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This work aims to review several aspects of the current status of the rare π0 → eþe− decay. A particular
emphasis is made on radiative corrections and detailed interpretation of related quantities, some numbers
appearing in the literature are updated, and the connection with the Dalitz decay, π0 → eþe−γ, is discussed.
This comes timely as it is aligned with an announcement of a preliminary result of a new branching-ratio
measurement done by the NA62 Collaboration, which brings new light into an earlier-reported discrepancy
between the Standard Model prediction and the (until-recently latest) precise KTeV result.
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I. INTRODUCTION

With respect to the branching ratio (BR) of the radiative
decay π0 → γγ, the rare decay π0 → eþe− is loop- and
helicity-suppressed by eight orders of magnitude. Onemight
thus speculate that this channel is sensitive to possible
measurable effects of new physics. Indeed, this seemed to
be the case when the KTeV Collaboration published the
results of their analysis on the BR precise measurement in
2007 [1]. The direct subsequent comparison to the Standard
Model (SM) prediction was then interpreted as a 3.3σ
discrepancy [2]. Many works followed trying to explain this
difference both within (via models and predictions for the
pion transition form factor) and outside the SM (introducing
various models including exotic particles).
The NA62 Collaboration presented the preliminary

result of 2017–2018-dataset analysis at the “Rencontres
de Moriond 2024” conference, and the publication of the
final result is under preparation. The overall uncertainty is
at the same level as the KTeV measurement, but the central
value shifted significantly: It is smaller, perfectly consistent
with theoretical expectations based on the SM consider-
ations. Finally, a more recent and larger NA62 dataset is
available, and eventually, thousands of π0 → eþe− signal
events are planned to be analyzed.
It has been argued in the past that improper handling of

radiative corrections (RCs) might have been an essential

source of the discrepancy. It is believed that the most
significant contribution in this regard was made by an
explicit calculation of the (two-loop) virtual radiative
corrections [3] that brought the persisting tension down
to 2σ level [4,5]: Until then, only results based on leading-
log approximation were available [6,7] that—in the light of
the subsequent exact calculation [3]—did not reproduce
well cancellations among contributing terms and thus
overestimated the size of the correction.
The (latest) NA62 analysis makes use of the available

complete set of the related next-to-leading-order (NLO)
QED radiative corrections [3,4,8,9] already at Monte Carlo
(MC) level, including radiative modes with an extra photon.
This leads to better control over acceptance and gains better
data–MC agreement. It is, therefore, instructive to revisit
the corrections worked out to date and revise, discuss, and
summarize them in one spot. This is the aim of the present
work, which in detail describes the relation between the
theoretical (Sec. II) and experimental (Sec. III) observables,
updates the critical NLO QED correction δþðxcutÞ that
relates these, calculates the overall correction δ (Sec. IV),
tabulates a newly defined correction δ−ðxcutÞ for sample
cut-off values (Table II), derives other related useful
experimental quantities or ratios and discusses the latest
measurements (Sec. V), dives into some interesting proper-
ties of the π0 → eþe−ðγÞ amplitude in various limits
(Sec. VII and the Appendix), and discusses its relation
with the Dalitz decay radiative corrections (Sec. VI). The
findings are accompanied by some instructive plots.

II. LEADING ORDER IN THE ChPT EXPANSION

The leading-order (LO) matrix element in the QED
expansion for π0 → eþe− is represented by the one-loop
diagram shown on the left-hand side of the graphical
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equation in Fig. 1, and it can be written in terms of a
nonperturbative quantity, the doubly virtual neutral-pion
transition form factor (TFF). The latter can be further
expanded within chiral perturbation theory (ChPT) as a
point-like interaction accompanied by a compensatory
counterterm (see the right-hand side of Fig. 1) mimicking
the remaining high-energy contribution. The LO in this
double expansion contains only a single hadronic param-
eter, the finite part of a constant named χ (a combination of
low-energy constants appearing in the ChPT counter-term
Lagrangian with dynamical leptons [10]); the higher-order
corrections in the ChPT expansion are expected to be tiny,
as demonstrated in the leading-log approximation in
Ref. [4]. Accounting also for a small contribution from
the weak interaction, related BR prediction that does not
take into account any final-state radiation can thus be
written in a model-independent way,1

Bðπ0 → eþe−Þ
Bðπ0 → γγÞ ¼ β

2

�
α

π

me

Mπ0

�
2
��

π

β
logz

�
2

þ
�
χ̃ðμÞþ 3 log

m2
e

μ2
þΔZ þ

1

β

�
Li2ð−zÞ−Li2

1

ð−zÞ
��

2
�
;

ð1Þ

with β≡ ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
≈ 1, ν≡ 2me=Mπ0 ≈ 0.757%, and

z ¼ 1−β
1þβ ≃

ν2

4
, with Z-boson-exchange contribution ΔZ ¼

−4 π2

α2

ffiffiffi
2

p
F2
πGF ≈ −0.10 [13,14], and where I have

introduced an artificial (although naturally appearing)
combination

χ̃ðμÞ≡ 2

�
χðrÞðμÞ − 5

2

�
: ð2Þ

Since relevant theoretical models typically suggest (being
rather conservative) χðrÞð770 MeVÞ ≈ 2 − 3 (see also
Table I), one conveniently has χ̃≡ χ̃ð770MeVÞ∈ð−1;1Þ,
in terms of which the LO BR reads

Bðπ0 → eþe−Þ≈ ð6.193þ0.152χ̃þ0.004χ̃2Þ×10−8; ð3Þ

or simply Bðπ0 → eþe−Þ ≈ ð6.19þ 0.15χ̃Þ × 10−8. Written
in this way, this quantity is more transparent than an
equivalent expression using χðrÞð770 MeVÞ, as it allows
one to immediately see the approximate central value of the
SM prediction, its (conservative) 1σ band covering con-
sidered models, and it also provides the possibility for
direct extraction of χðrÞ when matched to particular pre-
dictions or measurements. Moreover, this redefinition also
works for derived quantities, like the subamplitudes of the
π0 → eþe−ðγÞ amplitude, for which the combination in
Eq. (2) also appears; cf. Appendix A of Ref. [4].
This exclusive, purely theoretical BR cannot be directly

accessed experimentally, and—for the theory-experiment
comparison—QED corrections have to be used to subtract
the radiative effects.

