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Based on (2712.4 + 14.3) x 10° y(3686) events, we investigate four hadronic decay modes
of the P-wave charmonium spin-singlet state h,('P,) — h*h=z°/n (h=r or K) via the process
w(3686) — 7°h, at BESIIL The h, — ztx~ 2" decay is observed with a significance of 9.6¢ after taking
into account systematic uncertainties. Evidences for 7, - K"K~ z" and h, — K*K~n are found with
significances of 3.5¢ and 3.30, respectively, after considering the systematic uncertainties. The branching
fractions of these decays are measured to be B(h.—zaTz"7%)=(1.364-0.1640.14)x 1073,
B(h.— K"K 2°)=(3.26+0.8440.36)x 107, and B(h. - KTK™n) = (3.13 £ 1.08 £ 0.38) x 1074,
where the first uncertainties are statistical and the second are systematic. No significant signal of s, —

7y is found, and the upper limit of its decay branching fraction is determined to be B(h, — #tz7n) <

4.0 x 107* at the 90% confidence level.

DOI: 10.1103/PhysRevD.110.032023

I. INTRODUCTION

The study of charmonium states plays a central role in
our understanding of quantum chromodynamics (QCD).
Over the past years, the spin-singlet charmonium state
h.('P;) has been extensively studied, yet many of its
decay modes are still unknown. The first observation of /4,
was reported in 2005 by the CLEO experiment [1,2]. After
that, the radiative decay h, — yn,. was confirmed by the
Fermilab E835 [3], CLEO [4], and BESIII [5] collabora-
tions with an average branching fraction of (60 + 4)% [6].
Recently, the BESIII collaboration reported the observa-
tion of several decay modes of h, — light hadrons,
including h. — pprx*ta~ [7], h, = 2(zt77)2° [7], h. —
K*K-n"n=x° [8], and h. — 3(z" 7~ )z° [9]. The branch-
ing fractions are of the order of 1073, and until now, the sum
of the measured branching for /. decaying to light hadrons
is only 3%-4% [6]. From perturbative QCD (pQCD), the
B(h, — lighthadrons) is predicted to be about 48% [10],
while a value of 8% is obtained from nonrelativistic QCD
(NRQCD) [10]. This discrepancy between different theo-
retical models, as well between theory and the experimental
measurements, motivates us to search for additional decay
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modes of the 4. and to improve the measurement precision
of the known &, decays with a larger y(3686) data sample.

Although h, mesons cannot be produced directly in
ete collisions at BESIII, the large y/(3686) sample with
(2712.4 £ 14.3) x 10° y(3686) events [11] provides an
opportunity to study 4, decays via the hadronic transition
w(3686) — 7%h,. In this paper, the four exclusive hadronic
decays h, —» ntn 7% h. - K*K~2°, h, - KTK 7, and
h. — mtnn, denoted as modes I, II, III, and IV, respec-
tively, are investigated.

II. BESIII DETECTOR AND MONTE CARLO
SIMULATIONS

The BESIII detector [12] records symmetric e'e”
collisions provided by the BEPCII storage ring [13] in
the center-of-mass energy range from 2.0 to 4.95 GeV, with
a peak luminosity of 1.1 x 10°* cm™2s~! achieved at
\/s = 3.773 GeV. BESIII has collected large data samples
in this energy region [14-16]. The cylindrical core of the
BESIII detector covers 93% of the full solid angle and
consists of a helium-based multilayer drift chamber
(MDC), a plastic scintillator time-of-flight system (TOF),
and a CsI(TI) electromagnetic calorimeter (EMC), which
are all enclosed in a superconducting solenoidal magnet
providing a 1.0 T magnetic field. The solenoid is supported
by an octagonal flux-return yoke with resistive plate
counter muon identification modules (MUC) interleaved
with steel. The charged-particle momentum resolution at
1 GeV/c is 0.5%, and the specific energy loss (dE/dx)
resolution is 6% for electrons from Bhabha scattering.
The EMC measures photon energies with a resolution
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of 2.5% (5%) at 1 GeV in the barrel (end cap) region.
The time resolution in the TOF barrel region is 68 ps,
while that in the end cap region was 110 ps. The end cap
TOF system was upgraded in 2015 using a multigap
resistive plate chamber technology, providing a time
resolution of 60 ps, which benefits 83% of the data used
in this analysis [17-19].

