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We present the basis of dimension-eight operators associated with universal theories. We first derive a
complete list of independent dimension-eight operators formed with the Standard Model bosonic fields
characteristic of such universal new physics scenarios. Without imposing C or P symmetries the basis
contains 175 operators—that is, the assumption of universality reduces the number of independent Standard
Model effective field theory (SMEFT) coefficients at dimension eight from 44807 to 175. 89 of the 175
universal operators are included in the general dimension-eight operator basis in the literature. The 86
additional operators involve higher derivatives of the Standard Model bosonic fields and can be rotated in
favor of operators involving fermions using the Standard Model equations of motion for the bosonic fields.
By doing so we obtain the allowed fermionic operators generated in this class of models which we map into
the corresponding 86 independent combinations of operators in the dimension-eight basis of [C. W. Murphy,
Dimension-8 operators in the standard model effective field theory, J. High Energy Phys. 10 (2020) 174.].

DOI: 10.1103/PhysRevD.110.033003

I. INTRODUCTION

The Standard Model (SM) based on the SU(3), ®
SU(2), ® U(1), gauge symmetry has been extensively
tested at the Large Hadron Collider (LHC) and so far, no
deviation of its predictions [1] or new heavy state have
been observed [2]. The natural conclusion is that there
must be a mass gap between the electroweak scale and the
beyond the Standard Model (BSM) physics required to
address the well-known shortcomings of the SM. In this
scenario, precision measurements of SM processes are an
important tool to probe BSM physics and effective field
theory (EFT) [3—5] has become the standard tool employed
to search for hints of new physics.

The paradigmatic advantage of EFTs for BSM searches is
its model-independence since they are based exclusively on
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the low-energy accessible states and symmetries. Assuming
that the scalar particle observed in 2012 [6,7] belongs to an
electroweak doublet, the SU(2), ® U(1), gauge symmetry
can be realized linearly at low energies. The resulting model
is the so-called Standard Model EFT (SMEFT) which can
be written as

)
Lot = Lgm + E E fALj oy, (1)
j=1 n

where the higher-dimension operators O,(f ) involve gauge—
boson, Higgs—boson and/or fermionic fields with Wilson
coefficients f, and A is a characteristic scale.

There is a plethora of analyses of the LHC data in terms
of the SMEFT up to dimension-six; see for instance [8—21]
and references therein. In order to assess the importance of
the different contributions in the 1/A expansion in such
analysis, as well as avoid the appearance of phase space
regions where the cross section is negative [13], one is
required in many cases to perform the full calculation at
order 1/A* As is well known the consistent calculation at
order 1/A* requires the introduction of the contributions
stemming from dimension-eight operators.

Published by the American Physical Society
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At this point the advantage of the model-independent
approach mentioned above becomes a limitation due to the
large number of Wilson coefficients. Already at dimension-
six there are 2499 possible operators when taking flavor
into account [22,23]. At dimension-eight the number grows
to 44,807 [24,25]. Clearly such large number of operators
precludes a complete general analysis at any order beyond
1/A and we are forced to reintroduce some model
dependent hypothesis. In this realm, identifying physically
motivated hypothesis able to capture a large class of BSM
theories becomes the new paradigm.

One such well-motivated hypothesis is that of
Universality, which in brief refers to BSM scenarios where
the new physics (NP) dominantly couples to the gauge
bosons of the Standard Model. It was first put forward in
the context of the analysis of electroweak precision data
from LEP and low energy experiments, with the intro-
duction of the oblique parameters S, T, U [26,27] (or €y, €5,
€3 [28]) which captured the dominant NP effects in the
observables. In the context of the SMEFT, Universality
formally refers to BSM models for which the low-energy
effects can be parametrized in terms of operators involving
exclusively the SM bosons, hereon referred to as bosonic
operators [29]. Ultraviolet (UV) completions that satisfy
this specific definition of universal theories include the-
ories in which the new states couple only to the bosonic
sector, as in composite Higgs models [30], as well as
models where the SM fermions are coupled to new states
via SM-like currents [31,32] like in type I two-Higgs-
doublet models [33].

In the EFT framework not all operators at a given order
are independent as operators related by local changes of
variables in quantum field theories possessing a jacobian
determinant equal to one at the origin exhibit the same
S—-matrix elements [34,35]. In particular, operators con-
nected by the use of the classical equations of motion
(EOM) of the SM fields lead to the same S—matrix
elements [36—39].1 In general, a given SMEFT basis trades
some of the bosonic operators for other bosonic operators
and operators involving fermions, hereon called fermionic
operators, in order to keep only independent operators.
Therefore, the action of a rotated operator is equivalent to a
relation between the Wilson coefficients in the basis. These
relations for universal dimension-six operators were
obtained in Ref. [29].

This work represents the next step in the exploration of
the BSM effects for universal theories by presenting the
SMEFT operator basis and relations implied by the uni-
versality hypothesis at dimension-eight. As a first step we

'When considering higher orders in the 1/A expansion one
needs to take care when applying the EOM. While they are
consistent when at the highest order in the expansion considered,
at lower orders one needs to include terms “beyond linear order.”
Alternatively, the application of field redefinitions is always
consistent [40,41].

search for a complete list of independent dimension-eight
operators composed exclusively with SM bosons before the
use of EOM. A large fraction of these operators involve
higher derivatives of the gauge bosons and/or the Higgs
field and therefore, in the existing dimension-eight basis
[24,25], they have been generically eliminated in favor of
fermionic operators. Consequently, in universal theories
only a subset of the fermionic operators of the general
dimension-eight operator basis are generated and, further-
more, their Wilson coefficients are related. In this work we
use, for concreteness, the basis presented by Murphy in
Ref. [24] which we refer to as M8B. Thus, the program at
hand is first to identify a suitable basis of independent
bosonic operators at dimension-eight and then by applica-
tion of EOM to identify the combination of fermionic
operators of M8B associated with universal theories.

The relevance of constructing the most general EFT
within a minimal set of assumptions—such as that of
Universality—is precisely to provide a tool for phenom-
enological studies as model independent as possible within
that assumption. On this front, it is important to stress that
the universality assumption allows us to perform detailed
studies at 1/A* without resorting to very simplified hypoth-
esis where just one dimension-eight operator is considered,
or to specific UV completions. For instance, working in the
framework of universal models, Ref. [42] studies the impact
of dimension-eight operators on the experimental analysis
of anomalous triple gauge couplings by combining the
available electroweak precision data and electroweak dibo-
son (WHW~=, W*Z, W*y) productions. It is interesting to
notice that the inclusion of dimension-eight operators
breaks the relation 4, = 4, that holds for the dimension-
six operators. Another possible application is the complete
1/A* analysis of Drell-Yan processes [43] that goes beyond
the S, 7, W, and Y oblique parameter analysis [44] with the
introduction of further contributions to the electroweak
gauge boson propagators.

For the sake of illustration we also present in Sec. VI a
few simple UV completions of the SM that give rise only to
bosonic operators when heavy states are integrated out at
tree level. As expected, once a specific UV model is
specified, only a subset of the possible dimension-eight
universal operators is generated, and its number grows with
the complexity of the UV completion and its mass spectrum.
Thus the results in this paper can be generically utilized in
two different approaches. Firstly, as mentioned above, it
allows to perform a 1/A* complete analysis in a totally
model agnostic way by considering all universal dimension-
six and -eight operators which contribute to the process of
interest. Alternatively, it can be of practical use when
working within a specific universal UV completion matched
to the SMEFT by integrating out the heavy states to obtain
the generated bosonic effective operators up to dimension
eight. In this case the results in appendix A can be used to
rotate these generated bosonic operators to M8B without
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having to do each time the exercise of applying the
equivalence of operators by integration by parts, Fierz
identities or equations of motion because it has been already
taken care of.

The work is organized as follows. Sec. II contains our
notation and framework. In Sec. II we present our notation
and framework. Section III is dedicated to presenting our
basis of independent dimension-eight universal bosonic
operators while in Sec. IV we construct the Lorentz
structures involving fermions associated with the product
of SM currents, which are used in Sec. V to obtain the basis
of universal fermionic operators. In Sec. VI we introduce a
few simple bosonic UV completions and the corresponding

|

1 1
Lyw = =7 GG -
>

fel{q.fude}

where G4, W4,. B, stand for the field strength tensors of
SU(3).,SU(2),,U(1), respectively. We denoted the quark
and lepton doublets by ¢ and £ while the SU(2), singlets
are u, d and e and the respective Yukawa couplings are
y*“4¢. We also define H; = e H* with €, = +1.> The
covariant derivative for objects in the fundamental repre-
sentation reads D, =0, —ig,T*Gi — ig5 Wi —igYB,
where Y is the hypercharge of the particle, T4 are the
SU(3), generators and 7¢ stands for the Pauli matrices. On
the other hand, the covariant derivatives for the field
strengths are

D,B*" =0,B™,  D,W% =q,W™ + geWh W,
DPGA;w — apGA;w + gszBCGgGCW, (3)

where f4B€ are the SU(3), structure constants. We denote
the SU(3), completely symmetric constants by a4

As mentioned above the first step in the program is to
obtain the basis of independent dimension-eight operators
consisting only of SM bosons. In order to do so we first
obtained the number of independent operators belonging
to each of the different bosonic classes before applying
the EOM using available packages like BASISGEN [45],
a modified version of ECO [46] given in Ref. [47] and
GrIP [48]. Next, we wrote down all possible operators
satisfying the SM gauge symmetry and Lorentz invariance.
In this process, we worked with the irreducible Lorentz
representation of the field strengths

’It should be noted, with our conventions for A ; and € that
assuming y*' is diagonal will result in a wrong sign for the up-
quark mass. Therefore if one neglects CKM considerations y*
should be assumed to be proportional to —diag(m,,, m.., m,).

low-energy operators, while we present our final remarks in
Sec. VII. The work is complemented with three appendices.
The full explicit expressions of the relations between the
bosonic and fermionic operators for universal theories are
presented in Appendix A. For convenience we include
in Appendix B a compilation of the relations more
frequently employed, and we reproduce in Appendix C
the subset of M8B operators which appear in the universal
operators.

II. NOTATION AND FRAMEWORK

Our conventions are such that the SM lagrangian reads

1
1 wa, W — ZBWB/““ + |DMH|2 + A% |H|> = A|H|*

ifDf — [(H'ay"'q + gy?'dH + £y°eH + H.c.)], (2)

) o
XP'p == (X® F iX*) with XM = Eeﬂypaxﬂw (4)

NS

where we defined the Levi-Civita totally antisymmetric
tensor €g;o; = —e°'?> = +1. The transformation proper-
ties of these fields under the Lorentz group are simple,
X; ~(1,0) and Xi ~ (0, 1) under SU(2), ® SU(2)g. The
Bianchi identity reads D, X** = 0 implying that D, X’}" =
D, X% At this point, we obtained all possible linear
relations between our set of operators using SU(3) and
SU(2) Fierz transformations [49-51] summarized in
Appendix B.

Further, linear relations between the effective operators in
a given class can be obtained using integration by parts
(IBP) for which we follow a procedure similar to the one
described in Ref. [52]. In brief, given the field content and
number of derivatives in a given class we obtain all
operators invariant under gauge and Lorentz transforma-
tions. To obtain the relations among them implied by IBP
we write all the vector structures y that contain one less
derivative than the operator class under consideration, then
the IBP relations are obtained by setting D,y = 0. At this
point, we consider the Fierz and IBP linear relations and
eliminate as many operators as there are independent
relations. In order to apply the EOM more easily, we then
express the final set of operators in terms of the field
strengths X** and their duals.

As illustration of the above procedure, let us consider the
D?B; H* operator class that contains eight members™:

Terms like D,D,B}* give rise to operators in the X; B; H*
class and were not considered for simplicity.
*Hereon D*H' stands for (D*H)* for the sake of simplicity.
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= BY(D,H'D,H)(H'H), (5)
= By (D,H'H)(H'D,H), (6)
x3 = (D,B)(D,H'H)(H'H), )
x4 = (D,B)(H'D,H)(H'H), (8)
= B (D,H'7'D,H)(H'7'H), (9)
x¢ = By (D,H't'H)(H't'D,H). (10)

x; = (D,BY)(D,H'T'H)(H''H), (11)
xg = (D,BY)(H'<'D,H)(H't'H). (12)
At this stage, we consider operators and their Hermitian

conjugates as different structures. In this example, linear
Fierz relations can be obtained using Eq. (B2) leading to

X5 = 2x, — xq, (13)
Xg = 2X| — Xy, (14)
X7 = X3, (15)
X3 = Xy4. (16)

We can see clearly from these relations that we can trade
(x5, x6, X7, x3) for (x, x5, x3,x4). Therefore, we focus on
the latter operator set when obtaining the IBP relations
which are derived from the following vector operators

¥ =B (D,H'H)(H'H), (17)
vy =B (H'D,H)(H'H), (18)
s = (DB ) (H'H)?. (19)

The IBP relations are, then, derived from D,y% = 0 and
they read

X; +x, —x3 =0, (20)
X1 +xy+x4 =0, (21)
X3+ x4 = 0. (22)

Just two of the last relations are independent, so we have
two independent operators that we can choose to be x; and
x5 since this choice renders the rotations of these operators
into M8B straightforward.

Once the set of independent bosonic operators have been
identified we apply the EOM to those with one or more

derivatives acting on the gauge strength tensors and two or
more acting on the Higgs field. With our conventions the
EOM read

D,GM = —J¥,

N
DW= —%HTD “H-Jl,
D,B" = —%H*DDH — 4.

(D*H") = a*H" = 2A(H'H)H' — J},,  (23)

o1
where H'D H = H'Z/D'H — D*H'z'H and we have
defined the fermionic “currents”

I =g, Y Y Far'T'fu.

fe{qud} a

g _
JIW” = 5 Z Zfa}/ﬂrlfav
fefql} a

Ty=d > D Yifar'fa

fe{qlude} a

Ty = Z{)’Zzz (e )€™ + ¥4y, (qudy) + 5, (Taey) ),
Ty = Z{yab Ghup)er; + yaps (dagni) + Yoh (@al;) }-
(24)

Y are the fermionic hypercharges, {Y,.Y,.Y,.Y,. Y, } =

é,—%,%,—— —1} and J’, does not contain the CKM
matrix because the fermion fields in these equations are in
gauge eigenstates (labeled with the latin indexes a, b or ¢)
and so are the Yukawa matrices y/. In addition, we denote
the SU(2), indices as ijk.