III. EXPERIMENTAL QUANTITIES

Due to the inevitable natural presence of additional
photons in processes featuring charged particles, a well-
defined (observable) experimental quantity in our case
would be

Bðπ0 → eþe−ðγÞ; x > xcutÞ
¼ ½1þ δðxcutÞ�Bðπ0 → eþe−Þ: ð4Þ

Such a BR measured in a real-world experiment is thus
inclusive of (final-state) soft photons, which is a fortunate
consequence of limited detector sensitivity to such electro-
magnetic quanta. The quantity (4) is defined in terms of a
cut-off xcut on the kinematical variable

x≡ ðpeþ þ pe−Þ2=M2
π0
; ð5Þ

the normalized electron-positron invariant mass squared.
Ideally, xcut should be chosen large enough to suppress the
effects of a competing process with very different dynamics
but the same final state, the neutral-pion Dalitz decay,
π0 → eþe−γ, which in turn peaks at low x; see also Fig. 2(a).
There are several options for how to define further what

actually the measurement of Bðπ0 → eþe−ðγÞ; x > xcutÞ
might mean. Without closer specification, this quantity
naturally has—beyond the theoretical “no-radiation” π0 →
eþe− part—several components: the π0 → eþe− brems-
strahlung (BS), the Dalitz decay, and their interference. It is
thus essential to know what exactly is (or is not) included in
a particular result for this measured quantity.
Specifically, in the case of the latest NA62 measurement,

the Dalitz decay and its interference with the rare-decay BS
have been subtracted, as this interference [also referred to
as the one-photon-irreducible (1γIR) correction] is part of
the radiative corrections to the Dalitz decay in the NA62
MC; note that this was not the case for the KTeV

FIG. 1. Leading-order contribution to π0 → eþe− in the QED
expansion and its representation in terms of the leading order in
the chiral perturbation theory. The gray blob represents the π0 →
γ�γ� transition form factor.

1The first line of Eq. (1) alone represents the contribution of
the absorptive part of the amplitude from on-shell photons,
providing thus the unitarity lower bound [11,12], leading to
Bðπ0 → eþe−Þ≳ 4.69 × 10−8.
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measurement, for which only the classical RCs due to
Mikaelian and Smith [17] were considered (the reasons are
mentioned in Sec. VI) and subtracted. This means that,
regarding the NA62 result, Bðπ0 → eþe−ðγÞ; x > xcutÞ has
a clear meaning of the BR related solely to π0 → eþe− and
its BS. It can thus be related to Bðπ0 → eþe−Þ using
Eq. (4), taking as input the corrections addressed in
Refs. [3,4] and in this work.
In particular, knowing the factor ½1þ δðxcutÞ�, Bðπ0 →

eþe−Þ and Bðπ0 → eþe−ðγÞ; x > xcutÞ are equivalent and
can thus both be used to extract χðrÞ, as long as their
meanings are precisely defined (in terms of what is
subtracted and what is included in these quantities, as
discussed above).

IV. RADIATIVE CORRECTIONS

It is convenient to introduce the following quantities:

δ�ðxcutÞ≡ ΓNLOðπ0 → eþe−ðγÞ; x ≷ xcutÞ
ΓLOðπ0 → eþe−Þ : ð6Þ

For any ν2 ≤ xcut < 1, the total NLO correction is then a
constant

δ≡ δþðν2Þ ¼ δ−ðxcutÞ þ δþðxcutÞ; ð7Þ

see Fig. 3 for δ−ðxcutÞ and Table II for its precise sample
values.

FIG. 2. The one-fold differential decay width of π0 → eþe−ðγÞ with respect to x. In the panel (a), I use the units of ρ≡ α
π Γ

LO
π0→γγ

, with

ΓLO
π0→γγ

¼ M3

π0

64π ð e2

4π2Fπ
Þ2 ¼ 7.76ð2Þ eV; in the panel (b), it is expressed in the units of Γπ0→eþe− , i.e., as the radiative correction δ̂ðxÞ, in

percent. In the panel (a), the π0 → eþe−ðγÞ decay width (dashed line) is compared with the Dalitz decay at LO (dotted line) and at NLO
without (dash-dotted line) and with (solid line) the 1γIR correction in the region x > 0.95. In the panel (b), there is a comparison of the
exact NLO result (dashed line) with the limit me → 0 (dash-dotted line) and the soft-photon limit in the sense of Eq. (A5) (dotted line).
The sum of these two limiting cases represents the exact result very well, and the difference of the exact result and this sum is plotted as a
solid line. Note that the dashed line represents the same quantity in both panels, only different units are used. For x > 0.95 [panel (a)],
the soft-photon limit (A5) basically overlaps with the exact result and is not plotted. The shaded area corresponds to the uncertainty on
χðrÞ and, in the case of the Dalitz-decay widths, TFF slope aunivπ ¼ 3.55ð70Þ% [9].

TABLE I. A comparison of latest experimental and some theoretical results. The quoted values lacking decoration
come directly from the mentioned references.

Bðπ0 → eþe−ðγÞ; x > 0.95Þ½10−8� Bðπ0 → eþe−Þ½10−8� χðrÞð770 MeVÞ
PDG Collaboration [15] 6.46(33)
KTeV Collaboration [1] 6.44(33) 7.48(38) 6.0(1.0)b

KTeVþ RCs of Refs. [3,4] ↪ 6.84(35)b 4.5(1.0)
NA62 preliminary (2024) 5.86(37) 6.22(39) 2.5(1.3)b

Knecht et al. [16] 5.8(3)a 6.2(3) 2.2(9)
Dorokhov and Ivanov [2] 5.85(10)a 6.23(9) 2.6(3)
Husek and Leupold [5] 5.75(7)a 6.12(6)b 2.2(2)
Hoferichter et al. [14] 5.87(4)a 6.25(3) 2.69(10)

aFor these values, the correction δþð0.95Þ ¼ −6.1ð2Þ% [Eq. (15)] was used.
bThese values are obtained based on relation (3).
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The correction in Eq. (4) can be approximated by the
NLO computation as

δðxcutÞ ≃ δþðxcutÞ: ð8Þ

For the standard choice xcut ¼ 0.95 (due to KTeV and its
predecessor), the value for the NLO radiative correction
accounting for the events with one extra soft photon (in the
vicinity of the region x ≃ 1) has been changing. First
estimates [6,7] led to rather large values, δþð0.95Þ≈
−13.5%; see also Ref. [3] for more details. However, the
most recent exact NLO calculations [3,4] found

δþð0.95Þ ¼ δðsoftþvirtÞ
þ ð0.95Þ þ ΔBSð0.95Þ

¼ −5.8ð2Þ%þ 0.30ð1Þχ%
¼ −5.5ð2Þ%: ð9Þ

I would like to argue that, unfortunately, this number is not
the final answer either.

