq. (15)
is diagonal in the vacuum, this yields λRS ¼ π, where the

result for Γð2Þ
σ in the vacuum can be found by computing

Eq. (2) in the limit of zero temperature and chemical
potential, see Appendix A of Ref. [88] for the explicit
expression. Thus, we consider λVΣ̄0 ∈ ½0; π�. Note that all
dimensionful quantities in plots are expressed in units of
the chiral condensate in the vacuum Σ̄0.

A. Homogeneous condensation

As the homogeneous ground states are the input for the
stability analysis, we first compute the phase diagram of
model (1) when assuming homogeneous condensation
ðσ;ωνÞ ¼ ðσ̄; ω̄3δν;3Þ. Minimizing the effective potential
equation (7) with respect to σ̄ and ω̄3 as described in
Sec. III A, we determine the thermodynamic ground state
ðσ̄; ω̄3Þ ¼ ðΣ̄; Ω̄3Þ. We distinct between the SP, where Σ̄ ¼
0 and chiral symmetry is restored, and the HBP, where
chiral symmetry is spontaneously broken by a nonvanish-
ing Σ̄. By studying the gap equation (8) and the effective
potential (7) in Sec. III A, one obtains that the phase
boundary between HBP and SP in the ðμ̄; TÞ of the FF
model defined in Eq. (1) is identical to the one of the
(2þ 1)-dimensional GN model in the ðμ; TÞ plane, as first
determined in Ref. [90]. The analytic expression for the
critical chemical potential μc of the GN model is given by

μcðTÞ ¼ Tarcoshð0.5eΣ̄0=T − 1Þ: ð20Þ

We use this analytical result as a cross-check for our
numerical results at λV ≠ 0, by computing μ̄c ¼ μc þ iΩ̄3 at
the obtained phase boundary μcðλV; TÞ and comparing the
result to the case without vector coupling μcð0.0; TÞ, as
given by the right hand side of Eq. (20). The phase
boundary in the (2þ 1)-dimensional GN model is of
second order, except for the point ðμ=Σ̄0 ¼ 1.0; T=Σ̄0 ¼
0.0Þ where one obtains an effective potential, which is flat
for σ̄ ∈ ½0.0; 1.0�.
In Fig. 1, we plot the phase boundary lines of the model

(1) for different values of λVΣ̄0 ∈ ½0.0; π�. Similar to
findings with NJL-type models featuring vector inter-
actions [106,108,109], an enlargement of the HBP is
observed when increasing the vector coupling. The extent
of the HBP in the ðμ; TÞ plane grows monotonically with
λV . For λVΣ̄0=π ¼ 0.1, 0.3, the critical chemical potential,
compared to the GN model result, increases when the
temperature is decreased. Increasing λV further, leads to a
change in this behavior, as mostly evident for λVΣ̄0 ¼ π
(visualized by the blue dot-dashed line). At this value of the

10By small, it is meant that the imaginary part is typically at
least two orders of magnitude smaller than the real part.
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vector coupling, the difference in the critical chemical
potential compared to the GN model result, i.e.,
μcðλV; TÞ − μcð0.0; TÞ, is larger for, e.g., T=Σ̄0 ¼ 0.4 than
for T=Σ̄0 ¼ 0.0. This results in a back-bending shape of the
transition line, which reminds of a spinodal line in typical
NJL or GN model phase diagrams [115]. In this case,
however, the left spinodal corresponds directly to the phase
boundary line, since the phase transitions is of second order
and the order parameter Σ̄ðμ; TÞ goes continuously to zero
when crossing the boundary line from the HBP to the SP.
The order of the phase transition becomes evident when

studying the behavior of the order parameter Σ̄ðμ; TÞ as

plotted in Fig. 2, where the value of Ω̄3ðμ; TÞ for
λVΣ̄0=π ¼ 0.1, 1.0 is visualized in a triangulated contour
color map. For all studied values of the vector coupling, one
observes a continuous decrease of the chiral condensate
when increasing the temperature starting within the HBP.
At T ¼ 0, we obtain Σ̄ðμ; T ¼ 0Þ ¼ Σ̄0; ∀ μ ≤ Σ̄0 in
consistency with the Silver Blaze property. When further
increasing the chemical potential above Σ̄0, one again
obtains a continuous decrease of the chiral condensate
from Σ̄ðμ=Σ̄0 ¼ 1; T ¼ 0Þ ¼ Σ̄0 to Σ̄ðμ ¼ μc; T ¼ 0Þ ¼
0.0 at the phase transition to the SP. This can be explained
in context of the flatness of the effective potential of the GN
model at ðμ=Σ̄0 ¼ 1; T ¼ 0Þ. This flatness as a function of
σ̄ is also present in the effective potential at λV ≠ 0 at
ðμ=Σ̄0 ¼ 1; T ¼ 0Þ. However, the additional contribution
due to the nonvanishing ω̄3 causes solutions with higher
densities to be favored, compare Eq. (7). The coupling of
the gap equations for Σ̄ and Ω̄3, Eqs. (8) and (10),
respectively, leads then to a simultaneous decrease of Σ̄
and a continuous increase of Ω̄3 when increasing μ for all
chemical potentials μ∈ ½Σ̄0; μc�. For all values of λV , the
chemical potentials in this interval correspond to μ̄ ¼ 1.0,
since this is the only point at zero temperature where the
gap equation (8) allows for solutions Σ̄ðμ; T ¼ 0.0Þ other
than Σ̄=Σ̄0 ¼ 1.0 or Σ̄=Σ̄0 ¼ 0.0. Due to the coupling of the
gap equations for Σ̄ and Ω̄3, the solution of the gap equation
for Ω̄3ðμ; T ¼ 0Þ can directly be read of the plot for
this range of chemical potentials as it is given by
Ω̄3 ¼ μ − μ̄cðT ¼ 0Þ ¼ μ − Σ̄0. The density is given by
N̄ ¼ −iΩ̄3=λV due to the gap equation (10) or, equivalently,
the Ward identity (4) for ω3.

FIG. 1. Phase boundary lines between the HBP and the SP in
the ðμ; TÞ space for five different values of the vector coupling λV .
The λV ¼ 0.0 phase boundary corresponds to the known analytic
solution of the GN model in (2þ 1) dimensions [90,103].

FIG. 2. Contour color maps in the ðμ; TÞ plane for the value of the chiral condensate Σ̄ðμ; TÞ for (left) λV Σ̄0=π ¼ 0.1, (right)
λV Σ̄0=π ¼ 1.0. The green lines represent the second order phase boundary of the (2þ 1)-dimensional GN model, while the blue lines
correspond to the phase boundary of the model (1) for the respective value of λV . Continuous data for the contour plots is obtained using
triangulation provided by Matplotlib in Python3 [120,136]. Note that the plot range in the μ and the T axis differs from plot to plot in order
to make the contour lines visible.
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In the GN model, the density jumps from 0 to Σ̄0
2=ð2πÞ

when crossing the phase transition towards the HBP at zero
temperature11 [137]. This jump becomes a continuous
transition for all λV > 0.0 and N̄=Σ̄0

2 ¼ 1=ð2πÞ is reached
in the models with vector interaction directly at μ ¼ μc. All
other values of N̄ðμ; T ¼ 0Þ=Σ̄0