Expressing the fermionic operators generated by prod-
ucts of these currents and their derivatives in terms of
operators in the M8B basis requires in some cases trivial
but lengthy field manipulations which make use of iden-
tities involving the SU(2) and SU(3) generators as well as
Fierz field rearrangements [49-51]; see Appendix B for the
more frequently employed relations. In addition, the
simplification also involves the equations of motion for
the fermions which in our notation read

pla/ = ZyZhebH" lpe - Zyz lb/H”
lpd = Zyuth/HTj
il)qgj =

ll)u - ZyubejHT J

Z[yahdej + yuyupHj), (25)
b

together with the covariant conservation of the gauge
currents which imply that
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/

J = —i%D”(HTBﬂH), g

1, . pell
D D, Jy = —zED”(H*D H),

u

(26)

and the commutators of the covariant derivatives of the
gauge currents are

[Dy. Dg)J% = 0, (Do, Dyl = ge Wi J5
(Do Dy)IE = 9,45 GEIE . (27)

III. INDEPENDENT BOSONIC OPERATORS

The building blocks of the operator basis for universal
theories are the Higgs field H, the SM field strengths
(X4 ~ By, Wi, G}*%) and covariant derivatives D. As
mentioned above we obtain the number of independent
operators with this field content using the packages
BASISGEN [45] and ECO [46,47]. Doing so one finds,
prior to the application of the EOM and without imposing
C and P symmetries, there are 175 independent bosonic
operators at dimension-eight. Of those, 89 can be chosen to
be those included in M8B, and which, for convenience, we
list in Table I. They include all independent operators
without derivatives acting on the gauge strength tensors and
with up to one derivative acting on each Higgs field. They
lead to a rich and well-known phenomenology. For

RSgDZ = (D*H'H)(H'H)(H'H),

example, the operators in the classes X* X3X’' and
X?X" generate anomalous quartic and higher gauge self-
couplings that have no triple gauge vertex associated to
them [53,54]. The operator in the H® class modifies the
Higgs self-couplings and the operatores in the X>H? class
give rise to multi H [55-58] and gauge boson [59,60]
vertices, e.g., anomalous triple gauge couplings [42,61].
Furthermore, the operators in class X2H* class give finite
renormalization to the SM input parameters [42] and they
also generate multi Higgs and gauge boson vertices [62,63].

The first task at hand is, therefore, to identify a suitable
set for the remaining 86 operators following the procedure
sketched in the previous section. Since our final objective is
to find the corresponding combinations of fermionic
operators generated after application of the EOM, we
select the 86 operators for which the transformation can
be more directly implemented. With this in mind, we make
the following choice of operators.

A. Operators with Higgs fields and two or more
derivatives

Prior to applying the EOM, the classes H°D?, H*D* and
H?D°® contain 18 independent bosonic operators of which
five are those included in the corresponding classes in
Table I. As for the remaining 13 independent bosonic
operators, 2 of them are in the class H°®D? and we chose
them as

RY) . = (H'D’H)(H'H)(H'H). (28)

In addition, there are 10 independent operators in the class H*D* selected to be

H4D = (D*H'<'H)(D"H'<'D,H), mo = (D*H'D,H)(H'D"H),
H4 . = (D,H D*H)(D*H'H), H4 L« = (H'<'D*H)(D,H'<'D'H),
H4D4 = (D*H'H)(D,H'D"H), H4D4 = (H'D*H)(D*H'D,H),
H4 . = (D*H'D*H)(H'H), H4 D4 = (D*H'H)(D*H'H),
H4D4 = (D*H'H)(H'D?*H), H4D4 = (H'D*H)(H'D?H), (29)
while there is only one in the class H>D®
R) . = (D'D*H'D'DH). (30)

As we will see upon application of EOM they generate combinations of fermionic operators with two fermions of classes
w?H? and w*H?3D?, and operators with four fermions in classes y*H? and w*D? with chiralities (LL)(RR), (LR)(LR), and
(LR)(RL), with related Wilson coefficients. Explicit expressions for the relations can be found in Eqgs. (A1)—(A13) of
Appendix A.

B. Operators with gauge field strengths and derivatives

There are 19 independent operators in classes X>D?, X>X’D? and X>D* none of which is included in M8B. Four involve
three powers of the W field strength tensor and another four three powers of the G tensor and we selected them to be
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TABLE 1. Independent bosonic operators belonging to M8B.

1: X4, X3X/ 1:X2x" 2:H8
ol (GLG™)(GL,G™) ol (WhWH)(GlLGh) O (H'H)'
QE;ZE (GA GAML/)( B GB/)(T) Q(GZZ)WZ ( WI[AD)(GA GA/M) 3:H6D2
oY (GuG™)(G)G™) ol ,WGA””)( ,GY7) o) (HHY(D,H D'H)
Qg‘ﬁ (GA G*) (G, GP) Q(G?Wz (Wi GH)( ,mGA‘”’) o (H'H)(H''H)(D,H"7'D*H)
Q(GS4) (GA GAML/)( GB/m QGZWZ (WI WI/AI/)( GAﬂO’) 4:H4D4
09 (GLG™)(G),GP) 01, (WLWH)(GLGY) 0! (DH'DH)(D*H'D'H)
Q(G74) dABEdCDE( GB/w)(GC GD/m) QGZWZ ( [ A;w)( GA/m) QS} (DMHTDyH) (D/IHTDL/H)
0% d*PEACPE (G, GP) (GS,GP) Q(GIQBZ (BWB"”)(GWGA”") QS} (D*H'D,H)(D*H'D,H)
Q(G94) dABEdCDE( GB/.{L)( GDprr) ng)Bz (BMyB/w) (G?UGA/”;) 5 :X3 H2
Qi,‘l,?, (W, W’””)( W””’) Q(G32>BZ (B G*) (B, G*) QSQHZ FAEC(HTH)G G G
o (WuWh)(Wiw'e) oW, (BuGY)(B,,GY) 02 . fC(HH)GIGY G
ol (W, W’””)( wee) oV,  (BuB")(G},GM) o), eK(H H)YW W] Wit
oW (Wi W)Wy, W) 09, (BuB")(GHLGY) 0l e K(H H)WEW W
b, (W, W””)( Wee) o7,  (B.G")(B,,G") o) . eK(HT H)BLW. W,
oy, (W’ W) (W) W“’") oWy (BuB™)(W, W) Oy € (H'TH)
(B“W],Wi* + B W],W")
(1) (B,,B")(B,;B") ) (B Bw)( | Wiro)
O m po O v
0 (BuB")(ByoB") 0, (BuWI)(B, W) 6:X2H
NG 2
Ql(';) (B ) ’m ) ng/sz (BMDWI/w) B WI/ QG2H4 (HTH) ?;}DGAIID
QSQB d**¢(B,,G")(G,, GC”") Q(viZBz (BuB™) (W) W) 0 . (H'H)*GJGM
Q(GZQB d**C(B,, G )(G,G) Q(vﬁigz (B B*™) (W), W) le - (HTH)*W,, W'
Q(CZ;)B dAB (BMLGAHD)( C/m) QS,ZBZ (B Wl;w)(B Wl/w) QE/‘Z,;H./‘ (H']'H)Zw/lwwlﬂy
QE;?B dABC(B VGA;U/)(GB GC/JU) Qi;g[-ﬂ (H*z-IH)(H*TJH)waWJﬂb
7:X*H?D? Qﬁm (H'<'H)(H' H)W!, W/

T 2 1
Q(Glz)HzDz (D”H DyH) BZHZDZ (D”H D*H )B Bﬂ ng)]_ﬂ (HJrH) B IJB“/

T A 1 1
Q(azz)muz (D*H'D,H)GY, GA”P BszDz (D*H'D,H)B,,B"” Q%m (HTH)(HTT H)W!,B"
QggHZDZ (D"H'D,H)G! GA”P BzH-Dz (D*H'D,H)B,,B" Q%m (H'H)(H'<'H)W!,B"

+ T Tvp 2P
O o (D”HID"H) ! o) . . (D'H'T'D,H)B, W' 0% . (H'H) BWBW
0% ., (D'H'D,H)W,, W’”/’ Q%HZD (D*H'<'D,H)B,,W"" 8:XH*D?

1) 1
Q$1H2D2 (D*H'D, H)Wl/’WIW QSLHZDZ i(DH' IDDH)(BWJWp BWWP) Qialziqmz (HTH)(D#HTTIDIJH)VNVLD
oW . . i (D H'T' DH)W/, W” o, . (H'H)(D*H'<'D'"H)W},
OV e €K(DHHYT DY H) (W, Wi = Wi, wir) oW . . (D*H'<!D*H)(B,, W, + B, W) o). . /" (H't'H)(D'H't' D"H)W,
ol .. €N (HT'H)(D'"H'' D" H)W,
0 . i€ (D HTT D H) (Wi, WP + Wi, W) o) i(D*H ' DY H)(B,,W." - B,,W,’) 0\, . (H'H)(D“H'D*H)B,,
oV, . (H'H)(D'H'D*H)B,,

0% . . (D'H'</'D'H)(B,,W." + B,,W,")

WBH?D
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RU) . = WL (D W) (D, W) elIK,

R%Dz _ W'{w (DaWJ’“”)(DﬁWK‘ﬂ”)ele,

R = WL (DD, W) K

R, = Wi, Wy (DD WK — Drp, WKe)elK,

1
Ri

2 ;- Q v
RY) , = G, (D,GP#)(DyGE ) fA5C,

— GﬁD(DaGB.ay) (DﬂGC’ﬂU)fABC,

Eight operators contain two powers of W* or G* together with B*” which can be chosen as

Rg&ﬂm = (D*B,,)W"? (D“W?,),
G~ ooy
o 5, WD D1,
Rl(f;/)VzDz = BMI/W{)'D(D”DQW[’“” — D*D,Wher),

These operators modify the triple (multi) gauge couplings.
Upon application of the EOM they will lead to combina-
tions of two-fermion operators in the classes w?H>,
w?H*D, w>XH’D, w>X?H, and w>X°D, and uniquely
generate four-fermion operators in the class y*X [see
Eqgs. (A14)-(A29)].

Finally, there are three operators in X>D*, one per gauge
boson,

M _ 1) _ I
R\ .=D’D"B,,D,D'B;. R\ .=D’D*W.,D,D'W}",
RY) . =D*D'G4,D,D’G)*. (33)

They affect the gauge boson propagators and can give rise
to ghosts [64] in addition to anomalous multigauge boson
vertices. Equations of motion rotate these three operators to

RY) . . =B, B"(D’H'H),

RV ... = B,B*(H'D?H),
RY) .. = B, B"(D’HH),

RY) ... =B, B"(H'D’H),
RY) ... = (D"B,,)B™(D,HH),
RY) ... = (D'B,,)B™(H'D,H),
R . .= (D'B,)B*(D,HH),
R e = (D'B,,)B*(H'D,H),
R e = (D'B,g)(D,B*) (H'H),

R = GG (D7D, o)
R(c;)DZ = G;;‘y(;g.u (D*D,GC* — DP D, GC*) fABC, (31)
Rygape = GG (DyB").
R1<92()?2D2 = Gﬁu(DaGA'a”)(DﬁBﬁ”),
RS&ZDZ — BWGQ’”( DH DaGA,u/J —Dr DaGA,ay)’
Rygee = BuG*(D*D,GM — DPD,GM™). (32)

combinations of two-fermion operators in classes y>H>,
w?H*D, w?H?D3, and w?>XH?D as well as four-fermion
operators in classes w*H?>—with chiralities (LL)(RR),
(LR)(LR) and (LR)(RL)—and w*D? with chiralities
(LL)(RR), (LR)(LR), (LR)(RL), and (RR)(RR) which
can be found in Egs. (A30)-(A32).

C. Operators with field strengths, Higgs fields
and derivatives

There are 62 independent bosonic operators in the class
X?H?D? prior the use of EOM. M8B contains 18 operators
in this class; see Table I. There are, therefore, 44 additional
independent bosonic operators in class X>H>D? of which 9
contain two powers of the hypercharge field strength tensor
and another 9 contain two powers of the gluon field strength
tensor

RY).... = GALG™(DH'H),

RY) . . = GALG*(HDH),

RY) . . = GAGM (D’H'H),

RY.. . = GALG* (HDH),

RY). . . = (D*GL)G*™ (D H'H),

RY). ... = (D'GA)GA™ (H'D,H),

RY) . . = (D'GL)G*™ (D H'H),

RY) ... = (D'GA)GA™ (HTD,H),

RO e = (D'GA)(D,GM) (HTH), (34)
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while 13 contain two powers of the W field strength tensor and another 13 contain the product of the hypercharge and W field

strength tensors

R\ s = WL W' (D> HTH),

R(wQ/lHZD2 = W, W' (H'D’H),

RO s = W W (D2 HTH),

R . . = WL W'*(HDH),

RiﬁleDz — (D*W!,)W!'™(D,H'H),
W2H2D2 = (D*W, )W (H'D H),
WszDz = (D*W,,)W"*(D,H"H),
WZHZD’ = (D*W.,)W!*(H'D,H),

RY) . . = (D*WL,)(D,W"*)(H'H),

R\, . = eK(DFWL )W/ (D,HTF H),

R(ulﬂ];)tﬂDZ _ IJK( )iju(H TKD/,H),

R%;{zDz = el/K(Dr ) W/ (D JH *H),

R(ul/?)HZLﬂ _ IJK(Dﬂwl ) J’”’(H* Kp H),

Generically, operators in this class modify the gauge
couplings of the Higgs boson and vertices with two
scalars and two or more gauge bosons. As we will see
upon application of EOM they generate combinations of
fermionic operators with two fermions belonging to the
classes w?H?, w?H*D, w?’X?H, and w’>XH’D, and

R, .= (DB (H'D,H)HH), R
RS s = VK(H'T'H)(D*H' T H) (D' W),

REEIV)VHZDZ = B, W' (H'<'D’H),

R .. = B,WH(D2Ht H),

RO o = B W (HiT!D*H),

RY .02 = B, W™ (D’H'7'H),

RS . = (D"B, )W'™(D,Ht'H),
RS .= (D'B, )W'™(H'7'D,H),
R . = (D"B, )W'™(D,HT'H),
RY = (D'B, )W'™(H'7'D,H),
RS .. = (D'WL.,)B**(D,Hi7'H)
RUY . . = (D'WL.,)B**(H'7'D,H),
R . . = (D'W.,)B*(D HiT'H),
RUY . . = (D'W!.,)B**(H'7'D,H),
RUY . . = (D"B,,)(D,W"*)(H''H). (35)

also operators with four fermions in classes y*H? involv-
ing chiralities (LL)(RR), (LR)(LR), (LR)(RL), and
(RR)(RR). Explicit expressions for the relations can be
found in Egs. (A33)—(A76) of Appendix A.

