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Kaon superfluidity in the early Universe

Gaoqing Cao
School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519088, China

® (Received 20 May 2024; accepted 26 June 2024; published 5 August 2024)

Previously, it was found that pion superfluidity could be realized in the quantum chromodynamics
(QCD) epoch of the early Universe, when lepton flavor asymmetry |/, + | is large enough to generate
a charge chemical potential |ug| larger than vacuum pion mass. By following the same logic, kaon

superfluidity might also be possible when |/, + [, is so large that || becomes larger than vacuum kaon
mass. Such a possibility is checked by adopting Ginzburg-Landau approximation within the three-flavor
Polyakov—Nambu—Jona-Lasinio model. Consider the case with full chemical balance, though kaon
superfluidity could be stable compared to the chiral phases with only ¢ condensations, it would get killed
by the more favored homogeneous pion superfluidity. If we introduce mismatch between s and d quarks,
kaon superfluidity would require so large s quark density that such a state is impossible in the early

Universe.

DOI: 10.1103/PhysRevD.110.034004

I. INTRODUCTION

One important mission of nuclear physics is to explore
possible phases of quantum chromodynamics (QCD) sys-
tems under different circumstances. Usually, neutron stars
are believed to be in the low energy regime of QCD with
hadrons the basic degrees of freedom, and many relevant
phases had been proposed for them, such as neutron Cooper
pairing [1], pasta structure [2,3], pion condensation [4-6],
and kaon condensation [7], see also the review [8]. On the
other hand, relativistic heavy ion collisions (HICs) are
expected to be in the high energy regime of QCD with
quarks and gluons the basic degrees of freedom, and the
transition between quark gluon plasma (QGP) and hadron
phases were widely studied [9,10]. However, the line
between QGP and hadron phases is never very clear due
to two facts: no sign of ordered phase transition was ever
found in HICs [11-14] and quarkyonic matter was supposed
to be possible in neutron stars [15-19].

The QCD epoch of the early Universe is another play-
ground of high energy nuclear physics. Previously, pri-
mordial magnetic field was assumed to be generated in
the electroweak epoch which then leaves relic in recent
galaxies according to scaling law [20-22], and lepton
flavor asymmetry was taken as a free parameter there since
the early lepton flavors could not be constrained by recent
observations for they are not conserved [23,24]. It turns out
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that pion superfluidity could be favored for large enough
lepton flavor asymmetry [23-25] and the QCD transition
becomes of first order after taking the magnetic effect into
account [26]. The first-order transition could generate
gravitational wave directly in the QCD epoch, and the
European Pulsar Timing Array group considered it to be a
possible origin of their updated observations [27]. Inspired
from the studies on neutron stars [4—7] and pure isospin
matter [28-31], if the lepton flavor asymmetry is so large
that the chemical potential of K= is larger than their mass,
kaon condensation can possibly be realized in a similar way
as pions in the early Universe [23-26]. But it is also possible
that pion superfluidity would kill kaon superfluidity at large
charge density, in a similar way to the killing of rho
superconductivity at finite isospin density [32]. Indeed, in
the case of full chemical balance, no sign of kaon super-
fluidity was found for however large isospin chemical
potential in the three-flavor chiral perturbation theory with
mesons the basic degrees of freedom [33].

This work is devoted to exploring the possibility of kaon
superfluidity in the early Universe by adopting the three-
flavor Polyakov—Nambu—Jona-Lasinio (PNJL) model with
quarks and gluons the basic degrees of freedom, the same as
QCD. Note that gluons are important for realistic study as
they contribute significantly to thermodynamic quantities at
large temperature, such as entropy. If, due to its internal
structure, kaon mass is greatly reduced to be comparable to
pion mass in the medium, as that happens in neutron stars [7],
kaon superfluidity could probably coexist with pion super-
fluidity. The paper is organized as follows. In Sec. II, for-
malisms are developed for chiral phases in Sec. II A and pion/
kaon superfluidity in Sec. II B, respectively, for the general
case with a primordial magnetic field. Specifically, the part for
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kaon condensation is developed by applying Ginzburg-
Landau approximation based on the background of pion
superfluidity. Within the subsections, the nontrivial sectors
of strong interaction are presented in detail in Secs. I A 1
and II B 1, and the trivial sectors of electroweak interaction
are simply summarized in Secs. Il A 2 and II B 2. In Sec. 111,
numerical results are demonstrated for the case without
primordial magnetic field. Finally, a brief summary is given
in Sec. IV.

II. THE THREE-FLAVOR PNJL MODEL

In this section, we adopt the three-flavor PNIJL
model [34-36] for the QCD sector and develop the
formalism for a finite primordial magnetic field.

A. Chiral phases in the magnetic field

Usually, chiral symmetry breaking and restoration
are related to the expectation values of scalar field con-
densates. Below, we specifically refer to such phases as
chiral phases to distinguish from pion or kaon superfluidity
phase by following the previous convention [26]. Due to
the Meissner effect, the chiral phases and pion/kaon
superfluidity should be treated separately in an external
magnetic field H, and Gibbs free energy must be adopted to
determine the ground state [37]. As magnetization is small
in chiral phases [26], we would directly use H instead of
magnetic induction intensity B in the following.

