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To continue from our previous work [Phys. Rev. D 109, 073007 (2024)], we derive the full Standard
Model prediction of the most general free neutron differential decay rate with all massive particles
(neutron, proton, and electron) polarized, including the O(1/my) recoil corrections and O(a/x) radiative
corrections. For the latter we adopt the newly developed pseudoneutrino formalism which is compatible to
realistic experimental setups, in which neutrinos and photons are not detected. We also provide readily
executable Mathematica notebooks to evaluate these corrections.
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I. INTRODUCTION

This paper is a direct sequel to our previous work, Ref. [1].
In that paper, we studied for the first time consequences to the
free neutron decay assuming that the polarization of the
outcoming proton could be measured. This gives rise to a
very rich decay correlation structure which can be used as a
powerful tool not only to probe new physics beyond the
Standard Model (BSM), but also to test the consistency of the
effective field theory (EFT) description of BSM physics
(which assumes new degrees of freedoms (DOFs) are heavy)
and to search for signals of light new DOFs. This effort
was partially motivated by the recent discrepancy in the
determination of the axial-to-vector ratio A from the electron-
neutrino correlation a [2,3] and the beta asymmetry param-
eter A [4], which is difficult to be explained within the
EFT framework.

To make full use of this new formalism, one requires a
precise Standard Model (SM) prediction of the new
correlation coefficients in order to isolate the small BSM
effects from experimental measurements. In Ref. [1] we
studied only the tree-level SM contributions, accompanied
by the Fermi function [5] and the virtual radiative correc-
tions. In this paper we complete the task by including all the
SM higher-order corrections up to 107, which cover the
full O(1/my) recoil corrections and the O(a/x) radiative
corrections. While the former is straightforward, the latter
is more complicated as its depends on the actual exper-
imental setup. In particular, it was recently pointed out [6]
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that the “conventional” treatment of the so-called outer
radiative corrections [7-9] is incompatible to actual experi-
ments as it depends on the neutrino momentum p, (the
“neutrino” formalism) which is never actually measured, and
cannot be deduced directly from the electron and proton
momenta when an extra (undetected) photon is emitted. To
circumvent this problem, the differential decay rate must be
expressed in terms of fully measurable quantities; possible
choices are {p,., E,, } (the “recoil” formalism) [6,10-16] and
{Pe,Q,} (the “pseudoneutrino” formalism) [17], where Q]
is the solid angle of the “pseudoneutrino” momentum
p=-p,—D »- The applicability of the first method is
more restrictive because half of the angular observables are
integrated out, which make it difficult to describe many spin-
dependent correlations (e.g., the neutrino asymmetry param-
eter B). The pseudoneutrino formalism, on the other hand, is
capable to describe all correlations of interest and thus will be
adopted in this work.

The content of this work is arranged as follows. In Sec. II,
I1I we lay out the theory framework for the O(1/my) recoil
corrections and O(a/x) radiative corrections, respectively;
the full SM expression including such corrections are
presented in Sec. IV. In Sec. V we compare our results to
all existing results of recoil and radiative corrections (to the
best of our knowledge) that do not involve the proton
polarization. A brief summary is provided in Sec. VL
Some technical details in this work, as well as some basic
instructions to utilize the supplemented Mathematica note-
books, are given in the Appendices.

II. FRAMEWORK FOR RECOIL CORRECTIONS

In this section we describe the theory foundation for the
3-body final state contribution [n(p,) = p(p,) + e(p.) +
o(p,)] to the neutron differential decay rate, that allows us
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to incorporate the O(1/my) recoil corrections. Our deri-

vation follows closely to that in Ref. [18]. We start from the

3-body decay rate formula:

1 &p,  d&p,  Pp,
(27)*2E, (27)*2E, (27)*2E,

X (pn=Pp—Pe— P)IM;|* = /dH3|M3

;= (27)*6™

EEC

where M3 is the 3-body decay amplitude. Using the
spatial delta function to integrate out p,, we can simplify
the 3-body phase space as

1 E,
dl; = —— [ dQ,dQ dE
/ 3 16(2n)5mn/ e D/ne ePe

x/dE E,
ymn_Ee+peC

Em_Ee
X‘S(Ev‘m)v (2)

where E,, = (m3 — m% + m2)/(2m,,) is the exact electron

end-point energy, p. = |p,.|, and ¢ = p, - p, is the cosine
of the angle between the electron and neutrino momenta.
Notice that the energy delta function does not impose any
constraint to the solid angles Q,, Q,, since E, remains
positive for all values of c.

The recoil corrections come from both the squared
amplitude and the phase space, and let us start with the
former. The SM 3-body amplitude reads

-2V HP (3)

Let us explain the notations. First, Gy = GV .9y, where
Gr = 1.1663788(6) x 107 GeV~2 is the Fermi coupling
constant measured from muon decay [19], V, is the upper
left component of the Cabibbo-Kobayashi-Maskawa
matrix [20,21], and gy, is the neutron vector coupling constant
(more explanations later); L, = it,y,(1 —ys)v, and H, =
i, 1", u, are the matrix elements of the leptonic and hadronic
charged weak current respectively, with the nucleon vertex
function defined as

i
T4 (pp. pn) = 7*(1 + Ays) = W(ﬂv = 1)o"(pn—1rp),
N

2mpyA
- mlzv (Pu = Pp)'7s (4)

where A = g, /gy < 0 is the axial-to-vector coupling ratio
(more explanations later), uy =xy +1=p, —u, ~4.7059
is the weak magnetic moment, my = (m,, +m,)/2 is the
averaged nucleon mass, and m, is the pion mass. The
pseudoscalar coupling is related to the axial coupling through

the partially conserved axial current (PCAC) relation. Notice
that we have dropped the momentum-dependence of the
nucleon form factors in the expression above, because its
effect scales as E2/A> < 107, where A is the relevant
hadronic mass scale in the form factors. Also, we neglect the
so-called “second-class currents”, namely the induced-scalar
and induced-tensor form factors, as they are suppressed
simultaneously by recoil and isospin symmetry breaking.
Another important point is that, we have defined the vector
and axial couplings above to include the “inner” radiative
corrections:

g =01 +4A%).,  gG=an0+4a3). (5

where §y 4 are the pure quantum chromodynamics
(QCD)-induced vector and axial couplings; in particular,
gy = 1 barring a possibly relevant strong isospin symmetry
breaking correction that can be studied using lattice
QCD [22]. Tremendous progress is observed in recent years
to the inner corrections: see, e.g., Refs. [23-28] for AX and
Refs. [27,29-31] for A%.