Simulated data samples produced with a GEANT4-based
[20] Monte Carlo (MC) package, which includes the
geometric description of the BESIII detector and the
detector response, are used to determine detection effi-
ciencies and to estimate backgrounds. The simulation
models the beam energy spread and initial-state radiation
(ISR) in the e*e™ annihilations with the generator KKMC
[21,22]. The inclusive MC sample includes the production
of the w(3686) resonance, the initial-state radiation
production of the J/y, and the continuum processes
incorporated in KKMC [21,22]. All particle decays are
modeled with EVTGEN [23,24] using branching fractions
either taken from the Particle Data Group (PDG) [6], when
available, or otherwise estimated with LUNDCHARM
[25,26]. Final-state radiation from charged final-state
particles is included using the PHOTOS package [27].
The exclusive signal MC samples are generated by the
phase space model with all the branching fractions of the
intermediate states set to be 100%, and each sample
contains one hundred thousand events.

III. EVENT SELECTION AND DATA ANALYSIS

Charged tracks detected in the MDC are required to be
within a polar angle (0) range of | cos 8| < 0.93, where 0 is
defined with respect to the z axis, which is the symmetry
axis of the MDC. For charged tracks, the distance of closest
approach to the interaction point (IP) must be less than
10 cm along the z axis, and less than 1 cm in the transverse
plane. The number of charged tracks is required to be two.
Particle identification (PID) for charged tracks combines
measurements of the dE/dx in the MDC and the flight
time in the TOF to form likelihoods £(h)(h = p, K, z) for
each hadron h hypothesis. For h, — 2772 2" and
h. — oz n, the charged pions are required to satisfy
L(z) > L(K) and L(z) > L(p), while for h, - K*K~z°
and h, > K"K 7, the kaons are required to satisfy
L(K) > L(x) and L(K) > L(p).

Photon candidates are identified using showers in the
EMC. The deposited energy of each shower must be more
than 25 MeV in the barrel region (| cos 8| < 0.80) and more
than 50 MeV in the end cap region (0.86 < |cos 0| < 0.92).
To exclude showers that originate from charged tracks, the
angle subtended by the EMC shower and the position of the
closest charged track at the EMC must be greater than
10 degrees as measured from the IP. To suppress electronic
noise and showers unrelated to the event, the difference
between the EMC time and the event start time is required
to be within [0, 700] ns.

The 7° and # candidates are reconstructed
from yy combinations with invariant mass windows in
(0.08,0.20) GeV/c? and (0.45,0.65) GeV/c?, respec-
tively. The invariant mass of yy is then constrained to
the known mass of z° or 7 [6] via a one-constraint (1C)
kinematic fit requiring y7~ < 200.

To suppress background and improve the mass resolu-
tion, a six-constraint (6C) kinematic fit, including the total
initial four-momentum of the colliding beams, an invariant
mass constraint of z° decaying from w(3686), and an
invariant mass constraint of z° or 5 decaying from #,, is
performed according to the ﬁnal states of each decay mode.
The best 772~ (K*K™)a°z° or zt 2~ (KTK~)z’) combi-
nation is selected with a minimum )(6C if there is more than
one. The requirement applied to Zéc is optimized using the
Punzi figure of merit (FOM) /2+ T TE [28], where € is signal

