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We compute the mass radius, scalar radius, tensor radius, baryon number radius, and mechanical radius
of nuclei with baryon number B ¼ 1; 2; 3; 4; 5; 6; 7; 8, 32, 108 in the Skyrme model. The relations between
these radii and the nuclear gravitational form factors are investigated. We also compute the ‘pressure’
distribution and find that it is negative in the core region for all the nuclei with B > 1. This suggests that the
way mechanical stability is achieved in nuclei is qualitatively different than in the nucleon.
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I. INTRODUCTION

Traditionally, since the 1950s, the size of the proton has
been determined through the measurement of the electro-
magnetic form factors in lepton-proton elastic scattering
[1]. The charge radius thus extracted, about 0.8 fm, helps
us to draw an intuitive picture of how quarks are distributed
inside the proton. Its precise value is fundamentally
important in QCD, QED, and atomic spectroscopy. The
same method can be used to define and determine the
radius of atomic nuclei [1–4]. After years of controversy
known as the proton radius puzzle [5,6], the most recent
measurements have finally found consistency between the
results from electron scattering and muonic hydrogen
(muonic atom) spectroscopy [7–9].
However, the charge radius is by no means the unique

characterization of the size of hadrons and nuclei. For
neutral hadrons, it may not be literally interpreted as a
measure of physical size, as exemplified by the negative
mean square radius of the neutron [10]. Even for charged
hadrons, the charge radius does not fully reflect their
internal structure. The virtual photon exchanged in electron
scattering only sees quarks and does not probe gluons
which are essential constituents of the target. It then
appears reasonable and complementary to characterize

the size of hadrons and nuclei in terms of the distribution
of energy, angular momentum, etc., carried by quarks
and gluons. This can be done by defining a radius through
the gravitational form factors (GFFs), the hadronic form
factors associated with the QCD energy-momentum tensor
Tμν [11,12].
Since Tμν has many components, one can define various

radii with different physical interpretations [13,14]. For
example, the mass radius measures the distribution of the
energy density T00ðxÞ. Similarly, the scalar radius is asso-
ciated with the QCD trace anomaly density Tμ

μðxÞ. An
obvious question, however, is whether they are measurable
in experiments. In fact, it is only recently that there have been
new ideas and attempts at extracting the gravitational form
factors and the associated radii [15–26].While at themoment
the precision of such extractions falls behind that of the
electromagnetic form factors, this is an encouragingdevelop-
ment worth pursuing in the future, especially towards the era
of the Electron-Ion Collider (EIC) [27].
Just like the charge radius, the discussion of the GFFs

and associated radii can be extended to atomic nuclei. In a
previous paper [28], we have computed, for the first time,
the GFFs of various nuclei within the Skyrme model [29].
In this model, a nucleus is realized as a classical field
configuration (‘Skyrmion’) with a definite baryon number
B. The calculation of the GFFs is complicated by the fact
that the classical solutions are not spherically symmetric
for B > 1, but we have successfully extracted one of the
GFFs, the DðtÞ form factor, for a variety of nuclei. We find
that the so-called D-term Dðt ¼ 0Þ ∼ B1.8 grows rapidly
with increasing B. (Compare with the earlier works [30–32]
and a recent work [33].) As the D term is commonly
associated with the internal radial force, or ‘pressure,’ it
affects the size of the system. The goal of this paper is to
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systematically compute various definitions of radii for
various nuclei, and study their connection to the D term.

II. RADIUS ZOO

In this section, we introduce a number of radii for the
proton. Let us start with the familiar electromagnetic
form factors which are the matrix element of the electro-
magnetic current Jμem ¼ P

q eqq̄γ
μq (eu ¼ 2

3
; ed ¼ − 1

3
,

etc.)

hp0jJμemjpi ¼ ūðp0Þ
�
γμF1ðtÞ þ

iσμρΔρ

2M
F2ðtÞ

�
uðpÞ; ð1Þ

where σμν ¼ i
2
½γμ; γν� and uðpÞ is the proton spinor.