An efficient way to keep track of the recoil corrections
from the squared amplitude is to factor out 4m,m, from
|M;]| and define a “quantum mechanical” squared ampli-
tude (which corresponds to properly normalized external

states, (¢|¢p) = 1):

1 G?
2 2 _ 2V
= L, H", 6
|M; oM I (Ms|* = 5 (6)
where'
ZL Ly = Tr[Z(Be + me )y, (1 = vs) By, (1 —7s)]
1
= H H
o Amm, M
1 —
:4m P Tr[Zp(ﬁp +mp)r‘ﬂ2n(ﬂﬂ +mn)rv]’ (7)
nffp

with T, = y°I'} °. In this work we assume n, p, and e are all
polarized, which introduce three spin projection operators

Ty =5 (1+7s58p), ¢=n,p,e, (8)

1
2

with the spin vector sg5 satisfying s - py = 0, sé = 0. In the
neutron’s rest frame they take the following expressions

"The H,, here differs from that in Ref. [17] by a factor
1/(4m,m, )
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sn=1(0,58,)
m, m,(E, +m,)
~ 5p'§p A
N< mpy ’Sp>
ﬁe'g - ﬁe'aﬁe
sh = .0+ ), 9
= (Pl o e e ®)

with §,,, §, and 6 the unit polarization vector of n, p and e in
their respective rest frame.
One may now expand the squared amplitude as

|M3|6M = EeEu{F(O)(l_ie’Qv)

1 -
+—F<1><pe,Ey,szy>+-~}. (10)
my

F©) is the result in the nonrecoil limit, while F(!) contains
the leading recoil correction to the squared amplitude. The
expansion is most easily doable by first expressing the
proton momentum as

pp:pn_pe_py:<mn_Ee_Ew_ﬁe_ﬁv)’ (11)
J

1
F =
371287

e

(3Ee - Em - 3pec)F(0)(ﬁe7QI/) + F<1)(ﬁe’Em

and  writing m, = my +06ém/2, m,=my—0om/2,
with ém = m, —m,. After that, we rescale the hadron
masses as’

my = myfe, mg - mg/e, (12)

and expand |M3|6M to O(e) to get Eq. (10). It is useful to
note that F(©) depend only on p,, Q, and not on E,. This is
because in the nonrecoil limit the neutrino momentum
appears linearly (and only linearly) through the lepton
tensor as p,. Since py = E,(1, p,), so after scaling out E,,
the rest must be E, -independent.

We plug Eq. (10) back into Eq. (2) and perform the
following expansion [18]

2
m,E;

my, _Ee +pec my

E,-E, —
(Em_Ee>2{1+3 e m 3peC}

(13)

which encodes the leading recoil corrections from
the phase space. That gives the following master
formula

Eﬂ’
/ 49,40, / dE,p.E.(E, —E,)

x {F”’(z?e,szy) +

that accounts for the first-order recoil effects in the
3-body decay from both the phase space and the
squared amplitude. Notice that we have replaced E, —
E, —E, in F') since this term is already suppressed by
1/my.

We include, as a Supplemental Material [32], a
Mathematica notebook recoil.nb to demonstrate explicitly
all the steps above.

III. FRAMEWORK FOR RADIATIVE
CORRECTIONS

Next we study the O(a/z) radiative corrections,
which include both one-loop and bremsstrahlung cor-
rections; the two have to be added to ensure the
infrared-finiteness of the final result. The former has
already been studied in Ref. [1] and here we only need
to compute the bremsstrahlung contribution which con-
cerns the 4-body decay n(p,)— p(p,)+e(p,)+

v(py) +v(k).

_EE’Q”>+...} (14)

my

We start from 4-body decay rate formula

_— 1/ &p, dp, dp, Ik
* 7 2m, | (2)2E, (2%)2E, (27)32E, (27)2E,

X (Zﬂ)45(4)(pn —Pp —Pe—Pv— k)|M4|2

_ /dn4|M4|2. (15)

As advertised in the Introduction, we adopt the pseudo-
neutrino formalism [17] by defining an experimentally
measurable pseudoneutrino momentum

21

Py=pu—Pp— .= (E,. D). (16)

In 3-body decay, p, and p, are equivalent so nothing in
Sec. II has to be changed. On the other hand, the 4-body

*Although m, < my, we have checked that the contribution
from the pseudoscalar form factor scales as E2/m2 < 1074,
which can be dropped given our precision goal.
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phase space takes the following form in the nonrecoil limit

1 Ey
Ay —— [ dQ,dQ, dE
/ 4 5127r6m,,mp/ e v /np ePe

0 (27)32E, (27)*2E,

(277)45 (pzx Py — k)’ (17)

where p, =|p,|, and notice that p, # E, in general.
Rigorously speaking, the upper limit of £, should be taken
as the “zeroth-order” electron end-point energy EY, = m,, —
m,, in the nonrecoil limit, but since the 4-body contribution
itself is already O(a/rm)-suppressed, one may replace
EY — E,, to be consistent with the 3-body formula, which
results only in a O(a/z x E,/my) correction that can be
neglected. With the same reason, one simply takes E| ~
E,, — E, everywhere in the O(a/z) contribution.

The 4-body amplitude, after neglecting recoil correc-
tions, takes the following form
|

Gye (p-& p,-€
- - H, L*
Max="p (p k p.- k) g
G kte? — ket — jetr P e
Al )H,L,
= My + My, (18)

where we may drop the weak magnetism and pseudoscalar

form factors in H, as they are recoil-suppressed. Also, we

take p,, p, — p in the 4-body amplitude with p* = m%,.

Following Ref. [17], we split the squared amplitude as

1
(Ml = 4m2, My = Mgy + 2Re{ My Miy}oum
N

+ |M4II|6M7 (19)

where

G’ (p _ pe )
Ml = — ; < - ek> H, L = | My|gaa + [Matldms

p-k p.-

. P Pe
Zme{M4IM4II}QM = G%/ezi){e{ (p ko Pek
G} e? va
|M4II|2QM = _W{kﬂg -

Notice that, in the first equation we have substituted p, =
p,—kin L,, and the “a” and “b” term correspond to
taking the p, and —k piece, respectively.