1. The strong interaction sector

In a primordial magnetic field, the Lagrangian of the
PNJL model can be modified from the previous one [26] to

H2 _|. A4 . 4 HB
EPNJL:_7+W ib—iy*| igA +QqﬂQ+? —my |y
8
+G Y [(ay)?

a=0

+ (WiysAw)* ] + Ly — V(L)

(1)

Ly = —5Zeijkeimn<llflrsllfl>(Wrsllfm)(l//krsl//l)
s=*x

:—%{22@ (W %%)? = 30, Zl//l’

f=u,d,s

5
—30q Y _(Fhy)? -
P

by adopting the covariant derivative D, = d, +iQqeA,.
Here, the field variables are defined as the following: v =
(u,d,s)T is the three-flavor quark field, H is the magnetic
field with A, the corresponding vector potential, and the

Polyakov loop is L = -tre JanA i A = adere /2

the non-Abelian gauge field. For the quarks, the current
mass and electric charge number matrices are, respectively,

my = diag(myg,, moq. M),

) 1 .
Q, = diag(qy. 94.95) = gdlag(l —-1,-1);  (2)

and the interaction vertices A'(i = 1, ..., 8) are Gell-Mann

matrices in flavor space and 1° = \/2/ 15. For later use,
the 't Hooft term, Ly =-K) , , Detypl’y, can be
rewritten as

tH - Zeukezmn l// Ft )(l/_/jrtwm>(l/_/krtwn> (3)

with I = 1, & y5 for right- and left-handed channels,
respectively. Here, one should note the correspondences
between 1, 2, 3 and u, d, s and the Einstein summation
convention for the flavor indices i, j, k, m, n. The pure
gluon potential could be obtained by fitting to the lattice
QCD data [34]:

V(L) 1 247 152 1.75
=—=(351 -~ +—=- L% -
T 2( 7 T2> 73
xIn[l —6L% +8L% —3L%, (4)

where T=T/T, is
Ty =0.27 GeV.

In the chiral phases, we only consider chiral condensates
o; = (p'y") with i flavor index, then the ’t Hooft term Ly
can be effectively reduced to four fermion interaction terms
in Hartree approximation [35]:

the reduced temperature with

7

30,y (phy)?

i=6

+ (0, = 20, — 204) (p28y)?

+V2(26, = 6, — 64) (%) (F23w) = V6(0, — 0q) (5 22w) (§ 2% — \/517//18!//)} — (A% > iAy) (5)

with €, the Levi-Civita symbol. As a consequence, the Lagrangian becomes the one with only four fermion effective

interactions,

Ling = e
PNIL ™ 775

-V(L)+y {iD —iy* <igA4 + Qg +ﬂ3B> - mo]

8
Wt > (G Ay (FAlw) + G o, (WiysAy) (iysiy)],

a,b=0

(6)
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where the nonvanishing elements of the symmetric coupling matrices G* are given by [35]

K_ K_ K
GSBfG$ > o Gl =G, =G =G+ Gl =G =G+ Goo=GH =G+
fuds
K 2K 3K
Gy = G F ¢ (0,-20,~ 201) GE=¢X%—@%—Gwﬂ%% G§=—¢23&=¥£;%%—6J )

By contracting a pair of field and conjugate field further in £}, we find

i(#i#k)
Lhy=— > K@y @ Ty oy = —2Koo'y! (i # j # k.j < k), (8)
s==

and we could obtain the total dynamical quark masses as
mi = mol' - 4GU,‘ + 2K6j6k (9)

after taking the initial four quark interactions into account. Then, the gap equations directly follow the definitions of chiral
condensates, that is,

o i
o, = (W'y') = _V_4Tr5i’ (10)

where the effective quark propagators are given by [38]

— ' (k; — tan(g;eHs)k,)][1 + y'y* tan(gieHs)] (11)

(Kt + k%)} [m; — y*ky — 3k3 — y*(ky + tan(q;eHs)k,)

for the case with a constant magnetic field.
By adopting vacuum regularization, the explicit forms of the gap equations are [38]

m} ~ ~ . \1 ds _ qreHs
- Ac[1+A%) —m(A 1+ A2 N e T
or= e M1+ 8 ) (e (18 )| v [ e (el 1)

|61f€H| o dk3 my Sy
62 Z TEF (E},L.T.uq. ug). (12)

[ T

where the reduced cutoff A; = A/m;, Landau level factor a,=1—6,/2, particle energy E}(ky, mg) =
(2n|gseH| + k3 + m2)!/2, and the fermion distribution function

Lot E-ulgmo+%)) + 2o~ El—ulasmg+E) + e~ HEr—u(qo+2))

FXEYL,T = _—.
f( o ’MQ’MB) 1+ 3Le_%(E?_“(‘IfHQ+ﬂTB>> + 3Le_%(E‘f1_u(qfﬂQ+ﬂTB)) —+ e_%(E?—M(QfﬂQ+%))

Eventually, the quark part of thermodynamic potential can be consistently obtained as [39]

=263 f= I oo 3 {5 (o) 1) i (148

f=u.d,s f=u.d,s

—L/ ds (e—mf.s — e‘mfzs) _ areHs 1 —L/wée‘mzzs _ arefls 1 —l(q eHs)?
87° 53 tanh(qgeH's) 87% Jo s° tanh(ggeH's) 3

#2ry S o [ "SRR L T ) (13)
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with

K?(E?, LT, /“’Q’/"B) - NL]H [] + 3Le—%(E?—f(4fﬂQ+uTB)) + 3Le—%(E?—t(quQ+ﬂTB)) + e_%(E?_t(qf/‘Q""#TB))]‘

C

And the Gibbs free energy for the QCD sector is Q) = —HTZ + V(L) + Q4(H) [26].
With the free energy at hand, the gap equation for L can be given by dLQ};’I =0 as

247 152 175 12L(1 -L)? |qfeH| / dky
3.51— 2L+ — =
[ ( T +T2> +T31—6L2+8L3—3L4} ZZ Z

f=u,d,s u=

et Er—u(qmo+3)) + e Ep—u(qeq+3))