Δμ ¼ p0μ − pμ, t ¼ Δ2 and M is the proton mass. In the
Breit frame where Δ0 ¼ 0 and t ¼ −Δ2,

hp0jJ0emjpi ¼ 2M

�
F1ðtÞ þ

t
4M2

F2ðtÞ
�
≡ 2MGEðtÞ: ð2Þ

Introducing the charge density

ρcðxÞ ¼
Z

dΔ
ð2πÞ3 e

ix·ΔGEðtÞ; ð3Þ

one defines the charge radius as

hr2ic ¼
R
dxx2ρcðxÞR
dxρcðxÞ

¼ 6

GEð0Þ
dGEðtÞ

dt

����
t¼0

: ð4Þ

Similarly, one can introduce form factors for the baryon
number current JμB ¼ 1

3

P
q q̄γ

μq and the corresponding
radius

hp0jJ0Bjpi ¼ 2MGBðtÞ; ρBðxÞ ¼
Z

dΔ
ð2πÞ3 e

ix·ΔGBðtÞ; hr2iB ¼
R
dxx2ρBðxÞR
dxρBðxÞ

¼ 6

GBð0Þ
dGBðtÞ

dt

����
t¼0

: ð5Þ

For the proton,
R
dxρc;BðxÞ ¼ 1. One may also introduce radii associated with the isospin and axial vector currents.

Next, the gravitational form factors of the nucleon are defined as

hp0jTμνjpi ¼ ūðp0Þ
�
γðμPνÞAðtÞ þ iPðμσνÞρΔρ

2M
BðtÞ þDðtÞ

4M
ðΔμΔν − gμνΔ2Þ

�
uðpÞ; ð6Þ

where gμν ¼ diagð1;−1;−1;−1Þ, Pμ ¼ pμþp0μ
2

, and the
brackets ðμνÞ denote the symmetrization of indices. Again
in the Breit frame, we define the spatial distribution

TμνðxÞ≡
Z

dΔ
ð2πÞ3 e

ix·Δ hp0jTμνjpi
ūðp0ÞuðpÞ : ð7Þ

Since
R
dxT00ðxÞ ¼ M, T00ðxÞ can be interpreted as the

mass density, this leads to the definition of the mass radius
[13,14]

hr2im ¼
R
dx x2T00ðxÞR
dxT00ðxÞ ¼ 6

dAðtÞ
dt

����
t¼0

−
3Dð0Þ
2M2

; ð8Þ

where we used Bð0Þ ¼ 0 to get the right-hand side. We also
consider the scalar radius associated with the trace of the
energy momentum tensor Tμ

μ

hr2is ¼
R
dx x2Tμ

μðxÞR
dxTμ

μðxÞ ¼ 6
dAðtÞ
dt

����
t¼0

−
9Dð0Þ
2M2

; ð9Þ

and the tensor radius

hr2it ≡
R
dx x2ðT00ðxÞ þ 1

2
TiiðxÞÞR

dxðT00 þ 1
2
TiiÞ

¼ 6
dAðtÞ
dt

����
t¼0

: ð10Þ

(Tii is a short for
P

3
i¼1 Tii, so that Tμ

μ ¼ T00 − Tii.)
The linear combination in (10) is understood as follows
(see, also, Sec. 5 of [34]). A scalar (spin-0) exchange
with momentum Δμ excites a mode Tμν ∼ gμν − ΔμΔν

Δ2 in the
energy momentum tensor. In the Breit frame Δμ ¼ ð0;ΔÞ,
T00 ∼ 1, and Tij ∼ −δij þ ΔiΔj

Δ2 . Therefore, by forming the
linear combination T00 þ 1

2
Tii, one can eliminate the spin-0

component.
A few comments are in order. First, the denominators in

(8)–(10) are equal to M because
R
dxTijðxÞ ¼ 0 as a

consequence of the conservation law ∂iTij ¼ 0, namely,
0 ¼ R

dxxi∂kTkj ¼ −
R
dxTij. Such an identity can be

interpreted also as a consequence of Derrick’s scaling
theorem for soliton configurations [35]. Second, the three
radii are not independent of each other. They differ by the
so-called D-term Dðt ¼ 0Þ

hr2im ¼ 2

3
hr2it þ

1

3
hr2is; hr2is ¼ hr2im −

3Dð0Þ
M2

: ð11Þ

If Dð0Þ is negative for the proton, as is generally believed,
then we have the ordering hr2it < hr2im < hr2is. Finally,
our definition of the tensor radius (10) differs from that in
Ref. [36] which reads
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hr2i0t ≡
R
dx x2ðT00ðxÞ þ 1

