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We investigate the multiplicity dependence of the transverse momentum pT spectra of hadrons produced
in high-energy collisions. We propose that the partonic distribution be parametrized by its nonextensive
entropy and the parton saturation scale QsðxÞ. These two variables can be identified from the produced
charged hadron distributions and provide important information on the gluon dynamics at the moment of
interaction. From this perspective, we interpret data from different ALICE multiplicity classes at

ffiffiffi
s

p ¼
13 TeV and

ffiffiffi
s

p ¼ 5.02 TeV. A multiplicity-dependent scaling function is presented and the dependence
of the interaction area on multiplicity is also investigated.

DOI: 10.1103/PhysRevD.110.034005

I. INTRODUCTION

The transverse momentum pT spectra are traditionally
one of the main ways to obtain information about the
dynamics of partons in the initial state of the interaction in
proton-proton (pp), proton-nucleus (pA), and nucleus-
nucleus (AA) collisions at high energies. The momentum
distribution of the particles produced is sensitive to the
geometric parameters of the collision, such as the average
area of interaction hATi, the nature of the projectile,
the collision energy

ffiffiffi
s

p
, the pseudorapidity of the

hadron produced η, and the observed multiplicity class.
Modifications of these collision parameters significantly
change the shapes of the spectra, mainly in the region of
large pT , usually characterized by a power-law multiplicity
dN=d2pTdη ∼ p−m

T [1–3]. Mapping these observable mod-
ifications in terms of QCD degrees of freedom, quarks and
gluons, requires a phenomenological analysis that allows
connection between variables associated with partonic

dynamics with the quantities that characterize the hadronic
spectrum.
In [3] we proposed a power-law partonic transverse

momentum distribution (TMD) function that essentially
depends on two quantities: the power index δn and the
saturation scale QsðxÞ, where x ∼ pT=

ffiffiffi
s

p
is the fraction of

the gluon’s longitudinal momentum at central rapidity.
These two quantities are easily identified in the final spectra
of produced hadrons: the saturation scale is evident from
the scaling with respect to the hard scale proven in the
interaction Q2 ∼ p2

T in the scaling variable τ ¼ Q2=Q2
sðxÞ,

while the power index can be inferred from the slope of
spectra at the region of large pT . The data description is
relatively good by using these two quantities. In this work,
we intend to give a better justification of why this type of
model works and its interpretation. In the context of
nonextensive statistical mechanics, the power parameter
is related to the entropic index q of the Tsallis entropy [4,5].
While in approaches based on Hawking-Unruh radiation in
QCD applied to thermal hadronization [6,7] the saturation
scale plays the role of a temperature, T ¼ Qs=ð2πÞ, and is
sufficient to describe the system, in our model we also need
to specify the power index (entropy). Thus, an analysis
of the hadron spectrum on pT will provide us with
information about partonic dynamics through its entropy
Sq and saturation scale QsðxÞ, with both quantities being
necessary to characterize the system.
In [3] we already made an extensive study of the spectra

of identified particles based on their scaling properties in
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relation to the collision energy
ffiffiffi
s

p
at the energies of RHIC,

TEVATRON, and LHC up to
ffiffiffi
s

p ¼ 13 TeV. The under-
lying QCD dynamics is based on the high-energy factori-
zation or kT factorization [8,9], where the building blocks
are the transverse momentum distribution of partons
(parton TMDs). The corresponding gluon TMD as a
function of gluon transverse momentum is denoted by
ϕðx; kTÞ. In this article, we investigate the behavior of the
spectrum at a fixed energy for different multiplicity classes
as defined by ALICE [10] in proton-proton collisions atffiffiffi
s

p ¼ 5.02 and 13 TeV. The pp collisions at high multi-
plicity have shown properties close to those observed in
nuclear collisions, which leads to the question about the
relationship of initial-/final-state effects in these different
collision systems. In our approach, we intend to show that
all of the characteristics of the spectrum and its multiplic-
ities can be well explained just by taking into account the
properties of the initial state and the partonic entropy of
the gluon system that take part in the initial interaction. The
relationship between the average transverse momentum and
multiplicity of charged particles produced in different
collision systems, such as pp, pA, and AA [11] reactions,
presents a challenge to traditional models of particle
production, being a fundamental indicator in order to
distinguish effects of the initial state and hydrodynamic
evolution of the final state.
The main ideas underpinning the present study are as