2 ∈ ½0.0; 1=ð2πÞÞ are
obtained when continuously increasing the chemical poten-
tial from μ=Σ̄0 > 1.0, whereas Σ̄ðμ; T ¼ 0Þ continuously
decreases as discussed above. This continuous decrease for
λV > 0.0 is enforced by the additional term ∝ −n̄2 in the
effective potential (7). The gap equation Eq. (10) allows a
nonvanishing density only at μ=Σ̄0 > 1.0 and Σ̄=Σ̄0 < 1.0
such that at μ=Σ̄0 ¼ 1.0 only the zero density solution is
allowed. This is another clear indication that the phase
boundary for λV > 0.0 is of second order, also at T ¼ 0.
At nonvanishing temperatures the relation between the

chemical potential and the value of Ω̄3 becomes nontrivial
and has to be determined via the numerical solution of the
gap equations (8) and (10) and finding the global minimum
of the effective potential (7). Figure 3 depicts the density as
a triangulated contour color map in the ðT; μÞ plane for
λVΣ̄0=π ¼ 0.1, 0.5, 1.0, respectively. Again, at T ¼ 0.0 we
observe the Silver Blaze property as the density is zero for
μ=Σ̄0 ∈ ½0.0; 1.0�. For nonvanishing temperature, this no
longer holds and one observes the onset of the density
for μ=Σ̄0 < 1.0. In general, the density at fixed chemical
potential grows monotonically with the temperature and
vice versa. Comparing the phase diagrams for different
vector couplings, one generally observes that the density

is smaller for larger λV when comparing at fixed values of
T and μ.
Note that, in contrast to NJL model results [106], one

does never obtain a first-order phase transition in the ðμ; TÞ
plane. This is also relevant in the context of an IP, that
typically covers the region of a first order phase transition
between the HBP and SP that is present when restricting to
homogeneous phases. It is worth to note that there exists a
first order phase transition at μ̄=Σ̄0 ¼ 1.0 and T=Σ̄0 ¼ 0
for any value of λV . This is caused by the effective potential
of the GN model being flat within σ̄ ¼ ½0.0; Σ̄0�, but the
additional contribution of Ω̄3 favors solutions of the
gap equations with a high density leading to a jump of
the global minimum from ðΣ̄=Σ̄0; Ω̄3=Σ̄0Þ ¼ ð1.0; 0.0Þ
at ðμ̄=Σ̄0 ¼ 1.0 − ϵ; T=Σ̄0 ¼ 0.0Þ to ðΣ̄=Σ̄0; Ω̄3=Σ̄0Þ ¼
ð0.0; iλVΣ̄0=ð2πÞÞ at ðμ̄ ¼ 1.0; T ¼ 0.0Þ, where ϵ can be
infinitesimally small. This demonstrates that one has to be
very careful about drawing ðμ; TÞ phase diagrams, when
using μ̄ as an external parameter in the computation and the
chemical potential μ as a variable instead. As discussed in
Sec. III A, the same value of ðμ̄; TÞ can correspond to
multiple points in the ðμ; TÞ plane or vice versa such that
one has to always compare the corresponding values of the
effective potential (7).

B. Stability analysis with mixing

1. Symmetric phase

Within the SP the Hessian Hϕjϕk
is diagonal for the

original field basis, i.e., φ⃗ ¼ ϕ⃗ ¼ ðσ;ωνÞ, since all non-
vanishing off-diagonal elements are proportional to Σ̄, see
Eq. (15) and the formulas in Appendix B. In this case,
the analysis is similar to the one described in Sec. III C.

FIG. 3. Contour color maps in the ðμ; TÞ plane for the value of the density N̄ðμ; TÞπ ¼ −iΩ̄3ðμ; TÞπ=λV for (left) λV Σ̄0=π ¼ 0.1, (right)
λV Σ̄0=π ¼ 1.0. The green lines represent the second order phase boundary of the (2þ 1)-dimensional GN model, while the blue lines
correspond to the phase boundary of the model (1) for the respective value of λV . Continuous data for the contour plots is obtained using
triangulation provided by Matplotlib in Python3 [120,136]. Note that the plot range in the μ axis, the T axis and the discrete color bar differs
from plot to plot in order to make the contour lines visible. Also, the discrete contour levels are not necessarily linearly distributed.

11Note that there is a factor of 2 difference in the definition of
the density between this work and Ref. [137].

MARC WINSTEL PHYS. REV. D 110, 034008 (2024)

034008-10



The eigenvalues/diagonal elements of H are the respective

bosonic two-point vertex functions Γð2Þ
φj of the fields

ðσ;ωνÞ. Thus, they can be analyzed to study (the absence
of) instabilities towards the IP and the existence of the moat
regime, similar to the analysis in Ref. [101] without vector
interactions.
In the left plot of Fig. 4, the eigenvalues Γð2Þ

φj of the
Hessian are plotted as functions of the momentum q of the
perturbation δφj for λVΣ̄0=π ¼ 0.1 and ðμ=Σ̄0; T=Σ̄0Þ ¼
ð1.051; 0.238Þ. This point in the phase diagram lies directly
on the second order phase boundary between the SP and
HBP (compare Fig. 1). One of the eigenvalues is zero at
q ¼ 0 and corresponds to the order parameter σ undergoing
the phase transition. Since the two-point vertex functions

Γð2Þ
φj ðqÞ can be interpreted as the curvature of the effective

action (5) in the direction of φjðqÞ, it is expected that this
curvature goes to zero for q ¼ 0 and φj ¼ σ at the second-
order homogeneous phase transition. The field ων is not an
order parameter and, thus, the corresponding bosonic two-
point vertex functions do not show signals of the phase
transition.
We always obtain that the two-point vertex functions

Γð2Þ
ϕj
ðqÞ are monotonically increasing functions as can

directly be seen for T ¼ 0 by taking the zero temperature
limit for all diagonal elements of the Hessian using the
formulas in Appendix B and setting Σ̄ ¼ 0. An example for
the bosonic two-point vertex functions within the SP is
plotted on the right side of Fig. 4. In the plot, we used the
largest of the studied vector couplings λVΣ̄0=π ¼ 1.0. A
nonmonotonic behavior of the two-point vertex function is
never observed within in the SP, which we studied for a
large range of chemical potentials and temperatures.

For Γð2Þ
σ , this result was already presented in Ref. [101],

while in this work we also studied the two-point vertex

functions Γð2Þ
ων ðqÞ, that correspond to the included vector

interactions. In the SP, however, the analysis yields the
same conclusion as the one in Ref. [101]. We do neither
observe an instability towards an IP nor a moat regime for
all studied vector couplings. Together with the argument
that all observed IPs feature a second order phase boundary
towards the SP—which would be detected by the stability
analysis [52]—have so far never been observed, we
consider the absence of such an instability a strong
indication for the nonexistence of an IP within this model.
In the GN model there still exists a degeneracy between

inhomogeneous condensates and homogeneous phases at
zero temperature as found with a particular ansatz function
[137]. This is also consistent with the stability analysis,

where the bosonic two-point vertex function Γð2Þ
σ ðqÞ is flat

and vanishes for a certain interval in q is found at the point
ðμ=Σ̄0 ¼ 1.0; T=Σ̄0 ¼ 0Þ [101]—the same point in the
phase diagram where also the homogeneous potential is
flat. This flatness of the bosonic two-point vertex function
also occurs at the critical chemical potential μc at any value
of λV at T ¼ 0.0, again indicating a similar degeneracy
between the SP and the IP as before. This property could
already be guessed from the right plot in Fig. 4, which is
still at finite, but low enough temperature such that the two-

point vertex function Γð2Þ
σ is almost flat for small q. We

expect, however, that a degenerate condensate would not be
given by the one-dimensional kink ansatz from Ref. [137]
(see Fig. 5.4 therein), since its density n̄ remains homo-
geneous and is smaller than n̄=Σ̄0

2 ¼ 1=ð2πÞ, which is the
density corresponding to Σ̄ ¼ 0.0 when solving the
gap equations (8) and (10) at ðμ=Σ̄0 ¼ 1.0; T=Σ̄0 ¼ 0Þ.