3
TiiðxÞÞ

M
¼ 6

dAðtÞ
dt

����
t¼0

−
Dð0Þ
2M2

:

ð12Þ

The difference is due to the meaning of the word ‘tensor.’
Equation (12) is based on the decomposition of the energy
momentum tensor into the traceless and trace parts

Tμν ¼
�
Tμν −

gμν

4
Tα
α

�
þ gμν

4
Tα
α;

→ T00 ¼ 3

4

�
T00 þ 1

3
Tii

�
þ 1

4
ðT00 − TiiÞ: ð13Þ

The first term is spin 2 (tensor) and the second is spin 0
(scalar), where ‘spin’ refers to the Lorentz spin. On the
other hand, hadrons are classified according to the spin
quantum numbers J ¼ 0; 1

2
; 1; 3

2
; 2;… of the SU(2) group.

The traceless part in (13) does not exactly correspond to the
irreducible J ¼ 2 component. The latter has to be trans-
verse-traceless,1 not just traceless, and the relevant decom-
position is

Tμν ¼
�
Tμν −

1

3

�
gμν −

∂
μ
∂
ν

∂
2

�
Tα
α

�
þ 1

3

�
gμν −

∂
μ
∂
ν

∂
2

�
Tα
α;

ð14Þ

where 1
∂
2 Tα

αðxÞ ¼
R
dy −i

4π2ðx−yÞ2 T
α
αðyÞ. (In momentum space

xμ → Δμ with Δ0 ¼ 0, we can simply write 1
∂
2 → 1

Δ2.) In our
definition (10), the tensor radius is exclusively linked to
JPC ¼ 2þþ tensor hadrons (in particular, glueballs [34,37])
which saturate the AðtÞ-form factor. On the other hand, the
DðtÞ-form factor, hence also (12), receives contributions
from both 2þþ and 0þþ hadrons.
Finally, we also consider the so-called mechanical radius

defined solely by the DðtÞ form factor [38]

hr2imech ¼
R
dxx2 xixj

x2 TijðxÞR
dx xixj

x2 TijðxÞ
¼ 6Dð0ÞR

0
−∞ dtDðtÞ : ð15Þ

The projection xixj
x2 Tij may be interpreted as the momentum

flux in the radial direction. Thus the mechanical radius
measures the mean square radius of the distribution of
‘radial force.’

III. NUCLEAR RADII IN THE SKYRME MODEL

We now lay out our strategy to compute the various radii
introduced in the previous section for atomic nuclei

specifically in the context of the Skyrme model. In this
model, a nucleus is realized as an SU(2)-valued classical
field configuration (‘Skyrmion’) UðxÞ which satisfies the
equation of motion and carries an integer baryon number
B ¼ 1; 2; 3;…. The solution is then quantized via the
method of collective coordinate quantization. Solutions
up to B ¼ 108 have been known for some time, and their
quantum properties, such as the excitation spectrum, have
been studied [39,40]. Very recently, new solutions up
to B ¼ 256 have been constructed [41] using the new
Skyrmions3D package [42]. We have numerical solutions
with B ¼ 1; 2; 3; 4; 5; 6; 7; 8, 32, 108 available at hand.
From them, it is easy to compute the energy momentum
tensor density TμνðxÞ, to be identified with (7), as well as
the baryon number density (5)