follows. The high-energy collision probes a system of
gluons with a probability distribution Pðx; kTÞ given by the
Fourier transform to the QCD color dipole scattering
amplitude N ðx; rÞ, with r being the transverse size of a
color dipole. Due to the diffusion of gluons in momentum
space given in a time scale t ∼ 1=x, the variation of the
distribution Pðx; kTÞ is related to the probe of different
substructures of the target. This process is described by an
anomalous diffusion. We argue that when the probability
distribution Pðx; kTÞ is given by the entropy maximization,
two situations can occur: (i) the Boltzmann-Gibbs entropy,
which in steady state results in a Gaussian distribution in
transverse momentum, and (ii) the Tsallis entropy, which in
steady state results in our model containing a power
(entropic) index. By maximizing the Tsallis entropy, one
associates a Lagrange multiplier β with the average value of
the gluon transverse momentum kT . Making use of a
scaling property very common to systems presenting
anomalous diffusion, one obtains hk2Ti ∼ β−1ðxs=xÞ1=3.
This can be interpreted as a generalization of the
Einstein relation and thus β can be understood as the
inverse of temperature. More specifically, we intend to
explore the connection between the multiplicity of pro-
duced hadrons, dN=d2pTh

dη, and partonic dynamics at
high energies. In order to investigate such a connection, we
define an indicator of partonic entropy associated with the
diffusion of gluons in kT space. Considering that in the
equilibrium situation

ffiffiffi
s

p
→ ∞ a behavior like ∝ k−4T is

expected, in contrast to the Boltzmann-like exponential
form, we consider that the most appropriate indicator is that
of Tsallis [4,5], where the monotonic shape ∼k−4T corre-
sponds to the entropic index q ¼ 3=2. From this indicator,
we observe a relationship between the growth of entropy,
the area of interaction, and the final multiplicity of charged
hadrons.
This work is organized as follows. In Sec. II Awe present

the kT-factorization formalism applied to the description of
transverse momentum spectra of produced hadrons. In
Sec. II B we propose a partonic entropy indicator based
on the formalism of nonextensive statistical mechanics and
its implications for the production of hadrons at high
energies. Our main results are presented in Sec. III, where
the model is compared with ALICE data for different
multiplicities. Finally, in Sec. IV the main conclusions are
summarized.

II. THEORETICAL FRAMEWORK
AND MAIN PREDICTIONS

A. pT spectrum in kT factorization

To carry out our phenomenological investigation, we
employ the kT-factorization formalism, where the cross
section for particle production can be expressed in terms of
the unintegrated gluon distribution (UGD), dependent on
transverse momentum kT . Different hard observables in pp,
pA, and AA collisions have been well described using this
formalism [12–14], in addition to diffractive processes [15]
and structure functions in electron-proton (ep) and electron-
nucleus (eA) interactions [16–24] (see also the reviews in
Refs. [25,26]). In all of these approaches, the fundamental
element is the partonic dynamics represented by the color
dipole scattering amplitude, whose Fourier transform in
momentum space kT is directly connected with the gluon
number of the target, ϕðx; kTÞ. Different models have been
proposed for this quantity for both protons and large
nuclei [12,16,17,27–31], which include different consider-
ations about partonic dynamics in relation to scaling, impact

parameter (b⃗) and geometry dependence, the high-Q2 limit,
and so on.
Partons develop an anomalous diffusion-like dynamic in

the two-dimensional transverse momentum space k⃗T , while
its longitudinal dynamics is trivial. That can be described in
the picture of QCD color dipoles [32–35]. One of the main
features of this dynamic is the emergence of a saturation
scale QsðxÞ ∼ x−1=3, which limits the growth of the gluon
distribution at small Bjorken variable x. This behavior ends
up being translated into observables, such as the pT
spectrum of hadrons, where the cross section for hadronic
production can be described by a universal function f, i.e.,
dσðpT;

ffiffiffi
s

p Þ=d2pT ∼ fðτÞ. Here, τ is the scaling variable,
which can be defined in the context of the geometric scaling
property of parton saturation approaches.
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In the kT-factorization formalism, the cross section for
producing a gluon jet with transverse momentum pT results
in the convolution of the nonintegrated gluon distributions
of the target and projectile,