=, 14
x 1 + 3Le T Ei—uamo+ ) 4 31 o= E—ulamotP) 4 o—7(Ef-u(geuo+)) (14)
and the entropy, electric charge, and baryon densities follow the well-known thermodynamic relations as
lgreH| & odky |, 1 B u
sy = ;;Z 5 Z 3 |[KHELL T pquue) + 5 B —u( qq +75 ) | FR(ER L. T po- a)
1 247 15 2 1. 75
+T3{§<4x3.51—3x 7 +2x )L2+ 73 [1—6L2+8L3—3L4]}, (15)
: qreH o dk "

=N Y SIS o [ S L T ). (16

f=u,d,su=

=23 Z'LIfeH'Z /d3 PER LT, oy ). (17)

f=u,dsu==% n=

2. The electroweak interaction sector

In free gas approximation, the thermodynamic potentials for the quantum electroweak dynamics (QEWD) sector can be
simply given by [40,41]

d3k e
Q, =2T 20y log (1 — 7M7), (18)
E e’” 1 ods _ eHs 1
oM — ;1 1 (k—um)/T} _/ Demis| T 1 __(eHs)?
1 { / og Te + 822 Jy s° ¢ tanh(eH's) 3 (eHs)
|eH| /°° dksy (o T
- ZTE _E . 1 [1 (€] (ks,eH)—u( ﬂQ+l‘1>)/T:| , 19
2 2n 2 a e ogll+e (19)

where € (ks, eH) = (k3 + 2n|eH| + m?)"/? and the degeneracy is one for (anti-)neutrinos due to their definite chiralities.
Then, the corresponding entropy, electric charge and lepton flavor densities follows directly as

&’k L k/T
— R - /T

K 2/ (27)? { log (1 ¢ ) tor 1| (20)

i=eu,t d3k (k up /T |€H| dk
sM = {/ {]0 [1 + e_(k_uﬂi)/Ti| + 71} +2 / GR3
l ; (27)° s 1 + elk=m)/T 2 ;

» ky, eH) —u(—pq + m))/T
ek et -ul-uqtu)y7] . (€ (K3 QtH
x {log [1 4 el o } e T (21)
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lM leH | dk3 —u
=7 e [ S e 22)

niM:TZ/(dI; 1+eZW +2TZ|6H|Z /

u==+

So, in the chiral phases, the total thermodynamic
potential, entropy, electric charge and lepton densities
are, respectively,

Qu=Q, —|—QM—|—Q§A, sm =5, + s+ )

= (24)

i=eu,t

M
nQ—nQ +n s

after combining the QEWD and QCD sectors together.
According to the conventions [23,24], the following
reduced quantities are frequently utilized

M = n¥/sm, M = nM/sy, M =nM/sy. (25)

B. The superconducting pion or kaon superfluidity

Since a homogeneous pion or kaon superfluid is also
a type-l electric superconductor, the external magnetic
field will be entirely expelled from the bulk due to the
Meissner effect [37]. Then, the formalism is as if no
external magnetic field exists, see that for the pion super-
fluidity in Ref. [26]. In this section, we would devote more
effort to deriving the thermodynamic potential for kaon
condensate based on the pion superfluidity.

1. The strong interaction sector

Without magnetic field in the bulk, the Lagrangian is
given by [34-36]

Len=-V(L) +¥ [iﬁ— irt (i9A4 + Qg+ /%B) - mo] v

[

+G ) (@A) + (Fiysiy)*| + Loy (26)

a=0

For the pion or kaon superfluidity, we choose the following
scalar and charged pseudoscalar condensates to be nonzero

or = (Weyy), A, = (aiy’d), A; = (diy’u),
Ag = (uiys),  Ag = (5iy’u). (27)

Without loss of generality, we set A, = A} and Ag = A}
in the following. To facilitate the study, we would like
first to reduce Ly to an effective form with four-fermion
interactions at most. By applying the Hartree approximation

dk3 u
27 1 + 6 " (k3.eH)—1

u(=pq+m))/T " (23)

to contract a pair of quark and antiquark in each six-fermion
interaction term [26,35], we immediately find

Ly = —K{€ijimno (W p" g w" =0 iy w™ gt iyy™)
+ 24, [3s(@iy>d + diy’u — A,) +5iy>s(iid + du))
+ 2Ak[dd(iiy’s +5iy u — Ag) + diy’d(is +5u)]},
(28)

where the second and third terms in the brace are induced by

7t and K* condensations, respectively. Armed with the

reduced Lagrangian density
Lpn. = —V(L, L)
_ . af - 4 HB
+w[1¢— Y (ng + Oghq +?> —mo}v/
8

+G Y [(pay)?

a=0

+ (irsAy)!l + Liy, (29)

the left calculations can just follow that of two-flavor case in
principle.

By contracting quark and antiquark pairs once more in
the interaction terms of Eq. (29), we obtain the quark
bilinear as

_ . . H
Long, =W [lﬁ— rt <ng4 + Qg + ?B> —m

— iy (/11H + i“/C)} W, (30)

where the scalar and pseudoscalar masses are, respectively,

m; = mgy; — 4GO',' + 2K(0j0k + A7215i3 + A%éiz),

Il = (-4G + 2Ko3)A,. K = (=4G +2Ko»)Ax  (31)

with i # j # k. Due to the non-diagonal nature of the
pseudoscalar masses I1 and X, the full propagator of y
cannot be further reduced and it is hard to derive the
eigenenergy analytically. Since m, < my in the vacuum
and uy = ug, we expect Ay < A, in the superfluid phase,
so it is a good approximation to neglect Ax for u# and d
quarks and assume m, = m,; = my. Eventually, to give
consistent result on the kaon vacuum mass, we would adopt
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the following approximate scalar and pseudoscalar masses
for further study

ml = m01 - 4GO'1 + ZKO'IGS,
—4Go, + 2K (010, + A2),

Il = (-4G + 2Ko,)A,, K = (-4G +2Ko))Ax. (32)

mg = Moy

where my, mg, and II are exactly the same as those without
kaon condensation [25]. However, even with those sim-
plifications, it is not possible to work out a simple analytic
form for the bilinear thermodynamic potential from (30),
that is,

1
Q= —V—Trln [k —iy* (igA4 + Ogtq +ﬂ3B> —m
4

— iy (AT + A“IC)] (33)

in energy momentum space.