The quantity δðsoftþvirtÞ
þ ðxcutÞ related to the first figure on

the middle line of Eq. (9), −5.8ð2Þ%, is unaffected by the
proposed update, and I only bring out its χ̃ dependence. It
originates in the NLO calculation that considers the BS
contribution in soft-photon approximation, with the result
presented in Eq. (8.4) of Ref. [3], and has the following
decomposition:

δ½3�þ ðxcutÞ≡ δðsoftþvirtÞ
þ ðxcutÞ

¼ δðsoftÞþ ðxcutÞ þ δvirt

¼ c1 logð1 − xcutÞ þ c2 þ δvirt: ð10Þ

The expressions for c1 and c2 are known precisely (they
do not depend on the low-energy constants under consid-
eration) and can be written as compactly as

c1 ¼
α

π
ð−2Þð1þ β̃ log zÞ;

c2 ¼
α

π

�
ð1þ β̃ log zÞ
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log
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e
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−
1

β
log z − β̃

�
1

2
log2zþ 2Li2ð1 − zÞ

��
; ð11Þ

with β̃≡ 1þβ2

2β ≃ 1þOðν4Þ and γ̄≡γE− log4π. Numerically,
c1 ≈ 4.717% and c2 ≈ 9.075%.
The virtual correction in the given scheme is numerically

estimated to be δvirt ¼ −0.8ð2Þ%, as presented in Eq. (8.3)
of Ref. [3]. Its uncertainty has two major components:
knowledge of χðrÞ in Ref. [3], χðrÞð770 MeVÞ ¼ 2.2ð9Þ was
used and an estimate on an unknown NLO counterterm
coupling involved, ξðrÞð770 MeVÞ ¼ 0� 5.5; see also end
of Sec. 6.4 of Ref. [3]. Considering the precise values for c1
and c2 and examining Table 3 and Fig. 10 of Ref. [3], I find

FIG. 3. Radiative corrections to π0 → eþe−. The correction
δ−ðxcutÞ of Eq. (6) (dashed line) is accompanied with δþðxcutÞ
(dotted line). The sum of these is a constant δ.

TABLE II. The values of δ−ðxcutÞ from Eq. (6) for chosen sample values of xcut. To be suitable for interpolation,
more digits are displayed. The quoted uncertainties are dominated by the TFF knowledge [for its value, I assume

χðrÞunivð770 MeVÞ ¼ 2.5ð5Þ, corresponding to χ̃ ¼ 0ð1Þ]. As the dependence of δ−ðxcutÞ on χðrÞuniv is linear to a very
good approximation, one can estimate well the correction for a particular χðrÞ value, taking into account that for
larger χðrÞ the value of δ−ðxcutÞ gets smaller. For instance, assuming χðrÞ ¼ 2.7, δ−ð0.95Þ ¼ 16.74 − 2

5
0.17 ¼ 16.67.

In other words, δ−ð0.95Þ ¼ 16.74ð17Þχ ≡ 16.74 − 0.17χ̃.

xcut δ−ðxcutÞ½%� xcut δ−ðxcutÞ½%� xcut δ−ðxcutÞ½%� xcut δ−ðxcutÞ½%�
0.05 0.09973(130) 0.35 3.000(57) 0.65 7.552(130) 0.95 16.74(17)
0.10 0.3468(57) 0.40 3.700(71) 0.70 8.413(140) 0.96 17.76(17)
0.15 0.7137(130) 0.45 4.429(84) 0.75 9.352(150) 0.97 19.08(17)
0.20 1.180(22) 0.50 5.179(97) 0.80 10.43(15) 0.98 20.96(17)
0.25 1.726(33) 0.55 5.947(110) 0.85 11.76(16) 0.99 24.19(17)
0.30 2.338(45) 0.60 6.736(120) 0.90 13.59(16) 0.995 27.43(17)
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δvirt ¼ ½−0.82ð7Þξ − 0.08χ̃�%: ð12Þ

As the expression (10) represents the exact result best in
the soft-photon region, i.e., for xcut → 1, to reach a more
precise answer further away from that point, one might
either include a compensatory term ΔBSðxcutÞ {the strategy
adopted in Ref. [4] and indicated in Eq. (9)}, or calculate
δþðxcutÞ in a spirit of repeated use of Eq. (7) as

δþðxcutÞ ¼ δ − δ−ðxcutÞ
¼ ½δ−ð1 − ϵÞ þ δþð1 − ϵÞ� − δ−ðxcutÞ; ð13Þ

with 0 < ϵ ≪ 1, e.g., ϵ≲ 10−3. That is, using δ obtained as
a sum of δ−ð1 − ϵÞ, an exact-to-NLO and IR-finite piece,

and δþð1 − ϵÞ ≃ δðsoftÞþ ð1 − ϵÞ that can be rather precisely
evaluated in the soft-photon limit, i.e., using Eq. (10).
Hence,

δ ¼ ½11.494 − 0.168χ̃�%þ δvirt

¼ ½10.67ð7Þξ − 0.25χ̃�%
¼ 10.7ð1Þξð2Þχ%; ð14Þ

and as δ−ð0.95Þ ¼ ½16.737 − 0.166χ̃�% (cf. Table II and its
caption), one finally obtains

δþð0.95Þ ¼ −5.243ð2Þχ%þ δvirt

¼ ½−6.06ð7Þξ − 0.08χ̃�%
¼ −6.1ð2Þ%: ð15Þ

Now, why the results in Eqs. (9) and (15) are so different
when they should be the same? It turns out that, unfortu-
nately, in Ref. [4], a different soft-photon-limit convention
was used with respect to Ref. [3], and the therein-evaluated
ΔBS

½4� ð0.95Þ ¼ 0.30ð1Þχ% thus does not have the desired

meaning. Instead, to be on par with the soft-photon result of
Ref. [3], the compensatory term should read ΔBSð0.95Þ ¼
−0.18ð1Þχ%; see also the Appendix for more technical
details and Fig. 4 for comparison. The original message of
Ref. [4], however, holds: For xcut ¼ 0.95, the soft-photon
approximation featuring in results of Ref. [3] is (given the
uncertainty) more or less sufficient.
The use of the updated value for ΔBSð0.95Þ in Eq. (9)

leads to a result consistent with the approach chosen and
preferred here [Eq. (13) and below], i.e.,

δ−ðxcutÞ þ δ½3�þ ðxcutÞ þ ΔBSðxcutÞ ¼ δ; ð16Þ

for any ν2 ≤ xcut < 1. In particular, the value in Eq. (9)
becomes the same as in Eq. (15) and should be used from
now on for xcut ¼ 0.95.