Among various terms in the bremsstrahlung con-
tribution, only [My[gy, is infrared-divergent upon inte-
grating over p,, k and p,, but such integrals can be
analytically performed. It combines with the virtual
radiative corrections to yield an infrared-finite result
(see Ref. [17] for details). For the remaining, “regular”
piece

|M4I|QM p T 2R My My tom + I Manlgu
(21)

dr — peEe(Em - Ee)z
dE,dQ,dQ, ) o 1287°

|M4|QM reg —

{1+95M+

kg — ko gP® + jerore k
H, L*
) a ( 2]7 e’ k ) " 0}

kl’gﬂa —

l.G”IJyak]/}{kpgaa ko—g/)a + lefmﬁak(s} ,W’ : (20)

I

the p,- and k-integral can be done analytically (see
Appendix A, B for details), and the remaining one-fold
integration over p, is most conveniently carried out
numerically. The full steps to obtain the contribution from
|/\/l4|6M‘reg are provided in a second supplemented
Mathematica notebook, bremreg.nb.

IV. FULL EXPRESSION

Now we are ready to write down the full SM prediction
of the differential rate of polarized neutron decaying to
polarized p and e, including O(a/z) and O(1/my)
corrections. It is given in terms of the pseudoneutrino
formalism as follows:

F(E,) (1 + ;&m(Ee, c’)) G5 (1 +34%)
T

1 re;
1 + 3/12 |: Grecoil +— o gbrim:| } (22)
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Let us explain all the entries at the right-hand side of Eq. (22)
(1) F(E,) is the well-known Fermi function [5].

(2) 64n(E,, ") is the “universal” part of the outer radiative corrections (loop + bremsstrahlung) in the pseudoneutrino
formalism, first defined in Ref. [17]

4(E, - E,)*\ (1 3. my 11
Sun(E, ') = =2 (4 —1n(’"—2€)> <ﬁtanh‘1ﬁ— 1) +§1n@ =

my m§_4
1=p\ 1.. [ 28 1. /=28 2. (B(c+1)
”l“<1+ﬂ>_/‘3“2(1+ﬂ> _BL12<1—/3> 7”2( Y )
+ %Liz <’B(l%_ﬂl)) - % (tanh~!)? + 2(1 + B)tanh™! B, (23)

with ¢/ =cos@,, = p, - P, = P.- P/ (PeP)), p=p./E, and = |ﬁ| Notice that, unlike traditional Sirlin’s
function, this function is angle-dependent.

(3) gsm resembles the SM-contribution to the tree-level correlations gyrw + ggr + s, T 9s, s, that appear in Ref. [1]

-

gsm = apc’ + 3, - [AB+ Bpl] + G- {GE+H}3L+KE iem ﬁc’+LﬁxﬁL}
e

e

+o- |:N§n+Q Pe gn B+R§nxﬁ:|+T6 ﬂsn Pu
E€+m€
+3, [AB+BP) +5- N5, + 0—Le 3, - f+Rs, x| +T563, pl,
E,+m,

: (24)

with {a,A,B,G,H,K,L,N,Q,R} from gyrw, T from ggg, {A,B,N, O.R. T} from 9s,» and the remainders from
s, 5, There are a few modifications: First, p, is replaced by p, = p./p, in accordance to the pseudoneutrino

formalism. Second, the correlation coefficients C = a, ..., Z in ggy are renormalized by the (nonuniversal) analytic
part of the outer radiative corrections (loop + bremsstrahlung):

C(E) = Co 1+ 55601 (E) ) + 55502 (E) (25)

Here, C, is the zeroth-order SM contribution, while 6511,1 and 5;3“.2 are obtained by regrouping the separate pieces that
appeared in Refs. [1,1 70

1

01 (E) = 04(E) = 64(E) + Aybia(EL). 85,2(E) = 150 (Ee).

(26)

where A, = 1(0) if the correlation structure involves (does not involve) p, . The analytic expressions of Cy, 5(;“_1 and
&€, , are provided in Table I-IL.

3A special case: If Cy = 0, then we may set 5§n, . = 0 for simplicity.
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(4) grecon Tepresents the O(1/my) recoil corrections, from both the squared amplitude and the phase space

Grecoil = 1 + 125,

'E"—r3§n'ptlz+r43'ﬁ+rSE'ﬁL+r63'§n+r7§n'E Pe
Ee+me
Y R N . . G- D Y
+r86'ﬁsn'pv+r9sp'/}+r10sp'pv+r110'sp+r12sp'ﬂ7E n + 7136 - ﬁsp'Py

-

where the analytic expressions of the functions

rn(Ee’ Cl) =

p+r15s ﬂ+r16§n'§p5'ﬁL+r175'§p§n'ﬁv+r186'§n§p'[,\71,1
§ G Angp'ﬂ+r21§p ﬁllzgn ﬁ+r22§n'ﬁllz“§p'ﬂ
a7 O Do 2 0P A
p:/sn'ﬂE +m —|—I"24Sn py 1)’ﬁﬁ+r255 pLG pu+r265p pr pu
e e
o L - s > R G- p
S PUSy Pl A g8, DS, - PLG - A 1298, - B3, - A T308, ﬂs ﬂﬁ (27)
m
Foa(Ee) + rap(Ee) T=+ rye(E )P + rya(E)BPe?, = 1,....30 (28)
e

are derived in our supplemented Mathematica notebook recoil.nb and are summarized in Table III-IV. It is
worthwhile to mention that, in the zeroth-order expression, an extra factor of ¢’ defines a new correlation structure
[e.g., G and K in Eq. (24)], but we do not do the so to g, Otherwise Eq. (27) would be too long. Therefore, we
classify different structures in g only by their spin correlations. The same is for g5 = below.

TABLE I. Coefficients for the analytic part of the outer radiative corrections.