Inspired from the fact that only one local minimum of
thermodynamic potential is involved with respect to A, in
the pion superfluidity [26], the same fact should be true
with respect to Ag in the kaon superfluidity. Hence, Ay is
expected to change smoothly within pion superfluidity, and
we could take Ginzburg-Landau approximation to expand
Q in orders of K and calculate to a convergent order.
Then, the thermodynamic potential can be separated into
two parts, €, = Q7 + Qi, where

1
Q= —V—Tr InS;/, (34)

4

1
Qi = —V—Trln (1 = S,iy 2*K)
4

1 1
=— ) —Tr(Sip’ 2*K)" 35
7 2 TS wir 4'K) (35)
are the ones with pion and kaon condensations, respec-
tively. Here, S, is the three-flavor fermion propagator in
the pion superfluidity with its inverse defined by [25,26]

Sed =k — y“(igA“ + Qghq +%> —m—iy AL (36)

Only u and d quarks couple with each other in S7!, so the
propagator of s quark can be directly given by

-1
Ss = {k — iyt <ig.A4 + Qg + %) - ms} . (37)

For the u and d quark parts, the matrix elements of S, had
been worked out to be [29]

ko + te (k) — 52
Sy = Z%Atyo’ (38)

ko + te) (k) + 12
Saa = Z—O = _1 A, (39)

—iI1
S =) = A7 (40)
kg - (B
—ill
Sdu = = A 7/5 (41)
=+ k(z) - (Ei()z t

with the help of massive energy projectors

Ap=—(1E£90"———). 42
- 2( d ei(k) ) 42)

Here, we have defined k, = ky + ig A* + ”QH” ®and E} =

\/ ley(k) + 292 + T2 with (k) =
orthogonality: A, A, = A6, ;,

The explicit form of the thermodynamic potential had
been worked out for the pion superfluidity in our previous
works [25,26], refer to Eq. (66). We now focus on deriving
the explicit expression for the kaon part, Q. As the s quark
propagator is diagonal in S, it is easy to check that odd
terms of K do not contribute in ., thus we have

k% + m . Note the

1 1
Qp = V4Z Tr(Siy> Suuiy’)" K", (43)

If we define an effective s-quark propagator

AS
Sss = i3 Seiyd =0y — 0 44
sss = i Sy VZkO\Jrueg(k) (44)

with ko, = ko —%2 and A

part can be further reduced to

P
Q/ — JK2n7

=11+ uyo%), the kaon

1
ﬂzn - (SUUSSQS) . (45)

By substituting the explicit expressions of S, and Ssgs
from Eqs. (38) and (44), respectively, the expansion
coefficient f#,, can be calculated to any given order in
principle. The quark propagators are diagonal in color
space, so the trace over Dirac space is the most tough part in
the calculation.

As we can see, the basic element in the trace terms is

Z [kos + te1(K)]AAS

SuuSS 5 — z — = .
: tu=+ [k% - (Ekl)z} [kOS + ues(k)]

(40)
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To help evaluate higher order coefficients, it is useful to
check the commuting relation between A; and A, and we
find

om

MDA = AAY + Ay, 0Ny, =

ut

1
- -k
2 g€ ¥

(47)
with ém = my —my. The term 6A, bears the following
properties:

|

a;, = TrpAAy = TrpAJA = 1 + tu

Uity = TIDAGAG Ay Ay, = TrpAy (A AG, + Ay, 1) A,

1
2 _ _ .
O, iy, = Tt O, 1, AY, = —Eumuzfzf(k’ my, m);

_ s s N
Aty sty = TrDAtl Aul Atz Auz Ats AU3

k2 + mgn .
—’

€€

AN, = 8A,AY, (48)

1
6Au,t5Au’,[’ = — Z utu't’f(k, my, ms) (49)

with f(k, m;, mg) = (¥2)2. Now, we can evaluate the trace

€165
over Dirac space order by order by utilizing the properties

of At(S> and recursions, that is,

_ 2
- 5t|,t26u1~uzah~,ul +6 Qb sty

(51)

= 01,1, 0u,., TrD A Aq A gy + Trp Ay 6y, 1, Ay, Ay A

— 2 y
- 5t1,t25u1,u2at1.u1;t3.u3 + 5t1,—r35u2,u35 atl.ul;tz.uz + TrDAtl(SAul.tz(SAuz,t3Au3

_ 2 2 .
= 5t1,t26u1,1t2atl,u1;t3,u3 + 5t1,—t35u2.u35 A iy, T _all,u35 Aty sty

. (52)

_ s s s s s s N
Aty uysityuy = TrDAtlAulAtzAuzA%AUsAMAM - 5’1~f25’41v'42af2-,uz;;f4-,u4 + TrDAtléAul,tzAuzAt3AU3A14Au4

= 511.125u1.u2at2.u2;;t4,u4 + 5t3~l46'43-"44 <6

2
+5 A, ,—uz;—t3,u45 Rty sty us -

2

1

2 2
t].,—t35u2.u35 atl.ulgtz.uz + _atl,u35 alz.ul;lg.u2>

2
(53)

We notice that the coefficients are all even functions of ém, and the leading nontrivial dependence is of quadratic except a, ,,.
Then, the expansion coefficients for the kaon part of thermodynamic potential follow as

OIS

qi  1supsity Uy =%

where ¢; (j =1, 2, 3) are the color charges of quarks
and the conventions @, y ..,.u, = Ay, a0d A 4 p) u, =
@, uy:1,.u, Should be understood. At finite temperature and
chemical potential, we should work in Euclidean space
by shifting &, to iw,, in f}, and complete the summation
over the Matsubara frequency w,, = (2m + 1)zT in order
to facilitate numerical calculations, see the Appendix for
more details.