FIG. 4. Bosonic two-point vertex functions Γð2Þ
φj ðqÞ as functions of the momentum of the perturbation q. Left: at the homogeneous

second order phase transition for λV Σ̄0=π ¼ 0.1. Right: within the SP for λV Σ̄0=π ¼ 1.0. Note the different plot ranges for the y axis in
the left and right panel.
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Thus, the homogeneous solution ðΣ̄=Σ̄0 ¼ 0.0; Ω̄3=Σ̄0 ¼
iλVΣ̄0=ð2πÞÞ is expected to be favored over the ansatz in
Ref. [137], as the bosonized action favors solution of the
gap equations with higher densities, compare Eq. (2)
using Ω̄3 ¼ iλVn̄.

2. Complex conjugate eigenvalues for q = 0

Within the HBP, one obtains mixing between σ and ω3

when inspecting the static Hessian Hðq ¼ 0Þ as
Hσω3

ðq ¼ 0Þ ≠ 0. When considering q ≠ 0, there can also
occur mixing involving the spatial components of ων, see
the discussion in Sec. III C and Appendix B for the Hessian
matrix elements. We start by focusing on the static Hessian
Hðq ¼ 0Þ. To study these static mixing effects, the Hessian
(15) can be considered only for ϕj;ϕk ∈ fσ;ω3g.
Perturbations about the spatial components of the vector
field are not interesting in this case, since the static Hessian
is diagonal anyway with respect to ω1 and ω2. The main
finding of this section is the observation of complex-
conjugate eigenvalues of Hð0Þ in the certain regions within
the HBP through these mixing effects between σ andω3. As
a consequences, we argue that the bosonic two-point
correlation functions are oscillatory, but exponentially
suppressed according to the analysis of the propagator
poles presented in Sec. III E.
At any temperature and μ ≠ 0 within the HBP, one

obtains mixing between σ and ω3 such that the physical
basis φj ≠ ϕj. As extensively discussed in Sec. III E,
this mixing can lead to complex-conjugate eigenvalue
pairs of the static Hessian Hð0Þ depending on the
parameters μ and T. An example of this phenomenon is
shown in Fig. 5, where the real and imaginary eigenvalues
of the Hessian matrix Hϕjϕk

ðqÞ with ϕj;ϕk ∈ fσ;ω3g are

plotted for ðμ=Σ̄0¼ 1.03;T=Σ̄0¼ 0.05Þ and λVΣ̄0=π ¼ 1.0.
The eigenvectors φa and φb are given by q-dependent linear
combinations of σ and ω3, i.e., φjðqÞ ¼ cjðqÞσ þ
djðqÞω3ðqÞ. The nonvanishing imaginary part of the
eigenvalues for q ¼ 0 decreases as a function of q in this
analysis such that real-valued eigenvalues are obtained for
some relatively small q=Σ̄0 ≈ 0.5. Then, also the degen-

eracy ReΓð2Þ
φa ¼ ReΓð2Þ

φb is no longer enforced by CK
invariance (see the discussion in Sec. III E) resulting in
an apparently nonanalytic behavior of both two-point
vertex functions at q=Σ̄0 ≈ 0.5 and q=Σ̄0 ≈ 3.0. It is
interesting to note that whenever the real parts of

Γð2Þ
φa=bðqÞ are equal to each other one also observes a

nonvanishing imaginary part of Γð2Þ
φa ðqÞ ¼ −Γð2Þ

φb ðqÞ. This
is a result of the invariance under the CK and the fact that
both eigenvectors always need to fulfill φa ≠ φb. In the
static case with q ¼ 0, the complex-conjugate eigenvalue
pairs leads to bosonic propagators that are sinusoidal
modulated alongside the usual exponential decay. This
follows as the inverse of the bosonic two-point correlation

function is given by the two-point vertex function, which in
the mean-field approach is given by the eigenvalues of the
Hessian matrix when expanding about the thermodynamic
(homogeneous) ground state, see Sec. III E. A low-
momentum expansion of the two-point vertex function then
yields the described behavior through the appearance of roots
of the propagator with a nonvanishing real and imaginary
part, see the discussions in [59,62,124] and Sec. III E. Note
that the behavior of the two-point vertex functions in Fig. 5
can change at q ≠ 0 when including perturbations about ω1

and ω2, as discussed above. Thus, Fig. 5 should only be
understood as an example for the effects ofmixing and not as
a full solution of the momentum dependence of the Hessian
matrixHðqÞ of the fullmodel (1). Itwouldbe the full solution
of the momentum dependence when only interactions
proportional to σ and ω3 would be studied.
To characterize the regime with spatial oscillatory

behavior of propagators in the ðμ; TÞ plane, we use the
maximal imaginary part of the eigenvalues at q ¼ 0
given by

k0 ¼ max
φj

ðImΓð2Þ
φj ðq ¼ 0ÞÞ: ð21Þ

This is an important scale for the momentum of the
sinusoidal oscillation of the bosonic propagator, as a
nonvanishing k0 induces a nonvanishing real part of the
propagator poles, see the discussion in Sec. III E. In Fig. 6,
we plot k0 in the ðμ; TÞ plane using a color code for
λVΣ̄0=π ∈ f0.6; 0.8; 1.0g. A region with k0 ≠ 0 for chemi-
cal potentials μ=Σ̄0 > 1.0 and rather small temperatures
is observed for all three vector couplings. We note that

FIG. 5. The real and imaginary part of the bosonic two-point
vertex functions Γð2Þ

φj ðqÞ are plotted as functions of the momen-
tum of the perturbation q. The bosonic two-point vertex functions
are obtained as eigenvalues of Hϕj;ϕk

with ϕj;ϕk ∈ fσ;ω3g. Note
that only ImΓð2Þ

φa ðqÞ is plotted, since ImΓð2Þ
φa ¼ −ImΓð2Þ

φb .
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φ⃗ðq ¼ 0Þ ¼ ðz1σ þ z2ω3; z�2σ þ z�1ω3;ω1;ω2Þ with com-
plex-valued coefficients z1 and z2 for all studied points
in the phase diagram and all studied vector couplings λV .
The extent of the region with complex-conjugate eigen-
value pairs both in μ and in T direction strongly depends
on the value of the vector coupling. For λVΣ̄0=π ¼ 0.6,
this region’s extent is significantly smaller than for
λVΣ̄0=π ¼ 1.0. For all studied vector couplings, the width
in the μ direction of the regime with oscillating propagator
behavior decreases for larger temperatures, until k0 goes to
zero. This is caused by thermal fluctuations suppressing the
oscillatory behavior in the propagators, as can be seen from
k0 decreasing monotonically with the temperature at fixed
μ. Such a behavior is typical for regimes with spatial
oscillations, because the thermal fluctuations tend to
destroy ordering in general [53,60,72,75]. For all three
vector couplings, k0 jumps from zero to a nonvanishing
value when crossing μ=Σ̄0 > 1.0 at zero temperature in
consistency with the Silver Blaze property. This can also be

derived from the formulas in Appendix B for the off-
diagonal elements. Investigations of k0 as show that
k0ðμ; TÞ seems to have a rapid but continuous onset from
zero when increasing μ from the left of the regime with
spatial oscillations at any T ≠ 0. In the typical literature, the
transition from k0 ¼ 0 to k0 ≠ 0 is also called disorder line
[60]—as it is not a phase transition in the typical sense, but
marks a distinctly different behavior of propagators.
In Fig. 7, we plot k0 at zero temperature as a function

of λVΣ̄0 and μ=Σ̄0 and observe the above described
nonanalytic behavior at all λVΣ̄0 > 0.5π. Precisely at
λV;cΣ̄0 ¼ 0.5π, however, there is a continuous onset of
k0. For λVΣ̄0 < 0.5π, we do not find k0 ≠ 0 at all. Since the
width of the region with k0 ≠ 0 in the μ direction is largest
at T ¼ 0 for all studied vector couplings, we expect that
one finds k0 ¼ 0 for all vector couplings lower than λV;c
both at zero and nonzero temperature. Thus, we expect
there is no region with complex-conjugate eigenvalues
appearing in the whole ðμ; TÞ plane for λVΣ̄0 < 0.5π.