E
d3σ
dp⃗3

ab→gþX

¼ A
p2
T

Z
d2kTϕðxa; k2TÞϕðxb; q2TÞ; ð1Þ

¼ fðτÞ; ð2Þ

which can be reduced to a universal function fðτÞ due to the
scaling in relation to the saturation scale QsðxÞ character-
istic of the parton saturation formalism. Namely, the scaling
variable is given by τ ¼ p2

T=Q
2
sðxÞ. Here, A ¼ K 2αs

CF
is the

overall normalization and q⃗T ¼ ðp⃗T − k⃗TÞ. The K factor is
a multiplicative constant, as used in [3]. The Casimir is
CF ¼ ðN2

c − 1Þ=2Nc ¼ 4=3 and αs is the strong coupling
constant. The scaling curve for the case of gluon production
in the range τ > 1 has the following form [3]:

fðτÞ ¼ C
κ

κ − 1

�
1 −

1þ κτ

ð1þ τÞκ
�

1

ð1þ τÞ1þκ ; ð3Þ

with C being the overall normalization and κ ¼ 1þ δn.
In order to illustrate how the UGD [3] considered

here, the Moriggi-Peccini-Machado (MPM) parametriza-
tion, compares with others in the literature, in Fig. 1 (left)
it is contrasted with the well-known Golec-Biernat–
Wüsthoff (GBW) parametrization [36,37], ϕGBWðx; k2TÞ ¼
cgðk2T=Q2

sðxÞÞe−k2T=Q2
sðxÞ, and the updated Lipatov-Lykasov-

Malyshev (LLM) approach [22], ϕLLMðx; kT; Q2Þ. The
GBW model and ours do not take into account the
QCD evolution [the Catani-Ciafaloni-Fiorani-Marchesini

(CCFM) evolution equations] of the gluon function, which
also depends on the scale Q2 of the problem. The LLM
approach provides the UGD at low Q2 with a different
analytical form from ours, and at large Q2 the QCD
evolution with CCFM equations is calculated. The soft
and hard hadron productions have been computed and the
model allows for a good data description (see more details
in Ref. [22]). In the figure, the UGD is shown as a function
of gluon transverse momentum kT for fixed x ¼ 10−4 and at
the hard scale Q ¼ 20 GeV. The saturation scales in the
GBW (dot-dashed line) and MPM (solid line) models are
very close and scale independent, which is characterized by
the transverse momentum peak of the distribution. The
LLM approach (LLM-2022, dashed line) exhibits a higher
saturation scale at this scale. In the right plot, the MPM and
LLM approaches are compared in the description of the
minimum bias data (INEL > 0) for 13 TeVat the LHC [10].
As expected, the QCD evolution starts to be important at
pTh

≳ 10 GeV. It is worth mentioning that the parameters
K and hzi in the MPM model were obtained for the range
1 < τh < 100 with τh ¼ p2

Th
=Q2

sðxhÞ.
Moving now to the multiplicity distributions, it is

desirable to constrict the scaling function in Eq. (1) in
terms of the multiplicity degree of freedom, fðτÞ → fðτiÞ.
Let us consider the variation of the saturation scale in each
multiplicity class i in relation to its minimum bias value,
Xi ¼ QsiðxÞ=QsðxÞ, in the following way:

τi ¼
Q2

½XiQsðxÞ�2
; ð4Þ

where the momentum scale involved in the hard interaction
is given by Q2 ¼ p2

T þm2
j, with mj being the mass of the

FIG. 1. Left: comparison of the corresponding UGDs: LLM-2022 (dashed line), GBW (dot-dashed line), and MPM (solid line). The
LLM approach includes CCFM evolution of the gluon function (see text). Right: numerical results for the MPM and LLM-2022
approaches compared to minimum bias data INEL > 0 for 13 TeV measured by the ALICE Collaboration [10].