FIG. 4. The compensatory term ΔBS; see also the Appendix. In the panel (a), there is the (IR-finite) difference [integrand of Eq. (A10)]
Δ̂BSðxÞ ¼ δ̂BSðxÞ − δ̂ðsoftÞðxÞ of the exact NLO correction δ̂BSðxÞ and several soft-photon approaches: employing δ̂ðsoftÞðxÞ of Eq. (A5)
(dashed line), δ̂ðsoftÞx→1 ðxÞ of Eq. (A7) (solid line), and xδ̂ðsoftÞðxÞ as used in Ref. [4] (dotted line). This plot replaces the one in Figure 5 of
Ref. [4]. In the panel (b), one can see the integrals over x∈ ðxcut; 1Þ of the curves in the panel (a). This plot replaces the one in Figure 6 of
Ref. [4]: The original curve is represented by a dotted line, and the new result that allows for negative values is plotted as a solid line. The
dashed line corresponds to the most natural approximation δ̂ðsoftÞðxÞ. The shaded area corresponds to the variation of χðrÞ in the range
χðrÞð770 MeVÞ∈ ð2; 3Þ.
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Employing Eqs. (3) and (4), the new value (15) leads to

Bðπ0 → eþe−ðγÞ; x > 0.95Þ
≈ ð5.82ð1Þξ þ 0.14χ̃Þ × 10−8: ð17Þ

Other choices of xcut are possible and should be used for
various cross-checks in experimental analyses. Such results
are easy to obtain employing Eq. (13) and Table II.
It is rather intriguing that the overall radiative correction

found above, δ ≈ 10.7%, is significantly larger than what
one would naively expect: Typically, one anticipates that
the overall radiative corrections are Oð1%Þ. This one can
see, e.g., in cases of one-photon-inclusive corrections for
the π0 Dalitz decay π0 → eþe−γ [9,17,18], Kþ

e3 [19], or
Kþ → πþeþe− [20]. This is closely related to the fact that
at LO, the π0 rare decay is helicity-suppressed, and this
suppression is elevated by the emission of the extra photon.
The π0 → eþe−ðγÞ amplitude then survives the me → 0
limit, and in this sense, its overall contribution is enhanced
compared to the simple α=π scaling; see also Sec. VII for
more detailed discussion.
Finally, it seems convenient to work with δ−ðxcutÞ and δ

as the two independent objects to derive the rest of the
quantities useful for experimental analysis. For instance,
the ratio of events with x > xcut to all π0 → eþe−ðγÞ events
is then

RþðxcutÞ≡ Bðπ0 → eþe−ðγÞ; x > xcutÞ
Bðπ0 → eþe−ðγÞÞ ¼ 1þ δþðxcutÞ

1þ δ

¼ 1 −
δ−ðxcutÞ
1þ δ

: ð18Þ

V. LATEST MEASUREMENTS

The first two measurements [21,22] of the π0 → eþe−

BR led to values Oð10−7Þ and were, to a large extent,
contradicted by the upper bound Bðπ0 → eþe−Þ ≤ 1.3 ×
10−7 obtained by the third experiment [23]; cf. introduc-
tions of Refs. [24,25].
Following the publication of the measurement at

Brookhaven National Laboratory [24], the latest three
determinations originate at Fermilab [1,25,26]. Even though
all the latter four are mutually compatible and listed by the
latest PDG review [15], the PDG average2 is largely driven
by a single precise, updated measurement published by the
KTeVCollaboration [1]. Such an unsatisfactory situation, in
which only one precise measurement of the π0 → eþe− BR

was available and in a persisting tension with the SM
prediction, remained until recently. With the long-expected
update provided by NA62 in terms of a preliminary result,
the circumstances are more comforting, as the new value
seems nicely consistent with the SM prediction; see Table I.
In the following, I summarize some interesting points
regarding the two latest analyses.

A. KTeV measurement

Looking at the quantity that has been measured by
KTeV [1],

Bðπ0 → eþe−ðγÞ;x> 0.95Þ
Bðπ0 → eþe−γ;x > 0.232Þ ¼ 1.685ð64Þð27Þ×10−4; ð19Þ

one can correctly assume that its relation with the theo-
retical quantity Bðπ0 → eþe−Þ is not simple and requires
some nontrivial theoretical inputs. The result in Eq. (19) not
only depends on the Dalitz-decay BR, serving here as a
normalization channel, but the numerator allows for final
states including soft photons with their energies limited by
the lower bound on x. Equation (19) thus needs to be
further processed, and it was done so in the KTeV analysis
via a series of steps.
Once the denominator is removed {based on the NLO

knowledge of the Dalitz decay, for which the radiative
corrections of Ref. [17] were used}, for extracting Bðπ0 →
eþe−Þ from Bðπ0 → eþe−ðγÞ; x > 0.95Þ appearing in the
numerator of Eq. (19), the procedure KTeV used was the
following:
(1) Extrapolate the radiative tail of the BR to the whole x

region (i.e., including the contribution of hard
photons arising at low-x), arriving thus at the
inclusive BR Bðπ0 → eþe−ðγÞÞ.

(2) Scale this result back by dividing by (1þ δ) to
obtain Bðπ0 → eþe−Þ, equivalent to the so-called
“no-radiation” BR.