Class XH*D? contains 10 independent operators, six of
them in M8B and another four which we chose as

wWINHTD t
WHD? — (D W/w)(H D H)(H H)’

R

wiipe = €K (H'T'H)(H ' D*H)(D*WE,). (36)

As seen in Egs. (A77)-(A80), these four bosonic operators are rotated by EOM to combinations of two-fermion operators in

classes w?H> and w>H*D.

Finally, there are six independent operators in class XH?D*, none of which are in M8B, and that we write as

R, .= (D'H'D*H)(D'B,,), R\ .= (D*H'<'D’H)(D*WL,),
RY, .= (D*H'D'H)(D'B,,). R, .= (DH't'D*H)(D*W!,),
RY), .= (D"H'D*H — D*H'D"H)(D,D"B,,), 6) . = (D'"H'T! DH — DYH'{ DVH)(D,D'W,).  (37)

Application of EOM on these six operators will give two-fermion operators in classes y?H?>,

four-fermion operators in classes y*H? and y*HD.

w>H*D and w>H3D?, and
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We finish this section by pointing out that an alternative
basis of 86 dimension-eight purely bosonic operators has
been presented in Refs. [65,66] motivated by the study of
off-shell Green’s functions. The universal basis presented
here and that in these references are related by IBP and
Bianchi identities. As mentioned above the basis of bosonic
operators presented in this section was selected with the
aim of allowing for a more direct implementation of the
EOM and a more transparent identification of the resulting
Lorentz structures involving fermions and the correspond-
ing fermionic operator combinations associated with uni-
versal theories, as we discuss next.

IV. PRODUCTS OF FERMIONIC CURRENTS

In universal theories, fermionic operators are either
generated involving the SM fermionic currents or originate

through the use of EOM for the bosonic fields on purely
bosonic operators. As such the only possible fermionic
Lorentz structures are those listed in Eq. (24).
Consequently, the Wilson coefficients of the possible
fermionic operators in universal theories have well defined
relations. At this point, it is interesting to identify the
possible current combinations which are generated by the
application of the EOM to the bosonic operators listed in
Sec. III. These combinations contain two and four fermion
fields.

Most of operators exhibiting two fermionic fields origi-
nate from direct contraction of the gauge and Higgs
currents in Eq. (24) with dimension-five bosonic structures.
In addition, some two-fermion operators contain deriva-
tives of the fermionic currents in Eq. (24) contracted with
dimension-four bosonic structures. The generated struc-
tures are

(D2 )4 = DMJY + DVJ% = y{z > YD (fartfa) + D”(fay"fm}, (38)
a fe{qlude}
(D¥3)3" = DIy + DTy = {Z > (D Far e fa) + D (Far' e )] } (39)
a fel{q.l}

- <K
(D))" = DHIKY — DP Iy = g {—ie’“’”“ S S 7D
fefql} a

3 [eulaoen) ¥ H + 32, (2,0 dy YK H 4 34, (300" )7+ He } (40)
ab

(DY2) " = DrIY — DT = gs{ie””"“Z[ﬁar"DaTAua +d,y"D TAd, - 4,y"D Thq,)

a

2 ¥ (@u0 TAdy ) H + 3y (2,0 T ) + Hee } (41)
ab

In order to facilitate the comparison with M8B we have transformed the last two equations using the relations in the
Appendix B. In principle the same procedure could have been applied to the first two relations, however, we kept the form

used in M8B.

Conversely, most operators containing four fermion fields originate from the product of two currents in Eq. (24)
contracted with a field strength tensor, two Higgs fields or the derivative of a Higgs field. The operator rotations to M8B
require the knowledge of sixteen current products. There are three structures coming from the product of two scalar Jy’s

" . + - - i _
(‘P4);-IH = JI]'{J];{ = Z {yzzyZd(uaqmz)ej (uchm)ek +ylebyiid(ql]ldh)(qlgdd)

ab,cd

+ v,y (They) (They) + [yi;byZZ(?éeb)(ﬁchm)e"’" + 34, (Ghdy) (TG )€™

+ yZby?d(%eb)(C_lfdd) +j < k} }

(42)
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o . 1 - -
(P = Hpdlj = > {— > byl |:_(fayﬂfd)(6_1c7/HQb)+(fa7”TAfd)(607ﬂTACIb):|

ab.cd’ fe{ud} 6

1 ) _ _ ) ) . i
- E)’ZZYid(an”ed)(lc}’”lh) + [)’Zbﬂd(léeh)%(qléud) + y4, v (Ghuy e (ghdy)

+ yf,byﬂ(faeb)(c_ich) + H.c.} }, (43)

. A 1. 1 . i 1 o . .
(¥l = TS = 3 () + 5 () > {yuhycd {6 (far"uq)(Gcr qp) + (”ay”TA”d)(QCJ/”T]TAQb)}
a,b,c,d

Lo _ ]
-t @)@ ) + @ T @ T )

1 K - 7 I —_
- EYZIZYid(ea}’”ed)(lcV”TIlh) + {—yZb)"Sd(lTeh)(Tle)mn(Q?ud)

— 4 (0d ) (7€), (Ghtty) + ¥y (Taes) 7! (doqa) + H-C-} } (44)
where, in writing the right-hand side of the above equations, we have made again use of the relations listed in Appendix B to
express the fermion currents in the combinations appearing in M8B.

The product of two gauge currents J% ,, ; gives rise to Lorentz scalar and tensor structures. The tensor ones related to
bosonic operators are

2
’ , g _ -
()i = PRI =) {2€”K(qu7"qua)(lb7 1)
a,b

_ _ 1, _ B B B
+ etre |:(la}'/1711b)(lhyﬁla) +3 (@a7,7 2) (@b 594) + Z(qaypf’TAqb)(quAqa)] } (45)

(Pge = fAECIEIS = g?Z{fABC > S TR (Fr TE))
a.b felqud} f e{qud}.f/#f

_— ] ) _
g e [<uaypTAub><ubyaua> + (day, Tdy) (dpy )

1 ) 1, _
~5 (@07, q1) (@b7644) — 3 (Ga7,7'T*qy) (qu’qa)] } (46)
(P =T8T =99 > S Y TAL)For ) (47)
ab fe{qud} f e{qlude}
y L9 - —
WWh=ils =500 2. D, Ve ) Fr sy (48)

ab fe{ql} fe{qglude}

where we have Fierz transformed the first two equations above for later convenience. On the other hand, the generated
Lorentz scalar structures are

(Ppp=T5dp = g2> 0 Y. YY" f) (vl (49)

ab f.f'e{qlude}

2
g _ _ _ -
(P ww = D T = D @'t a2) @17 ab) + 2(@ar'e' q.) oy, 1)
1 a,b

+ 2(Ly" 1) (v la) = (Lar*1a) (Lyyuly) } (50)
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ZJA"JA = gSZ{ > Yo G T ForaT )

felqud} fe{qud}.f'#f

+§ S Gttt ¢ S Gt Gorfs)

fe{ud} fe{qu.d}
l — 1 1 ~ 1
+Z(qa7"qb)(quqa) + Z(qay”f au) (@Yt q4) ¢ (51)
99 - -
BN =IIm =D >, D YT ) (Forufy)- (52)

ab fre{qlude} fe{ql}

There are only two products of the scalar current J, with a gauge current that are generated

(‘P4)BJH = Jﬂ]j = Q/Z Z {nyu’r (fcy fc)(anbk)ejk + nygb(fcyﬂfc)(q{ldb) + nygb(f‘c}/ﬂfc)a{leb)}’ (53)

a,b.c fe{q,lude}

(B =TT =5 D VP e FEaan)e™ + i (For'e £ (@hdy) + yo (Fer'e £ ey ). (54)

ab.c fef{q.l}
Finally, some operators with four fermions come from direct contraction of derivatives of two currents. They are

(DY) gp = DVDulp = g% > YYD (Fur"f)DalF37,f3): (55)

ab f.f'e{qlude}
(DW) g6 =Y D' Do, =g§2{ > > DUFTAf)DG(Fyr TAS))
A ab \fe{qud} f €{qud}.f'#f
1 - - 1 - -
t5 > DG f)Pelforif ) =g D D(Farfa)DalForuts)

fe{ud} fefqud

T ) o _
+ 3 D@07 45)Dal@ntyda) + 3 D*(da¥ T’qb)Da(qu’qa)}, (56)

2
E a 9 E a(z a7 a(z 7
(DT4)WW = D JIW”DaJ(iVy = Z {D (QayﬂT[qa)D (qby,uTl‘Ib) +2D (LIay”TIQtJ)Da(lbyﬂTIlb)
1 ab
+ 2Da(7ayﬂlh)D(l(7hyﬂla) - Da(iuyyla)Da(szﬂlh)}v (57)

(DW¥) gy = DIy DoJ Yy = Z{[)’ﬁb)’ZdD”(Eeb)eiju(flléud) + Y4,y D (Ghuy e D, (G4d,)
abcd
1
+ 38, yeaD" (lhey) D, (deqy) + Hel] - EyabycliDﬂ(layyld) u(8crvep)
N ; _ ;
- Z y{;by{d [ED”(QayDQd)Dy(fcyufb) + Dy(QaypTAqd)Dy(fc}/vTAfb)] } (58)
fef{ud}

Notice that these last structures do not need any further simplification as their present form appear in M8B.
V. FERMIONIC OPERATORS FOR UNIVERSAL THEORIES

We are now in position to present the combination of dimension-eight fermionic operators that are associated with
universal theories. We call such combinations universal fermionic operators since they are the ones with independent
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couplings. That is, in universal theories the couplings of the
fermionic operators must be linear combinations of the 86
independent couplings of the universal fermionic operators
listed here.

The 86 universal fermionic operators are formed by the
contraction of the fermionic Lorentz structures listed in
Sec. IV with the remaining bosonic pieces of the universal
operators listed in Sec. IIl. For convenience, we express
them in terms of the fermionic operators in M8B and we
employ the M8B naming and numbering of the operator
classes. Also for convenience, we reproduce in Appendix C
the subset of M8B operators which appear in the universal
operators listed here. In addition, we have included a factor
i to make the operators Hermitian whenever possible.

(1)

The full relation between the 86 bosonic operators in
Sec. III, the universal fermionic operators, and the bosonic
operators in M8B can be found in Appendix A.

A. Two-fermion operators

There are 62 independent universal combinations of two-

fermion operators in the following classes:

(i) Class 9:w?>X*H +H.c.: there are 16 universal
operators in this class arising from the direct con-
traction of the Higgs fermionic current Eq. (24) with
two gauge boson strength tensors

(1)
nt foquBz erQzeBZH}’

us'H T yl’rquBzH yPrQleBzH:| ’

+ yprquWZ + ypereW2 }
+ Q e Q(z)
Yor quZH +YorQrewan |
d ) (1)
Y5 Quicin T yi’rQlerH} ’

Gt T yl”quGzH yl”QlerH:| ’

(1
(Jut'H)B, W = Z[ yrp q(uV%/BH + yprquWBH + yPVQleWBH}

i 8,5 = T
T
Ql(/fzz)BzH = (JuH)B,B" = Z [yrp q( )
pr
W= W — 5[0
pr
Oy = In)Wi W = 3235010,
o7
O = UnHIGAGY =3[0y
pr
Oy = Unt)GAG™ = 3~ [0l
pr
Qt<//12)WBH =
r
Qc(//ZZ)WBH =

pr

= (Jy7'H)B, W = Z[ i qEN)VBH + yprquWBH + yPrQleWBH}

(59)

together with the Hermitian conjugates of the above operators. These universal fermionic operators are generated
when applying EOM to some of the operators in class X>H?D? as can be seen in Eqs. (A33)—(A36), (A42)—(A45),

(A55)—(A58), and (A64)-(A67),
(i)

Hybrid class 9 & 14:y?>X?>H(D) contains 8 operators exhibiting specific combinations of operators in classes

w?X?H and y?X?D originated from contraction of the fermionic structures in Eq. (40) and (41) with two gauge

strength tensors

1 Inw p_ 9
Qf,ﬂ)WBH(D) = (D¥2)y"B,,W.” = Z{ |:ypr quwan t yprquWBH + yprQleWBH +H.c. }
APE) (
! [QqZWBD T QIZWBD} 5pr}’
2 Ty s Ip 4 . u A3 . 3 . e 3
Qf,,z)WBH(D) = (DY2)y, Buva/ = EZ{_ {lyPrQE/u)WBH + lyerE]d)WBH + lyPrQ§e‘)/VBH + H-C-]
pr
o) (1)
T [QqZWBD + QIZWBD} 51,,},
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(iif)

(iv)

1 Apv A u 3 3
Qz(// )GBH = (D¥2)4“B,,G.” = QSZ{—2 |:yprQ£1u>GBH + y,d,,Q(qd)GBH + H.C.}
pr

e ®3) ®3)
— [szGBD —Qenp ~ QdZGBD} 51"}’

2 Ay ~Ap . u 3 . 3
Ql(//2>GBH(D) = (DY) B,,G,” = QSZ{_Z [lyPer(Iu)GBH + lygrQ;d)GBH + H,c_}

pr

(1)
+i [Q 2GBD QuZGBD - QdZGBD} 51”}’

(1) Iny Kp 9 u A 3) e A0)
QW2W2H(D) €UK<DlPE)W” WIJ#’W,// = EZ{ [yPrQqquH + ygrquwzH + yprQleWZH + HCi|
pr

—i[0%p + Oep| 600}

2 g
0 oy = €K (DV2) [ W, WL = Z{ (1900 oy 19500y + 195,00+ Hoc |

+ 21 |:Q<2)W/2D + QIZWZD:| 5])}“}7

1 v 3 u 5 5
QI(I,Z)GZH(D) = fABC(DLI"2 )A//‘ GEI;GD/ = 932{2 [yprQ{(Iu)GzH + y,d,rQEI;Gm + HC:|

pr
— l'|:Q£]52)GzD - Q 2G2 Qd262 } pr},

2 > . 5 . 5
Qf/,z)GzH(D) = fABC(DlP%>?}MDGEpG'I?p = QSZ{"'Q |:ly‘;7’Q(qu)GzH + lyfli”Q;d)GzH + H'C']
pr

+ 2i [Q<2)GZD - Qusz - QEZ%)GZD:| 5pr}' (60)

The universal fermionic operators in this hybrid class are generated when applying EOM to some of the operators in
class X*D? as can be seen in Egs. (A16)-(A17), (A20)~(A21), (A24)—(A25), and (A28)-(A29).

Class 11 :y>H?D3: the 2 operators in this class arise from the contraction of the structures in Eq. (38) and (39) with a
current containing two symmetrized covariant derivatives acting on the Higgs field

1 . v
QIE/Z)HZD3 = l(D‘Pi)l;; (D(MDU)HTH - HTD(”DU)H)

- 29/2 Z Yf [Qjclz)HzDe - Q;zz)HzDz +H.C.] 5[”,

rr fe{qlude}

08, = i(D¥2)4(D(, D, Hi'H — H'e! DD, H)
=93 3 |0 — O] 5 (61)
profefql}

These operators are generated directly from application of the EOM of the Higgs field to the operators in class X>D*
as in Egs. (A30) and (A31) and class XH*D?, see Eqs. (A83) and (A86).