MULTIPLICITY DEPENDENCE OF THE pT-SPECTRA FOR … PHYS. REV. D 110, 034005 (2024)

034005-3



produced gluon jet. The value for the jet mass used here is
the same as that considered in Ref. [3], mj ¼ 0.56 GeV.
The parton-hadron transition can be approximated by
assuming that the hadron carries a fraction of momentum
hzi of the parton. In the numerical calculations, the value
hzi ≃ 0.4 will be used, which is determined from data on
pp collisions at the LHC [3]. In addition, we should replace
the gluon transverse momentum pT →

pTh
hzi , with pTh

being

the hadron transverse momentum. Final-state processes
could destroy the spectrum scaling, but this does not
happen, indicating that the role of these effects is secon-
dary, at least in pp collisions.
We can assume that the variation in multiplicity is related

to the variation in the collision impact parameter, which
leads to an increase in the transverse area of proton overlap
hATi, up to a maximum area value associated with the total
overlap hATmax

i. The cross section can be expressed in a
given multiplicity class scaling [Eq. (1)] in the form

E
d3σi
dp⃗3

ab→gþX

∼
hATi
hATmax

i fðτiÞ: ð5Þ

The multiplicity can be obtained from the cross section at a
given multiplicity, σi, by assuming σi=σinel ¼ Ni=hNi.
Here, σinel is the inelastic cross section, and Ni and hNi
are the number of produced particles in the multiplicity
class and its average, respectively. The spectrum modifi-
cation factor in relation to its minimum bias value
hdN=d2pTh

dηi is defined as the ratio

RiðpTh
Þ ¼ dNi=d2pTh

dη

hdN=d2pTh
dηi ; ð6Þ

which captures small variations in the slope of large pTh
at

each centrality. Given these considerations, we only have
two parameters to be fitted in each multiplicity. They are
the ratios between areas and the saturation scale in relation

to the reference value, i.e., hAT i
hATmax i and Xi.

We will not make an a priori estimate of these quantities,
but in Sec. III we will analyze the resulting behavior in
terms of relevant indicators of multiplicity such as hpTii.
Bulk properties can be inferred from integrated spectra:

dNi

dη
¼

Z
d2pTh

dNi

d2pTh
dη

; ð7Þ

hpTh
ii ¼

Z
d2pTh

pTh

dNi=d2pTh
dη

hdN=dηi : ð8Þ

The characterization of the gluon distribution appearing
in Eq. (1) required to produce the universal scaling function
fðτiÞ and its particularities are given in the next section.

B. Partonic entropy

In the dipole picture, the fundamental element used to
describe the collision is the color dipole scattering ampli-
tude N ðx; r⃗Þ in the dipole coordinate space (r⃗ is the
transverse size of the color dipole). In the transverse
momentum space, its Fourier transform Pðx; kTÞ decodes
target information by exchanging multiple gluons, making
this object proof of the target’s gluon distribution. Due to
these multiple interactions, the scattering amplitude
acquires a statistical character [38,39] describing a diffusive
process in the transverse momentum space in relation to the
longitudinal momentum fraction x. The last quantity gives
the inverse of the diffusion time. Different models have
been proposed for this object. In phenomenological terms,
it was proposed [3] that a good description of the pT
spectrum of produced hadrons can be made considering the
following distribution:

PMPMðδn; x; kTÞ ¼
1þ δn
πQ2

sðxÞ
1

ð1þ k2T=Q
2
sðxÞÞ2þδn ; ð9Þ

where the parameter δn takes into account deviation from
the expected amplitude at leading order, ∝ 1=k4T . This
distribution was initially proposed to describe the slope in
the region of large pT in the transverse momentum
spectrum in pp collisions. Moreover, it can also provide
a good description of the pT distribution in large systems
like pA and AA interactions [12–14,40,41], as well as
diffractive processes [42–44], which prove a distinct
kinematic region. The number of gluons with a certain
transverse momentum kT is given by

ϕðx; kTÞ ¼
3

4π2αs
k2TPðx; kTÞ ð10Þ

considering a homogeneous target with impact parameter
dependence ∝ ΘðR2

p − b2Þ. We investigate the dependence
of the collision geometry of this object by letting the
saturation scale depend on the multiplicity at each central-
ity. The emergence of scaling in the variableQ2

sðxÞ ∼ x−λ is
a remarkable property of the QCD in the high-energy
regime with ample experimental evidence [3,45–51]. The
successful phenomenological GBW model [36,37]
describes this process by an exponential function on the
scaling variable k2T=Q

2
s ,

PGBWðx; kTÞ ¼
1

πQ2
sðxÞ

exp ½−k2T=Q2
sðxÞ�: ð11Þ

One can define an entropy indicator in the gluon
diffusion process based on the Boltzmann-Gibbs (BG)
statistics in the following way:

SBG ¼ −
Z

Pðx; kTÞ log ½Pðx; kTÞ�d2kT; ð12Þ
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where all we need to describe partonic interactions is the
quantity QsðxÞ. An immediate consequence of scaling
in the variable k2T=x

−λ is that the BG entropy is logarithmic
in time 1=x, and additive with respect to rapidity
Y ¼ logð1=xÞ,

SBG ¼ c1 þ c2λ logð1=xÞ; ð13Þ

where c1, c2 are constants and λ is a function of x and the
scale Q2. Initially, the partons are located in a small region
around the saturation point, and as time passes the proton
becomes almost homogeneous in transverse momentum
space and the entropy increases quickly. It is interesting to
note that if λ ¼ λðx;Q2Þ, as predicted in other models [52],
then the BG entropy may grow faster/slower and become
nonadditive. Therefore, models of this type, when analyzed
from the perspective of BG entropy, will not be extensive in
relation to rapidity, indicating a break in the scaling. One of
the reasons for this break and consequently entropy
additivity is that gluons occupy a region d in the transverse
plane of the inverse order to their average transverse
momentum d ∼ k−1T ∼QsðxÞ−1. When a dependence is
introduced on the scale Q ∼D−1 at which the proton
structure is proved, one can suggest that the entropy
becomes dependent on the resolution Q2=Q2

s ∼ d2=D2 in
which the system is seen. If Q2=Q2

s ≫ 1, then we can
resolve details of the partonic substructure and one should
expect a decrease of entropy, and we will have a loss of
information between different rapidity layers.
In the distribution of Eq. (9), information about non-

additivity is given by the parameter δn, given by

δnðτiÞ ¼ 0.075τ0.188i ; ð14Þ

Q2
sðxÞ ¼

�
xs
x

�
1=3

: ð15Þ

Now it should be noted that the distribution in Eq. (9) can
be obtained by maximizing the Tsallis entropy Sq,

Sq ¼
Z

d2kT
1 − ½Pðx; kTÞ�q

q − 1
; ð16Þ

if we identify

q ¼ 3þ δn
2þ δn

; ð17Þ

Q20
s ¼ Q2

sðq − 1Þ ð18Þ

and impose the constraints [5]

hk2Tiq ¼
R
d2kTk2T ½PðkTÞ�qR
d2kT ½PðkTÞ�q

¼ Dq; ð19Þ

Z
d2kTPðkTÞ ¼ 1: ð20Þ

By using the Lagrange method to find the optimizing

distribution Popt ∼ e
−βk2T
q , where β is the Lagrange param-

eter, we can make the following identification:

hk2Tiq ¼ Dq ¼ β−1: ð21Þ

Now, if we interpret the Lagrange parameter as the inverse
of the temperature β−1 ¼ T, using the scaling hypothesis,

hk2TðxÞiq ∼ β−1ðxs=xÞ1=3; ð22Þ

we have a generalization of the Einstein relation for
anomalous diffusion [53,54].
These two entropies, SBG and Sq [Eqs. (12) and (16)],

differ in nonadditive character, except in the case q ¼ 1
where they coincide. Parton dynamics can be described in
terms of the difference in rapidity between two layers in the
parton cascade ΔY ¼ Ya − Yb ¼ logðxa=xbÞ,

SqðYa þ ΔYÞ ≤ SqðYaÞ þ SqðΔYÞ; ð23Þ

which implies that there is a loss of information when
comparing the two systems in relation to the BG case. The
entropy in Eq. (16) is nonadditive, and nonadditivity
depends on the parameter δn, which will measure the loss
of information when we compare the same situation
described above with different values of this parameter.
In general terms, we can argue that if the steady state of

the distribution has the form (9), a natural choice for the
entropy would be (16). Considering that in the high-energy
regime QsðxÞ2=Q2 → ∞, we expect a point-particle scat-
tering ϕðkTÞLO ∼ k−2T characterized by q∞ ¼ 3=2. In prac-
tice, q is always close to 3=2, which justifies the
approximation q ≃ 3=2þ δnðτiÞ=4. The variation of q as
a function of the scale tested in the system was modeled as
a power in the form (14). Such behavior of the entropic
index is justified in analogy to other similar physical
systems that exhibit this behavior [55],

q∞ − q ≃ τ0.188i ; ð24Þ

and the value of the entropic index must increase with Q2.
The resulting entropy is given by