The obtained values are listed in Table I.
For the first step, the exact value of the factor

1=Rþð0.95Þ used was not quoted in Ref. [1], although

the resulting numbers point at R½1�
þ ð0.95Þ ≈ 83.3%. This is

close to the value based on the exact NLO calculation and
Eq. (18):

Rþð0.95Þ ¼ ½84.88ð1Þξ þ 0.12χ̃�%: ð20Þ

For the second step, the overall radiative correction used,
δ ¼ 3.4% [6], differs significantly from δ obtained in
Eq. (14). This is due to the ≈8% difference in the virtual
radiative corrections; cf. Eq. (9) and above.
Despite the use of the up-to-date exact NLO radiative

corrections, Eq. (19) does not lead to a value consistent
with the SM [cf. Eq. (3)], as it might also contain additional
traces of inaccurate corrections or unaccounted-for

2One might want to approach the present PDG value carefully.
For the listed past experiments, the PDG gather and present
the quantities Bðπ0 → eþe−ðγÞ; x > 0.95Þ directly as inputs for
the π0 → eþe− BR entry. At the same time, PDG also provide the
corrected (extrapolated) BRs quoted in the original references
that used Ref. [6] for RCs: This might be misleading in light of
the (significantly different) complete two-loop result [3].
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background. One additional known issue is related to the
fact that the result (19) includes the unsubtracted contri-
bution of the interference of the π0 → eþe− BS with the
Dalitz decay mentioned in Sec. III [3–5], which is,
however, numerically not that significant.3

B. NA62 measurement

In the NA62 experiment, the discussed radiative correc-
tions for π0 → eþe− are implemented in the two NLO
MC decay generators, the (trivial) 2-body and 3-body
[π0 → eþe−ðγÞ] generators. As an important theoretical
input to the analysis, the ratio of the two integrated decay
widths is calculated. It depends on xcut and χðrÞ, and the
uncertainty is dominated by virtual corrections. In terms of
(independent) δ and δ−ðxcutÞ, it is defined as

R2=3ðxcutÞ≡ Bðπ0 → eþe−ðγÞ; x > xcutÞ
Bðπ0 → eþe−ðγÞ; x < xcutÞ

¼ 1þ δþðxcutÞ
δ−ðxcutÞ

¼ 1þ δ

δ−ðxcutÞ
− 1: ð21Þ

In the NA62 analysis,

R2=3ð0.995Þ ¼ 3.034ð3Þξ þ 0.016χ̃;

R2=3ð0.98Þ ¼ 4.280ð4Þξ þ 0.031χ̃; ð22Þ

with R2=3ð0.995Þ being used as a primary input, and
R2=3ð0.98Þ is employed for systematic cross-check.
Relating R2=3ðxcutÞ with RþðxcutÞ of Eq. (18), one can write

RþðxcutÞ ¼
R2=3ðxcutÞ

1þ R2=3ðxcutÞ
;

R2=3ðxcutÞ ¼
RþðxcutÞ

1 − RþðxcutÞ
: ð23Þ

For instance, R2=3ð0.95Þ ¼ 5.612ð5Þξ þ 0.051χ̃.
The NLO Dalitz-decay generator, including the 1γIR

contribution, is also employed within the NA62 MC
framework: Its relative contribution in the x > xcut region
can be obtained as

RDðxcutÞ≡ Bðπ0 → eþe−γðγÞ; x > xcutÞ
Bðπ0 → eþe−ðγÞ; x > xcutÞ

; ð24Þ

where, in the numerator, there is the Dalitz-decay width
including all the NLO corrections and, in the denominator,
there is the π0 → eþe− width including the BS. In terms of
RðxcutÞ of Ref. [9], one finds

RDðxcutÞ ¼
RðxcutÞ

1þ δþðxcutÞ
Bðπ0 → γγÞ

Bðπ0 → eþe−Þ : ð25Þ

The values for RðxcutÞ can be read from Table III of Ref. [9]:
In particular, Rð0.95Þ ¼ 0.1967ð35Þaπ × 10−8. In Ref. [9],
one can also find Bðπ0 → γγÞ ¼ 98.8131ð6Þ%. Employing
Eq. (17),

RDð0.95Þ ¼ ½3.34ð6Þaπ − 0.08χ̃�%: ð26Þ

VI. RELATION TO THE DALITZ DECAY

Since the BS correction to π0 → eþe− embodies the
same final state as the Dalitz decay of the neutral pion, their
interference should be considered in calculating radiative
corrections to the latter.4 This contribution was historically
considered negligible, assuming a straightforward relation
of the π0 → eþe− BS diagrams (see Fig. 5) with the LO: It
was believed that these are also helicity-suppressed [17].
Further iterations justified these assumptions [27] based on
Low’s theorem [28]. Only explicit calculation in the
me → 0 limit [29,30] showed a nonvanishing result and
faults in the preceding reasoning. In Ref. [30], it was also
pointed out that one cannot simply interchange the me → 0
and k → 0 limits, with k being the photon four-momentum.
A detailed discussion and additional arguments based on
the nonanalyticity of the amplitude can be found in
Secs. 3.2 and 3.3 of Ref. [31].
In this section, I first examine the result in the former,

massless limit, obtained in the approximation in which the
π0 is point-like. In this case, the correction to the doubly
differential Dalitz decay width in variables x and

y ¼ 2Pπ0 · ðpeþ − pe−Þ
M2

π0
ð1 − xÞ ð27Þ

is simply [30]

δ̂1γIRðx; yÞ ¼ −
α

π

�
x

ð1 − xÞð1þ y2Þ þGðxþ; x−Þ
�
; ð28Þ

with x� ¼ 2
M2

π0
k · pe� ¼ 1

2
ð1 − xÞð1� yÞ and

3The contribution of this interference to the Dalitz decay
width is negative [cf. Fig. 2(a)], and the subtracted contribution
of the Dalitz-decay events from the x > 0.95 region is con-
sequently overestimated. One could thus scale up the KTeV
BR values by multiplying them by ½1 − δ1γIRþ ð0.95Þ�, with
δ1γIRþ ð0.95Þ≈−0.36ð1Þχ%. Alternatively, when treating the KTeV
result, δ1γIRþ ð0.95Þ can be added to Eq. (9). In this regard, note that
there is a misprint in Eq. (17) of Ref. [4], as the value therein
should include a negative sign.