C CO 5§n 1 an,2

a = A7) tanh '+ 4(1 — In4) (Stanh ' — 1) 0

A —2A(A+1) 2(1-p%) tanh~! y; 0

14322 -5 @

B % 4(1 —=In4)(jtanh='  — 1) 0

G -1 2(1 ;/’ tanh~! B 0

H Ll —2ftanh™! § + 4(1 = In4)(jtanh™' f — 1) 0

K £21 2Bt — B)tanh™! f + 4(1 — In4)(Stanh™!§ — 1) 0

L 0 0 _ 2a(A2=1)m,
(1+32%)p.

N 2f<+*;§ Jme —2ptanh™! g 0

0 el 2(F<e — ) tanh~! 0

R 0 0 472+ 1)m,

(1-%—3/12)pe
r A 225 tanh=! § + 4(1 — Ind) (b tanh™ § — 1) 0
A 211 (/13_/11) 204 /}ﬁ ) tanh™! p 0
s

B =2 4(1-In4)(Stanh™' - 1) 0

N 2i-hm, —2ftanh™! B 0

0 =200 2(Ete — B tanh~! 0

R 0 0 _4mA(=1)m,

N (1+32)p.

T el 228 tanh=!  + 4(1 — Ind) (b tanh™ 1) 0
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TABLE II. (Cont.) Coefficients for the analytic part of the outer radiative corrections.
c Co 5acnl 5§n2
X -2 0 0
~ 14322
a i A tanh~! §+ 4(1 — In4)(Stanh™! f— 1) 0
G 1132 25 ﬁ tanh~™! 0
H Lo e —2ptanh™! § + 4(1 —In4)(ztanh™" 1) 0
K 2= E,+m,
K ey 2(% — f3) tanh™' /)’+4(1—1n4)( tanh™! g — 1) 0
i 0 0 _2z(2=1)m,
(1+322)p.
24(A=1) m, — -1 — 1 -1p_
A -TGrE 2ftanh™! g+ 4(1 1n4)(ﬁtanh p—1)
20(2+1) m, — -1 — 1 -1p5_
af - 1(&2)5 2ptanh™" f + 4(1 — In4)(ztanh™" f — 1) 0
N L 258 ! o+ 4(1 — Ind) (Sanh" f — 1) 0
f S 225 tanh~! 4 4(1 = In4) (S tanh™ 1) 0
O 0 0 4zA(A+1)m,
(1+327)p,
o) 0 0 4rA(A-1)m,
) (1+32)p,
Z _ng;p 2(Bte — B) tanh ™! f+ 4(1 — In4)(J tanh ™' f— 1) 0
z —— 2 (Beite o, — f)tanh™" f+ 4(1 — In4)(jtanh™' f — 1) 0
TABLE III. ~ The recoil coefficients r,,.
n
i a b c d
1 E, (94 — 4y +3) + 2E, A(uy — A)  —m, (2> = 20uy + 1) 4E A(uy — 32) + 2E,,A(A — py) 3E, (22 -1)
2 Ee(_sj’z +’1(3/4V _7) +,l"V) 0 EL(’1+ 1)(5/1_/'{V) 0
+E,(A+1)(A - py)
3 E (72 = A(3py +5) + uy) me(1=2)(A = py) E.(1=2)(TA = py) + Ep(1 = 2)(uy = 4) 0
+2Em/1(,“V - /1)
4 E (9% + 4y = 3) +2E,M(2— py) 0 ABA = py) + EMpy = 2) )
+m (427 — dpy + 1)}
5 2m, (227 = dpy — 1) 2E, Ay — ) =3m, (2> - 1) 0
6 me(4+1)(54 = uy) —E,(A+1)(A = nuy) me(A+1)(uy = 54) 0
7 E, (52 + (1= 3uy) — uy) 0 E (A + 1)(uy - 0
~E, (A D)= ) = 2malpy = 1)
8 —E (T2 = A(3uy +5) + pv) 0 LU B (TA = py) 0
+2E, A4 — py) +E,,(y — ) + 6m, A}
9 E, (52 = 2(3py +7) + uy) 0 E(1- /1)(5/1 - uv) 0
—E,(A—1)(4 = uy)
10 E, (=722 + 2(3uy = 5) + uy) m A D)A=py)  E+ D(TA=py) + E(+ D)y - ) 0
+ZENJ'(}' _NV)
1 me(1=2)(54 = py) E,(2=1)(4=ny) me(A=1)(54 = py) 0
12 —E (52 = AG3uy +7) +uy) 0 E.(A=1)(54=pv) 0
TE, (A= 1)(A—py) +2mApy +1)
13 E, (T2 + (5 = 3uy) — py) 0 — LD R, (0 - py) 0
+2Emﬂ'(ﬂv - /1) +Em (,uv - /1) —+ 6me/l}
14 3E,(1-2%) m, (2> = 1) 0 3E, (22 —1)
2 _ 2E,m, 3E2(1-22
15 3E,(A*—=1) 0 m(l _ %EEF(Jlrni)
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TABLE IV. (Cont.) The recoil coefficients r,,.

n

i a b c d
16 2m, (A2 1) 0 3m,(1-22) 0
17 me(1=A)(52 = py) E,(A=D)(@-py)  6ma(A=1) 0
18 me(1+ ) (uy — 54) E,(A+1)(A—py) 6m A4+ 1) 0
19 my(1=2)(A+ py) 0 0 0
20 —mo(1+2)(A+ uy) 0 0 0
21 2E,(A+1)(34—py) + Epp(2+ 1) (uy — 4) 0 —6E A4+ 1) 0
22 2E,(A—1)3A—py) + E,(A—1)(uy — 2) 0 —6E A(A—1) 0
23 2E, (A4 1) (uy = 32) + (Epy —m) (A + 1) (2= uy) 0 6E A2+ 1) 0
24 2E, (A= 1)(py = 32) + (E,y —m,) (A= 1)(A = puy) 0 6EA(A—1) 0
25 me(d=1)(A—py) E,(1=2) (A= py) 0 0
26 me(A+1)(uy — 1) E,(1+2)(A—py) 0 0
27 —2M(E, — E,) (A — uy) 0 0 0
28 2UE, —E,)(A—uy 0 0 0
29 2E (A + py) 0 0 0
30 —2E, A4+ py) 0 0 0

reg

(5) Finally, g,

encodes the contribution from the “regular” part of the bremsstrahlung. It takes the following form