SqðQ2; Q2
sÞ ¼

1

q − 1
−
�
2 − q
q − 1

�
q
ðπQ2

siÞ1−q: ð25Þ

This entropy can be expressed in terms of the partonic
kinematic variables x;Q2 or expressed in terms of the
spectrum variables pTh

;
ffiffiffi
s

p
in each multiplicity. As q > 1,
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the entropy grows more slowly than logð1=xÞ, eventually
saturating.
Another way of looking at the difference between the

exponential distribution and power law is through the
superstatistics framework of Beck and Cohen [56], where
the Tsallis distribution is obtained from the gamma fluctua-
tions of the inverse of the saturation scale β ¼ 1=Q2

sðxÞ. In
our case, one has

Z
dβPGBWðkT; βÞgðn; β; β0Þ ¼ PMPMðkT; β0Þ; ð26Þ

where gðn; β; β0Þ is the gamma distribution. It is interesting
to note that gamma distributions are needed in models like
those shown in Refs. [57,58] to generate the necessary
multiplicity fluctuation in pp and AA collisions.
The growth of q with Q2 is consistent with the statistical

argument of Ref. [56] in the analysis of turbulent flow,
where the authors argued that the variances in the fluctua-
tions of β are smaller if taken at a larger distance scale, so q
must grow with Q2. It is noteworthy that the parameter
q ¼ 3=2 expected in the QCD parton picture is the same as
that described by those authors in the context of turbulent
flow on small scales.
Finally, the use of the proposed entropy offers a simple

and economical way in terms of the number of parameters
to describe experimental data of the pT spectra and makes
clear the partonic dynamics in a given collision process. In
the next section, we explore the connection between the
multiplicity of produced hadrons and partonic dynamics at
high energies by using the associated indicator of partonic
entropy and investigate the relationship between the growth
of entropy, the area of interaction, and the final multiplicity
of charged hadrons.

III. RESULTS AND DISCUSSIONS

First, we address the issue of the centrality classes. For
each ALICE multiplicity class [10] (energies 5.02 and
13 TeV), a value is adjusted for the parameter Xi, which
measures the deviation in relation to the average saturation

scale Xi ¼ QsiðxÞ=QsðxÞ, in addition to the transverse area
ratio hATi=hATmax

i. We consider the range pTh
< 10 GeV,

where scaling is observed with good precision. The
resulting parameters are presented in Table I for the two
collision energies. The multiplicity classes are labeled by
ten identifiers (index I to X). Although the saturation scale
grows with each multiplicity, the interaction area saturates
at a limit close to hATmax

i characterizing the total overlap of
the protons. This trend is expected, as it was observed
in [45,59].
The resulting pT spectra given by Eq. (5) are presented in

Fig. 2 for each multiplicity class at energies of
ffiffiffi
s

p ¼
5.02 TeV and

ffiffiffi
s

p ¼ 13 TeV and compared with data
from ALICE [10]. In order to convert multiplicity to
cross section, the inelastic cross section we use is
σinelð

ffiffiffi
s

p ¼5.02Þ=σinelð
ffiffiffi
s

p ¼13Þ¼0.87 [60]. Considering
the large momentum, pTh

≈ 10 GeV, we observe that the
slope is smaller for events of high multiplicity (like class I)
than for low multiplicity (for instance, in class X) as a
consequence of the increase in partonic entropy (16) in
events of high multiplicity. The entropy for these situations
is presented in Fig. 3, along with the entropic index q
associated with the same pTh

region. As entropy increases,
so does multiplicity, but this growth is faster for interactions
with large transferred momentum Q2 ∼ p2

Th
. In the limit

where pTh
=QsðxÞ → 0, the entropy would be flat, establish-

ing a limit for particle production in this kinematic region.
The scaling in the universal function fðτiÞ is evident in

the spectrum shown in Fig. 4 at different energies as the
data/theory error is very close to 1. A relevant deviation is
only seen for the region of τi ∼ 103, where the validity of
the model is in its limit of application. This sort of scaling
in pp collisions was also verified in Ref. [49], where the
multiplicity dependence was embedded on the saturation
momentum within the geometrical scaling approach. The
corresponding scaling is assumed in both semi-inclusive
and inclusive distributions.
The ratio between the multiplicity classes and

hdN=d2pTh
dηi, defined in Eq. (6), is presented in Fig. 5

TABLE I. Fitted parameters Xi and AT=ATmax
from experimental data [10] at the energies 5.02 and 13 TeV in each multiplicity class.