4Let me remind the reader that this interference is subtracted
together with the Dalitz decay itself in the NA62 π0 → eþe− BR
measurement so that the studied (inclusive) quantities are only
derived from π0 → eþe−, with no Dalitz-decay contribution.
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Gðx1; x2Þ≡ logðx1Þ logðx2Þ þ Li2ð1 − x1Þ

þ Li2ð1 − x2Þ −
π2

6
: ð29Þ

{Note that I use here slightly different notation than in
Eq. (15) of Ref. [30] (there is also an obvious typo)}. The
correction to the x spectrum reads [30]

δ̂1γIRðxÞ ¼ α

π

�
−log2ð1 − xÞ þ 2x

1 − x

�
1 − logð1 − xÞ

1 − x
−
5

8

þ
�
1þ 1þ x

2ð1 − xÞ2
��

Li2x −
π2

6

���
: ð30Þ

One can easily obtain the behavior at x → 0, arriving at

δ̂1γIRðxÞjx→0¼
α

π

�
−
1

4
ð2π2−3Þx−1

4
ð4π2−27Þx2þOðx3Þ

�
;

ð31Þ

i.e., both the first and second derivatives are negative, and at
x → 1,

δ̂1γIRðxÞjx→1 ¼
α

π

�
−
3

4

1

1 − x
− log2ð1 − xÞ þ 13

6
logð1 − xÞ

þOðð1 − xÞ0Þ
�
; ð32Þ

which shows that the 1γIR contribution to decay width
approaches zero by a factor of (1 − x) slower than the
Dalitz-decay width proportional to ð1 − xÞ3, leading to
large corrections to the tail; see also Fig. 2(a).
As the effect of radiative corrections on the TFF

slope estimate can be written as ð1þ aþQEDxÞ2 ¼
ð1þ axÞ2½1þ δ̂ðxÞ�, with a being the purely hadronic
quantity, this means that, taking first derivative as x → 0,

Δa≡ aþQED − a ¼ 1

2

dδ̂ðxÞ
dx

				
x→0

þ a lim
x→0

δ̂ðxÞ: ð33Þ

As the second term on the right-hand side is of the size of
NNLO corrections and can be neglected, one can read off
from Eq. (31) the correction brought in by the 1γIR

contribution (note also that δ̂1γIRð0Þ ¼ 0 anyway),
Δaj1γIR ¼ − α

π
1
8
ð2π2 − 3Þ ≈ −0.486%; the exact value

employing physical me would correspond to Δaj1γIR ¼
−0.502ð7Þ%. As the intuitive size of the slope is a ≈ 3%,
such a correction is not negligible. Note that an estimate for
Δa based on the total NLO correction is Δa ≈ −6.3%,
about twice the size of a, which makes the knowledge of
RCs essential: An expected value for the slope aþQED

extracted without considering RCs would thus be of
reasonable size, but opposite sign.
The approximate results (28)–(30) can be checked

against the interference of the complete result for the π0 →
eþe−ðγÞ amplitude of Ref. [4] and the LO Dalitz-decay
amplitude. And vice versa: They serve as a basic check of
the complete result. These incredibly simple expressions
for me → 0 turn out to approximate the exact result very
well. Having the complete π0 → eþe−ðγÞ amplitude at
hand for comparison, taking the pion here as pointlike is
also justified as the terms proportional to χðrÞðμÞ areOðm2

eÞ.
Recall that this is not the case for the π0 → eþe− amplitude,
which would be UV-divergent for point-like π0 and for
which the model-dependence [on the parameter χðrÞðμÞ] is
rather substantial.

VII. THE RARE-DECAY BREMSSTRAHLUNG
IN THE MASSLESS LIMIT

With the results of the previous section at hand, one can
obtain rather easily an analytical expression for the π0 →
eþe−ðγÞ decay width in the limitme → 0; for the numerical
result, see Fig. 2(b). In general, the π0 → eþe−ðγÞ ampli-
tude reads (four-momenta of electron, positron, and photon
are denoted p, q, and k, respectively)

iMBSðp; q; kÞ

¼ −
ie5

2
FLO

π0γγ
ϵ�ρðkÞūðp;mÞΓρðp; q; kÞγ5vðq;mÞ; ð34Þ

with Γρ that can be written in terms of three subamplitudes
P, A, and T in a manifestly gauge-invariant form as [4,8,31]

Γρðp; q; kÞ ¼ Pðx; yÞ½ðk · pÞqρ − ðk · qÞpρ�
þ Aðx;þyÞ½γρðk · pÞ − pρk�
− Aðx;−yÞ½γρðk · qÞ − qρk�
þ Tðx; yÞγρk: ð35Þ

Up to an overall phase factor, the subamplitude A relates to
Ai of Ref. [30] as A1 ¼ Aðx; yÞ, A2 ¼ Aðx;−yÞ, and
A3 ¼ −k · pA1 þ k · qA2. As the contributions involving
subamplitudes P and T vanish in the me → 0 limit, the
matrix element squared in this limit reduces to

FIG. 5. The NLO bremsstrahlung contribution to π0 → eþe−,
also known as the two-photon-exchange or one-photon-irreducible
(1γIR) contribution to π0 → eþe−γ at one loop: photon emission
from the external [(a), (b)] and internal (c) charged-lepton lines.
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jMBS
me→0ðx; yÞj2 ¼ α3M3

π0
ΓLO
π0→γγ

xð1 − xÞ2

× ½ð1 − yÞ2j16π2Aðx; yÞj2 þ ðy → −yÞ�;
ð36Þ

with

−16iπ2Aðx; yÞ ¼ −
4

M2
π0

�
1

ð1 − xÞð1 − yÞ þ
1

x
Gðxþ; x−Þ

�
ð37Þ

and G the same as in Eq. (29). This expression has been
checked explicitly using the exact result and is numerically
very close to setting P and T to zero in the complete
expression with physical me. As another cross-check, once
the Aðx; yÞ from Eq. (37) is plugged into Eq. (26) of
Ref. [8], one recovers Eq. (28). The function G corre-
sponds, up to overall factors, to the regular finite part of the
massless IR-divergent box diagram G is equivalent to the
second line of Eq. (I.12) of Ref. [32].
In general, for a gauge-invariant π0 → eþe−ðγÞ ampli-

tude, one needs contributions from all three diagrams in
Fig. 5. However, it is intriguing to explore their very
different properties. The diagrams in Figs. 5(a) and 5(b) are
UV-divergent in the pointlike-π0γγ approximation (and
thus require counterterms in the sense of the expansion
in Fig. 1), lead to an IR-divergent decay width, and vanish
in the massless limit. In the soft-photon limit, their sum
alone is already gauge-invariant, as the “box” diagram of
Fig. 5(c) vanishes in that limit. Furthermore, on the other
hand, the contribution of the box is UV- and IR-finite.5