FIG. 6. Contour color maps in the ðμ; TÞ plane for the value of the maximal imaginary part of the eigenvalues at q ¼ 0, denoted by k0,
for (top left) λV Σ̄0=π ¼ 0.6, (top right) λV Σ̄0=π ¼ 0.8, and (bottom) λV Σ̄0=π ¼ 1.0. The green lines represent the second order phase
boundary of the (2þ 1)-dimensional GN model, while the blue lines correspond to the phase boundary of the model (1) for the
respective value of λV . Continuous data for the contour plots is obtained using triangulation provided by Matplotlib in Python3 [120,136].
Note that the plot range in the μ axis, the T axis, and the discrete color bar differs from plot to plot in order to make the contour lines
visible.
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From Fig. 7 it becomes clear that the extent of the region
with complex-conjugate eigenvalues of Hð0Þ grows with
increasing vector coupling when λV > λV;c. Also, the value
of k0 grows monotonically when increasing λV from any
value larger than λV;c. Both observations show that the
increase of the vector coupling increases the mixing effects,
which is expected since an increase of λV lowers the
difference Hσσð0Þ −Hω3ω3

ð0Þ. This difference between
the two diagonal elements needs to be smaller than the
product of the off-diagonal elements such that the eigenval-
ues of the corresponding 2 × 2 block are complex-conjugate

eigenvalue pairs. Thus, the increase of mixing effects also
amounts to a growth of the extent of the regimewith spatially
oscillating propagators and the maximal obtained values
of k0.
Although k0 is a useful observable to quantify the

appearance of complex-conjugate eigenvalues, it is not
the unique scale determining the oscillation of the propa-
gator Gφj

. Instead, the scales for the oscillation and the
exponential decay of Gφj

are given by the respective real

and imaginary parts of the roots q1;2φj of Eq. (18). These
roots are given by

q1;2φj ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2Þ
φj ð0Þ
Zφj

vuut : ð22Þ

In order to compute these roots numerically, one can use the
fact that φjðqÞ has a weak dependence on q around q ¼ 0.
In practice, the computation of Zφj

involves the discrete
differentiation of the eigenvalues of H [compare Eqs. (18)
and (19)]. Thus, its computation has to be performed by
carefully taking into account the discretization error in q
and the change of basis φjðqÞ in this area. Also, the
imaginary part of Zφj

is very small such that one also
encounters problems with underflowing of double preci-
sion. In test runs of this evaluation the maximum value for
ImZφj

encountered was on the order of 10−3, while ReZφj

is typically of order 10−1. However, the problems involving
the numerical evaluation of Z make a precise determination
of the poles using Eq. (22) impractical with respect to
the study of the whole phase diagram.

FIG. 7. Contour color maps in the ðλV; μÞ plane for the value of
the maximal imaginary part of the eigenvalues at q ¼ 0, denoted
by k0, at zero temperature. Continuous data for the contour plots
is obtained using triangulation provided by Matplotlib in Python3
[120,136].

FIG. 8. Contour color maps in the ðμ; TÞ plane for the ratio r between the frequency of the spatial oscillation and the exponential decay
rate of the exponential decay of the propagator. Left: λV Σ̄0=π ¼ 0.6. Right: λV Σ̄0=π ¼ 1.0. The green lines represent the second order
phase boundary of the (2þ 1)-dimensional GN model, while the blue lines correspond to the phase boundary of the model (1) for the
respective value of λV . Continuous data for the contour plots is obtained using triangulation provided by Matplotlib in Python3 [120,136].
Note that the plot range in the μ axis, the T axis and the discrete color bar differs from plot to plot in order to make the contour lines
visible.
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Hence, we decided to use12

θ ¼ arg

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2Þ
χ ð0Þ
ReZχ

s 1
CA ¼ 1

2
arccos

�
ReΓð2Þ

χ ð0Þ
jΓð2Þ

χ ð0Þj

�
; ð23Þ

with

χ ¼ argmax
φj

ðImΓð2Þ
φj ðq ¼ 0ÞÞ ð24Þ

in order to compare the scale of oscillation in comparison to
the exponential decay. Equation (23) gives the complex
argument θ of q1;2 when setting the imaginary part of Zφj

to
zero. As argued above, the error of this approximation
should be rather small. Note that the numerical computa-
tion of θ using Eq. (23) does require an evaluation of Zφj

.
We find r ¼ tan θ ¼ Req1;2χ =Imq1;2χ as the ratio of the

oscillation frequency Req1;2χ and the decay rate Imq1;2χ . In
Fig. 8, we plot r for two different values λVΣ̄0 ¼ 0.6π and
λVΣ̄0 ¼ π. The maximal value of r obtained is 0.58 for
λVΣ̄0 ¼ π such that frequency of the oscillation is larger
than half of the exponential decay rate at this point in the
phase diagram. Similar to the behavior of k0, we find that
for smaller vector couplings lower values of r are obtained
in general. This is expected, since mixing effects will not be
as drastic for lower vector couplings, see the discussion
above. For λVΣ̄0 ¼ 0.6π, the maximal value of r is roughly
0.3. In general, the obtained contour lines for r are very
similar to the ones of k0, see Fig. 6. The figure demonstrates
that for large parts of the regime with oscillatory behavior
the wavelengths are in the order of the inverse of the
exponential decay rate.

3. Complex-conjugate eigenvalue pairs emerging at q ≠ 0

Already in Fig. 5, where only mixing of σ and ω3 was
taken into account, one can observe the appearance of
complex-conjugate eigenvalues of the Hessian at q ≠ 0.
However, considering a 4 × 4 Hessian matrix Hϕjϕk

ðqÞ
with ϕj;ϕk ∈ fσ;ωνg yields a more involved mixing
pattern, since also ω1 contributes to mixing effects with
σ when studying q ≠ 0. The other vector component ω2 is
not mixing with σ (but with the other components of ων),
since we choose q ¼ ðq; 0Þ in Sec. III C. The roles of ω1

and ω2 are exchanged if we choose q to be aligned with the
x2 axis. Since the stability analysis turns out to be invariant
under spatial rotations (see the discussion in Sec. III C), the
eigenvalues are independent of the chosen spatial direc-
tion q=jqj.