ρBðxÞ ¼
ϵ0νρσ

24π2
TrfðU†

∂νUÞðU†
∂ρUÞðU†

∂σUÞg;
Z

dxρBðxÞ ¼ B: ð16Þ

We can then evaluate hr2iB and hr2im;s;t;mech directly in the
coordinate space. The calculation of the charge radius or
the isospin radius hr2ic;I is more involved because it
requires the spin-isospin quantization procedure specific
to individual nuclei. Therefore, results for only the lightest
Skyrmion solutions, i.e., B ¼ 2 (deuteron) and B ¼ 3
(triton and helium-3), can be found in the literature
[43,44]. (See also the recent discussion [41] on an observ-
able related to these densities, the neutron skin thickness,
and its computation for larger Skyrmions.) In these works,
it was observed that the Skyrme model predictions under-
shoot the experimental data. Namely, the observed charge
radii of the proton and the B ¼ 2, 3 nuclei differ by a factor
of 2 or more [3], whereas the model tends to predict a
smooth, gradual increase with B. Also, the binding energies
of light nuclei come out to be too large. The resolution of
these issues requires various modifications of the model;
see, e.g., [45,46]. Since the calculation of hr2im, etc., for
B > 1 nuclei is the first study of this kind, and moreover it
does not require the quantization procedure, we do not
consider such modifications in this paper. Instead, we shall
treat the proton charge radius

ffiffiffiffiffiffiffiffiffiffi
hr2ic

p
¼ 0.84 fm as an

input to fix the model parameters.
Before presenting numerical results, we need to check

whether the relations between various radii and the D term
discussed in the previous section remain the same for
nuclei. This is nontrivial because the Skyrmions are not
spherically symmetric for B > 1. Related to this, nuclei
comewith various spins J ¼ 0; 1

2
; 1;…. For J ¼ 0, the A,D

form factors are defined similarly, but for J > 1
2
, there are

many more form factors characterizing the nuclear defor-
mation. Nevertheless, we have shown in [28] that, even for
deformed nuclei with nonspherical Tij, one can compute

1A transverse-traceless tensor Xμν satisfies ∂μXμν ¼ Xμ
μ ¼ 0.

When X is symmetric, these conditions reduce its independent
components to five, which correspond to the physical degrees of
freedom of a spin-2 particle.
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the ‘monopole’ D term via the same formula

DðtÞ
M

¼ 6

Z
dx

�
xixj −

1

3
δijx2

�
j2ð

ffiffiffiffiffi
−t

p
xÞ

tx2
TijðxÞ; ð17Þ

Dð0Þ
M

¼ −
2

5

Z
dx

�
xixj −

1

3
δijx2

�
TijðxÞ; ð18Þ

as for the B ¼ 1 solution. (j2 is the spherical Bessel
function.) Now let us combine this observation with the
relation

Z
dxxixjTijðxÞ ¼ −

1

2

Z
dxx2TiiðxÞ; ð19Þ

which can be easily proven by using the conservation law
0 ¼ R

dxx2xi∂jTij and partial integration. We find a for-
mula valid for any B,

Dð0Þ
M

¼ −
2

3

Z
dxxixjTijðxÞ ¼

1

3

Z
dxx2TiiðxÞ: ð20Þ

Moreover, from (17), we find

Z
0

−∞
dt

DðtÞ
M

¼ −4
Z

dx
�
xixj

x2
−
1

3
δij

�
TijðxÞ

¼ −4
Z

dx
xixj

x2
TijðxÞ: ð21Þ

We see that (20) and (21) are compatible with (8)–(10)
and (15).
In addition to radii, we also consider the ‘pressure’

distribution2 [13,14,30]

pðrÞ ¼ 1

6M

Z
dΔ
ð2πÞ3 e

iΔ·rtDðtÞ

¼ 1

24π2M

Z
0

−∞
dt

sin
ffiffiffiffiffi
−t

p
r

r
tDðtÞ: ð22Þ

While it is straightforward to evaluate this using our result
forDðtÞ [28], we can further simplify it by rewriting (17) as

tDðtÞ
M

¼ −6
Z

dx

�
xixj −

δij
3
x2
�
1

x
d
dx

�
j1ð

ffiffiffiffiffi
−t

p
xÞffiffiffiffiffi

−t
p

x

�
TijðxÞ

¼ −
6ffiffiffiffiffi
−t

p
Z

dx

�
xi∂j

�
j1ð

ffiffiffiffiffi
−t

p
xÞ

x

�
TijðxÞ

−
x
3

d
dx

�
j1ð

ffiffiffiffiffi
−t

p
xÞ

x

�
TiiðxÞ

�

¼ 2

Z
dxj0ð

ffiffiffiffiffi
−t

p
xÞTiiðxÞ; ð23Þ

where we used the conservation law ∂jTij ¼ 0 and the
formulas d

dx ðj1ðxÞ=xÞ ¼ −j2ðxÞ=x, d
dx ðx2j1ðxÞÞ ¼ x2j0ðxÞ.