By the way, if we neglect 6m dependence in a;, ..\ 4,
only the terms with t; = --- =t,andu; = --- = u,, (n =
1,2,...) are nonzero and we simply have

n
Ayt — Pryu Hétl,t,éul,ui' (55)
i=1

Then, the coefficients f,, would be greatly simplified to

(Ztl,ul;;tn,u,, H [7((2)

[kos + tir(K)]
— (E")?][kos + uies(K)]

(54)

i=1,..., n

;L L a ]}03 + t€1(k) "
Pa=22 2 ””<[7<8 (&, + ues<k>}> |

q; tu=

(56)

Note that $, in Eq. (56) is exactly the same as that in
Eq. (54) as a;, does not depend on om. With this
approximation, the summation over n can even be carried
out analytically in Qj to arrive at

Ao ket re(k)IC
{1 7~ (B[R, + ues<k>1}' 57)
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We have checked numerically that such an approximation is very bad when mg > m,, so we will stick to the exact form (54)
in the following.
Eventually, the coupled gap equations follow directly from the definitions of condensates

0 ) -
oy = (5s) = am:’ 201 = (au) + (dd) = Wls’
- 0]
2A, = (aiy’d) + (diy’u) = ==,
0Q;
2Ak = (iy’s) + (Siy’u) = O—ICK (58)
and the minimal condition d; [V(L, L) + Q] = 0 as [25]
A d3k m d3k m —HQ + ug

, = —2N, > 2N —-N dv,| L, k), ———|, 59
G& c / (2”)3 €S(k> + c / (277:) 65 Z 1 < l/t eb( ) 3 ) ( )

d*k m 61( &k ml a(k) + 1% Ho + 24

2 -2 +2 L,u,E! —_—
o) = N/ n 3261 N/ o E®D av, | L.u. Ej(k). = ., (60)

A d3k II 2,
SN By, (L g, Fe 20 (61)
(2 )3 pon iE(k tu k) 6
28k = 2> K>, (62)
n=1
247 152 175  12L(1-L)? Bk po + 2ug
T4 |—(3.51 - — | L = = 6T dV,| L,u, E'(k),————
{ ( T+T2> +T31—6L2+8L3—3L4} /(Zn') o~ Z 2\ Lu E'(k). =

+dv, (L, u,es(k),_”%Jr”B)] . (63)

Note that A, = 0 and Ag = 0 are trivial solutions of Egs. (61) and (62), respectively. As pion superfluidity is usually more
favored than kaon superfluidity in this study, A, (or IT) and Ak (or K) are actually true order parameters for /5 [28] and /g
flavor symmetries, respectively. The total self-consistent thermodynamic potential can be found to be

Quxsr = V(L, L) + Qs + Qg + 2G(0? + 207 + 2A2) — 4K (67 + A2)o, (64)

by utilizing the definitions of condensates and their relations to scalar and pseudoscalar masses, refer to Egs. (32) and (58).
Here, the pion bilinear [25,26] and full kaon parts of thermodynamic potential are, respectively,

R 3k Ko + 2up —HQ M8
—2N, / [Z 4+ e, (k ] ZT/ gZ{ZFI(L u. B = >+Fl<L,u,eS(k),#)],

(65)

{FI(L, u,x,y) = log {1 + 3Le7H0) 4 3Le7Hm) 4 e—%@f—w)] } (66)

Qx = Qi + (4G — 2Koy) A} = Zﬁﬁ/@" Bon = P+ (67)
K Ko " 4G - 2Ka

The contribution of Q is usually small compared to that of Q[ but is important for the evaluation of Ag. Following that,
the entropy, electric charge and baryon densities of the system can be approximately evaluated by simply neglecting Qg and
we have [25]
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Bk +2 3<Et(k) ﬂQ+62HB) 42
SaKSF = 2/ > [FZ<L,M,E}(/€),MQ ”B> - ; av, (L,u,E{(k),”Q'“Bﬂ

(2”)3 tu==+ 6

6

3(Bi(h) - uete)

d*k —pq + iy
2 | —— FI| L,u, e k),
* /(2::)3;[ < wal) )

1.75

3 —HQ + |
T dVl <L,M,€S(k),Q3P’>:|

1 2.47 15.2
+T3{E<4x3.51—3x 72X =5 >L2+ 73 In [1-6L2+8L3

~3L4 } (68)

A d3k e (k) + 12 dk
r:KSF 2
v "G 2 B J 2y 2

+ / (;1;) Z udV, (L u, E\(k), ’%) -

tu=

&’k Ho + 2p
7KSF __ Q B
nf, 2/(271_ E udV, <L u, Ej(k), e >

2. The electroweak interaction sector

In free gas approximation, the thermodynamic potentials
for the QEWD sector are [40]