The more complicated mixing pattern is depicted in
Fig. 9. From the plot one obtains that Hð0Þ has real
eigenvalues, but then develops complex-conjugate eigen-
value pairs at some value of q ¼ qB, where we define

qB ¼ min
q∈C

q; C ¼ fq∈ ½0;∞ÞjImΓð2Þ
ϕj
ðqÞ ≠ 0g: ð25Þ

In this case, one obtains that only two of the four
eigenvalues have nonvanishing imaginary parts for fixed
q, while the other two are real valued. As can also be seen
from Fig. 9, complex-conjugate eigenvalue pairs can be
obtained for multiple intervals in q. This leads to the rather
complicated behavior of two-point vertex functions with
the real parts of different eigenvalues becoming degenerate
depending on the value of q. Since complex-conjugate

eigenvalue pairs can occur for all of the eigenvalues Γð2Þ
φj

with j∈ f1; 2; 3; 4g, the yellow line in the plot always only
describes the appearance of the maximal imaginary part in
any of those eigenvalues. Since the eigenvectors of H can
be strongly q dependent especially for large q, one might
even argue that the association of the eigenvalues using

functions Γð2Þ
φj ðqÞ is not very insightful. Nevertheless, Fig. 9

certainly demonstrates the involved mixing effects between
scalar and vector modes. Also it shows that there is
certainly nonmonotonic behavior of the real parts of the
two-point vertex functions such that one cannot exclude the
appearance of moat regime. However, also the bosonic
wave function renormalization Zφj

can become complex,
see Eq. (19), and might not be a decent criterion for a moat

FIG. 9. The real and imaginary part of the bosonic two-point
vertex functions Γð2Þ

φj ðqÞ as functions of the momentum of the
perturbation q. The bosonic two-point vertex functions are
obtained as eigenvalues of Hϕj;ϕk

with ϕj;ϕk ∈ fσ;ωνg. Note
that the nonvanishing imaginary part does not necessarily belong
to similar eigenvectors φjðqÞ and complex-valued two-point
vertex functions appear as complex-conjugate pairs.

12Note that by definition of Γð2Þ
χ its imaginary part is always

positive such that the determination of the argument in Eq. (23) is
always valid.
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regime where argminqReΓ
ð2Þ
φj ðqÞ ≠ 0. This is caused by

nonanalytic behavior of Γð2Þ
φj ðqÞ around the regions with

nonvanishing imaginary parts leading also to nonmono-
tonic behavior. For these reasons we refrain from studying
the moat regime within the HBP and focus on the complex-
valued eigenvalues instead.
In the left plot of Fig. 10, we plot a color map in the

ðT; μÞ plane encoding qB for λVΣ̄0=π. In the right plot of
this figure we visualize

kmax ¼ max
j;q

ðImΓð2Þ
ϕj
ðqÞÞ ð26Þ

also using a color code. Figure 10 demonstrates that
complex-conjugate eigenvalues appear in large parts of
the HBP except for a rather small region at small temper-
atures and chemical potentials. For some parts of this
region the obtained imaginary parts are rather small. In
consistency with the Silver Blaze property, kmax ¼ 0 for
T ¼ 0 and μ=Σ̄0 < 1.0. For rather small chemical poten-
tials, kmax=Σ̄0 is of the order of 10−3 and qB=Σ̄0 ≫ 1.
Accordingly, the interpretation in terms of oscillating
propagators as in the static case is not possible as a low-
momentum expansion is not meaningful. However, if
existent, any oscillating effects in this region should be
negligible anyhow given that any relevant imaginary part
should be smaller than kmax=Σ̄0 ∼ 10−3, For larger chemical
potentials, one obtains qB=Σ̄0 < 1.0making a low-momen-
tum expansion of the inverse propagator more sensible. We
note that due to the computational demands of computing
multiple momentum integrals for the determination of the
matrix entries of HðqÞ and its diagonalization, the reso-
lution in q for the computation of the data Fig. 10 was
chosen as Δq ¼ 0.2. The rather coarse resolution in q

results in inaccuracies in the determination of qB and kmax,
because the intervals, where complex-valued eigenvalues
occur, can be smaller thanΔq. This is evident for some data
points around the homogeneous phase boundary as well as
small μ and T=Σ̄0 ∈ ½0.5; 0.7�, where qB appears to have
jumps when changing μ or T. At these data points, it is
likely that for some intervals in q, which are smaller than

Δq, complex-valued Γð2Þ
φj ðq ≠ 0Þ appear, that where missed

such that the correct qB differs from the depicted data point.
Anyhow, the value of kmax is likely to be small anyhow
within these intervals. Still, it is unclear whether complex-
conjugate eigenvalues appearing at q ≠ 0 have any conse-
quence on the behavior of propagators.
Overall, to the best of our knowledge there is no clear

physical explanation for the appearance of complex-
conjugate two-point vertex function pairs appearing at
q ≠ 0 in the literature. Also, this work marks the first
observation of this phenomenon in the literature—again to
the knowledge of the author. For small qB, a similar
interpretation as in the static case of correlation functions
with sinusoidal modulations might be meaningful, again
performing a low-momentum expansion of the inverse
propagators G−1

φj
, compare Eq. (18) around some non-

vanishing q and determining propagator poles similar to
Eq. (22). However, in the regions with larger qB=Σ̄0 > 1.0
such an expansion is certainly not sensible. An inversion

and four-transformation of the obtained Γð2Þ
φj to compute

Gφj
ðx; yÞ within these regions yields an ordinary exponen-

tial decay in the HBP. This is expected, since kmax is rather
small compared to the real-part of the two-point vertex
functions in these parameter regions (see Fig. 10) such that
the effect of this phenomenon is negligible when studying
bosonic two-point correlation functions.

FIG. 10. Contour color maps in the ðμ; TÞ plane for λV Σ̄0=π ¼ 1.0 encoding (left) qB [see Eq. (25)] and (right) kmax [see Eq. (26)]. The
green lines represent the second order phase boundary of the (2þ 1)-dimensional GN model, while the blue lines correspond to the
phase boundary of the model (1). Note that the plot range in the discrete color bar differs from plot to plot. The color bar for qB is cut off
at qB=Σ̄0 ¼ 4.0 such that the behavior of lower qB could be visualized accurately. The discretization of q is given by Δq ¼ 0.2 resulting
in discretization errors in the computation of qB and kmax.
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V. IMPLICATIONS FOR GENERAL FOUR-
FERMION MODELS IN (2 + 1) DIMENSIONS

In this section, we will argue that the previous analysis
and, consequently, the phase diagram of the simpler model

(1) is identical to (2þ 1)-dimensional FF models with all
kind of local FF interactions. The general prototype of these
models is defined by the action

SFF½ψ̄ ;ψ � ¼
Z

β

0

dτ
Z

d2x

�
ψ̄ð∂þ γ3μÞψ −

X16
j¼1

�
λS
2N

ðψ̄cjψÞ2 þ
λV
2N

ððψ̄ icjγ3ψÞ2 þ ðψ̄ icjγ⃗ψÞ2Þ
��

; ð27Þ

where ψ now contains 2N four-component spinors [due to
an additional “isospin” degree of freedom compared to the
fields in Eq. (1)]. The interaction vertices cj;ν are 8 × 8

matrices in isospin and spin space and elements of

C¼ðcjÞj¼1;…;16≡ ð1; iγ4; iγ5;γ45; τ⃗; iτ⃗γ4; iτ⃗γ5; τ⃗γ45Þ; ð28Þ

where τ⃗ is the vector of Pauli matrices acting on the isospin
degrees of freedom. The matrices γ4 and γ5 anticommute
with the γν, while γ45 ≡ iγ4γ5, consequently, commutes
with the γν. This model is invariant under a global Uð4NÞ
chiral symmetry (see Appendix A of Ref. [101] for details).
When neglecting vector interactions by setting λV ¼ 0, this