Multiplicity
class Xi AT=ATmax

χ2=d:o:f:
Multiplicity

class Xi AT=ATmax
χ2=d:o:f:ffiffiffi

s
p ¼ 5.02 TeV I � � � � � � � � � ffiffiffi

s
p ¼ 13 TeV I 1.765 0.777 0.86

II 1.588 0.775 0.25 II 1.567 0.849 0.68
III 1.489 0.782 0.17 III 1.486 0.837 0.55
IV 1.407 0.782 0.14 IV 1.402 0.843 0.53
V 1.326 0.772 0.14 V 1.323 0.831 0.48
VI 1.235 0.758 0.16 VI 1.240 0.809 0.42
VII 1.133 0.741 0.16 VII 1.146 0.778 0.28
VIII 1.012 0.714 0.20 VIII 1.036 0.731 0.20
IX 0.845 0.698 0.27 IX 0.882 0.680 0.14
X 0.603 0.582 0.42 X 0.637 0.498 0.06
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for the energies of 5.02 TeV (left plot) and 13 TeV (right
plot) as a function of hadron transverse momentum pTh

.
This observable is interesting because the ratio is sensitive
to small variations in the slope of pTh

. We can see that our
model provides a good description of the data for all
multiplicities. It is interesting to note that the slope of the
spectrum given by δn in the distribution of Eq. (9)
determines the growth of the ratio in the region of large
pTh

. It is not a priori expected that the parameter δn of
Eq. (14) could provide the appropriate slope for each
multiplicity just by rescaling Qs → XiQs without any extra
parameters. As shown in Fig. 6 (left plot), where
Xi ¼ ðhpTh

ii=hpTh
iÞ2, the relationship established is that

the spectrum slope in each multiplicity class can be derived

from its minimum bias multiplicity by just rescaling
Qs → hpTh

i2 in the UGD power index, δn.
Concerning the scaling of Qs on multiplicity in the

context of parton saturation approaches, it is expected that
for high-multiplicity events, based on the local parton-
hadron duality, the density of gluon grows as a function of
multiplicity [61–65]. This leads by consequence to multi-
plicity dependence of the saturation scale. The integrated
spectra at the given energy (7) under the scaling can be
expressed as

dNi

dη
∼

hATi
hATmax

iX
2
i : ð27Þ
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FIG. 2. The pTh
spectrum for different multiplicities compared to ALICE data [10]. Results are obtained by fitting the saturation scale

given in Eq. (5). The data bins are multiplied by a factor 2i for better visualization.

FIG. 3. Left: evolution of the entropic index with the hadron transverse momentum, given by Eq. (24). Right: partonic entropy Sq
given by Eq. (16) for different multiplicities. In both plots, representative multiplicity classes are considered (I,V,VII,IX,X).
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The specific shape of the overlap area dependence and the
saturation scale with multiplicity can give us important
information about partonic dynamics. In our model, the
saturation scale growth due to the multiplicity dNi=dη can
be approximated by

Xi ∼
�
dNi=dη
hdN=dηi

�
1=3

; ð28Þ

which is shown in Fig. 7. This behavior is different from the
one obtained in Ref. [49], where Xi ∼ c1 þ c2ðdNi=dηÞ1=6,
or the linear behavior used in [66,67].
Now, in order to understand the relation between the area

of interaction, multiplicity, and entropy, let us calculate the
entropy relative to the distribution on 1=Q2

sðxÞ approxi-
mated by q ¼ 3=2. This provides the following result:

S3=2ðXiÞ ¼ 2

�
1 −

1

ðπX2
i Þ1=2

�
: ð29Þ

If we assume that entropy is extensive with respect to the
area of interaction, then we come to the conclusion that