Class 12:y*H> + H.c. contains 2 operators originating from the contraction of the Higgs fermionic currents in
Eq. (24) directly with Higgs fields:

1 ut AT e
QIEIZ)HS = (HTH)z(JHH) = Z [erQ;MHS + y?)rquHS + yprQleH5:| (62)

pr

and its Hermitian conjugate. These operators appear directly in the application of the Higgs EOM to the two
operators in class H®D? Eqs. (A1)-(A2) but, as seen in Appendix A, they also arise in the rotation of a large fraction
of the 86 bosonic operators. This is so, because these two operators in class H%D? are generically generated when

reducing the products of the Higgs-gauge currents introduced by the gauge boson EOM to the bosonic operators
in M8B.
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)

(vi)

Class 13 :w?>H*D: there are four universal fermionic operators in this class which appear in the contraction of the
electroweak fermionic currents in Eq. (24) with the product of two Higgs pairs one of them containing one derivative.

(1) (1)
rr fe{qlud.e}

o’ — i [(H D, H)(HH) + (H'D,H)(H'7'H)| = Z S o

2H4D — f2H4D pre
pr fe{ql}
3 1 g
0Ly = e T B ) (15 1) =I5 S 0
pr fe{q.l}
4 r
0\ iy = KT (H S H)D, (HTK H) = Z > 00 (63)
profe{q.l}

Operators in this class are directly generated by application of the gauge-boson EOM in operators in class XH*D? as
seen in Eqgs. (A77)-(A80). They also arise in the complete rotation to operators in M8B of some operators in classes
X3D? pEq. (A14)], X>D* [Egs. (A30)~(A31)], X>H?D? [Egs. (A37), (A38), (A46), (A47), (A51), and (A52)], and
XH?D* [Egs. (A83) and (A86)]. Notice that, for the sake of simplicity in writing the expressions above, in operators
Q;lz)m p» Where f = u, d, e, we have added a superscript of (1) to the M8B operators. This minimal change of labeling

is reflected also when we list the operators in class 13 in Table III.

Class 15:y>XH?D: It contains 24 operators generated by the contraction of fermionic gauge currents in Eq. (24)
with a gauge field strength tensors and a pair of Higgs bosons with one derivative. In twelve operators the fermionic
and Higgs currents are contracted with the SU(2), field strength tensor

(1) _ (1)
Ql[IZWH‘ - JD DIM(HT IH g Z Z YfoZWHZDéprv
rr fe{qlude}
2 2
Oy = JaDHITHYWE, =g~ 3" Y00 8

pr fe{qlude}

3 y 3
08 = 5 (H' DYWL, =iy S v,09 s,
pr fe{q.lud.e}
4 y 4
Ql(//z)WHzD =iJ (HTD H WI =g Z Z YfQj(‘Z)WHZD(SPV’

pr fe{qlud.e}

Q) — v i 1 _9
QUIZWHZD =JyD"(H'H) Wi Z Z QfZWHD pr

pr fefql}
Ql(/f)z)WHzD = JIUD”(HIH WI Z Z 2WH2D5Pr’
pr fefql}
Oy = U(H DLW, = 155 37 08
pr fel{ql}
8 g 8
0 ep = i(H D H)W!, = S 0%l
pr fel{ql}
9 g 9
Ql(/fz)WHzD = /KIyD(HI T H)Wy, = Z Z Q;‘Z)WHZDépr’
profe{q.l}
Qlﬁjzovz/HzD = UK‘IIUD”(HT JH WK :gz Z QfZWHzD pr
rr fe{q.l}
1 ; 77 g 1
Ql(//ZVi/HZD = ie"’*Jiy(H'D, H)W, = ) Z Q;CZW)/HZDépr,
pr fe{q.l}
12 ; N .9 12
O = i€ KT H D)W, = 1557 3 00, (64)
pr fefql}
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They originate from direct application of EOM of the electroweak gauge bosons in operators in classes X3D?
[Eqgs. (A14), (A15), (A22), and (A23)] as Well as X°H 2D2 [Egs. (A46)— (A49) and Eqgs. (A51)—(A54)]. They are also

generated in the rotation of operators R 134 (A31), R D4 (A83), and RWH2 Di (A86).
In eight operators in this class the ferrnlonlc structures couple to the hypercharge field strength tensor

(1) v + _ (1) (5)
QV/ZBHZD = JpD"(H'H)B,, = g Z[ Z YfozBHzD + Z YfozBHZD:| Sprs
fe{u.d.e} fed{al}
(2) — v + _ 2) (6)
QWZBHZD = JpDH(H H =9 Z[ Z YfozBHzD + Z YfoZBHZD] Sprs
pr Ltre{ud.e} fef{ql}
3) — 7 P _ (©)
QWZBHZD = lJB(HTDﬂH)B,MD - lglz|: Z YfoZBHZD + YfoZBH- :|5pr7
pr Lfef{ud.e} relql}
4) — o B 4)
QWZBHZD = iJ4(H'D,H)B,, = ’glz[ Z Yfo2BHZD + YfQ ZBHZD:| Oprs
fe{ude} felal}
©) v g
Qq/zBHzD =Jj D”(HT ©'H)B w = Z Z Qf2BH2D prs
rr fe{ql}
(6) Iy I (2)
QWZBHZD =J D”(HT H Z ; . QfZBH2D5P’”
pr fe{ql
(7) v
QVIZBHZD iJy (HTD H)B,, = l_z ; } QfZBHZD "
pr fe{q.l
(8) v D g
QV/ZBHZD iJy (HTD H B Z Z f2 H2D6Pr (65)
pr fefql}

They are generated by direct application of EOM of the electroweak gauge bosons in operators in class X?H*D?

[Eqs (A37)—(A40) and Eqgs. (A72)—(A75)]. They are also generated in the rotation of operators RG P H2 Di (A83), and
RY) i (AS6).
And finally four operators involve the gluon strength tensor
(1) — _ (1) (5)
0\ = JADH(H'H)G, = QSZ[ > O+ 0 quHzD} 5,
-fe{ud}
2 — A ) (6)
0y = JEDHH )G, = QSZ[ > Often+ quGHZD} 5.
fef{ud}
(3) = D _ (3) ()
QW2GH2D = lJé(HTD”H)GﬁU - lgsz|: Z QfZGHZD + QQZGHZD:| 5[)}‘7
pr Lre{ud)
4 . pig ~ . 4 8
O = W4(HDH) G, = 1932{ > 0t QE])GHZD] By (66)

pr Lre{ud)

which stem from the direct application of the gluon EOM in operators in class X>?H?D?, as in Egs. (A59)—(A62), and

the operators R 5 62 2 (A26) and R i GZ 2 (A27) of class X*D?.
(vii) Class 17:yw*H>D?* + H.c. is generated by direct contraction of the Higgs fermionic current in Eq. (24) with one
Higgs field and two derivatives of Higgs fields. There are six independent such contractions
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1 + wt ~T(1 1 e 1
Oy = (DH DM H) Iy H) = 3 [V 01 o + 3800 35,0l
pr

2 _ f
QIE/2>H3D2 = (D,H't'D"H)(Jy7'H) = Z[ —yih qfd-)ﬁD’ + yPrquH3D2 + yPVQleH3D2}’

pr

3) _ _ 7(5)
QWZH302 = (HTDﬂH)UHDMH) - Z [yrl’ quH*D? + yprquH*D’ +yprQ1eH*D2}’ (67)
pr
and their Hermitian conjugates. These operators are generated directly from applying the Higgs field EOM to the
operators in class H*D* and H>D® [see Eqs. (A3)—(A8) and (A13)]. In addition they also appear in the rotation of
operators XH?D*, as in Eqs. (A81)—(A82) and (A84)—(A85), arising in the reduction of the products of the Higgs
gauge currents introduced by the gauge boson EOM to the bosonic operators in M8B.

B. Four-fermion operators

We obtain 24 universal four-fermion operators in the following classes:
(i) Class 18 :y*H?: contains eight universal fermionic operators obtained from the product of the four-fermion currents
in Egs. (42)—(44) and Eqgs. (49)—(52) with a pair Higgs fields

1 3 1
Ql(,/‘)H' = (\P4) (HTH) = Z{— Z y{jy{,, <6 Qélz}sz + Q;2}2H2> _EYVrythlz 22
prst U fef{ud)

+ [ ypryrthequHZ + ypryleq 2udH? + yprytTQlequz + H.c. } }

2 ik 5 3
Q5,4)H2 = (‘114);-1HHij = Z{yfpyt“;Q 2o TYp y?’th(]z)(ﬂHz + y;ryithze)sz

prst

+ 2 [yprysTQ,eqqu + ypry QEI )udHZ + yprysthequ2i| }

3 j L«
o\, = H'™ [(\114)1{4 'H; -5 o,

1 1 4 w1 1
= 22{ yiji, <6 Q;Z)dsz + QE]2>(12H2> + Ysr ¥pu <6 Q(2> e T Q sz) _E)’Srythlz 2pp2

prst

2
+ [_erY?the()]MHz yprys,Qq S T yprytTQlequz +H.c. } }

4 1 1
0, = (¥)an(H'H) =¢22{ PR STIHRETE I DD DS (2 1/

prst \ fe{q.lud.e} fef{ql} f'e{ude}

1 1 1 1
+ 2YqYlQ§2;2H2 +2 [YeYuQizlez + YeYdQ(ezzisz + YquQiz)dsz} }5pr5sp

2
9
0 = (P (HTH) = 55000 + 2002|8080 + 0101 (28,8, = 8,18,) |,

prst

0, = (W), (H H) = ZZ{ (05 + Qe + Ol |00

yrH? T GG =9 ¢*d*H? *u*H? urd*H? | U prest

prst
1 1 1 1 1
+ 5 |:QL14H2 + Qd”'Hz} (5m5sr - 3 5pr6\t> + E QEfLZ <2 5Pt5\r - 3 5pr5st) + - Q 4H2 }’

(¢) R— 99 2) 2) 2) (4)

QW4H2 = (\P4)1 I_I-l IH Z{ Z Yf |:Ql2f2H2 + Qq2f2H2] + Yl |:Q14H2 + leq2H2:| }5171‘551" (68)
prst N fe{qg.eud}
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together with the Hermitian conjugate of Q?Hz. The
operators QSBHZ—QS}HZ are generated by the use of
the Higgs EOM directly in operators in class H*D*

and H?DS, see Egs. (A9)—(A13), and in the rotation
of operators in class X2D*, as in Egs. (A30)—(A31).
Q i HZ—Q 4H2 arise from direct application of the
EOM for the gauge bosons in operators of class
X?H?D?, in particular the EOM of B* in RE;QHZ D2
(A41), the EOM of W* in R\)) . . (A50), the one
for G* in RV

D2 (A63), and the EOM’s for B*

(i)

G2H2

7
= ? Z QEz )2W5Pr5st

(13)
and WH* in RBWH2

. . 4 .
venience, when writing the expression of Ql(,/*)HZ in

D2 (A76). Here again, for con-

terms of operators in MS8B, we have added a

superscript (1) in Q f4H2, where f = u, d, e; and

in Qe2u2H2 and Qe2 22 This minimal change of
labeling is reflected also when we list the operators
in class 18 in Table VL

Class 19:y*X: the eight universal operators in this
class are formed by the contraction of the four-
fermion tensor currents in Eqs. (45)—(48) with a
gauge strength tensor

1
0 305+ 208,

IR0 3)
+§Qq4W+2Qq4W 5[)15” )

0]

Z Z YfQ;lz)f’zG + Ye|: Q(2 &G + Qe 2uG + QSZLZG]

+ Q) fo

Z Z YfQﬁrzz)faG + Ye [_Qg%)ezG + lezG + Qi?de]

(69)

wiw 22
prst
2
v g
o), = (P Wi, =EZ{Q§7 oy Opri + [QEJ@V
prst
3 v 99 1 1 1 3
Qf,/)w (W wl, = -4 {—Yz [Q% + QEZQZw} -Y, [QEI)W - Q;;zw}
prst
(1) (1)
+ Z Yy [lefzw + qufzw} }51"5”’
fe{ude}
4 U 99 2 2 2
Q.(,,4)w = (‘P4)]WﬂBW/1w = 72{_Y1 [QE“&/ + nggzw} - Yq [QEf)W -
prst
(2) (2)
+ Z Yf |:Q12sz + QquZW:| }5[7/”5_”7
fef{ude}
Qi/?G (P A/WGA = QSZ{ [ q Yo T Q 2dz +0 ZCIQGi| 0prOgs
prst
Lo 1@ _ 0 _ o
- |:§ Qq4G + 5 Qq4G - QM4G - Qd4G 6p[6sr )
0%, = (WGh Z{ (09,6 + 0%+ 0] 3184
prst
Lo 10
+ 2 Qg+ 2 Qi ~ Qu“G Qd4G pisr
Q<34)G (T4)é’;}yGﬁu = _g“g/Z{
prst N fe{lq} f' €{q.u.d}
Y[ = O + Q]+ Ya| QU = Qg
4 v >
o, = (PG, = —gsg’Z{
prst “fe{lq} f €{qud}
7[00 = 0 + O]+ Ya[ 05 - 0
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(iii)

(iv)

They are all generated by the direct application of the EOM for the weak and strong gauge bosons in operators in
class X3D?. In particular Q 4W—Q 4W arise when using the EOM of WH in the operators R< 2 in Egs. (A14)—(A15),

D2
and R( in (A22)—(A23), respectively. Equivalently, Qw“ G—Q

BWZD2
GzDz [(A18)—(A19)] and RBGzDz [(A26)—(A27)].