model has already been studied with respect to IPs and the
moat regime in Ref. [101]. Also therein, it was shown that the
FF model (27) can easily be generalized to a Yukawa model
by including local self-interactions and a kinetic term for the
bosonic fields [after bosonization similar to Eq. (2). We
refrain from doing this generalization to a Yukawa model for
the action (27). This would further complicate the analysis
through the medium induced mixing of vector and scalar
modes, which would also affect the purely bosonic terms.
For the FF model (27) and any FF model with a subset of

its interaction channels, we will now demonstrate that their
Hessian is block diagonal with 4 × 4 blocks that are
identical to the 4 × 4 Hessian matrix (15) of the simpler
model Eq. (1). Therefore, Eq. (27) is bosonized, as before,
with auxiliary bosonic fields ðϕa; va;νÞ. These fulfill the
Ward identities

hϕai ¼ −
λS
N
hψ̄caψi; hva;νi ¼ −i

λV
N

hψ̄caγνψi: ð29Þ

Similar to the discussion in Sec. II, one can assume that
v̄a;j ¼ 0 for j ¼ 1; 2, leaving invariance under spatial
rotation intact, where v̄a;j are the homogeneous conden-
sates of the vector fields. Then, the derivation of the
Hessian is similar to the one described in Ref. [101] and
in Sec. III C. Through the Uð4NÞ global symmetry trans-
formations, one can choose the values of ϕa ¼ σ̄δa;0 such
that there is no mixing between those fields, i.e.,Hϕaϕb

¼ 0

for a ≠ b. A similar transformation can be made for the
fields va;ν, such thatHva;νvb;ν ¼ 0 for a ≠ b. With inspection
of the trace in Eq. (15), one can then already infer that

Hϕa;νvb;ν ¼ 0 for a ≠ b. Thus, one obtains mixing only for
each respective 4 × 4 block in H with a ¼ b, i.e., only
Hϕa;νva;ν , Hϕa;νϕa;ν

and Hva;νva;ν can be nonvanishing. Again,
inspecting the trace in Eq. (15) and using the exchange
properties of cj ∈C with each other and the γν, one can
derive that the matrix elements of these respective 4 × 4
blocks in H are identical to the 4 × 4 Hessian matrix of
Eq. (1) given by Eq. (15), respectively. Thus, the Hessian of
Eq. (27) is block-diagonal consisting of 16 matrices of size
4 × 4, which are identical to the Hessian of the model
studied in the previous sections. Consequently, also the
phase diagram is identical to the one of Eq. (1) with the
enhancement of the HBP when increasing λV , the absence
of an IP and the existence of regimes with complex-
conjugate eigenvalues of H.
With this analysis and the results in Ref. [88], we have

demonstrated the absence of an IP in (2þ 1)-dimensional
FF models with all kind of local interaction terms. Instead,
we found a regime with spatially oscillating, but exponen-
tially damped bosonic correlation functions when mixing
between scalar and vector modes is allowed and the vector
coupling exceeds a certain value of λV;cΣ̄0 ¼ 0.5π, see, e.g.,
Figs. 7 and 8 as well as the discussion in Sec. IV B 2.

VI. CONCLUSIONS

In this work, we analyzed the stability of homogeneous
ground states for a (2þ 1)-dimensional FF model (1) with
both scalar and vector interactions with particular emphasis
on the effects of mixing between scalar and vector modes.
The analysis was performed in the mean-field approxima-
tion, i.e., neglecting bosonic quantum fluctuations. Also,
we showed that our findings hold for a more general FF
model (27) consisting of all relevant interaction channels in
(2þ 1) dimensions. We have shown the stability of
homogeneous ground states against inhomogeneous per-
turbations and argued that this is strong evidence for the
absence of an IP in all (2þ 1)-dimensional fermionic
theories with local FF interactions. Instead, a regime with
spatially oscillating but exponentially damped mesonic
correlation functions has been detected through the appear-
ance of complex-conjugate eigenvalues in the Hessian
matrix for static perturbations Hðq ¼ 0Þ. This regime is
often also termed “quantum pion liquid” or “quantum spin
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liquid” [60]—in analogy to condensed matter literature—
and is directly related to the invariance of our model under
CK transformation at μ ≠ 0 [59,62]. We also find regions
with complex-conjugate eigenvalues in the Hessian matrix
for perturbations with a nonvanishing momentum, i.e.,
Hðq ¼ qB ≠ 0Þ, while Hð0Þ has real-valued eigenvalues.
So far, the implications of this phenomenon are not
discussed in the literature. However, we argued that the
value of the obtained imaginary parts are so small that the
mesonic correlation functions will follow an ordinary
exponential decay within these regions. The whole phase
diagram of the FF model (1) was presented for different
values of the vector coupling including the regimes with
“quantum pion liquid” behavior—which are located at low
T and intermediate μ within the HBP. The typical ratio of
the frequency of the oscillation and the exponential decay
rate of the mesonic propagators is such that the oscillatory
behavior could have an effect on related observables.
The finding of the “quantum pion liquid” is to the best of

our knowledge the first finding of this regime generated by
the interplay of an attractive, scalar, and repulsive vector FF
interaction—apart from the report of this phenomenon in
Ref. [110], where it was not the main focus of the study.
Since the “quantum pion liquid” is closely related to the
invariance under the CK operation [124], we think this
regime could also be of relevance in the phase diagram of
QCD at nonvanishing densities. However, this work should
be understood as a first, qualitative investigation of the
underlyingmechanism throughmixing of scalar and vector
modes. The used (2þ 1)-dimensional models are too
simplistic to make quantitative predictions for the phase
diagram of QCD. We also want to note that the authors of
Ref. [124] also report nonvanishing complex-conjugate
eigenvalue pairs appearing in their static Hessian matrix
(compare Figs. 17–21) in a PNJL model. However, these
nonvanishing imaginary parts are generated by an analysis
of Polyakov-loop effects and the mixing contributions
stemming from fermionic pointlike interactions are not
included. In QCD, the contributions of both the gluon
effects and of themixing between the chiral condensate and
vector mesons will play an important role andmight lead to
the existence of a “quantum pion liquid” regime at non-
vanishing densities.
There are several possibilities to extend on the present

work. A straightforward extension would be to study
a (3þ 1)-dimensional QMmodel including Polyakov-loop
effects aswell as vectormeson interactions as in Ref. [110].
This allows to study the mixing of Polyakov-loop, chiral
condensate and vector mesons in the same model. Also,
one could make phenomenologically more relevant pre-
dictions with respect to the parameter regions, where the
“quantum pion liquid” should appear. Moreover, it would
certainly be interesting to study mixing effects beyond
the mean-field approximation. Thereby, it is interesting to
note that already in Refs. [96,138] oscillating mesonic

correlation functions have been measured in a (2þ 1)-
dimensional GN model, i.e., without including vector
interactions, at finite number of fermion flavors N using
lattice field theory. In Ref. [101], we argued that these
findings are reminiscent from an IP that exists within the
mean-field approximation at finite lattice spacing
[102,103]. However, as discussed in Refs. [72,139], the
naive and, following a similar argumentation, also the
staggered fermion discretization yields off-diagonal inter-
action terms generated by the doublers, that contain γ
matrices. Thus, it is up to speculation whether the
oscillating mesonic correlation functions observed in
Refs. [96,138] might as well be generated by mixing
effects as discussed in the present work. When going
beyond the mean-field approximation using a model that
directly contains diagonal vector interactions as Eq. (1),
complex weights appear in the path integral [119,140].
This likely complicates using 1=N expansion techniques
[141,142] or other analytical approaches like non-Abelian
bosonization [76,78]. Thus, one would have to either rely
on Lefshetz thimble approaches [119,143] or functional
renormalization group techniques [43].
Certainly, regimes where mesonic correlation functions

are oscillatory will have effects on, e.g., the propagation of
pions in heavy-ion-collision experiments. Regarding exper-
imental observables, direct consequences of spatially oscil-
latory regimes have to be worked out. Using the moat
regime dispersion relation, this has been recently done
using Hambury, Brown, and Twist interferometry
[134,144] leading to signal peaks in two-particle correla-
tion functions. To study consequences for experimental
observables in the “quantum pion liquid” regime one would
first have to work out the phenomenologically relevant
scales of the oscillation and exponential decay, e.g., using a
Polyakov-loop QM model as described above.
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APPENDIX A: CONVENTIONS THE WICK
ROTATION