Substituting (23) into (22) and using the orthogonality
relation

R
∞
0 dzz2j0ðrzÞj0ðxzÞ ¼ π

2r2 δðx − rÞ, we find

pðrÞ ¼ 1

12π

Z
dΩTiiðjxj ¼ rÞ; ð24Þ

where dΩ denotes solid angle integration. In the spheri-
cally symmetric case, we recover the familiar formula
pðrÞ ¼ 1

3
TiiðrÞ.

IV. NUMERICAL RESULTS

We use the original Skyrme model Lagrangian supple-
mented with the pion mass term. Its precise form as well as
our numerical approach is explained in [28] to which we
refer the reader. In order to numerically confirm relations
such as (11) which are sensitive to the difference of radii,
we need more accurate solutions than those presented in
[28]. This has been achieved by enlarging the 3D grid (up
to N3 ¼ ð151Þ3 points) and accelerating the energy-min-
imization process via a parallelization of the numerical
algorithm using the OpenMP C++ package. Thanks to this

FIG. 1. Residual error for the relations between rs, rm, and rt.

2For nuclei with J ¼ 1 or larger, in general ‘pressure’ can be
anisotropic due to nuclear deformation. Here we only consider
the isotropic component defined by the monopole D term (17)
mentioned above.
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improvement, the residual errors [cf. (11)]

Δsm ¼
�����
hr2im − hr2is

3Dð0Þ
M2

− 1

�����; Δmt ¼
�����
hr2it − hr2im

3Dð0Þ
2M2

− 1

�����
ð25Þ

are less than 1% for the solutions 1 ≤ B ≤ 8, with Δ ∼ 5%

for the B ¼ 32 and Δ≲ 10% for the B ¼ 108 solutions, as
shown in Fig. 1. We have then fixed the parameters of the
model [see Eq. (1) of [28]] as fπ ¼ 117.23 MeV, e ¼ 4.81,
and mπ ¼ 138 MeV such that the proton’s mass M ¼
0.938 GeV and charge radius

ffiffiffiffiffiffiffiffiffiffi
hr2ic

p
¼ 0.84 fm are repro-

duced. The sextic coupling discussed in [28] has been
turned off. Below we introduce a simpler notation for the
root mean square radii

ffiffiffiffiffiffiffiffiffiffiffi
hr2im

p ≡ rm, etc. In Fig. 2, we plot
the radii rm, rs, rt, rmech, and rB as a function of B.3 The
actual values are complied in Table I together with the
massesM and the values ofDð0Þ (different from [28] due to
different parameters). We confirm the expected ordering
rt < rm < rs. Curiously, rt and rB agree within less than
2%. (See [48] for an argument which might be related to
this.) The B dependence is roughly consistent with the
usual formula r ∼ B1=3, but some radii cannot be fitted well
with a naive assumption r ∼ Ba with a single exponent a.
Indeed, the relations (8) and (9) imply that at least two
exponents are involved rm;s;t ∼ c1Ba þ c2Bb. The differ-
ence between any two of them behaves as

Dð0Þ
M2

∝ Bβ−2; ð26Þ

with β ≈ 1.92. (A smaller value β ¼ 1.7 ∼ 1.8was obtained
in [28] with a different set of parameters.) Thus the
differences go to zero as B → ∞. A similar behavior is
expected for the model of [31] which predicted β ≈ 1.

In contrast, the differences increase with B in the models of
[30,32] where β ≈ 2.3.
In Fig. 3, we plot the ‘pressure’ distribution pðrÞ (left)

and r2pðrÞ (right). We numerically checked consistency
between the two definitions (22) and (24). The latter
computation is tricky because it involves an integral over
the solid angle, whereas our solutions are obtained in a 3D
grid of Cartesian coordinates. Nevertheless, we have
achieved a good numerical accuracy in performing this
integral. Remarkably, we find that pð0Þ is negative for all
the solutions with B > 1 except for B ¼ 32 where pð0Þ is
consistent with zero up to Oð10−6Þ. Actually, the result
pð0Þ < 0 has been recently found in [49] for the deuteron
(B ¼ 2)4 and also in [33] for the helium-4 (B ¼ 4) with one
choice of the nuclear wavefunction. This is at first sight
surprising and even unlikely because, from (22),

TABLE I. Root mean square radii of Skyrmions in units of fm. The proton charge radius rc ¼ 0.84 fm is used as an input.