s 2 - . =2 0D - 2
grberim _ 5reg + 5reg§n ﬁ+ 5reg§n py + 5zeg6 ﬂ + 5geg + 5reg6 sn + 5reg ﬁE +pe + 5reg ﬂ
Ay 3RSy L O Sy OES F O Fy BLSy  0S 5,7
8T8, 8,5 P+ OEG 8,8, - Pl + O5EG 8,8, - Pl + 5585 -5 /§+5fef=’* 3,8, B+ 0555, - pl3, - B
regs s 2 reg Al P 8.1_56 regn Al a P Eﬁe rega A/ A
+ 8558, - P8, - B+ 6538, - PLS n'ﬂm+5z4 n‘PLSp‘ﬂEe+me+5255n Lo by
© e s R o o N A#Aqaﬁ
+5;e(;g p p/vo'p/v 5;e7gsp pllz Sn pv+528 Sp pllzsn pllza'/}+6;e9gsp ﬂsn'ﬁ+5ge(;gsp ﬂsnﬁﬁ
e e
+ O5E8y - PLSy - BG-Pl+ O PLS, B Pl + NS, - P PLG - DL+ 0555 - L3, -
+5;esg6 pvsp ﬁ+536sn ﬁsp ﬂ ﬁ (29)

where the functions 6, =, ¢(E,,c') (n = 1,...,36)
result from the integration of Eq. (21) over p,, k and
p,. They are too complicated to be displayed
analytically, but are evaluated numerically in the
supplemented Mathematica notebook bremreg.nb.

V. COMPARING TO EXISTING LITERATURE

Since we claim to have derived the SM prediction to the
most general neutron differential decay rate, an important
step is to compare our result to all special cases available in
existing literature. We do this for both the recoil and
radiative corrections.

A. Recoil corrections

Since the O(1/my) recoil corrections involve only the
3-body decay process, there is no difference between p,

and p), and we can directly compare our result with existing
literature for the differential decay rare, either with inte-
grated or unintegrated €,.

1. Polarized n and unpolarized p, e

Cases with polarized neutron and unpolarized proton
and electron are most frequently studied. We compare our
ri—r3 with the expression of dI'/(dE,dQ.dQ,) in, e.g.,
Refs. [18,30,33,34] (notice: Agere = —Anere)s Which we find
perfect agreement.

‘A typo is present in the expression of c§A> in the supple-

mentary material of Ref. [30], while Ref. [33] has the correct
expression.
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2. Polarized e and unpolarized n, p

We compare our ry, rs with the expression of dI'/
(dE,dQ,dQ,) in Ref. [35], which we find perfect agreement.

3. Polarized n, e and unpolarized p

Recoil corrections to correlations that involve the simul-
taneous polarization of neutron and electron are studied
in Refs. [36,37]. These references focused on the dif-
ferential decay rate with integrated neutrino solid angle,

!
/dQLE~ﬁL:/dQL%E-ﬁ

o e 30’2—1_> -, - 1
/dsz;s1 P Bl —/dﬂ;[—sl oy

2p°

~ . . 5 2 _ 3
/dQle PuSy PuSy by = /dQLC/[ 02/33

51 '/}52',533'/§+

dl'/(dE,dQ,). To compare with our result, we need to
perform the Q! integration

dr :/dg,y:/dgbdr,
dE,dS, dE,d$,d<, dE,d$,dQ,
(30)

where the following identities are useful in dealing with the
azimuthal angle in Q]

Using this we obtain, for the 8, - 6 structure, the following identity:

1 /1 1—c"? m, | (16 4 10 2
2/_1 dc’(rﬁ + 2 r25> :Fe |:<A.2— <3KV—3>/1—3(K\/+ 1)>Ee

Meanwhile, for the §,, - ,56—’ ﬁ structure we obtain the following identity:
E

1 /1 LHm, [ 3c*—1 2 100 4\ 2
[ (s B [ 2] ) = (3= (S -3 )G

The right-hand side of these two equations has a slight
difference in the O(4) terms from the corresponding expres-
sions in the aforementioned references (e.g., Eq. (7) in
Ref. [36]) which, we believe, indicate typos in the latter.
Our full derivation of the recoil corrections is provided in
recoil.nb so interested readers can easily check its correctness.

B. Radiative corrections

The main obstacle in comparing our result of the
radiative corrections to existing literature based on the
neutrino formalism is that Q) # Q,, so

ar ¢
dE,dQ,dQ, " dE,dQ,dQ,

(34)

c, 2
3 S1 82
_.n N N N
28 (51 - P52 - 53+ 51 - 55 +53- 5| - 5,) |
(31)
4 2 2
(gKV +§>ﬂ _§<KV + 1))Em:| . (32)
3 3
4 4 2 2
— (22— (Zky+2)a-2 N E
<3A <3Kv+3>/1 3<Kv+ )> m
+ (222 = 2(ky + 1)) m,. (33)

Fortunately, the two formalisms have to reconcile once the
respective neutrino or pseudoneutrino solid angle is inte-
grated out, as indicated in Eq. (30); that allows us to at least
compare our results with literature for the Q) -integrated
expression, again making use of Eq. (31) for the azimuthal
angles. We adopt the notations by Ivanov et al (cited
below) for the various functions for the outer corrections in
the neutrino formalism.

1. Spin-independent structure

For this structure, we checked numerically that our result
satisfies the following identity:
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() = [ e [puEer) + s pe B + 53, (20 + ). )
where g, (E,) is one-half of the well-known Sirlin’s function g(E,) [7].
2. The s, - ﬁ structure
For this structure, we checked numerically that our result satisfies the following identity:
B B + 1,80 = [ a0 |2 (B + 84, (82)
PO () 4 8y (£) + 2 ) C0 B )] g

1+322 B 1432 "B 1+32 |

where f,(E,) can be found, e.g., in Eq. (A9) of Ref. [36]. These two identities had in fact already been verified in our
previous paper, Ref. [17].
3. The G- B structure
For this structure, we checked numerically that our result satisfies the following identity:
1 [1 - ¢
_(gn(Ee) + fn(Ee>) = Z/_] dc’ |:_(5an(Ee’ Cl) + 55;,1 (Ee)) Tt 3 (5a.n(Eev Cl) + 551,1 (Ee))
2-1 E,
1 +32%E, +m,

ﬂcl(ﬁan(Ew cl) + 551.] (Ee)) +

TES) OEED)

14322 p1+322

4. The §,, - 6 structure
For this structure, we checked numerically that our result satisfies the following identity:
204+ 1)m,
1+32° E,

(o) + 1 (E) = [ ae [Mﬂwan(a, &)+ 8%, (EL)) +

SE(E,. ) 1—c?8E(E,.c)
4/ 1+322 E, ’

1+322 2 1+32%
(38)
where the correct analytic expression of h£,1>(Ee) (and h,(zz)(Ee) below) is given in the Erratum of Ref. [36].