efficiency, a = 5 stands for the expected significance level,
and B represents the number of expected background
events, estimated with the inclusive MC sample.
Considering the background events with three or five
photons versus our signal events with four photons, the
X%C,ny (n =3, 4, 5) values from a four-constraint (4C)
kinematic fit together with three, four, and five photons are
obtained. We require yjc 4, < ¥ic3, and xica, < Xics, for
modes II, III, and IV. For mode I, only yjc,, < ¥ics, i
applied to improve the ratio of signal to noise.
Another prominent background that originates from the
decay of w(3686) — n°2%J /yr or w(3686) — nJ/y is

vetoed by the requirement on the 7°7° or 5 recoil mass

\/ (Py(3686) — Po0/,)* to be outside the J/y signal win-
dow, where p,, (336 is the y(3686) four momentum, and
Paogy is the 2°7° or n four momentum. When the final

states include 7°, the momentum of z° from y(3686) —
7%h, is usually lower than that from . decay. The former
and latter 7¥s are tagged as #) and #%, respectively.
Furthermore, events containing resonances formed with
the n(ﬁ are regarded as background events. These back-
ground events are vetoed with additional selection criteria,
especially for ® — ntz7n), f,(980) - 2z, and
K*(892)* — K*x). By combining one photon from z°
decay and the other from 7 decay, fake yy combinations
from 7z° decay are removed by the requirement on the
invariant mass of yy in the ., — K™ K™n decay. The above-
mentioned requirements on the J/ 1// mass window for mode
L M(ztz=z0), M(alz%), M(K*x?), and M(yy) are also
optimized using the FOM. Finally, the background events
from w(3686) — 7°7%J /y,J /w — p = with ptu~ mis-
identified as z#tz~ are vetoed by requiring a certain
penetration depth in the MUC. All detailed selection
criteria are listed in Table I.

After applying all the selection criteria, the remaining
backgrounds from the inclusive MC sample are analyzed

032023-2



MEASUREMENTS OF THE BRANCHING FRACTIONS OF THE ...

PHYS. REV. D 110, 032023 (2024)

TABLE I. Applied requirements on the )(%c’ invariant mass (M)
windows, and recoil mass (RM) windows used as vetoes in each
decay. Here, m denotes the known particle mass [6].

Mode )(éc Veto

I <30 IRM(z°72%) = m;, | > 72 MeV/c?
Mzt~ 7)) —m,| > 28 MeV/c?

Depth of y* < 40 cm

I <50 IRM(7°7°) = m; ), | > 20 MeV/c?
|M(T[gﬂ%) - mf0<980>‘ > 110 1\/16\]/6'2
IM(K*70 ) = mge (39)+| > 40 MeV/c?
I <35 IRM(n) — my,| > 10 MeV/c?
M(yy) —mp| > 5 MeV/c?
IM(K*2{) — mg 390y | > 15 MeV/c?
v <24 IRM(y7) — my,| > 10 MeV/c?

Depth of y* < 35 cm

by the TOPOANA [29] package. These background events
mostly have the same final states as the signal events and
are difficult to suppress. The background from the con-
tinuum production is estimated with the data sample taken
at the center-of-mass energy of 3.650 GeV, with an
integrated luminosity of 410 pb~!. The surviving events
do not contribute to the peak position of k., i.e., the
distributions of the selected /. candidates from the con-
tinuum production and the inclusive MC sample are
smooth.

IV. EXTRACTION OF SIGNAL YIELDS

To determine the number of signal events N, in each
decay, unbinned maximum likelihood fits are performed to
the invariant mass spectra as shown in Fig 1. In the fit, the
h.. signal is described by an MC-simulated shape convolved
with a free-parameter Gaussian function accounting for the
mass resolution difference between data and MC simu-
lation. The mass resolution estimated from MC simulation
is around 1.2 MeV/c? for each h, decay channel. The
background shape is represented by an ARGUS function
[30], with the endpoint set to the kinematic threshold
of 3.551 GeV/c?.