B M (GeV) rB rm rs rt r0t rmech Dð0Þ pð0Þ (GeV=fm3)

1 0.938 0.642 0.778 1.002 0.638 0.688 0.817 −2.98 0.3465
2 1.795 0.876 0.966 1.149 0.861 0.898 1.106 −10.61 −0.0362
3 2.616 1.022 1.094 1.251 1.006 1.036 1.291 −21.62 −0.0203
4 3.408 1.138 1.197 1.335 1.121 1.147 1.448 −34.78 −0.0173
5 4.254 1.269 1.32 1.439 1.256 1.278 1.661 −50.92 −0.0185
6 5.064 1.376 1.42 1.525 1.364 1.383 1.862 −68.25 −0.0196
7 5.845 1.433 1.47 1.568 1.418 1.436 1.993 −87.24 −0.0173
8 6.698 1.533 1.566 1.651 1.521 1.536 2.305 −105.31 −0.0183
32 26.419 2.641 2.674 2.731 2.645 2.655 3.358 −1745.44 0.0000
108 88.311 4.077 4.114 4.165 4.088 4.097 3.499 −24151.55 −0.0171

FIG. 2. Values of hr2s;m;t;Bi and their best fit curve, together with
hr2mechi. Note that hr2t i and hr2Bi coincide almost exactly, hence we
have used the same fitting parameters for both radii.

3See [47] for an earlier calculation of rB with B > 1 from
approximate Skyrmion solutions.

4Reference [49] computed pðrÞ for the three-deuteron spin
states and found pð0Þ < 0 in one case. In our calculation, the
different spin states are averaged over.
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pð0Þ ¼ −1
24π2M

Z
0

−∞
dtð−tÞ32DðtÞ: ð27Þ

If DðtÞ is negative definite, clearly pð0Þ is positive.
However, as already observed in [28] (see also [49]),
DðtÞ turns positive in the large-jtj region for the B > 1

solutions, and due to the weight factor ð−tÞ32, this region
dominates the integral in practice. A more intuitive way to

understand this phenomenon is to notice that the solutions
with B > 1 have a ‘hollow’ in the core region where the
energy density is lower than in the surrounding region. This
results in an inward flux near the origin which may be
interpreted as negative pressure. For light nuclei 2 ≤ B ≤ 8,
pðrÞ then turns positive in the intermediate r region and
becomes negative again at large r. Pressure per solid angle
r2pðrÞ has a stronger peak at an increasingly large value of

FIG. 3. Effective radial pressure density for Skyrmions with B ¼ 1–8 and B ¼ 32.

FIG. 4. Pressure defined by (29) (orange) and by (22) (blue) for the B ¼ 1 (left) and B ¼ 2 (right) solutions. In the right panel,
numerical accuracy is lost for r ≲ 0.6 fm due to the error induced by the nonexact cancelation of vanishing radial derivatives in (29).
Still, appreciable differences between both pressure definitions appear for larger values of the radius.
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r as B is increased. In the case of large nuclei B ¼ 32, 108,
pðrÞ shows a striking oscillating pattern, similar to the
oscillation ofDðtÞ found in [28]. This is probably due to the
fact that, in the present model, these nuclei are realized as
an ‘α cluster,’ an organized spatial arrangement of B ¼ 4
solutions; see Fig. 1 of [28].5 The energy density also
oscillates as a function of r.
A common interpretation of the pðrÞ curve of the

nucleon (see the B ¼ 1 curve in Fig. 3) is that the
‘confining’ force pðrÞ < 0 in the outer region is counter-
acted by the ‘repulsive core’ pðrÞ > 0 near the origin
[13,14,16,50]. This provides an appealing scenario of how
the nucleon may be stabilized. However, such an inter-
pretation does not hold verbatim for B > 1 nuclei espe-
cially when B ≫ 1, suggesting that the mechanical stability
argument for nuclei is more nontrivial. (See also [49] for a
related discussion in the special case B ¼ 2.) One should
also keep in mind that the ‘pressure’ (22) defined by the
DðtÞ-form factor is not genuine thermodynamic pressure.
The existence of negative regions p < 0 is a reminder of
this caveat.
In order to see the nature of (22) and its limitation from a

different perspective, let us naively assume the standard
thermodynamical relation between the pressure, baryon
number (16), and energy ε ¼ T0