Class 20:y*HD: there are four universal four-fermion operators genrerated by the contraction of the gauge-Higgs
fermion currents in Eqgs. (53) and (54) with the derivative of a Higgs field

4 arise when using the EOM of G** in operators
G

1

Ql(//4)HD (lp4),]§]H ‘ = _lgz Z Yf{ szquHD +y5th-quD7 +ySthZIBHD}5pra
prst fe{qlud.e}

2 j u

0% = (Wh( VD, H, = =iy {0, + 0l |
prst
2 3
+ 5% [Q(3)dHD + lequD] Vs [Q§3e)HD + Qge()fHD} }517” (70)

and their Hermitian conjugates. They are generated by applying the EOM for the electroweak gauge bosons and the

Higgs in the four operators of class XH?D?: R ](_,;HZ Dt [(A81)—(A82)] and RE}VH 2y [(A84)-(A85)]. Notice that, to keep

the notation compact, we took the liberty of reordering the fermion labeling for some operators in the first equation.
In particular, in the case of Q;]ZLHD, when f = g, the operator needs to be identified with QE;;Z D in Table VIIL

Class 21 :y*D?: Finally, there are four universal four-fermion operators generated directly by the contraction of the
derivatives of two fermion currents in Eqs. (55)—(58)

1 : I 3 I o, 0
Ql(l/t)Dz = (D\P4)HH = Z{_ Z pjy{r <6 Qéz)szz + Q;2}2D2> - §thyer§ze)zDz

prst fe{ud}

+ [ Yoy Qi) e+ Ve Y4OL L+ yei O .+ Hee, } }

@) _ (1) (1)
=¥ =S S vol 2> Y e,

prst N fe{q,lud.e} fe{ql} fe{ude}

2 Y100 + 2 (VYO0 Y YaO e + VYO | }5,"5”,

g
00, = (D) = Z{ [ O 200 zDz}ap,an + 0 (26,6, — 5p,5s,)},

prst

Qx(;‘)pz = (D¥)g6 = gsz{ [ pep> T 0, 2d21)2 +0 ZdzD‘} Oprsi

prst

+1[Q(” + 0l (800 s 6.) et Q 5 5y — 5,5, ) +10% 5,5 (71)
2 utD? d*D? ptYsr 3 pr¥st 4D2 ptYsr 3 pr¥st 4 q4D2 ptYsr (-

They, respectlvely, originate from applying the EOM for the Higgs in R D(, [(A13)], for the hypercharge gauge
P D4 [ W2 Dl [(A31)], and for the gluon in R D4 [(A32)]. Notice that,

for convenience, in the equation for Qv/“ 2> We have a superscript of (1) in Qe4 12 to the M8B Q45> operator. We have

boson in R’ (A30)], for the weak gauge boson in R\

included this minimal change of labeling when listing the operators of this class in Table IX.
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VI. SOME SIMPLE UNIVERSAL UV
COMPLETIONS

Here we briefly discuss a few existing models which
match onto the universal basis. For each model we point out
the bosonic operators which are generated in the universal
basis and specified those which are rotated to the fermionic
basis in this work.

A straightforward way to construct universal extensions
of the SM is to enlarge its scalar sector with new scalar
fields which do not couple to the SM fermions. The

|

A? A? A?
4 2 2
Ml =y 1+ S0, P+ 5
A? A2
e AL
2M 12M

The last two dimension-eight operators can be written in
our basis by the following relations:

|H|20 |H|2M|H|2 HgDz + RH6D2 + 2QH67 (74)
DIHPOHP = 400) + 4R + RS )+ RY
+ 2R+ R (75)

From the results presented in Appendix A, we can see that
the rotation of the operator in Eq. (74) to M8B only
generates one fermionic universal operator, the real part of

Q((;Q)m [see Eqs. (Al) and (A2)], while the operator in
Eq. (75) generates a linear combination of five fermionic

operators, the real parts of QSZ)HS, Ql(ljlz)H3 D> and Ql(;)ﬂz,
|

simplest bosonic UV completion is therefore that of the
SM supplemented by a real singlet scalar S

1 1 1
AL ==(9,5)% ——M?S% — A|H|*S — — k|H|*S?
5 (0,57 =3 [HPS ~ S k|H]
1 s 1s .,

After tree level integration of the heavy S, the low energy
effective theory contains the following operators up to
dimension eight [41,67,68]

A
B k) |HP
3IM

A 2A2 A
) 0w+ 2 (= 12 ) P HPo P + Sy OIHPOIHP. (73

together with Q i HZ’ and Q o H2 [(see Egs. (AS), (A6), and

(A8)—(A10)].

Another possibility is the addition of a scalar SU(2),
triplet field ¢ with ¥ = 0. In this case, the new terms in
Lagrangian read

AL ( D,¢")(D*¢") - M2(¢“) +kH'o Hep*
—1¢H(¢“) |H? —/1¢|¢“\4- (76)
The low energy effective theory of this model is, up to

dimension-eight operators in terms of our basis can be
written as [41,69,70],

K Apnk? K> . K>
ALy = ——[H[* = 2015 g6 D,H)"H(D,H)'H + H —H D,H? == |(D,H) H|
o = g 1~ g 1+ (0,1 DA A1 5 D, 0,1 1
K2 (K’ Aprk’ (1) ) @)
- 16M6 (MZ >QH8 + 2M6 <RH6D2 +RH6D2 +2QH6)
K ( (1) ™) (®) 9) (10)
T (804! =400, + ARG + ARG + ARG+ Ryl = 2RG) .+ RS (77)

In this case, from the Appendix A we note that the rotation
of the operators to M8B generates the following fermionic

operators, the real parts of Q 2H5’ Q;fz)Hg D> and Q 4H2,

together with Q i HZ’ and Qz//“ i [see Eqgs. (A1)-(A3), (A6),

and (A9)— (A12)]
Next we consider a scenario presenting a hidden sector
where its particles are not charged under the SM gauge

|

group. In the kinetic mixing model, the hiden sector
exhibits a U(1)y gauge symmetry and possesses a gauge
boson V,, which interacts with the SM via

1 k
AL =— —V VI + —M*V VM_EB vev. (78)

4 " 2
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For heavy V, we can integrate it out at tree level and obtain
the following dimension-six and -eight operators [69,71]

2 2

AL = =533 O,B%) (0 Bo) + 55 (0,B") (P0B).

(79)

The dimension eight-operator is identified with the operator

R

universal operators in M8B: the real parts of QSQ)HS and
Q< 4>H2’ together with Q 4H2’ Qx(;i‘)Hz’ Ql(;tt)Dz’ Ql(lllz)Hsz and
Qz(//zz)H4, pe as can be seen in Eq. (A30).

At large energy, composite Higgs models possess a
strongly interacting sector that is naturally connected to the
SM bosons. Ergo, possible high-energy resonances can
give rise to a plethora of bosonic low-energy effective
operators depending on the spectrum in the UV region. As
an illustration, let us consider the minimal model based on
the coset SO(5)/SO(4) [30,72,73] and consider a vector
resonance (p,) that transforms in the adjoint of SO(4). In
this scenario many operators are generated and we will list a
few of them.

The formalism develop by Coleman, Callan, Wess and
Zumino [74] allow us to write down the allowed inter-
actions of this resonance [75,76]. Denoting by I = h¢T*
where T¢ are the SO(5) broken generators and h“
the Goldstone bosons, we define U = exp(iIl). For sim-
plicity, we assume that the SM gauge group satisfies
Gsm C SO(4). In order to write down the p, interactions
we need the building blocks D, and &,:

in our basis, which is associated to seven fermionic

U™ (0, +iA,)U = iDyT" 4+ iEiT* = iD, + if,, (80)
with T4 being the unbroken generators and A, the SM
gauge fields. The lowest order terms of D, and &, are

D,=D,II -

1 <~
=D, E[H,HDH} + .- (81)

[ <
€, = A, 31D + . (82)

The most general two derivative SO(5)-invariant action
for the p, is

1
myALE = miDiD = 2pup +5m(pu = )% (83)

-b\*—‘

where p,, = d,p, — 0,p, + ilp,.p,]. Assuming that p, is
heavy we can integrate it out to obtain [75]

1 1 1
Aly———g w—Lpug 1 pew (34
eff 4g5 " 2¢; o+ m; (84)

where g, is the coupling constant. Terms containing four or
more derivatives and four or more field strength tensors
have been omitted. The first term of the above equation
leads to the dimension-six operators

(HT'r’DﬂH)D,,W”“’ and (H*DﬂH)a,,B””. (85)
On the other hand, the second term of Eq. (84) gives rise to
the following dimension-six and -eight operators

DW"DWav,  0,B"OB,, (86)
R\ . = D,W'"DPD,D W ay,
RY) . = 0,B%0/ 940" B,,. (87)

Upon rotation to M8B the operators in Eq. (87) give rise
respectively to two linear combinations involving ten and
seven universal operators respectively given in Egs. (A31)
and (A30).

In addition, possible four derivative p interactions can
produce genuine anomalous quartic gauge couplings [53],
i.e., anomalous quartic couplings that do not have triple
couplings associated to them. For instance, the following p
self-interaction

1
4 (p;wplw>(paﬂpaﬂ) (88)
mp,

generates the low-energy effective interaction
1

ﬁ (Eﬂzzgm/) (5a/}gaﬁ) (89)
P

that contains the operators

Q
=
I

(WI WIﬂy)(wé W[,(lﬂ)
(W, W14) (B B9)

(0/\
||

0\)) = (B,,B")(B.yB?).
(90)

w2R?

VII. FINAL REMARKS

In the absence of a smoking-gun signal for new physics at
the LHC, EFTs, in particular the SMEFT, have become the
standard tool for model-agnostic BSM explorations.
Unfortunately, their power is in some sense also their
weakness as, taken in their greatest generality, the number
of parameters (i.e., the number of independent Wilson
coefficients) is prohibitively large already at dimension-
six. Identifying physically motivated hypotheses which
reduce the EFT parameter space while still capturing a
large class of BSM theories presents a motivated route to
predictability. Universality, i.e., the assumption that the NP
couples dominantly to the Standard Model bosons, is one
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such hypothesis. At dimension-six, universality reduces the
dimensionality of the SMEFT parameter space from 2499 to
16, allowing for a constrained effective parametrization of
NP effects [29].

In this work we have taken the next step by construct-
ing the dimension-eight SMEFT operator basis which at
the high energy matching scale can be used to encode the
effects of universal extensions of the SM. To do so we
have identified a suitable basis of independent operators
formed with the Standard Model bosonic fields at
dimension-eight. It contains 175 operators—that is, the
assumption of Universality reduces the number of inde-
pendent SMEFT coefficients at dimension eight from
44807 to 175. 89 of these operators are part of the general
SMEFT dimension-eight basis in the literature; see
Table I). Our choice of the additional 86 operators is
presented in Eqs. (28)—(37). In the general dimension-
eight SMEFT basis in the literature these 86 operators
have been traded for combinations of the 89 bosonic
operators in the basis and additional operators involving
fermions. Thus in universal theories, only a subset of
fermionic operators are generated (see Appendix C) and
their Wilson coefficients have well defined relations: they
must be linear combinations of the 86 independent
couplings of the universal fermionic operators presented
in Sec. V.

The drastic reduction of independent parameters implied
by the Universality assumption opens up the possibility of
employing it for quantitative phenomenology because just
a few of them contribute to a specific reaction. For example,
the direct effect of the dimension-eight universal operators
can be seen in the production of multiple H, W* and Z.
Operators in the classes X>H? and X>D? modify the triple
gauge boson vertices, so contributing to diboson production
at tree level. Moreover, many classes contribute to mod-
ifications of the quartic coupling among the SM gauge
bosons, as well as to vertices with Higgs and gauge bosons.
In addition, an interesting subset of operators from the
rotated basis are those which include, after rotation, the

Murphy basis operators Q;QVHZ pforiel, 3,5and Q;iz)Hz D3

for i €1, 3, 4. These operators introduce novel kinematics
to the Higgs associated production process [62]. The

_ . 5.6 5.6

Q;ZZ)VHZD are generated by rotating RE@?H)ZDZ’ RE?WILZD’
3 1 5,6 . . i

Riazpm, Rjgv)vzm, and R;/zi;zDZ‘ Similarly Q.;IZ)HZW are

generated by rotating RE;Z)D“ and Ri‘l,l D+ We notice in

passing that the results in Sec. VI show that the simple
composite Higgs model there presented generates both
Rgz)m and RE;,Z e while Rgz)m also emerges in the minimal
U(1)y kinetic-mixing scenario.

Of course, the phenomenological program first
requires a careful accounting for the relevant field
redefinitions and other finite renormalization effects
since some of the operators give contributions to the

definition of the SM parameters [42]. Moreover, even in a
scenario where the high energy model is universal, there
will be nonuniversal effects at the low energy EFT due to
the renormalization group running [77] but controlled by
the universal parameters at the matching scale. They
should also be taken into account in phenomenological
studies. Furthermore, the rich phenomenology of
dimension-eight operators possesses many constraints
originating from the causality and analyticity of the
scattering amplitudes; see, for instance, Refs. [78-82].
These bounds define the regions of the parameter space
associated with well-defined ultraviolet completions of
the SM. We leave the quantitative exploration of the
phenomenology of universal SMEFT at dimension-eight
for future work.
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APPENDIX A: ROTATION OF THE HIGHER
DERIVATIVE BOSONIC UNIVERSAL
OPERATORS INTO FERMIONIC
UNIVERSAL OPERATORS

This appendix contains the explicit expression of the 86
bosonic operators of universal theories not included in
MSB in terms of the bosonic and fermionic operators in
MS8B as generated by the EOM. For the sake of conven-
ience, we present in Appendix C the definition of all M8B
fermionic operators involved. For some of the operators the
final expressions in terms of operators in M8B basis may
look rather cumbersome. This is particularly the case when
the Higgs currents introduced by the application of the
EOMs results in bosonic operators which are not included
in M8B and which, therefore, need further simplification by
reapplication of IBP, BI, and EOMs.

Notice that the mass term of the Higgs equation of
motion Eq. (23) leads to the appearance of operators with
dimension less than eight when we apply the EOM. For
these terms we did not express the resulting operators in
terms of any specific dimension-six operator basis of those
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in the literature: HISZ [83,84], Warsaw [85], EGGM [86], or SILH [87]. For convenience we define the following
combinations involving terms arising from the Higgs mass part of the EOM and some Higgs operators which appear
recurrently in the expressions

Ay =Av*(H'H) —2(HH)?, Ay =Av?(HTH)? —20s],
Ay = AP (HTH)? = 20,] + 2Q22 + 2Q(527 Ay = A2 (HTH)? —20,] + 5Q§,‘2,
Ay =[P (HTH) =20, + 400 + 0\, Ay =AWP(H'H) = 20,s] +30')) +20'7).