In (2þ 1)-dimensional spacetime with the metric ημν ¼
diagð1;−1;−1Þwe demonstrate theWick rotation using the
action and partition function

SM;mix½ψ̄ ;ψ � ¼
Z

dx0

Z
d2x

�
ψ̄ðiγνM∂νÞψ

þ
�
λS
2N

ðψ̄ψÞ2 þ λV
2N

ðψ̄ iγνMψÞðψ̄ iγM;νψÞ
��

;

Z ¼
Z

D ψ̄ DψeiSM;mix½ψ̄ ;ψ � ðA1Þ

with most quantities as defined below Eq. (1). The Gamma
matrices γνM fulfill fγμM; γνMg ¼ 2ημν, as usual. For the Wick
rotation we use the conventions

τ¼ ix0; γ3¼ γ0M; γi¼ iγiM; i∈f1;2g; ðA2Þ

such that one obtains ðγνÞ2 ¼ 1. This changes the vector FF
interaction term in the following way

ðψ̄ iγνMψÞðψ̄ iγM;νψÞ ¼ ðψ̄ iγ0MψÞ2 − ðψ̄ iγiMψÞ2
¼ ðψ̄ iγ3ψÞ2 þ ψ̄ðiγiψÞ2; ðA3Þ

where the additional factor ð−iÞ2 ¼ −1. With the other
standard changes of the action and the definition SM;mix ¼
iSM;mix one obtains the Euclidean action Eq. (1).
In these conventions the density n is given by

n ¼ 1

N
d lnZ
dμ

¼ −
hψ̄γ3ψi

N
; ðA4Þ

such that the Ward identity for ω3 (4) follows. Note that
these conventions and the Ward identity may differ from
recent works, such as Ref. [119].

APPENDIX B: FORMULAS FOR THE STABILITY
ANALYSIS WITH MIXING

In this section, we collect formulas needed for compu-
tation of the Hessian matrix elements Hϕj;ϕk

¼ Hϕk;ϕj
with

ϕ⃗ ¼ ðσ;ωνÞ, compare Eq. (15). Inserting

Sðνn;pÞ ¼
−i=̃pþ Σ̄
p̃2 þ Σ̄2

; p̃ ¼ ðνn − iμ̄;pÞT ðB1Þ

and the respective vertex c⃗ ¼ ð1;−γ3; iγ1; iγ2Þ for ϕ⃗ ¼
ðσ;ω3;ω1;ω2Þ in Eq. (15), respectively, one obtains for
the diagonal elements

Hσσ ¼
1

λS
þ Nγ

β

Z
d2p
ð2πÞ2

X∞
n¼−∞

−p̃2 − pqþ Σ̄2

ðνn − iμ̄Þ2 þ ðpþ qÞ2 þ Σ̄2

1

ðνn − iμ̄Þ2 þ p2 þ Σ̄2
; ðB2Þ

Hωνων
¼ 1

λS
þ ð1 − 2δν;3Þ

Nγ

β

Z
d2p
ð2πÞ2

X∞
n¼−∞

ð2δν;α − 1Þp̃αp̃α þ ð2δν;1 − 1Þp1q − Σ̄2

ðνn − iμ̄Þ2 þ ðpþ qÞ2 þ Σ̄2

1

ðνn − iμ̄Þ2 þ p2 þ Σ̄2
; ðB3Þ

where we choose the angle integration such that q lies on the x1 axis. The off-diagonal elements are given by

Hσων
¼ ðδν;3ð−i − 1Þ þ 1ÞΣ̄Nγ

β

Z
d2p
ð2πÞ2

X∞
n¼−∞

2p̃ν þ δν;1p1q
ðνn − iμ̄Þ2 þ ðpþ qÞ2 þ Σ̄2

1

ðνn − iμ̄Þ2 þ p2 þ Σ̄2
; ðB4Þ

Hω1ω2
¼ Nγ

β

Z
d2p
ð2πÞ2

X∞
n¼−∞

2p1p2 þ qp2

ðνn − iμ̄Þ2 þ ðpþ qÞ2 þ Σ̄2

1

ðνn − iμ̄Þ2 þ p2 þ Σ̄2
; ðB5Þ

Hω3ωj
¼ −

Nγ

β

Z
d2p
ð2πÞ2

X∞
n¼−∞

2p̃3pj þ δj;1p̃3q

ðνn − iμ̄Þ2 þ ðpþ qÞ2 þ Σ̄2

1

ðνn − iμ̄Þ2 þ p2 þ Σ̄2
; j∈ f1; 2g: ðB6Þ

Note that in consistency with the repulsive nature of the Yukawa interaction ψ̄ω3ψ , the Hessian matrix elements with
only one ω3 index are purely imaginary.
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1. Finite temperature expressions for nonvanishing q

In order to evaluate the Hessian at finite temperature and
chemical potential, we perform the Matsubara summation.
For some of the above expression, one needs to do some
additional manipulations in order to perform the summa-
tion in an easier way or to circumvent problems in the
contour integration stemming from p̃2

3 terms in the numer-
ator. Equation (B2) is exactly the two-point vertex function
of the GNmodel, and was calculated multiple times, e.g., in
Refs. [88,89,103], see Appendix B of Ref. [101] for the
evaluation of the two-point vertex function in various limits
of Σ̄, T, and q. The other entries, however, have to our

knowledge not be computed. Using some manipulation of
the numerator of Eq. (B3) for ν ¼ 3 as well as rewriting the
denominator in a partial fraction [see Eqs. (4.14)–(16) in
Ref. [2] for the general idea] one finds that

Hω3ω3
¼ 1

λV
− l1ðμ; T; Σ̄; Ω̄3Þ þ L2;þðμ̄; T; Σ̄; qÞ

þ l3ðμ; T; Σ̄; qÞ; ðB7Þ

where l1 is known from the GN model and appears in the
gap equation (8),

L2;þðμ̄; T; Σ̄; qÞ ¼
1

2

Z
d2p
ð2πÞ2

X∞
n¼−∞

Nγ

β

ðq2 þ 4Σ̄2Þ
ðνn − iμ̄Þ2 þ p2 þ Σ̄2

1

ðνn − iμ̄Þ2 þ ðpþ qÞ2 þ Σ̄2
≡ 1

2
ðq2 þ 4Σ̄2Þl2ðμ; T; Σ̄; qÞ

ðB8Þ

is (up to a factor of 2) the momentum dependence of the two-point vertex function in the GN model [compare Eq. (13) of
Ref. [101]] and the new contribution

l3ðμ̄; T; Σ̄; qÞ ¼
2Nγ

β

Z
d2p
ð2πÞ2

X∞
n¼−∞

p2 þ pq
ðνn − iμ̄Þ2 þ p2 þ Σ̄2

1

ðνn − iμ̄Þ2 þ ðpþ qÞ2 þ Σ̄2
: ðB9Þ

The Matsubara summation can be performed as usual by analytic continuation and a contour integral. Then,
one obtains