0 densities of a zero-
temperature, barotropic fluid [51]

pðρBÞ ¼ ρ2B
∂ðε=ρBÞ
∂ρB

: ð28Þ

Assuming spherical symmetry, one could write an alter-
native expression for pðrÞ

pðrÞ ¼ ρBðrÞ
ρ0BðrÞ

ε0ðrÞ − εðrÞ: ð29Þ

This is plotted in Fig. 4 (left) together with (22) for B ¼ 1.
It can be seen that the two definitions of pressure do not
coincide. This is not surprising, as the energy and baryon
number densities have been computed independently of
each other, and a priori there is no reason why (29) should
coincide with (22). (We are however surprised that the two
curves are rather close.) Note also that (28) asserts that the
on-shell Skyrmion configurations satisfy the barotropic
equation of state p ¼ pðρBÞ, which has been argued to not
be the case for Skyrmion solutions in the context of the
equation of state of neutron stars [52]. For nonspherical
Skyrmions with B > 1, we may define ρBðrÞ and εðrÞ by
averaging over the solid angles. However, (29) is hard to
compute numerically in practice because for B > 1 the

radial derivatives vanish at some finite value of r, and only
an exact cancellation of the zeros yields a finite result.
Actually, there is no fundamental reason why both densities
should have critical points at the same value of the radial
coordinate (although we have numerically checked that this
seems to be the case, up to numerical accuracy), hence the
‘thermodynamical’ definition of pressure (29) may not be
well behaved in this sense when applied to Skyrmions.
Furthermore, away from this critical point, the two defi-
nitions are seen to disagree as in Fig. 4 (right) in the case
of B ¼ 2.

V. CONCLUSIONS

In conclusion, we have computed various definitions of
radius for a variety of nuclei in the Skyrme model and
studied their B dependence. Their relations to the D term
have been numerically confirmed to good precision. These
radii are associated with different components of the energy
momentum tensor and have different physical interpreta-
tions. Together with the more familiar charge radius, they
characterize the rich internal structure of the nucleon and
nuclei. Apart from characterizing their dependence with the
baryon number for light and medium-sized Skyrmion
solutions, we have unveiled a rather surprising property,
namely, that the tensor radius (10) and the baryon charge
radius (5) coincide for all the solutions we have considered
up to a few percent. This points towards a nontrivial
relation between (the derivatives of) the associated form
factors, namely, the AðtÞ and GBðtÞ, even when there is no
apparent reason for the associated densities to be related,
a priori.
We have also computed the ‘pressure’ distribution and

found that pðrÞ is negative in the core region of all the
B > 1 nuclei explored in this work. This is due to the sign
change of the DðtÞ form factor at large jtj, and is
presumably related to the ‘hollowness’ of the B > 1
Skyrmions. Whether this is a general feature or an artifact
of the model is unclear to us. It is therefore worthwhile to
compute the present observables in more realistic
approaches using the machinery of low-energy nuclear
physics.
A final remark concerning the semiclassical approxi-

mation adopted in this work is in order. It is well known
that the energy momentum tensor components get quan-
tum corrections at first order in the N−1

c expansion due to
the spin and isospin degrees of freedom. Thus, a natural
extension of the work presented here would be to study
how the different radii and their B dependences get
affected by such corrections. While we do not expect
large differences from what we have predicted here just
by using the classical solutions, it is still interesting to
study how the energy and pressure distributions differ
between isobaric nuclei, as is the case with the charge
density [53].

5This may also explain the exceptional result pð0Þ ≈ 0 for the
B ¼ 32 solution because the point r ¼ 0 is not populated by an α
particle in this solution. On the other hand, in the B ¼ 108
solution, an α particle is positioned at r ¼ 0.
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