Q, =7 / (33’)‘3 log (1 — e=k/T), (71)

i=eu,t 3
Q=-TY FE o 1og [1 + e tck-ut=snotui
‘ (27)?
u==+
+ log {1 + e—(k—uﬂa)/T] } (72)

and the corresponding entropy, electric charge and lepton
flavor densities are, respectively,

syzz/(gz { log (1—e-k/T)+e,fT/il], (73)

i=eu,r 3
S / L Lo 0g [1 4 etat-stostn]
(22)°

u==
2(ei(k) —u(—pq +m))/T
1+ eleitk)—u(=pq+mu))/T

+ log [1 + e_<k_“"i)/T] +

(k= up;)/T
T elm/7 (74)
BT P —u
1
"o =21 g / (27)3 1 + ela(R)—ulzuqtm)/T” (75)

t€1(k)+t 2 dV1< E}<k)’MQ+2/¢B>

Ej(k) 6
/ Z udVv, (L u, e5(k), ‘”Q3+ /4B>’ (69)
/ ZudV (L u, eg(k), ‘”Q;r MB> (70)

2u
1 4 el&k)—ul=po+m))/T

2O /
n: = —
1 alli

1 + € (k=up;) /T:| i=e, M, T. (76)

So, in the pion or kaon superfluidity, the total thermo-
dynamic potential, entropy, electric charge, and lepton
densities are, respectively,

Q=Q, +Q + Qsp, § =8, + 8| + SzKsF>
nQ = n + n”KSF nm = Z n; (77)

i=eu,tr

after combining the QEWD and QCD sectors together.

According to the conventions, we define the following

reduced quantities:
b = nfkSE /s,

I =mn/s, L, =ni/s. (78)

III. NUMERICAL RESULTS FOR THE CASE
WITHOUT MAGNETIC FIELD

To carry out numerical calculations, we fix the electron
and muon masses from the Particle Data Group as m, =
0.53 MeV and m, = 113 MeV and suppress the contribu-
tion of heavy 7 lepton. The model parameters for the strong
interaction sector are fixed as [42,43]

mo = 5.5 MeV, mg, = 140.7 MeV, A =602.3 MeV,
GA>=1.835, KAS=12.36 (79)
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FIG. 1. Upper: the coefficients f3,, (n = 1, 2, 3) as functions of

temperature 7 for lepton flavor asymmetry /. + [, = —0.3, lower:
the corresponding kaon part of thermodynamic potential Qg as a
function of K for T = 0.1, 0.15, and 0.2 GeV with solid lines to
0(K?®) and dotted lines to o(/C*).

by fitting to the observations

m,; = 135 MeV,
m, = 957.8 MeV,

my = 497.7 MeV,
fa=924MeV.  (80)

As the total lepton and charge densities are well constrained
in the early Universe, the densities of e, y and 7 leptons can
be determined separately once we fix the flavor asymmetry
between e and u leptons. Then, the flavor asymmetry
between e and 7 leptons or x4 and 7 leptons can also be
uniquely fixed. In the following, we will take e and u
leptons to present the flavor asymmetry without loss of
generality. In this work, we only consider the case without
primordial magnetic field, and simply set / = —0.012 and
[, =0 as the results would not be affected qualitatively [25].
As we have mentioned, in the case of full chemical balance
with pq = p,, we expect |K| < || since #& mass is much
smaller than K* mass. So we mainly focus on the pion
superfluidity regime and check if kaon superfluidity could
coexist with that in the following.

For the lepton flavor asymmetry [, + [, = —0.3, the
coefficients f,, (n =1, 2, 3) are illustrated as functions
of temperature in the upper panel of Fig. 1, and the
corresponding kaon part of thermodynamic potential Qg

is shown for different temperatures in the lower panel of
Fig. 1. Note: so many terms are involved in the full
evaluation of f¢ that we only consider ﬂ’6V for demon-
stration here and in the following; the largest value of IT is
about 0.36 GeV in this case, so the range K € [0, 0.4] GeV
is large enough to cover all possible minima of Q.
According to the upper panel, the signs of 3, and j, keep
positive up to 7, = 0.21 GeV, while the sign of s changes
from negative to positive with increasing temperature. For
all the chosen temperatures, it is easy to check from the
lower panel that the quartic approximation up to o(K?) is
very precise compared to that up to o(K®). Since there is no
extra minimum of Qg in the considered range except at
K = 0, the kaon superfluidity is not favored in this case.
The medium part M would become important with
increasing temperature but should be at most of the same
order as ﬁgv, therefore the quartic approximation is still
very good and the quantitative results remain. In that sense,
though the expressions of f3,, are very complicated for
n > 3, we can safely stick to the quartic Ginzburg-Landau
approximation.

In Fig. 1, the charge chemical potential y, is never found
to satisfy |uq| > my(~0.5 GeV), so we are not surprised to
find that kaon superfluidity is not favored. How about the
case when we achieve |ug| > my by increasing |l +[,[?
For a fixed temperature, 7 = 0.06 GeV, the coefficients
Pon (n =1, 2, 3) are illustrated as functions of lepton flavor
asymmetry /. + 1, in the upper panel of Fig. 2, and the
corresponding €2k is shown for different /. + 1, in the lower
panel of Fig. 2. Similar to Fig. 1, the quartic approximation
up to o(K*) is very precise compared to that up to o(k)
according to the lower panel. According to the upper panel,
), decreases with increasing |/, + /,| and becomes negative
when |/,¢Q| > m% in the chiral phases; however, f, increases
with increasing |l + 1, and keeps positive in the pion
superfluidity. As S, is positive for both cases, we conclude
that kaon superfluidity is possible in the background of
chiral phases but would get killed by pion superfluidity.
Combine the results in Figs. 1 and 2, both $, and S, keep
positive with increasing T or |l + [,|, thus kaon super-
fluidity is not possible to coexist with pion superfluidity in
the case of chemical balance.