l3ðμ̄; T; Σ̄; qÞ ¼ 2Nγ

Z
d2p
ð2πÞ2

ðp2 þ pqÞ
q2 þ 2pq

�
1

2E
ð1 − nFðEÞ − nF̄ðEÞÞ − E → Eq

�
ðB10Þ

with E, nFðxÞ, nF̄ðxÞ as defined in Sec. III A and Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpþ qÞ2 þ Σ̄2

p
. This expression can be split up between p1 < q=2

and p1 > q=2, manipulated and evaluated using a Cauchy-principal value (similar to how L2 can be evaluated) and
amounts to

l3ðμ̄; T; Σ̄; qÞ ¼
Nγ

ð4πÞ
�Z

q=2

0

dp
p
E

p2 − q2=2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4p

p ½1 − nFðEÞ − nF̄ðEÞ� þ
Z

∞

0

p
E
½1 − nFðEÞ − nF̄ðEÞ�

�
; ðB11Þ

where the latter term is linearly divergent and identical to l1. Thus, the divergences of l1 and l3 exactly cancel each other
out such that Eq. (B7) is finite. We are aware that these divergences occur because of splitting up the numerator of Eq. (B3)
for ν ¼ 3, as described above. However, this procedure is easier than dealing with the ðνn − iμÞ2 term in the numerator,
since the standard method of analytic continuation and contour integration cannot be done as usual, since the integrand does
not fall off fast enough.
In turn, the other diagonal elements are rather straightforward

Hωjωj
¼ 1

λV
− l1 þ

1

2
q2l2 þ

2Nγ

β

Z
d2p
ð2πÞ2

X∞
n¼−∞

p2
j þ δj;1p1q

ðνn − iμ̄Þ2 þ p2 þ Σ̄2

1

ðνn − iμ̄Þ2 þ ðpþ qÞ2 þ Σ̄2
: ðB12Þ

Splitting up the numerator and treating the remaining
integrals with standard techniques (shifts, inversions of the
integration variable) allow to identify already known
integral structures for j ¼ 1 and one obtains

Hω1ω1
¼ 1

λV
− l1 þ

1

2
q2l2 þ l1 þ q2l2;

¼ 1

λV
þ 3

2
q2l2ðμ; T; Σ̄; qÞ: ðB13Þ
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Also, one finds for j ¼ 2

Hω2ω2
¼ 1

λV
þ Nγ

2πq

Z
q=2

0

p3

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2−4p2

p ½1−nFðEÞ−nF̄ðEÞ�;

ðB14Þ
which is again finite. Note that the differences in
the expression for Hω1ω1

and Hω1ω1
come from the

choice on q ¼ ðq; 0Þ. The matrix elements Hω2ω2

and Hω1ω1
would be exchanged if we would have

chosen q ¼ ð0; qÞ, as expected since the analysis is
invariant under spatial rotations. The limits of zero
temperature in the above expressions is rather
straightforward.
The mixing between σ and ω3 is given by

Hσω3
¼ −iΣ̄

2Nγ

β

Z
d2p
ð2πÞ2

X∞
n¼−∞

p̃3

ðνn − iμ̄Þ2 þ p2 þ Σ̄2

1

ðνn − iμ̄Þ2 þ ðpþ qÞ2 þ Σ̄2
: ðB15Þ

This expression can be evaluated using a contour integral, as the analytic continuation of the integrand is well behaved when
closing the contour at infinity. The result yields

Hσω3
ðqÞ ¼ iΣ̄Nγ

Z
d2p
ð2πÞ2

1

q2 þ 2pq
½ðnFðEÞ − nF̄ðEÞÞ − ðnFðEqÞ − nF̄ðEqÞÞ�;

¼ −iΣ̄Nγ

Z
q=2

0

dp
2π

p

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − 4p2

p ½nFðEÞ − nF̄ðEÞ�≡ −iΣ̄l4ðμ; T; Σ̄; qÞ; ðB16Þ

where one can directly see that this expression vanishes in
the SP and for μ ¼ 0.
Also, one obtains

Hσω1
¼ 2Σ̄jqjl2ðμ; T; Σ̄; qÞ ðB17Þ

and Hσω2
¼ 0, where the term with j ¼ 2 vanishes using

symmetry arguments in the angle integration13 [compare
Eq. (B4) for ν ¼ 2]. Again, the two matrix elements Hσω1

and Hσω1
would be exchanged, if we would setup the

momentum integration such that q would be aligned with
the p2 axis. In a similar way as for Hσω2

, we obtain that
Hω1ω2

¼ Hω3ω2
¼ 0. Lastly, one obtains

Hω3ω1
¼ 0 ðB18Þ

through splitting up the integral in Eq. (B6) into two
integrals, where each integral contains one of the sum-
mands in the numerator. Both integrals turn to be propor-
tional to l4, but with different signs and prefactors such that
both contributions cancel each other.

2. Finite temperature expressions for q= 0

For the q ¼ 0 expressions (and even more limits) of Hσσ

and all integrals related to it, we refer again to Ref. [86].
Note that several of the integrals in the beginning of

Appendix B vanish, when the limit of q going to zero is
taken. More precisely, we find

Hσωj
ðq¼0Þ¼0; Hω3ωj

ðq¼0Þ¼0; j ∈ f1;2g; ðB19Þ

Hω1ω2
ðq ¼ 0Þ ¼ 0; ðB20Þ

as can be seen from going into polar coordinates after
Matsubara summation and performing the angle integra-
tion, respectively. The Hessian (15) becomes diagonal with
respect to the 2 × 2 block with ϕj;ϕk ∈ fω1;ω2g. Thus,
complex-conjugate eigenvalue pairs can only be generated
by mixing of σ and ω3 at q ¼ 0, allowing to study this
phenomenon by only taking the respective 2 × 2 block in
Eq. (15). For the rest of the diagonal elements, we find

Hωjωj
ðq¼0Þ¼ 1

λV
−l1ðμ;T;Σ̄Þþl3ðμ;T;Σ̄;q¼0Þ; ðB21Þ

¼ 1

λV
− l1 þ

Nγ

8π

Z
∞

0

dp
p3

E3
½1− ð1þ βEÞðnFðEÞ

þ nF̄ðEÞÞ þ βEðn2FðEÞ þ n2F̄ðEÞÞ�;

¼ 1

λV
þNγ

8π

Z
∞

jΣ̄j
dE

�
βE½n2FðEÞ þ n2F̄ðEÞ− nFðEÞ− nF̄ðEÞ�

−
Σ̄2

E2
½1− ð1þ βEÞðnFðEÞ þ nF̄ðEÞÞ

þ βEðn2FðEÞ þ n2F̄ðEÞÞ�
�
; ðB22Þ

13At first glance, this seems to be a trivial integration, but one
still needs to perform a Cauchy principal value before using
symmetry arguments.
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which is finite due to the suppression of high momenta in
the first summand of the integrand, and

Hω3ω3
ðq ¼ 0Þ ¼ 1

λV
− l1 þ 2Σ̄2l2 þ l3; ðB23Þ

which is identical to Hωjωj
up to an additional contribution

of 2Σ̄2l2. The diagonal elementHσσ is given by the bosonic

two-point vertex functionΓð2Þ
σ ðqÞ in the (2þ 1)-dimensional

GN model and studied in this limit in Refs. [101,103]. For
the remaining off-diagonal element we find

Hσω3
¼ −iΣ̄

Nγ

π

Z
∞

0

dEfβE½n2FðEÞ − n2F̄ðEÞ�

− ½nFðEÞ − nF̄ðEÞ�g: ðB24Þ
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