Operators in the class H®D?:

Ryl = A1 =0, (A1)
RﬁﬁDz =4 - Q;,(zll),s- (A2)
Operators in the class H*D*:
Ry = > (H'T H)(D*H')e! (D, H) = 2204 = O} ., (A3)
Ryl = 20 + W (H (D' H))* = 2010 = O ., (A4)
R = a8y + A(D'HTH)? =200, — 076, .. (AS5)
Ry = 202 (H' < H)(D'H')e! (D, H) = 2200 — 0, .. (A6)
R = A (H'H)(D,H') (D*H) = 2204) = O\, .. (A7)
Ryl = A (H'H)(D,H")(D*H) = 2204) = Q%) .. (A8)
Ry = (80)2 = 2(H T}y + He ) (HTH) + 2201, + 01)) + 0. (A9)
RY) 0 = (8)? = 220> (HH)H T}y + 42011, + 0. (A10)
RY) e = (80 = P (T H +He ) (H'H) +22(0, s + 010 + 00 + % o\, (A1)
Riyie = (80)* = 2002 (H'H)J yH + 4101\ + O)'0).. (A12)
Operator in the class H%D?:
R\ . = —82A, + 220" (D'H'D,H) — 220> D*(H'H)D,(H'H) — 4720>(H'H)(D*H' D, H)

— W (D'H'D,J}; + Hee.) - 620 (H'H)(H'J}; + Hee.) — 4220\
- 2/1(3Q1<//12)H3D2 + Q15/22>H3D2 + 2Q1§/32)H3D2 + H-C-> + 16/12(Q5,12)H5 + QZ/(ZII_),S)

+2430 + 0% + 015 +2000,0) + 0. (A13)
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Operators in class X>D?:

3

(1
RW3D2

[\S]

3
g (1) (1)
+§(Qu/2H5 +QW2H5> Z

g
= _ZA + 2lg QWH4D2 +Z (g QWBH“ +gQW2H4)
g

(Q< 2>H4D + Q 2H4 ) - ng(I,lzlv)VHzD + Q.(I,l4)w,

2 g 12 2
RileZ - 2lg QWH4D2 + (g’QWBH4 + gQw2H4) - ngSIZV)VHZD + Ql</l4)W’

4
3 g 1
Ri;lez = _gQWgHzDz - Z (g/szBHZ + gQwst) - _QI(I/Z)WZH(D)’
4 _ 9 (2)
Ryape = =9Qyw2pepe =3 ( go WZBH° +2 QW*H2) = O weny
(.  _ M
RG3D2 - Ql]/4G’
2 _ H®
RG3D2 - Ql//4G’
@ __Lom
RG3D2 - = E QI/IZGZH(D)’
4 _ (2)
RG3D2 - _QWZGZH(D)’
o g @ gd
RBW2D2 - ITQWHADZ - EQWZWHZD + Q ZWHZD 8 2H4D + Q 4w’
@ _ .99 g ®
RszDz - —QWH4D2 _EQ"’ WH2D += Qll/ 2WH2D + Q 4W7
Ry = =9Q e + O
BW?D? 9w w>WBH(D)’
RY . . =-90 +0
BW2D? 9w p? w>WBH(D)’
Rg();zDz - _g_lQ W GH?D + Q 4G’
Rl(:();zDz = _g_’Q W GH?D + Q 4G’
3) _
RBGzD2 - QWZGBH(D)’
4) N )
RBGZDZ - QU/ZGBH(D)'
Operators in class X?D*:
2.1 2
1 g9 1 2 g 1 1 . 1 1
R;z)th - 4 A4 + g/2 (Q;IB - quz) + ? (glel(Bz)H“ - nggle‘t) + 19/2 (g/Q](_z;[){ztDz - gQE’V;{“DZ)
g/

2 4 8

4
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9%g 7q”
Y Qf//]z)HzDz - Qx(,/22>H4D (Q( 2)1_15 + Q 2Hs>

3 /2
=2 (=0 + 000 + 0160 2000, ) + 0.

(Al14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)
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2
1 g 9’ 1 2 3
RE)VgD = ZA3 +TA (QLJ + Q;ﬂ) —2Q22)

2
g .
-Z (39’2Q§312H4 + PO+ 499’Q%H4) —ig’ (39’Q211)14Dz + gQS/)H“DZ)

2
9 L9
) Q15/22>H2D3 - 2QV, CWH2D Z (9Q<22)H4 + ng(//?H“ bt 4q Ql(//l2>H4 D)
+2 3
%(Q;QH; +0ll)) - z (300 + 2+ 00 +200) + 00 (A3
Ritps = O (A32)

Operators in class X>H?>D?:

RY) . . = 207B,, B (H'H) - 220, - Qf;QBzH, (A33)
RY) . . =?B,B*(HH)-20\) , -0 A34
B2 H2D> V"D ( ) QBZH“ Qx//szH’ ( )
RY) ., = B, B"(H'H) - 24 - 0% A35
prepr — A ( ) - QBZH4 QIIIZBZH’ ( )
RY  — 2B, B™(H'H) -2 _0o'® A36
gpep: — AV by ( ) QBZH“ QV/ZBZH’ ( )

5 g? J g
RE;Z)HZDZ = __AS + I_Ql(gl[)ﬂDz +< (g QBZH“ + gQWBHA)

8 2
1 : g g
_E(QIS}Z)BHZD—'_ZQ((;Z)BHZD) __Q 2H“D 16 (Q< 2y + Q 2H5>’ (A37)
Rg’2>H2D2 - ?AS + lEQE;P)ﬂDZ +5 <g QBZH“ + gQWBH“)
1L/ NG q q?
- 5 (Qz(//z)BHZD - lQlEIZ)BHZD> 4 Ql([IZJH4D + E (Q( 25 + Q ZHS) ) (A38)
R _i9,0 9 (50 @) L@ 0@ A39
BLHAD — ZEQBH4D2 +§ g QBZH“ + gQWBH“ - 5 QI/IZBHZD + lezBHZD ) ( )
8 g e L/ @ A4
RI(BZ)HZDZ = 15 Q;f)ﬂDz + = (g QBZH“ + gQWBH4) - E (Ql([/2>BH2D - lQEI/Z)BHzD) s (A40)
2 2
RﬁgzDzz%As dg (e + 0lllye ) + 7 OBy + OF (A41)
R e = AW W (HTH) = 2200), = 0\ (A42)
R(z) =1 2wl I.uv 'i‘ (1)
W2H2D2 = AV WﬂyW ' (H ) 2/1QW H4 - QI/IZWZH’ (A43)
RY) ., = AWl W (HH) - 22 -0Y Ad44
W2H2D? V"W ( ) QW2H4 Ql//2 W2H’ ( )
) — 22 WL Tl (T 2) _ i@ A45
RW2H2D2 = AW, W (H'H) - QWZH“ QI/IZWZH’ ( )
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' . .
R&f;gHzDz = _§A3 + E <ZQ$4]/3‘14D2 - QE:I;J“DZ <9’Q BH* + gQWzH4)
L/ s NG 9 (A0 4 NE 7 1 1
=5 (0w + 10 ) = 5 (O + Ol = 10 ) + 7 (O + CI1e ) (A46)

g g
Rgf,ZHzDz = _§A + (lQWH4D2 + QWH4D2 + g (g/QE;‘l/LH«t + gQi,‘l/gHz:)

[T () 9(H @) . 3) g
- 5 <QW2WH2D - ZQW2WH2D) - g QWZHAD + QI/IZH4D + lesztD) +— 16 <Q 215 + Q 2H5>’ (A47)
9. g 1 .
Rg,ZHzDz = 5 (ZQE,‘%LADZ - Qiﬁi—l“Dz) + g (Q/QE;‘%LH& + gQi‘z,gl_ﬂ) - E (Ql(//62)WH2D + le(fz)WHzD) s (A48)
®  _9(:n ) 9( 10 ) 0] :(®)
RWZHZDZ - 5 <lQWH4D2 + QWH4D2) + g (g/QWBH4 + gQW2H4> - E (QWZWHZD - lQl/IZWHzD) 5 (A49)
©) T 9(o? (o0 . oW o
RW2H2D2 :ZA3 +§<Q 2H4D +Q 2H4 ) _§<QW2H5 +Q1//2H5) +QV/4H2’ (ASO)

10)

3 .9
Ri)[/2H2D2 = ZZA3 —iz (41Q Hp?: T QE;;_IAD2) - lZ (dQE;‘l/LHAt + QQE,‘l,;H4)
L/ (9 () 9 (A2 ) . (3) s
+§(QV/ZWH2D+1QW2WHZD) +11<Qw2H4D+QWZH4D_ZQ1//2H4D) §< Wi HS + 0 2H5>’ (ASI)

(11) g .9 (1) (1)

RW2H2D2 = _IZA 3+iz (41Q WH*D? + 0y H4D2) + ZZ ('dQWBH“ +gQW2H4)

1 . ) . .
5 (@ hen = 10 ) = 15 (O + Oy + 10 + zg (o +2lt)). (A52)
2 g 2 4 .9 2 2 1 10

RS/Z;{ZDZ ) (4Q(WL4D2 + lQE/VZ’{“DZ) iy (g/QE/VLH“ + gQE/VZH“) + 2 (Qf,, &/HZD +iQ 2WHZD) (A53)
13  _9 6) . (4) 9 (1~ @ D)

RWZHZDZ = 5 (_4QWH4D2 + ZQWH“DZ) + lZ (g/QWBHzt + gQWZH“) + z (QUIZWHZ - Ql',, WH2D> (A54)
1 pa— 1 1

R(Gz)HzDz - AUZG;‘DGA'” (H H) - 2AQ(Gz>H4 - QIE/Z)GZH’ (ASS)
2 pa— 1 (1

R e = WPGALGM (HTH) = 2200, . = 01, . (A56)

RY) . = 2GL,GM(HH) - 2208, — oY) (A57)
GZHZ 2 G2H4 WZGZH’
(4) _ v (2)

R o = A02GA,GA (HTH) = 2208, - 01%). (A58)
5 1 1 NG

R(G2)H7D2 = _E (Ql([/2>GH2D + lnglz)GHzD) , (A59)
6 1 1 .

R(GZ>H2D2 = _E (Q( Z)GHZD - ZQI//2>GH2D) ) (A60)
() 1

RGszDZ (Q 2GH2D + lQ ZGH2D>’ (Aﬁl)
8 1/ @ .

R(GZ)HZDZ = _E <Q( 2>GH2D - le/2>GH2D) , (A62)
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9 6
R(G2)H7D2 = Qx(//“)Hz s

1 1
RE%V)VHZDz = J0’B, W' (H't'H) — Z/IQWBH“ - Ql(llz)WBH’
2 (1
RES‘ZVHZW = J0’B, W' (H'7'H) - Z/IQWBH4 - QW(ZV)VBH’
RY . =B, W (HZH) -2.02 - 0%
BWH?D? — 7% WBH“ W WBH’
4 ~ 2
RI(B‘EVHZDZ = W?B, W (H't'H) — 2/IQWBH“ - Ql//(zl/)VBH’
® 99 (0 _ @) .9 (inD
RBWHZDZ = _? (QH6 - QH6> +§ (lQWH“DZ - WH4D2) QW2H4 - W2H4)

g/

Liom e @
+ E <QW2WH2D + ZQUIZWHZD> - g (Q

v HD T lQ 2H4

8 2

q 4)

/

R1(96‘2VH2D2 = _ﬁ (Qgg - Qgg) + g_/ (iQi;[l/)I_ﬂDz + Q H4D2> (Qi,‘l/szt - W2H4)
1 :

+ 5 (Q15/12>WH2D - ZQSZ)WHZD) - § (Ql(//2H4 + ZQ 2H4D)

@ _9 (. ) @) ) e @
RBWH2D2 - 5 (lQWH4D2 - QWH“Dz) +E (QW2H4 - QW2H4> + 5 (QWZWHZD + lQV/ZWHZD)’

®  _9(:n® @) 99 ) 1@ @)
RBWHZDZ - 5 (ZQWH4D2 + QWH4D2) ‘I’i (QW2H4 - QWZH“) + E (Q 2WH2D lQV/ZWHzD)’
RO =9 —Q + Ol + 90}

BWH2D? g =3 BH“DZ 9 WBH“ B2H*

NG () 99 (1) #(1)
+ E <QI/IZBH2D + leszHz ) Q 2H4 16 (QWZHS + QWZHS)’

RIO =9 —Q +2 (90 pu + 92}

BWH?D* — T g 73 H4D2 g WBH4 g 32H4

L/ 5 . (7) g ) 99 ( )
+§ (QI/IZBHZD - lezBHzD) _ZQV’ZHAD +R (Q 2p5 + Ql// HS)?

an 39,0 L 9( 50 @\, Lo 0®
Rywrep: = 5 Qprip> + 8 <gQWBH4 + g/QBzH“) T3 (Q«//zBHZD - lQl//zBHzD)’

(12 0 )
RBWHZDZ = _QBH4D2 +3 (gQWBH4 +g QBZH“) 5 (QWZBHZD - ZQWZBH2D>’
(13) 99’ 99 (1) 9/ (2) (4) (7)
RBWH2D2 = T 8 (Q 2H5 + Q sz) += QI/IZH4D 4 (QW2H4D - Qv/2H4D> + Qy/“HZ'
Operators in class XH*D?:
g . N4
R59111,4D2 = leS + llellz)l_ﬂD - lz (Ql(/,l2)H5 + Q:/L,(zllls),
M _.9 1@ ) 9 (o0 (1)
RWH4D2 = l§A3 + li (QW2H4D + szHAD) - lZ (szHs + QV/ZH5)’
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(A66)
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1 .
Rpenr = =2 (0 = 02) =2 (0 - 100

I .
i = =2 (0 = 0)) =3 (@ + 100 )-

Operators in class XH>D*:

/ <>
RY, = —i% AAs — 2w (DHH)(HD,H)| + Av*(D,H H)J%
9 (5T Q) 50t 200 92 (0 (1) (1)
- lz QWZH_%DZ + QW2H3D2 - QU/ZH3D2 —1 QW2H4D + IT Qw2H5 + szHs - QWAHDa
Rj(_rgz])izl)zt = i% [AA5 — ﬂvz(H'I'D”H)(HTByH)] + /IUZ(HTDUH)J%
9 (D) @ 3 o0 92 (oW #(1) ()
+ lZ (szHzDz + QV/ZH3D2 - 2Q1//2H3D2) + ZAQWZH“D - IT (QWZHS + szHs) - QV/‘HD’
3 592 2 J 1
R;H?IZth A + gl( Q;Z) _5 (g/Q](_z;[){ztDz - gQi,‘l/thDz)
gg 5 1w
gQW2H4 +gQW2H4 + gIQWBH4 - l4Q|//2H2D3 + g Q ZBHZ +gQ ZWHZD
9 +9 .99 g q
4 Ql(//2>H4 +1 _QV/Z)HAD i~ 16 <Q(2)H5 +0 2H5)
1 ¥
- li |:g/ (_Qf//“Hz + Qu/4H2 + Qy/4H2 - 2Q15/34)H2 + Q,Ejtt)Hz) + ng(;t)Hz} s
<]
RG) . . = g [AA3 — W*(D*H'<'H)(H'D DH)} + (D, H ' H)J,
;9 t A :
4 (3Q 2p3p2 T Qw(zzgﬁDz - 2Q;€23D2> - 15 (Qf,,zz)H4D + Q.(;Z)HAD - lQ£;>H4D)
9A () #(1) 1(2)
+ ZZ (QWZHS + QWZHS) - Qy/4HD’
RO .. =i 5 [/m3 + A(H A DY HY(HD' H)} + W2 (H e D,H)JIY
g A :
+ Z (3 Ql(//lz)H3Dz - Q15/22)H3D2 - 2Q15/32)H3D2) + lE <Q15/22>H4D + Ql(/j‘z)H4D + lQ15/32>H4D)
LA (A1) (1 @)
- IZ (Q 255 + Q‘l/ HS) - Qy/“HD’
12
R = 19905 = ig(Qﬁj) +0o5-20)) - iﬂ (98 + 9N ) =5 (908 =39 Qi)