According to Ref. [30], the pion superfluidity could be in
Sarma phase for my < ol < 0.23 GeV and in Larkin-
Ovchinnikov-Fudde-Ferrell (LOFF) phase for |ug|>
0.23 GeV at small baryon density and zero temperature.
Besides, by following the discussions on two-flavor color
superconductor [44], the LO phase with an antipodal-wave
form II(z) = ITcos(gz) is expected to be favored in the
mismatch  range  &u = |(uq + 2up)/6| € (0.7,0.8)I1,,
where I1j is the pion condensate at 5y = 0. So, I1(z) could
vanish at spatial points z, = (2n +1)5¢™',n =0, £1, ...
in the LOFF phase and kaon condensation would be
nonzero there if |ug| > my, see the discussions on the

034004-10



KAON SUPERFLUIDITY IN THE EARLY UNIVERSE

PHYS. REV. D 110, 034004 (2024)

010 g
~,
\N\
N~~~
~ 005 _n Tmemee 4
e 00 n=2 omeetll
z —'————
> R ——
©  0.00 —
/ e, —
g: [ -”’.‘ Il—l
QN_ L s, ]
-0.05F s, B
F n:3 ’0‘ 4
0"
o,
F .§~
_0_10‘1“‘1“‘1“‘1“‘1“‘1‘..'
-1.4 -1.2 -1.0 -0.8 -0.6 -0.4
le+1y
0.004 —
— Je+l,=—0.5
0.003
~ [ o —=1.0
®
& o002l = -15
X
G F
0.001 -
0.000k ‘ ‘ ‘ ]
0.0 0.1 0.2 0.3 0.4
K (GeV)

FIG. 2. Upper: the coefficients 5, (n = 1, 2, 3) as functions of
lepton flavor asymmetry [, + [, at temperature 7 = 0.06 GeV in
pion superfluidity (thick lines) and chiral phases (thin lines),
lower: the corresponding kaon part of thermodynamic potential
Qy as a function of K in the pion superfluid phase for [, + 1, =
—0.5,—1 and —1.5 with solid lines to o(K®) and dotted lines
to o(ICH).

upper panel of Fig. 2. By choosing a large enough lepton
flavor asymmetry, /. + [, = —1.5, the mismatch and pion
condensate are shown together as functions of y, in Fig. 3
by evolving the temperature in the range (15,64) MeV.
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FIG. 3. For the lepton flavor asymmetry /. + [, = —1.5, the

mismatch 6u and pion condensate Il as functions of ug by
evolving the temperature in the range (15,64) MeV. The vertical
line corresponds to pg = —0.23 GeV.

As IT < Tl for a given uq, we never find du to be in the
range (0.7,0.8)I1, for |ug| > 0.23 GeV, hence the LOFF
phase cannot be realized and the inhomogeneous kaon
superfluidity is disfavored.

In order to check how hard can kaon superfluidity be
realized in the early Universe, we introduce the strangeness
chemical potential ug to s quark and then the full chemical
potential changes to y, = (—pq + up)/3 + ps. As we can
tell, ug now plays a role of mismatch between s and d
quarks, so s quark density increases with ug and d quark
density would get suppressed since the total baryon density
is small. Eventually, it can be realized that kaon super-
fluidity, instead of pion superfluidity, is the ground state
of the system. For 7' = 0.06 GeV and [, + [, = —1.2, the
kaon part of thermodynamic potential Qg and s quark
density ng are illustrated as functions of yg in Fig. 4. We can
easily identify a first-order transition from pion super-
fluidity to chiral phases around pg = 0.45 GeV in the
upper panel, but the latter is unstable to kaon superfluidity
as |uq| > my there. According to the lower panel, ng is
required to be three orders larger than ny in order to realize
kaon superfluidity. If the original mismatch between s and
d quarks is generated in the electroweak epoch (10~!! s after
big bang), it is impossible to obtain such a large mismatch
in the QCD epoch (107%s after big bang) since the lifetime
of s quark is 107%s.
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FIG. 4. For the temperature 7 = 0.06 GeV and lepton flavor
asymmetry [, +1, = —1.2, the kaon part of thermodynamic
potential Qg (upper panel) and s quark density ng (lower panel)
as functions of strangeness chemical potential ug in the pion
superfluidity (black solid lines) and chiral phases (blue
dashed lines).
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IV. SUMMARY

In this work, the possibility of kaon superfluidity is
checked for the QCD epoch of the early Universe by
considering the case with a vanishing primordial magnetic
field and a large lepton flavor asymmetry. We work within
the three-flavor Polyakov—Nambu—Jona-Lasinio model and
adopt the Ginzburg-Landau approximation to develop a
formalism for the study of kaon condensation within pion
superfluidity. Actually, numerical calculations show that
quartic Ginzburg-Landau approximation is precise enough
to determine the value of kaon condensates. In the case of
full chemical balances among elementary particles, kaon
superfluidity could be stable compared to the chiral phases
with only ¢ condensations, but it would get killed by the
true ground state—homogeneous pion superfluidity. As
baryon density is small in the early Universe, we can only
find Sarma gapless phase but not LOFF phase for the
pion superfluidity at low temperature, so inhomogeneous
kaon superfluidity seems impossible either. If we relax the

|

! &’k
N KT %) VD S ||

=1, [a) i+ (Ex ) ][zwmJ 2+ uies(k)}

Gi 11Uty U=

where i@, j

chemical balance between s and d quark by introducing the
strangeness chemical potential yg, kaon superfluidity could
be theoretically realized by increasing pg whence pion
superfluidity becomes disfavored. But the corresponding s
quark density is so larger than d quark density that we do
not think that is realistic whence the lifetime of s quark is
self-consistently taken into account. By the way, a primor-
dial magnetic field is not expected to cure the issue since s
and d quarks respond the same to it. In a word, kaon
superfluidity is impossible in the early Universe.