S3=2ðXiÞ ∼ hATi ∼ ðdNi=dηÞ1=3; ð30Þ
with hATi [and S3=2ðXiÞ] reaching a saturation at a
maximum value at large multiplicities.
In Fig. 6 (right plot) the average interaction area is

presented as a function of the saturation scale ratio Xi. By
using the proportionality between the average interaction
area and the entropy [Eq. (30)], in Fig. 6 the results are shown
for a fit in the form of Eq. (29). Namely, the relation hATi

hATmaxi ¼
ξð1 − a=XiÞ is used, where ξ is a proportionality constant.
The value found for the parameter a ¼ 0.67� 0.06 is close
to 1=

ffiffiðp
πÞ ¼ 0.56 appearing in Eq. (29). The dependence of

the interaction area on multiplicity was investigated in
Refs. [45,49,59], where it was argued that the interaction
area has a natural dependence on multiplicity in the form
hATi ∼ ðdNi=dηÞ2=3 (scales with the volume R3), until its
saturation at a certain limit for high multiplicities. If we
assume that the transverse area scales with partonic entropy,
we have a different result, that is, hATi ∼ ðdNi=dηÞ1=3.
Finally, putting the present work in context, in Ref. [68]

the normalized transverse momentum distributions of pro-
duced hadrons were used to compute the BG entropy. The
heat capacitywas also determined from the entropy. Statistics
of three different fitting functions were considered: thermal,
confluent hypergeometric, and the Hagedorn distribution.
Minimum bias data in pp collisions at RHIC and LHC were
considered, and it was shown that the BG entropy of the final
state increases with the collision energy. In Ref. [69], a
connection was proposed between the framework of the
evolution of states with dynamical SLð2; RÞ symmetry in the
context of the Krylov basis and the evolution of QCD color
dipoles in the Mueller dipole cascade framework. The latter
has been used to define a parton (mostly gluons at large
rapidities) entanglement entropy, SE [39]. In the simplest
case of (1þ 1) dimensions, one obtains SE ¼ ln½xgðxÞ�,
where xgðxÞ is the integrated gluon distribution. At high
energies, the hadron becomes a maximally entangled state
and the multiplicity distributions in deep inelastic scattering
and hadron-hadron scattering can be deduced from the QCD
parton cascade [70,71]. Work in [69] connected the K-
complexity to the number of color dipoles in the parton
cascade and the K-entropy to their SE. On the other hand, a
dynamical entropy for dense QCD states was proposed in
Ref. [72], which is based on statistical physics tools for far-
from-equilibrium processes. The numerical analysis using
realistic gluon UGDs was done in Ref. [73]. This entropy is
written as an overlap functional between the gluon distri-
bution at different total rapidities Y and saturation radius,
RsðYÞ ¼ 1=QsðYÞ, where QsðYÞ is the saturation scale.
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FIG. 4. Scaling function obtained using the relation (5).
Comparison is done between the scaling behavior obtained from
data at different multiplicities and the scaling curve calculated in
the kT -factorization formalism.
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FIG. 5. Ratio between different multiplicity classes and
h dN
d2pTh

dηi, calculated using Eq. (6), as a function of hadron

transverse momentum pTh
. Results are shown for the energies

of 5.02 TeV (left plot) and 13 TeV (right plot) and the theoretical
prediction is represented by solid lines.
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In the weak coupling regime, the dynamical entropy char-
acterizes the change of the color correlation length
RsðY0Þ → RsðYÞ, mirroring the rapidity evolution Y0 → Y
of a dense gluon state. The entropy functional ΣY0→Y is
defined in terms of the gluon transversemomenta probability
distribution. In some aspects, the analysis presented here is
more directly connected to this dynamical entropy.

IV. SUMMARY AND CONCLUSIONS

In this work, we presented a description of the pT spectra
of charged hadrons produced in high-energy collisions

taking into account their dependence on multiplicity. In
order to do so, we interpreted the distribution of gluons in
terms of their entropy and showed how characteristics of
the spectrum can be well described in terms of this quantity
plus the partonic saturation scale. We showed that multi-
plicity data exhibit scaling in relation to the saturation
scale. An important consequence of our formulation is that,
although the partonic entropy is nonextensive with respect
to the rapidity, as expected from the BG statistics, when we
compare the area of interaction of the protons it appears that
the partonic entropy grows with the interaction area. This
may suggest that the dependence on geometric aspects is
fundamental for partonic dynamics, which is usually not
included in the evolution of the rapidity in the distributions.
Finally, we note that the correct slope of the spectrum under
the rescaling of the UGD power parameter, as well as the
economic number of parameters and the linear dependence
of entropy on the partonic interaction area, are the main
results of this work.
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