5. The s, ﬁ &'-ﬁ structure
For this structure, we checked numerically that our result satisfies the following identity:

20A+1) E,
1+34% E,+m,

1 [t [22A+1) E
E,) +hP(E :—/d’ ¢ (Su(E,.c") + 62 (E
(gn( e) + ( e)) 4 1 c 1+ 3/12 Ee + me( dn( e € ) + an,l( e))

22(4=1)¢

1432 B

n 3¢? =185 (E,. c) c_’égzg(Ee, ')
27 1432 B 1432

E, SPE(E,.c) ¢ NEE,. )

San(Ee, ') + 61y 1 (E.
(an( ec)+ «.ll’l,l( ))+Ee—|—me 1_‘_312 ﬂ 1+3ﬂ2

(39)

|

Thus, we have checked that our results of outer radiative =~ SM-induced, O(1/my) recoil corrections and O(a/x)
corrections are consistent to all known results in literature.  radiative corrections to the most general neutron differ-
ential decay rate, with n, p and e all polarized; the former is
fully analytic, while the latter is analytic apart from a
This work provides a solid theory foundation for the  regular p,-integration which is performed numerically. Our
proposal in Ref. [1] to measure experimentally the proton  choice of independent variables (E,,Q,,€,) are all meas-

12
polarization in the free neutron decay. We computed the  urable quantities in experiments with no ambiguity caused

VI. SUMMARY
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by emissions of extra photons. We compare our results to
special cases in existing literature and identify possible
typos in the latter. Together with the EFT analysis in
Ref. [1], it opens a new window for the precision test of the
SM and the search for new physics.
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APPENDIX A: SCALAR INTEGRALS IN THE
BREMSSTRAHLUNG CONTRIBUTION

An important step to evaluate the “regular” bremsstrah-
lung contribution to the differential decay rate is to compute
analytically the phase space integration of \M4|6M’reg [see
Eq. (21)] with respect to the momenta p, and k. For terms

|

in the squared amplitude independent of various spin
vectors, this corresponds to evaluating scalar integrals of
the following form (p; = p, py = p.):

&Pk dPp
I :(p, = — (2m)*6®
ii(P1.P2) / (27)32E; (27r)32Ey( &
1
X (Pl =Py =K) sy (Al
( o iy ke AY

where i, j are integers. In the next Appendix we show that
integrations of terms with spin vectors can also be reduced
to such scalar integrals. Reference [38] gave the first
analytic expressions of these integrals for values of
{i,j} relevant to the study of semileptonic kaon decays
(beware of the difference in normalization with this paper),
which are also quoted in Ref. [17]. For beta decays
involving two or more polarizations, we need one more
integral, namely /_;,, which we present here for the first
time. Here we summarize the integrals that we need [the
other half can be obtained by 7, ;(py. p2) = 1;(p2. p1)]

1
It . Py) = — A2
0,0(191 Pz) . ( )

a
I_10(p1.p2) = —L (A3)

167
1 ay + p

1 , =— A4
10(P1: P2) 87p, o — (Ad)

1
Il , =— A5
2.0(pl p2) 2ﬂm%p’b2 ( )

1 P1-P2t712
Li,(p1,p2) = n A6
LR 4717}’1217L2 P1-P2—712 ( )
1 ((pip2ipl) | p2(paplipy), o+ f
L_i(p1,p2) =5 1 A7
1-1(P1. P2) 87r< ﬂ% =+ 2,6? na1 s (A7)
L (2(papyipy) | (Pip2ip), on + Py
I - ) =5 l A8
2, l(pl pZ) 871'( m%ﬂ% ,BT nal _,Bl ( )
Ly i(prpa) = =[PP P1PLp2)* o By P2 (Papr: i) (Paphipa) | ca(papr:pi)?
SR 8 4p3 @~ 3 263
N (ﬂ%ﬁ? = (Pap) 1p£)2> <(12 _mipl a+ ﬂz)} (A9)
45 26, a—p
Las(prspa) = —— pR(pipipa) | PE(PiPLipa) (apii) | @ +Ba | (Papiipl)?
—22WP P2 =gy m3p; 73 a = P
_ <ﬁ%ﬂ% = (p2pi 3P'u)2> <2 _% * +ﬁz>] (A10)
264 B a—ps
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1
I_35(p1,P2) :W
2

{3[206?/3‘2‘5 + 201005 (Bi3 — 36%) + a3 (56° — 3B136) + Bi36 — $36°] In

a + B
a — P

2
+ 5 [2a1] — 6ot 336 + 61 (@5 (35367 — Bif3) + Bi3 — 2835°)

=5

T aprCaER — 557) — I + 13ﬂ%52)]}

where we have defined
a;=p;-p,
pi= \ 0‘;2 - mlgpg

Y2 = \/(Pl +p2)* —mim3
(ab:c)=(a-c)(b-c)—c*(a-b)

(A12)

and 6 = (pyp,: p,) in I_3, for simplicity.

APPENDIX B: TENSOR INTEGRALS
IN THE REGULAR BREMSSTRAHLUNG
CONTRIBUTION

If there are polarized massive particles, then we also need
to deal with integrals that contain extra factors of k* (up to 3
for neutron beta decay) in the numerator, which will be later
contracted to the spin vectors. In this Appendix we outline
the systematic approach to evaluate these tensor integrals.