It is an important observation that, in general, only the
box diagram in Fig. 5(c) contributes to the amplitude A
(and it also contributes to P and T). As the subamplitude A
is the only one contributing in the massless limit, the
diagrams with radiation from the external legs do not
contribute at all in this limit. In particular, for the (small)
physical electron mass, the dominant contribution to
δ̂1γIRðx; yÞ thus comes from the box diagram: Here, P does
not contribute, and T’s contribution is suppressed; see
Eq. (26) of Ref. [8]. In contrast, the P subamplitude
dominates in the soft-photon limit and carries the potential
IR-divergent behavior.
To summarize, one can thus see the different properties

of the π0 → eþe−ðγÞ amplitude in the me → 0 and k → 0
limits manifestly at subamplitude level. Respectively, only

one subamplitude (A or P) survives each limit (me → 0 or
k → 0), a different one in each case. The original argument
is thus valid: The BS contribution to π0 → eþe− can be
approximated, for x → 1, by its soft-photon form, in which
the amplitude factorizes and is proportional to the LO
amplitude, which in turn is proportional to me and thus
vanishes in the massless limit. Such a contribution to the
π0-Dalitz RCs would be negligible, although, as described
above, it is related to P, which does not actually contribute
to δ̂1γIR. However, there are subleading terms in the soft-
photon limit, gauge-invariant on their own and thus not
restricted by Low’s theorem, that become dominant away
from x → 1 and survive the massless limit. They originate
in the box diagram that is (in general) the only one
contributing to A, which in turn dominates the non-
negligible contribution to δ̂1γIR.

VIII. SUMMARY

In light of the newest BRmeasurement of the π0 → eþe−
decay being finalized by the NA62 Collaboration, review-
ing the status of the associated RCs seemed appropriate. It
turned out that some minor numerical updates were to take
place. The range of presented results broadened here
compared to Ref. [4] which first evaluated the exact π0 →
eþe−ðγÞ amplitude, meaning the NLO BS process for π0 →
eþe− depicted in Fig. 5, calculated beyond the soft-photon
approximation that was used earlier in Ref. [3].
The theoretical π0 → eþe− BR can be written in a

model-independent way as

Bðπ0 → eþe−Þ ≈ ð6.19þ 0.15χ̃Þ × 10−8: ð38Þ

In this work, a generous range for SM-compatible values is
considered, assuming a conservative interval χ̃ ∈ ð−1; 1Þ;
see the discussion around Eq. (3). The studied radiative
corrections relate Bðπ0 → eþe−Þ with experimental results.
The most important quantity in this regard, δþðxcutÞ, has
been updated, and the value [cf. Eq. (15)]

δþð0.95Þ ¼ ½−6.06ð7Þξ − 0.08χ̃�% ¼ −6.1ð2Þ% ð39Þ

should be used from now on for experimental results that
consider xcut ¼ 0.95. In particular, one thus expects [repro-
ducing Eq. (17)]

Bðπ0 → eþe−ðγÞ; x > 0.95Þ ≈ ð5.82ð1Þξ þ 0.14χ̃Þ × 10−8:

ð40Þ

For any other cutoff, one can employ Eq. (13), combined
with the knowledge of the overall correction δ from
Eq. (14) and the values for δ−ðxcutÞ from Table II; cf. Fig. 3.
The KTeV measurement triggered an enlarged interest in

this decay as their result differed considerably from the SM
prediction. As the new NA62 result is, within available

5One subtlety may be emphasized at this point. The RCs
presented in this work do not consider any dependence on a TFF
model related to the diagram in Fig. 5(c), and only its pointlike
form is used. As mentioned at the end of Sec. 4 of Ref. [33],
which suggests a framework for calculating the diagrams in Fig. 5
for rational TFFs, such corrections are expected to be of order
m2

e=M2
ρ andM2

π0
=M2

ρ and can be treated as negligible in the global
context.
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precision, compatible with our understanding based on the
SM considerations, as the next step, one can aim to extract
information on the transition form factor. The present
experimental error is twice as large as the uncertainty band
indicated in Eq. (38) and extraction of χðrÞ is at the moment
inconclusive; cf. Table I. In this regard, the current (NLO)
knowledge of radiative corrections is expected to become a
limitation only for experimental analyses delivering results
with precision well below the percent level.
Theoretical inputs represent indispensable ingredients to

experimental analyses. Not only do the radiative correc-
tions need to be considered consistently in each MC
sample, but their relative weights need to be known so
that they can be combined and the resulting simulated
spectra compared with data. For the rare and Dalitz π0

decays, the necessary quantities can be calculated precisely
in terms of numerical integrals; for more complicated
processes, one might need to invoke MC methods. Some
important inputs, the ratios introduced here as Rþ, R2=3, or
RD, are presented in Secs. IV and V.
The quantities given in this work explicitly state their

dependence on the low-energy parameter χ̃. This is poten-
tially useful to obtain more precise values for these
quantities when a particular value of χðrÞ is considered
or known. With no precise experimental knowledge of χðrÞ,
the presented results allow for interpreting the χ̃ part as a
systematic uncertainty. For instance, varying χ̃ ∈ ð−1; 1Þ
thus leads to rather conservative estimates that can be
considered model-independent.
In the last part of the paper, the relation with the Dalitz

decay was discussed. For several decades, the importance
of the two-photon exchange (1γIR) contribution to the
Dalitz-decay radiative corrections has been repeatedly
questioned due to Low’s theorem and the helicity-
suppressed LO π0 → eþe− amplitude. As it was reminded
in Sec. VI, the π0 → eþe−ðγÞ amplitude does not vanish in
the massless limit, and a very simple analytical formula
[Eq. (28)] can be written down in this case, driven by a
single diagram shown in Fig. 5(c). Misleading outcomes
thus arise when the order in which the massless and soft-
photon limits are taken is not distinguished—like, in
particular, in the simplest case when assuming that the
complete amplitude is helicity-suppressed since it is the
case in the soft-photon limit.
Following up on the elegant result (28) and identify-

ing its relation to the A subamplitude in Sec. VII, the
exact π0 → eþe−ðγÞ amplitude can be very well approxi-
mated by taking A in the massless limit and P in the soft-
photon limit, in which, on the other hand, the diagrams in
Figs. 5(a) and 5(b) are dominant. Summing simply the
widths stemming from the results in Eqs. (36) and (A5),
such approximation works for the entire range of x,
although the difference is most prominent in the soft-
photon region contributing to the experimental BR;
cf. Fig. 2(b).
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APPENDIX: SOFT-PHOTON BREMSSTRAHLUNG

The π0 → eþe−ðγÞ amplitude squared can be written in
soft-photon approximation as

jMsoftðk; p; qÞj2 ¼ e2Δðk; p; qÞjMLOðp; qÞj2; ðA1Þ

where MLO is the leading-order amplitude in the QED
expansion represented in Fig. 1 and leading (up to ΔZ) to
Eq. (1). As in Sec. VII, four-momenta of electron, positron,
and photon are denoted p, q, and k, respectively. In
kinematical variables x and y of Eqs. (5) and (27),
Δðk; p; qÞ becomes