10
- lZQy/szDz +1i (g Q w?BH?D +ng]/2WH2 - 2 QV/ WH2 )

N 2
—ig ((g +d )Q(2>H4D + (9 - g’z)Qf,fz>H4 — 4990 2H4D) - zg (Q L + 0 ZHS)

1 () @) #2) (3) 5)
- 15 [g(_3Qy/4H2 + Qy/4H2 + Qy/4H2 + 2QW4H2 + Qu/4H2> + g/Qy/4H2:| .
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APPENDIX B: USEFUL RELATIONS (i) SU(3) identities:
One useful tool to simplify the intermediate expressions 1 1
are the Fierz transformations [49]. We made extensive use (TY2(TB)¢ = 65"3 85 + 5 (aABC + i fABCY(TC),
of the following relations:
(i) SU(2) identities: (B5)
1 1
(T4)a(TA)E = 55462 ——858¢,  (B6)

(i) = 8"(8)] + ie” (). (BI) 2 6

1

1
(T4)ad¢ =3 ((T1)a0¢ + (TH)¢8a) = d*PE(TP)a(T)e

(e)i(2")y, = 2876, — 858, (B2) = —ifABC(TB)b(TC)d, (B7)

(iii) Relations with y matrices:

2(1’1)%5;? - (1'1);1’15§ - (Tl)ﬁﬁnm = —|—i€1JK(TJ)§(TK):,'1, "y = g — io", (BS)
(B3)
eyt = ¢y + gyt — ¢yt — iy ,ys, (BI)
I\n sl 1\l n LK (L J\n (K o = —ile/”“ﬂ”a 3 (B10)
(e — (7);00 = +ie’" ()} (z%),.  (B4) 2 s
|
D*(fy*Mf) = D*(fy*Mf) = i[fo"*M(Df) — (Df)o"*Mf + e fy,MD,f]. (B11)

where M can be the identity, a Pauli matrix 7/ or a 7% matrix and the upper (lower) sign corresponds to right (left)-
handed fermions.
(iv) Lorentz scalar fermionic Fierz identities:

()2l = =3 (" 1a) @eryen), (B12)
(L ep)(@clar) = —% [(Lar#1a) (@cres)S) + Ly T 1) (2. v,e5) (1)]), (B13)
(Gaup)(Beqq) = —é (@ar"qa)(@cy,mp) = (@7 T4 qq) (icy, T up), (B14)

R ST _ _ _
(qtup)(feqar) = —;k [g (Gar"qa)(itcy,up) + (an”TAqd)(ucmTAub)],

M
- % |:6 (Zla}/ﬂflquﬁc%;ub) + (QayMTATqu)(ﬁc}/ﬂTA”b)} s (BIS)
(Far"fa)(Fprufs) = (Far* ) (Forufa),  for f=gq.lu.d.e, (B16)
(Za},ﬂflla)(zbyﬂfllb) = 2(Za},ﬂlb)(7byula) - (Zu}/ﬂla)(zbyﬂlb>’ (B17)

- - - - 1 - -
(faVﬂTAfa)(fb}/yTAfb) = _é (fa}/ﬂfa)(fbyﬂfb) + E (fayﬂfb)(fb}/yfa)’ for f =4q,u, d. (BIS)

(v) Lorentz tensor fermionic Fierz identities: In the expressions below, S represent a piece which is symmetric under
the exchange u <> v and which will not contribute to the operators for which these relations are being used, so for
simplicity we have not included their explicit forms. They can be found in Ref. [51].
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e @rer) = S + 516 (2 e,) @r"e,), (B19)
(1) 1y) = St =i (1, 71,) (L), (B20)

() @) = S+ 168 |3 @) ) + 200 P )| (21)
(@ar"qa)(@r"as) = S§ —%ie"”’”’ E (@ar’q5)(@p7°q0) + 2(6‘1a7”TAqb)(c‘1b7f"TAqa)] : (B22)
(L' 1) (Lyy* 7' 1,) X = Sfm + ero (1,721, ) (1,y° 1), (B23)
(qar"7' q2)(@pr* e qp)e"’X = S - epe E (27"t ap)(@p7°qp) + Z(QaV”TATK(]b)(C_IbV”TA%)]v (B24)
(" TAu, ) (py* TR uy) fAPC = ST — %6””’)6(%7”716”17)(%76%), (B25)
(37T q,)(Gpr* TR qy) fABC = S + %6"””(%7” T°9,)(@57°qa)- (B26)

APPENDIX C: RELEVANT FERMIONIC OPERATORS IN MS8B

For convenience and reference, in Tables II, III, IV, V, VI, VII, VIII, and IX we list the operators in M8B that contain
fermion and are in the rotation of the bosonic universal operators and, therefore, appear in Egs. (59)-(71).

TABLE 1. The dimension-eight operators in the M8B with ~ TABLE IL (Continued)
particle content w?X>H and w?>H?D? generated in universal

theories. For the operators in the first two columns their 9:y?X’H + H.c.
Hermitian conjugates are a priori independent operators. For 2) _ S
operators w?H?D? their Hermitian conjugates are not indepen- QquWZH (qﬂu’)HW/‘bW
. . . _ > K
dent operators. The subscripts p, r are weak eigenstate indices. Q(q?;)WzH K ( a, J/iuur) o HW,{,,W,,”
9:1//2X2H + H.c. QEIIM)WBH (qur)TIHW;IwBW
— 2) = 1Fv7! puv
ol (e HOA G o M
0 (1,e,) HGA, G Qs (@p0"uy ) HW,, By
1eG? ér 1 _ = v
Oy (e WL, Wik Qe (@yur) B, B
e _ ) - i v
o .. (1,e,) HW!, W Q a2 (q,u.)HB,,B"
3) K (T oo V¢! J
Qrwen (I,0"e.)T' HW;,
{ ) 9:y2X°H + H.c
o oy (@,u,) AG),GM v
. 1 7 ITgwl puv
Q(Z)G“H (qlzur)HGﬁuGA,w Q%e‘;/VBH (E ) IHWI Bﬂ
G : 2 e, )t HW!, B
Q(3)(;2H d*BC(g,T*u,)HGE, G Qéggvm-] (7 ,,,), el
213) (3,0 TAu,)HGA B, leWBH (_p T HW,
QunBH qp r up=v Q(l)2 (lp V)HB B
1 Z Frwil Wiy leB*H
Qyuri Gy, ) HW, W o (Iye.)HB,, B"
QZL'B‘H

(Table continued) (Table continued)
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TABLE 1I. (Continued)

9:w’X’H + H.c.

QLIII)GZH (q,d,)HG}, G
Qﬁl)GzH (5117dr)H GQDGAM
QSd)GZH dABC(qp ™ dr)H GEUGCM
QEJSd)GBH (Z]pa/‘”TAd,)HGﬁ,,BL’
QE;Id)WZH (‘_fpdr)HW;iv Wik
QE;?WZH (‘_fpdr)H W;Iw Wik
ijWzH eVK(g,0md,) T HW),W*
Qs (2,d,)7 HW}, B
Q((il)WBH (qur)TIHW,IwB””
QE;:I)WBH (‘_Ip od,)'H WlllﬂBg
QEIId)BZH (@,d.)HB,,B"
0y (a,d,)HB,,B"
11:w?H*D?
Qi i(1,7"D"1,)(D (D, H'H)
0% i(l,r' D1 )(HTDW wH)
Qe i(T, 72! D*1,) (DD, H e H)
Qﬁ;ﬂm i(l pV”T[DD ) (H'! D\D,H)
QS)HZD* i(e,y*D’e,) (DD, H H)
0%, i(¢,y"Dve, )(H DD, H)
0 i(3,7"D*q,) (DD, H'H)
0 i(3,7"D*q,)(H'Dy,D, H)
0 i(q,7"7'D*q,) (DD, H ' H)
e (2,77 D*q,) (H'¢' DD, H)
ol s i(ii,y"D*u )(D WH'H)
0% (" Du,) (H'D(,D,)H)
0% s i(dyy'D*d )(D H'H)
Qe i(d,r*Dd,)(H'D, D>H>

TABLE III. The dimension-eight operators in the M8B with
particle content y>H>, w>H*D and w>H?D? that are generated in
universal theories. For the operators in the first column their
Hermitian conjugates are a priori independent operators. Oper-

ators in class 13 are Hermitian. For operators Q“) where

j'2H4D’
f =u, d, e, we have added a superscript of (1) to the M8B

operators. The subscripts p, r are weak eigenstate indices.

12:w*H’ + Hec.
QzeH5 (H'H)z(zpe,H)
QquH5 (HTH)Z(C_IPM,H)
quH5 (HTH)Z(qurH)
17:y*H*D? + H.c.
Qi (D,H'D*H)(1,e,H)
QELZI)-PDZ (DﬂHTT[D”H)(l 7'H)
QZeH* (H'D,H)(l,e,D"H)
Qi (D, H DAH)(,u, )
QE;)HSDZ (D,H't'D"H)(q,u,7' H)
QE;?H»‘DZ (D,HH)(g,u,D"H)
Qo (D,H' D"H)(,d,H)
Qo> (D, H e D" H)(g,d, ' H)
Qo (H'D,H)(3,d,D"H)
13:w?H*D

1 - <>
ng,)m) i(1,y"1,)(H' D, H)(H"H)

2 . e .
QEZI)-HD i(lpyﬂrll )[(HD H)(HH) + (H"D H)(HTT]H)}

3
Qi i€l/K (1,y"<!1,)(H' D, H) (H'e* H)

o, ”K(l,,yﬂr'z,xm o H)D,(H'tXH)
() -
i i(2,7*,) (H'D,H)(H'H)
Qi i(g,7"q,)(H D WH)(H H)
) o Lol
O np i(g,r"7'q,)[(H'D,H)(H'H) + (H' D H)(H' < H)]
Qo il (3,74 q,) (HY DL ) (H o H)
0o ”K(q r't'q,)(H'v'H)D,(H't*H)
M) o -
Qnip i(#,y*u,)(H'D,H)(H'H)
Qiwip i(d,yd,)(H"D,H)(HH)
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TABLE 1V. The dimension-eight operators in the M8B with TABLE IV. (Continued)
particle content y>XH?D generated in universal theories. All
operators are either Hermitian or anti-Hermitian. Once again, the 15:(LL)XH?*D
subscripts p, r are weak eigenstate indices.

gl
QFWH2 (1,y’1,)(H'D H)W/
— 4 r 124
15:(RR)XHD () B L
1 (RRIXHD_ Qe (0,1, (' D" )W,
QEZLVHZD (epyyer)DM(H T H)W/w QEZS‘)/VHZD ( p}/yTIlr)DH(HTH)W/Iw
Q@W . (2,7"e,)D*(H' ' H)W!, o . (Iy'<'l,)D*(HTH)W.,
3 <1 <
Qi (e )(HD MW, Ol ('t (D H) W,
4) _ Ll ~ 8
in)WH b (epy”e,)(H‘D‘ H)W!, 0% Ly e'1,)(H D H)W!,
S U u T 9 1JK 1 + J K
Qf;szD Efpyberiﬁ Ez_}_g;guu Q%‘()/)V)HZD €“K(l 7”1'11 )D”(f]T JH)WK
Q 2BH2D epl Cr HY Qz 2p (l YDT l )D (H H)W
1
o) ] - an’°
Qpp (epVDer)(H D H)B”,, Qpwrep €”K( l,)(HTD H)
4) _ (12
0% rn (@) (H' D'H)B, ) o MK (L y el 1) (HTD " HYW
| _
QE‘QGHZ (,y*TAu,)D*(H'H)G4, QEJI)SHZD (Ly*<'l,)D*(H't'H)B,,
(2) = JUTA u i A v.1
Q 2GH2D (ij/ T I/l,)D (H H)G/lb Q2 5 (l YT l )D”( H) w
u I*BH*D
3
0\ (@, T ) (HD H)GL, @ity (<) (1 D" H)B,,
) ) =
QuzGHzD ( 177/DTA )(H D H)GA QIZBHZD ( p}/ Tll )(HTD ) )11
Ql(dlz)"VHzD (#,y*u,)D*(H ' H)W], QS;I'IZD (1,y°1,)D*(H'H)B,,
Qu%)WHZD (it,y*u,)D*(H't' H)WL, o (1,y*1,)D*(H'H)B,,
3 < “<u
Q(Z)WHZD (ﬁpVD”r)(HTD H)WI QEZ;HZD (7p7”lr)(H+D} H)Bm
(4) _ In - Mg ~
QuZWHZD (”pV”“r)(HTDV H)W;Iw Q123H2D (lp}’blr)(H'DMH)Buu
Q(lz)BHZD (#,y"u,)D*(H"H)B,,
u -
0o (@7 u) DA (H )R 15:(LL)XHD
3 < _ -
oY (@,7"u,) (HTD”H)BW Q;?GHED (G,7"T*q,)D"(H H)Gy,
4) _ 6 ~ A y ~A
QE,IZ)BHD (7" A)(H D' HT)B ) 0 (@,r*Tq,)D"(H'H)Gy,
d,y*T%d,)D¥(H'H)G ™ _ T
dezGHzD (_ ¥ 3 IDA( - H) ) QqZGH D (CIpVDTAQr)(HTD H)G//:}u
Q(z) 2 (dp ‘T dr)D”(H )G Q(B) A T<—>;¢ ~A
EIS)GH _ ou ¢*GH*D (qpy T qr)(H D H)G/u/
ij)GHzD (d,y*TAd,)(H'D H)Gj, Q(IZ)W .. (2,7°q,)D*(H' ' H)W},
- U ~ " ~
Qiaw (@7 D MG o (a,ra,) D" (< H)W,
0 12 ) ( pj/”d )D”(H'T H)W 3) ~ R/
Q(dz)WH D (— )Dﬂ(H T[H)W’ quWHZD (qpyvqr)(H’-D H)W/Iu/
LWHD ) . (@7, (H'D" H)W,
Qrwrp (d,y d,)(H' D "H)W] 0¥ (g,7"t'q,)D* (H'H)W!
Q(4) ( vd )(H D H) ¢*WH*D r " ~/w
e <-%d> s, O @9
Qprp dpy @) <u
Q(z) (_ )D ( ) » QqZWHzD (q 7DTICIr)(HTD H)W/{w
*BH2D (8) ou
@) - Q2w (@pr't'q, )(HTD H)W,
0, HTD H)B q"WH"D H
74)3H2D (dpy )( ) v Q(a)WHZD 61 (qpy T q, )D”(HTTJH)W/ﬁ
Qrpmp (d 7 )(HTD H) G i i
" Qe e"(g,req, ) D! (H' e H) W,
— 11 <>Ju
15:(LL)XH2D 0 ien e (g, q,)(H'D ’H)WK
- N (12)
nglzsz (lllyylr)Dﬂ(H'TlH)W;Iw QqZWHZD €”K(‘I ‘7l )(HTD H)WK
QIZWHZD (zpyylr)Dﬂ(H+TIH)W{w Q(qlzl?HzD (qPJ/DT e )D (HJ IH)B
(Table continued) (Table continued)
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TABLE 1V. (Continued)

15:(LL)XH?*D

a,r't'q,)D*(H'7'H)B,,
r)(HTD H)
)(H'D"H)B,
)DH(
)DH(
)

)

2,7'7'q
a,r'7'q,
474,
474,
(H
(H

7%

(q

(g

(7
0 (g H' H)

(g H'H)B,

(@pra: H'D'H)

(@,7°q,)(H'D"H)B

v

TABLE V. The dimension-eight operators in the M8B with
particle content w?X>D generated in universal theories. All
operators are anti-Hermitian. As before, the subscripts p, r are
weak eigenstate indices.