1. With £#

If one out of the three massive particles is polarized, then
we may encounter vector integrals of the following form:

Ik dp
I = L (27)*W(p, - p, —k
1,] /(2”)32Ek (271')32Ey( ”) (pb pv )
k*

(p-k)'(pe k)

They were first studied in Ref. [17], which we will briefly

recap here to introduce further discussions. One starts by

the following general decomposition of the vector integral:
Iij=ai(i.)p" + (i j)pe + as(i, j)pl'. - (B2)

The functions a;, a,, as can be solved by contracting both

sides by p,, p., and (p)), respectively, which gives rise to

the following matrix equation:

a(i,j) Iy
ar(i,j) | =M~ Lij |, (B3)
a3(i’j) %?Iiﬁj

(Al1)

|
where

my  p-p.

PP
M=|p-p. m p.p, (B4)
p-p, PerPy P
is a 3 x 3 matrix of which inverse can be easily computed.
Here we have used the identity p! -k = p/?/2.

2. With k*k”

When there are two polarized particles, we need also the
following tensor integral

1"”—/ &k dp,
W) (27)32E, (27)32E,
Ktk
X%.
(p-k)'(pe - k)

Again, we adopt the most general decomposition

(27)*sW (pl, — p, — k)

(BS)

I = by(i, )¢ + ba(i, j)p"p* + b3(i, ) pep
+ by(i. )pl Pl + bs(i. j)(p"pt + p*pk)

+ b(i. ) (p* p + P PY) + ba (i ) (Pepl + phpl).

(B6)

In principle, one may solve the functions b;—b; using
exactly the same method, but that will involve the inversion
of a 7 x 7 matrix which is analytically very challenging,
and the numerical inversion of a badly conditioned matrix
may also lead to significant errors.

Here we introduce a trick to obtain the analytic
expressions of all these coefficients without inverting a
large matrix. We consider the following singly contracted
integral:

JHo_
Ii,j = SI_/I~

ij° (B7)

where s, is an arbitrary vector. The most general decom-
position of this integral reads

It = by (i, ))p* + bali, j)pe + bs(is j)pl' + by (i, j)s*.
(B8)
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In particular, the coefficient of the s# term is the same It is easy to see that
by (i, j) that appears in Eq. (B6), which is obvious by
contracting p, to both sides of that equation; so we may Ilzzj = b, (i, j)g> = —b,(i. )) (B12)

start by evaluating b, (i, j). For that purpose, it is useful to

define a set of unit vectors from the available vectors inthe oo o el Uactors P, Pu, Pl has a z-component.

. / . .
integral, namely p*, p and p/’. First, the temporal unit  A¢ the same time, the on-shell momentum of the brems-
vector reads strahlung photon satisfies:

= (1,0) = — p~. (B)  —(k) = —(K) + (k) + (k)

my
—(k-1)?+ (k-3)> + (k- 9)?
=by,+bypp-k+bip,-k+bi(p-k)?
+b1e(pe'k)2+b1f(p'k)(pe'k)v (B13)

Next, we arrange the coordinates such that p, aligns with
the x-axis. With that we define

1 . 1 E,
#=(0,%) = —(pe — E,) :p— <P’ef —m—NP”>- (B10)
€

where the coefficients {by,,....bs} are deducible from
- . Egs. (B9)—-(B11). Plugging thi k into Eq. (B12) gi
Finally, we align p/, to contain only x- and y-components. as. (BO)~(B11). Plugging this back into Eq. (BI2) gives

With that we define o
by(i,]) = bigdij+biplioyj+bicdi oy + biglis

3= (0.9) = = (plt = ELi* = pl.cs) T hrelia t bl (B14)
|
1 " Ep.—p.E.c p p.c u With b, determined, we can now deduce the three
= ps’ \ M - —pemN - E e | (B11) remaining coefficients in Eq. (B8). Moving the b,s* term
to the left and contracting both sides by p,, p, and (py),,
where s/ =sin6,,. we obtain the following matrix equation
b (i.}) pﬂi’;j —b(i,))s-p Sﬂll 1. —b(i,j)s-p
1_72(1’.]) =M peujlilj_bl(i’j)s'pe =M"! SMIIJ 1 -b (i7j)s'pe . (BlS)
bs(i. ) (L)1t = balii )s - P o s, 14— b0, f)s -

Notice that there is no new matrix inversion required in this step apart from the known M~! from the previous subsection.
We then plug the solution back into Eq. (B8) and remove s, from both sides because it is an arbitrary vector. That gives

15 = by (i, )g + M (1, = b1 (i, j)p*) + M (152 = by (i, j)p%) + My ((p2 /214 = by (i, ) (p))*) } p*
FAMG (1L, = by (6, J)p¥) + M (I, = by (i, j)pl) + M3 (p2/2)1%; = by (i,j)(pp)”)}pe
+ M3 (1 = by (6 )pY) + M3y (14, = by (i j) ph) + M33 (P2 /2)14; = by (i, ) (P))") Y (P ). (B16)

Comparing this to Eq. (B6) yields all the quantities b, (i, j), which can be decomposed similar to Eq. (B14) as
br[(i’j):br/ali,j+bnb1i—lj +b 111—1+b71d11 2]+b Iz] 2+bnf11 1]—1”7_1 ST (B17)

The analytic expressions of the coefficients {b,,, ....b,s} (7 = 1,...,7) can be found in the supplemented Mathematica
notebook bremreg.nb.

3. With Kk k*

When n, p, and e are all polarized, we may encounter tensor integrals of the form

e &Pk dPp, Kk ke

e = 2059 (o], — p, — k) KT
J (2’6 ST

(27)32E, (27)*2E, (BI8)
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which adopts the following general decomposition:

I = ey (i, ))(¢p* + g“p* + ¢ p*) + ea(i, ) (9 pe + ¢ pe + ¢ pe) + e3(i, ) (¢ (p)* + ¢“(p),)"

+ g (P)!) + cali. )) PP p* + es(i, j)Pepep? + co(i. J) (P (PL) (P0)* + ¢4 (i J) (PP P + P* PO Pe

+ p'ppe) + g (i) (P p¥(PL)" + P P(PL)" + P PU(PL)") + co(i, ) (Pepep® + Pepep” + Pepép”)

+ cio(i, ) (Pepe(py)* + Pepi(pL)” + pepe(p)") + cun (i ) (P (p2) P + (P () p*

+ (L) (P)P") + crai D) (P ) ()" P+ (P (o) pe + (p2) (PL)*Pe) + c1s (i, J) (P! pe(pl)® + P pE(pL)”