Δðk; p; qÞ≡ −
�

pρ

k · p
−

qρ

k · q

�
2

¼ 16x
M2

π0

1 − ν2

x − y2

ð1 − xÞ2ð1 − y2Þ2 : ðA2Þ

Including phase-space factors
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
=ð16πMπ0Þ and

Mπ0ð1 − xÞ=ð8πÞ3 for π0 → eþe− and π0 → eþe−γ, respec-
tively, one gets for the decay widths ratio

δ̂ðsoftÞðx; yÞ ¼
dΓðsoftÞ

π0→eþe−ðγÞðx; yÞ
dxdy

=ΓLO
π0→eþe−

¼ α

π

M2
π0
ð1 − xÞ

8
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p Δðx; yÞ: ðA3Þ

However, combining the expressions from Ref. [4]
[Eqs. (7), (8), (23), (24), and (A.14)–(A.16)], one finds that

δ̂ðsoftÞðx; yÞ ¼ 1

x
δ̂ðsoftÞ½4� ðx; yÞ: ðA4Þ

This is connected to the fact that, in Ref. [4], a general
prescription for the matrix element squared [Eq. (23)] for
the process π0 → eþe−γ was used that includes a square of
the pseudoscalar Dirac structure leading to 2ðpþ qÞ2 ¼
2M2

π0
x, whereas in the standard soft-photon-BS approach

[Eq. (A1)], one factorizes the LO matrix element squared in
which ðpþ qÞ2 ¼ M2

π0
. As it was done in Ref. [4], plug-

ging the subamplitude P in the soft-photon limit x → 1
(Psoft) into the complete expression does not give the
equivalent answer with respect to the treatment employed
in Ref. [3], and the compensatory term does not have the
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required meaning. As shown below, removing a factor of x
is not enough to arrive at a consistent answer.
As the π0 → eþe− process does not depend on y (nor x),

one can directly integrate δ̂ðsoftÞðx; yÞ of Eq. (A3) over the
angular variable y∈ð−βðxÞ;βðxÞÞ, with βðxÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ν2=x
p

,
which leads to

δ̂ðsoftÞðxÞ ¼ c1ðxÞ
1 − x

; ðA5Þ

with

c1ðxÞ≡ α

π

ð−2ÞxβðxÞffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
�
1þ 1þ β2ðxÞ

2βðxÞ log
1 − βðxÞ
1þ βðxÞ

�
: ðA6Þ

To integrate this further over x∈ ðxcut; 1Þ, one must be
cautious and regularize the integrand first. Moreover, in
the soft-photon-limit approach, one only integrates over
photon energies and emission angles, keeping the rest of
the particles intact. This effectively means taking x → 1

whenever possible, i.e., replacing βðxÞ → β ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
in

Eq. (A5), which leads to

δ̂ðsoftÞx→1 ðxÞ ¼
c1ð1Þ
1 − x

; ðA7Þ

with the same c1ð1Þ ¼ c1 as in Eq. (11). The regularized
result for the (equivalent) integral (keeping p and q fixed by
the 2-body kinematics)

δðsoftÞþ ðEmaxÞ ¼ e2
Z
Ek<Emax

d3k
ð2πÞ32Ek

Δðk; p; qÞ ðA8Þ

can be written as

δðsoftÞþ ðEmaxÞ¼
α

π

��
−2 log

2Emax

Mπ0
þ eX�ð1þ β̃ logzÞ

−
1

β
logz− β̃

�
1

2
log2zþ2Li2ð1− zÞ

��
: ðA9Þ

For the photon-mass (Λ) regularization scheme, one then

has eXΛ ¼ − log
M2

π0

m2
e
− logm2

e
Λ2, and for the dimensional-

regularization scheme used in Ref. [3], one finds eXϵ¼
−log

M2

π0

m2
e
þ1

ϵ−γEþ log4π. Considering that in the assumed

frame (pion rest frame), Emax ¼ Mπ0
1
2
ð1 − xcutÞ, and that

the IR divergences (terms proportional to − log m2
e

Λ2 or 1
ϵ)

cancel against the virtual-correction contributions, one can
easily read off c1 and c2; cf. Eq. (11).
Now, the (IR-finite) term ΔBSðxcutÞ that compensates for

the use of the soft-photon limit becomes well-defined once
the divergences are subtracted already at integrand level,

ΔBSðxcutÞ ¼
Z

1

xcut

δ̂ðBSÞðxÞ − δ̂ðsoftÞðxÞdx; ðA10Þ

with δ̂ðBSÞðxÞ stemming from the square of the exact
π0 → eþe−ðγÞ amplitude of Ref. [4]. To properly match
this with Ref. [3] [to obtain input for Eq. (16)], one should

use δ̂ðsoftÞðxÞ ¼ δ̂ðsoftÞx→1 ðxÞ of Eq. (A7) in the above integrand.
In other words, then the integral (A10) correctly pairs with

the BS in the soft-photon approximation δðsoftÞþ ðxcutÞ of

Eq. (A9) entering the correction δ½3�þ ðxcutÞ in Eq. (10).
Naturally, the exact case δ̂ðBSÞðxÞ is best approximated by
δ̂ðsoftÞðxÞ from Eq. (A5). It also has the correct behavior as
x → ν2, for which it vanishes. Finally, in Ref. [4], as
mentioned above, xδ̂ðsoftÞðx; yÞ was instead used within
ΔBSðxcutÞ. See also Fig. 4 for a comparison of these
approaches.
Employing the expressions above, it is straightforward to

find the endpoints of the lines in Fig. 4(a) [using δ̂ðsoftÞðxÞ as
it corresponds to δ̂ðBSÞðxÞ at these points]:

½δ̂ðsoftÞðxÞ − δ̂ðsoftÞx→1 ðxÞ�x→ν2 ¼ −c1=ð1 − ν2Þ ≈ −4.72%;

½δ̂ðsoftÞðxÞ − δ̂ðsoftÞx→1 ðxÞ�x→1 ¼ −c01ðxÞjx→1 ≈ −5.18%;

½δ̂ðsoftÞðxÞ − δ̂ðsoftÞ½4� ðxÞ�x→1 ¼ c1 ≈ 4.72%: ðA11Þ
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