14:y2X2D
QEQ‘)VZD K1, y”TID L)W, W,{(”
Oy ”K( D 1) (W, WE? W, WE?)
Qe €K @, D 4, W, W
0 p (g, TAD" 4,)GE,GS
Qwen €K@, D 4, (W, WE W, W)
Qe 13, TD 4,) (GG + G GET)
0%, aBC (ﬁpy”TAD u,)GE G
QEtSz)GzD fABC(upy”TAD u,)(G5, G+ GEI,GC’))
Qp A3, D' d,)GE, G
Qn 4@, TAD"d,)(GE, G + GB,GL)
14:y*X’D
Qevan (1Dl ><B,,pw’f’ B, W)
3 ey >(Bﬂ,) - Bb,,VvZf)
QEIIZ)WBD qp}’”T D CIr)( up - BD/)WIIf)
0\ip (@' D q,><B,, —Bﬂff)
0\ Gap (a,7"T*D"q,)(B,,G. - B,,GY’)
Q. onp (@,7'T*D 4,)(B,, G ~ B, Gi)
Ql(lll)GBD (T4 D u,)(B,, G, = B,,Gi")
QSZ)GBD ('4 }’”TAD u )(By Ap - B, Gﬁp)
ol ., (d,7"T"D"d,)(B,, G - B,,G)
Qnp (d,/*T*D"d,)(B,, G ~ B,,G\’)

TABLE VI. The dimension-eight operators in the M8B with
particle content yw*H? generated in universal theories. All
operators are either Hermitian or anti-Hermitian. For operators
Q;L)Hz, where f = u, d, e; and for QSLZ w and Q(Bizz i We have
added a superscript of (1) to the M8B operators. The subscripts p,
r, s, t are weak eigenstate indices.

18:(LL)(LL)H?

oL, (@1 Ly, ) (HYH)

0%, (1,71 Loy 1) (H e )

0l (@p7"4,)(@s7q,) (H'H)

0% (@74 ) (@57, a,) (H''H)

o @7 q,) (@77 ¢.)(H'H)

oL (Tpr"1)(@57,9,) (H'H)

Qi (171, (@sr,q,) (H'7' H)

o (Lpr"e'1,)(@s7,7 q,) (HH)

04 (Lyr"1,) (@77 q,) (H'<'H)
18: (RR)(RR)H>

0l (epre,) (25 e,) (HTH)

ol (@0 ) (I )

o (@7, @1, (HH)

ol .. (p1"e,) (yy,u,) (H H)

o) (2pr"e,)(dyy,d,)(H'H)

0l (ﬁpy”ur)(d 7ud,) (H'H)

0% (7" T4u,)(dyy, Td,) (H'H)
18:(LL)(RR)H?

04, (I,7"1,)(2s7,e,) (H H)

0%, (Lr'e'l) (2,1, (H'T'H)

0L (Tpr"1,) gy, ) (HTH)

0%, .. Loyl (ayy,u,) (H'T H)

o, <py '

02, . (1,211 oy, d,) (HT O H)

0l (@,7"4,)(2sr,e,) (H'H)

0., (@77 a,)(2sr,e,) (H'e'H)

0l (@pr"q,)(ayy,,)(H'H)

0", (@pr*e'q,)(agy,u,)(H'7'H)

0 (@pr" T q,) (57, T u,) (H'H)

(Table continued)
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TABLE V1. (Continued) TABLE VII. (Continued)
18:(LL)(RR)H? 19:(LL)(LL)X
o, (@, T q,) (s, Thu ) (H'<'H) %) (@pr'e'q,) (@5 T 4,) G,
t = = vl I
0l (@,r*q,)(dy,d,)(H'H) ol @pr*a,) (@'t a,) W),
0 (@,r'7'q,)(dyy,d,)(H''H) o, (@p7"q,) (@'t q,)Wh,
0 (@,r"T"q,)(dsy, TAd,)(H'H) o, (@7 T"q,) @5y T q,) W},
o (@, T q,)(dsy, T ) (H'e'H) - ol (@pr"Tq,)(a,r T q,) W,
E— oL, (L,r1,)(asr* T q,) G,
18:(LR)(LR)H® + H.c. Lo §
o, (Lpr"1,)(asr" T 4,) G
() Gpu,)en(gd,)(H'H . _
quude (qpu,)e k(qs Z)( ) nglq)ZW (lpy”lr)(qsyyflqt)wllw
2 & kd V(HT H - _ -
Q puare (@pu,)(7'€) (@5ely) (H e H) ol Ly 1)(a5r T a) Wi
() [/ H'H 7
Qrequre (rer)ejul@u)(HTH) o, (@re'L) @7 a)Wh,
(2) e 1. Hit H _
Qg (Ipe,)('€) e (qhu,)( ) Qgiizw (L, 7"2'1) (@57 q,) W,
) 1,e,H)(l,e,H _
Qe Uper ) lecH) o, KLyl l,) (@ T a0 Wi,
(I e, H)(a,d,H)
Cregarr rr or., K (Tt L) (@ T a0 Wi,
QE]SZ)dZHZ (Z]pdrH) (QSdIH) 19: (RR)(RR)X
(1) " yTA )
E—— 0 (" u, ) (isy" T u,
18:(LR)(RL)H? + H.c. 0 o -
, 02 (8,77 u,) (7 T, G
7 t
Q\earr? (f’er)(dsqt/)(H H) ol (d,y*d,)(dy*TAd,) G,
0 te)e!(da)(H'H)  po (d,7"d,)(d,7 T d,) G
Q;j;qu (7perH)(1:ITﬁ5qt) QSLZG (e r*e,) (i T u,) Gy,
Qf]sz)ude (QI)drH)(HTﬁsqt) QE)%LZG (épyﬂer)( sV TA T) ;3
ol (e, TAd,) Gl
0%, (2,r"e,)(dyy* T"d,) G},
0l (@, 7" u,) (dy* TAd,) G,
0%, (@, 7"u,)(d,y' Td,) G
3) HTA vd
TABLE VII. The dimension-eight operators in the M8B with Qe (@7 u,)(dsy )G
partic.l}e1 cor}l;ent l(/f‘X generaFeSI in u.n.iversla}iltheoges..All operators Qz(;)dzc (ﬁp}/MTAur)( s}’”d)
are either Hermitian or anti-Hermitian. 1he subscripts p, r, s, 5) ABC (= A VB c
are weak eigenstate indices. Qizde A U AT d’)G’“’
= = (6) ABC HTA Y a“ vTBg GCD
19-(LL)(LL)X 0" Sy Thu,) (diy* T7d,) Gy,
o), L) sy e 1) Wi 19:(LL)(RR)X
) 1 1 YA 72 L)W -
O Hor et o, (@,r'L) @7 e) W,
q,7" r _v 'T G v 7
Qq4G (CI,,?/ q )(q 4 qi) 2 QEZZE,W (lp}’”f l )( sy e )WI
Q6 @r"a) @1 T4 G o) (Tp"1,) (By T u,) G
3) —ul — Al A N . )
o', (@'t q,)(q,r"T"7'q,)G o?, (Ly#1,) (g T u,) G
(Table continued) (Table continued)
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TABLE VII. (Continued)

TABLE VIIIL.

19:(LL)(RR)X

The dimension-eight operators in the M8B with
particle content w*HD generated in universal theories. For all

operators their Hermitian conjugates are a priori independent

operators. The subscripts p, r, s, t are weak eigenstate indices.

(1) T ol = U 1
QIZMZW (fpy T lr)(uvy MY)W/U/ 20W4HD + H .
Q;zzl)tzw (lpV”T[lr)(ﬁsyyut)W;lw ( p )[(Z ) ]
Q13eHD 2 st
19:(LL)(RR)X O i(T,77'1,)[(I,e,)'D,H)
5 - e [,Dye,)H]
(1) u vA A Q1g3 l(el,)/ € )[( €
Orc Upr*tn) iy T )G 0 i@,1*9,) (D, H]
7 T UTA 7\ A Qle 2HD 4 r
o) (I,r*1,)(dy TAd,) G, o
PPG P a i(g,r"7'q,)[(Iye,)7' D, H]
(1) IR Y = v I QlequD p r_ s€; 0
O (Lpy'e'l)(dgy d, )W, )
Ez‘;W e QWHD i(pr*u,)|(lye;)D,H]
ledZW (lpy”T lr)(dxy dt)W/w Q(l) l(a yﬂd )[(76,)1) H]
_ A _ A led®HD P $ H
Q;L)EZG (@,r"T"q,)(2,r"e,)Gy,
Q(i)zc (qpyﬂTA ey el)le 2031//4HD + H.c.
q-e ~
oY, (@,7"7'q,) @1 e )W), O i i(T,r"1,)[(@,u,)D, )
qe? - ~ .
Q(%)zw (@, r't'q,)(e,r e ) QES;MHD l(lpyﬂrll’)[(QS'M’)T,D”H]
q-e (1) (5 -
Q(l) (q Yﬂqr)(ﬁs}’DTAMf)GAy QezquHD z(epy er)[(qs“t)DﬂH]
’ ' o (@,7"q,)[(@,u;) D, ]
(2) = = LUTA A Qq3uHD p r sE) =
0 (@pr'q,) (" T u,) Gy, i} i}
! ’ 0% i(@,r"7'q,)(q,u,)7' D, H]
(3) G,7"TAq,) iy’ u,)GA qu o B
quuzG (q,,}’ 9 )( 7 r) g QE]IL¢)3HD l(upyﬂur)[(qsur)DﬂH]
(4) - /,(TA = U GA - _
quuzG (@pr T, ) (i t,) G Q;lu)dzHD l(dp?’”dr)[(Q.s”r)DﬂH]
0% FAPNapr T q,) (ar TP u,) G,
~ 4
0% @ T g, (s TP ) G 20w b+ e
qu _
1 . _
ol @pre'q,)(isy u) Wi, Ot yann iUpr1,)1(@sd) D, H)
q’u 3) (T -~ 1
Q(Z) ( },/41. ﬂ]r)(ﬁﬂ/”uz)wly lequD l(lpy T lr)[(‘]sdt)T D/tH]
ey o W i(2,7"e,)[(q,d,)D,H]
o) (@,r"q,)(dsy* Td,)G;, Ceqann ’ Y
e oW i(@,7"q,)[(q,d,)D,H
0p: (@)@ T4, b (@,'4'4,)((2,4)5'D, ]
7 EG i(g,r"'q,)[(q,d,)z
@ (3,7"Tq,)(dsy"d,)G;, qudHD DN '
O r)\4s Q;u)deD i@,y u,)((g,d,)D,H]
4 A . _
0 (@,7"T"q,)(dsy"d,) G 0 i(d,7"d,)|(q,d,)D,H)
Qﬁf)d o A (g, T q,) (dsrbTBd,)GEu
0'%s IY(q,r T q,)(dyy TP d,) G,
0Ly (@pr"e'a,)(dr*d )Wy,
0%, (@,7r'7'q,)(dsy d,)W,,
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TABLE IX. The dimension-eight operators in the M8B with
particle content w*HD generated in universal theories. All
operators are either Hermitian or anti-Hermitian. For the operator

QS)DZ’ we have added a superscript of (1) to the M8B operator.

The subscripts p, r, s, t are weak eigenstate indices.

21:(LL)(LL)D?

o\, D*(1,y"1,)D, (Ly,1,)
0l D*(q,7"4,)D, (@57,4:)
ol D*(q,r"7'q,)D,(qs7,7'q:)
oy, D*(1,7"1,)D,(4,7,4:)
op. D*(1,y"<'1,)D, (g7, q,)

21:(LR)(LR)D* + H.c.

oV D,(gpu,)e; D" (gkd,)

q*udD? .
D,(Ipe,)e;D¥ (gyu,)

QlequDZ

21:(RR)(RR)D?

o D (2,1"e,)D,(E 7,

o\, D¥(it,y*u,)D, (i, u,)

(Table continued)

TABLE IX. (Continued)

21:(RR)(RR)D?

oL, D*(d,y*d,)D,(dyy,d,)
o), . D¥(2,7"e,)D, (it ,1,)
QiizlzDz Dy(épyﬂer) (d y}l )
thlz)dzDz Dy(ﬁpyﬂu) 1/( s}//,t )
0% D*(@t,y"T"u,)D,(d,y, T d,)
21:(LR)(RL)D* +H.c
QE;;dD Dﬂ(lper)ejkD (diq,)
21:(LL)(RR)D?
QL) D*(1,1"1,)D,(2,y,e,)
ngllizDz D”(lpy”l,)DD(ﬁ‘y”u[)
oJ. D*(1,1"1,)D,(d,7,d,)
QE,IZLZD D*(q,r"q,)D,(e7,e,)
QE}L:DZ D*(q,r"q,)D,(ity,u,)
0. D*(q,7"T"q,)D,(itsy, T"u,)
0o D*(q,1"q,)D,(d,7,d))
0 D*(q,y"T"q,)D,(d,y,T"d,)
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