+ P Pe(p ) + PP Pe(pL)* + pPPe(pl)” + P Pe(pu)). (B19)
Using the procedure outlined in the previous subsection, we can in principle deduce all the functions c¢;—c;3 without
inverting a 13 x 13 matrix. However, as far as this work is concerned, we only need a fully contracted integral s,,s,,s palﬁ ’}“.
Therefore, we may take a shortcut and start with the following doubly contracted integral:

7’;,] = sn,,spal’,-";a
=i (i, )P + (i j)pe + T (0. j) (L) + Ca(i, j)sn + &5(i. j)sp, (B20)

where ¢4 = cp5, - p, + ¢35, - p, and Cs = ¢,5, - p, + ¢35, - p, as following Eq. (B19). Now we play the same game:

First, ¢, and c3 can be obtained from I{%" = —c (i, j) p* = ¢ (i, j) p¢ — ¢3(i, j)(pi)* where I;5* can be re-expressed in
terms of /# using Eq. (B13). Next, the three remaining functions ¢;_3 can be deduced from the matrix equation

(i Sl

nvd pati-1,j
EZ(l’]> = M_l snbspflli'/,(;—l - Z'4(1-’ ])Sn *Pe— 65(i’j)sp *Pe . (B2l)
Z'3(i’ ]) (p22/2)snuspalﬁ(;’ - 54(i’j)sn : p:/ - Z’S(i?j)sp : P:,

Plugging the solution back into Eq. (B20) and contracting by p,, gives the desired fully contracted integral

Seysnvspall;,l}a = Kl(i’j)sn . spSe P + K2<i7j)sn 'pesp *PeSe " P + IC3Sn : pézsp : p:/se - p
+ ’C4(ivj)(sn “PeSp p; + Sy p;Sp 'pe)se ‘Pt ICS(i’j)sn *SpSe pll/
+ K:6(i’j)sn “DeSp t PeSe p/v + ,C7(i’j)sn ! pllzsp ' pllzse : p/v
+ K:S(i’j)(sn : pesp : p/v + Sy pllzsp : pe)se : p/v + K:9(ivj)(sp “PeSn Se + Sn* pesp : se)
+ ICIO(i’j)(sp ' pllzsn S+ S, pllzsp : se)' (B22)

The functions K, can be decomposed as

I,y J) = Kyalij + KopLizy j + Kol joy + Kyaliza j 4 Kyl joo + Ky pl iy jy
+ ]Cr/gli—?:.j + /Cnhll-,j_3 + ,Cm'li—Z.j—l + ]anli—l,j—z: n = 1, ceey 10, (B23)

|
where the analytic expressions of the coefficients and “bremreg.nb” that evaluates numerically the functions
{Kyar - Ky;} (1 =1,...,10) can be found in bremreg.nb.  §,%(E,, ¢’) in Eq. (29). In this appendix we provide a brief
explanation of their contents.

We used TRACER [39] to perform traces in the squared
APPENDIX C: INSTRUCTIONS FOR THE amplitude and impose on-shell conditions [40]. It is called

SUPPLEMENTED MATHEMATICA NOTEBOOKS in the first line of both notebooks.

We provide two Mathematica notebooks as supple-
mentary materials: “recoil.nb” that evaluates analyti-
cally the recoil coefficients {r . Tyay in Eq. (28), The notebook recoil.nb consists of three sections:

1. recoil.nb

nas -
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(i) The “setup” section defines the 3-body squared
amplitude, imposes on-shell conditions and performs
the e-expansion in Eq. (12).

(i) The “O(e’)” section evaluates the zeroth-order
correlation coefficients, i.e., Cy in Table I-II.

(iii) The “O(e')” section evaluates the recoil coefficients
{ryas s ryat (n =1,...,30) in Table II-TV.
Simply run the entire notebook to obtain the full result. For
sceptical readers, important parts to check are the imple-
mentation of the on-shell conditions, the definition of L
H,
respective completeness check at the end of the O(e),

O(e') sections.

v
and the e-expansion in the “setup” section, and the

2. bremreg.nb

The notebook bremreg.nb evaluates numerically the
functions &, %(E,,c') (denoted as &regn[Ee,cp] in the
notebook) in Eq. (29) (y = 1, ..., 36). To use them, simply
evaluate the entire notebook from the beginning to the
“regular bremsstrahlung” section, which may take up to a
few minutes. Below we briefly explain the purpose of each
section:

(i) The ‘“squared amplitude” section constructs
the “regular” bremsstrahlung squared amplitude
|M4|6M,reg in Eq- (21)-

(i) The “(s - k)" replacement” section applies the results
in Appendix B to transform the tensor integrals into
scalar integrals. The key is to replace powers of s - k

in |M4\6M’mg by powers of p -k and p, - k which
give the same result after integrating over p, and k.
(iii) The “isolating different correlations” section iden-
tifies the 36 structures in g5~ and check their
completeness. It also performs the p,, k-integral
analytically by replacing (p - k)~ (p, - k)~/ with the
corresponding scalar integrals in Appendix A.
(iv) The “functions and parameter” section defines various
inputs needed to evaluate the bremsstrahlung integral:
— The 3 x 3 matrix M in Eq. (B4) and its inverse,
the coefficients {bﬂa,...,bnf} n=1,..7 in
Eq. (B17), the coefficients {IC,,. ....K,;} (1 = 1,
..., 10) in Eq. (B23);

— The scalar functions /; ; in Appendix A;

— The final integrand before performing the p)
integral (which takes most of the evaluation time).

(v) The “regular bremsstrahlung” section defines various
numerical inputs (fermion masses, 4, and the electron
end-point energy), and obtain the functions &,* (E,, ¢’)
by performing the p)-integral numerically.

(vi) Finally, the “examples” section demonstrates how
one utilizes the functions &,*(E,, ¢'). In particular,
the ““consistency test” subsection checks the iden-
tities in Sec. V B numerically.

A technical detail: The basis vectors ** and J* in
Egs. (B10), (B11) are, strictly speaking, undefined at £, =
m, or ¢’ ==+1, which means the functions &,%(E,,c’)
cannot be evaluated at these points, although their limits at
E, - m, or ¢’ - *£1 are totally regular.
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