ACKNOWLEDGMENTS

G. C. is supported by the Natural Science Foundation of
Guangdong Province with Grant No. 2024A1515011225.

APPENDIX: EXPANSION COEFFICIENTS

At finite temperature and chemical potential, the coef-
ficient %, in Eq. (54) becomes

[ia)m,j -2 tiel(k):|

, (A1)

=iy, + quT + = ”QH# ® with the fermion Matsubara frequency w,, = (2m + 1)zT. To facilitate numerical

calculations, we are going to complete the summations over wy, and g; analytically, that is, explicitly evaluating the general

term

|:i6)m,j -5+ tiel(k)}

an=-1 > 1]

m g i=l,.., n [5)12n,j +

(V2] [ =+ ey ()|

(A2)

By introducing contour integral around the imaginary axis, the summation over @, can be alternatively presented as

i00+8
5211 =
—ioo+e

(R =15 + 1, (1)
..... n kg = (E)) [l?oj -7 “ies(kﬂ

(A3)

with ko; = ko + iq;T + ’%. Then, by including the vanishing integral over lines with |ky| = oo, the contour integral can
be separated into two clockwise integral loops for ) (ky) > 0 and R (ky) < 0. To carry out the complex variable integral, it is

convenient to rewrite the coefficient as

T

ico+e
§2n =
—ico+te

by collecting all the terms with same #; or ; together. Here, we have defined 7, = 3 ,_,

. +T, ntU,
are both in the range [—n, n]. Then, "T"T €0, n].

/—m g> dko [7(0]' —%+€1(k)} - {koJ ———el(k)} tanh% (A4
A4
i 4 — ”+Tn n=Tq [~ ntUn n=Up
T R — (P — (B [y =5+ ()] [y 2= ()]
Lhand Uy =>",,  u; which

..........
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Eventually, we apply the theorem of complex variable integral to find

”T“ Ty ; HQt+2up
: ZZ{ - [x — 9 4 ()] — 2 — g (K)) tanh@
n = n+T E- n+Tp n=Tyn n+Un n=Un
= )20+ 0B [ - (BT =% + e (0] T = - e, (0] F|
”’Tﬂ_l n+Ty n=Tp x—\i -T+;‘Q+2ﬂB
o (S e L
n—T, —\27"Tn nt+Un n=Up
(5 = 1120+ 0ED) T B2 — (BT x5+ e () T =B — (0] Ty
14 Un Ty =Ty i HQ THB
A [+ e ()P — ()P anh 9T 5)
% — | n—In % n=Un
2 = D+ - (B0 (v 4497 = (BP] 7 = e F* e
n=Un_ n+Ty n=Tp i Q1
G e P - a9
+ n_Un ] ' ”Q 2 —\2 n=Tp ”Q + M ’ (AS)
(52 = DM (x+5)2 = (B [+ )2 = (BT e+ e
where the conventions 0/0! = 1 and ;' /(—1)! = 0 should be understood. The summation over g; can be completed ahead
by utilizing the following property

Ztanhx = Z tanhx —igiT _ Z 1 — e~*/T+ig;
9i

_ —x/T+ig;
qi qi qi
— 34270, 1In (1 +3Le7 +3L%eF + e%) —3—6g(x.T,L,L*) = -3 + 6¢"(—x.T. L, L")
. LeT + 2L eT + 1
g(x,T,L,L*) = = ———
1 +3LeT +3L%eT + €7

(A6)

with lim,_,g(x, T, L, L*) = lim,__,¢"(—x,T,L,L*) = 0. By following the assumption L = L*, we have g(x, T, L, L)

g*(x, T, L, L) and then the function be simply rewritten as g(x, T, L) instead. With the help of g(x, T, L), the coefficient can
be separated into vacuum and medium parts, that is, &, = 5;’{1 + flz"r'l with

TS ) o= + e (0] P[4 - e 0] F
TR D20 BT = (BT = (0] =R - e (0]
o o= el -3 - a (k)]
+ N n+1“ n+Un U n=Un
( 2 )'2(x+ka) 2 [X _(Ek)] [X——+€(k)] : [)C— ;—Ss(k)] : x=vE,
e e+ (k) [ = (k)
(5 = DM +12) = (B2 [+ = (BT b - e (R0
L e+ (W) F - ()] F

(52 = D)4 +5)? = (B F (e +5)7 = (E)] T

) A7
T x4 es(k) 2 xes(k)} 7
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n+Tn

s o=+ (k)P — 29 — (k) Fg (v — 022 7 1)
= 6 - n+Tp n—=Tp n+Un n=Up
T () 2 0B — (BT~ e (R - e ()5

ntTn 1

2 x=vE}
. a;_zr"-l vx -+ el(k)]HzT" x -5 - el(k)]%g@x - v@, T, L)
L) 2t 0B PR — (BTl e P B e (0T
2 L)t2a(x + vk k 2 s 2 s x=vE}
S e a(R) - (k)] g (—x + PG T L)

(s = 1) 14+ 90 = BT+ 2% - (BT e — )|

}. (A8)
x=¢,(k)

Correspondingly, the coefficient 4, can be separated into vacuum and medium parts, that is, 5, = 5, + M with

. Pk v A9
2n = (277)3 Z a’la“ﬁﬁw“ﬂ 2n° ( )

1y oty Uy ==

i ) Tl alolPe(x 24 7.L)

(1 = 1) 1410+ 139 = (BT [+ 5207 = (BT e e ()

M — d*k y
on — W Z atl,ul;;t,,,ungzn. (Alo)

11, Ua3 Uy =

Keep in mind that £/™ depends on both #; and u;. Usually, #M is convergent as limy_, . K& = 0, while g} is divergent
and can be regularized by three-momentum cutoff.
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