The branching fraction of each signal decay is deter-
mined by

- (n

B(h, — hth=2°/n) = Ny B ¢
748 i~

where N, stands for the number of signal events obtained
from the fit; N, (3685 represents the total number of
w(3686) events [11], T[], B; = B(w(3686) — n°h,)-
B(z° — yr) - B(z"/n — yy), where B(y(3686) — z°h.)
is the branching fraction of w(3686) — n°h., and
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FIG. 1. The fits to the invariant mass distributions for

@) h, = atn % (b) h, = KTK~ 7% (c) h, - K*K™n, and
(d) h. — n" 7 7. The black dots with error bars are the data, the
red solid lines represent the fit results, the blue solid lines indicate
the backgrounds, and the pink dashed lines illustrate the signals.
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FIG. 2.

B(n° = yy) - B(z°/n = yy) is the product of the branching
fractions. These branching fractions are quoted from the
PDG [6].

For each signal decay, we obtain the Dalitz plot of
M?(h*7°/n) versus M?(h=z%/n) in the h.—h*h=z°/n
signal region defined as 3.52<M(hth 2/y)<
3.53 GeV/c? from data, where the background events have
been subtracted using the normalized 4, sidebands defined
as (3.505,3.515) GeV/c* or (3.535,3.545) GeV/c%
The corresponding Dalitz plots are shown in Fig. 2, where
we divide the Dalitz plot of data into 10 x 10 bins, with a
bin size of 1.2 GeV?/c*. Due to limited statistics, no
intermediate resonances are found. The detection efficien-
cies are obtained from signal MC simulation, corrected by
the Dalitz plots observed in data for modes I, II, and III as
follows. The corrected efficiencies are determined via

_ Zisi'€i

€ ’
N

(2)
where i runs over all bins, s; and ¢; are the number of
signal candidates in data and the efficiency from MC events
for the ith bin, and S is the total number of A, signal
candidates in data. The efficiencies are 17.7%, 9.7%,
13.1%, and 14.2% for modes I, II, III, and IV, respectively.

The statistical significance is estimated from the differ-
ence of the logarithmic likelihoods of the fits without and
with a signal component with the difference in the number
of degrees of freedom (A4 = 3) that are considered. The
significance of mode I is 10.8¢ and the evidences for the
decay modes II and III are found with statistical signifi-
cances of 3.5¢ and 3.30, respectively. After considering
systematic effects, the resulting significances are 9.6,

TABLE II.

8
MP(K *79) (GeVZ/c?)

M3(K *1) (GeVZ/c*)

Dalitz plots of data with the background events subtracted for (a) h, — zt7~2°, (b) h, - K*K~7°, and (c) h, = KT K 1.

3.50, and 3.30 for modes I, II, and III respectively.
Since no obvious signal of mode IV is observed, assuming
that the number of signal events follows a Poisson
distribution with a uniform prior probability density func-
tion, a Bayesian upper limit [31] of mode IV (accounting
for systematic uncertainties) is determined. The obtained
results for the four studied modes are listed in Table II.

V. SYSTEMATIC UNCERTAINTIES

In the branching fraction measurements, the systematic
uncertainties are divided into multiplicative and additive
terms. The multiplicative terms include tracking, PID, z°
and 7 reconstruction, kinematic fit, selection criteria,
number of y(3686) events, and quoted branching fractions.
The additive terms originate from fit range, signal shape,
and background shape in the fit procedure.

The tracking efficiency is estimated with the control
samples of J/yw — ppatz~ [32]and eTe™ - a7 x  KTK™
[33]. The resulting systematic uncertainty on the branching
fraction due to the tracking is assigned to be 1.0% for each
charged pion or kaon. The uncertainties due to the PID for
charged pion and kaon are studied with the control samples
of J/w = ataa° and J/w — K*K—z° [34], and are
assigned to be 1.0% for each pion or kaon.

The systematic uncertainty of the z° reconstruction
is estimated using the control samples of w(3686) —
72°72%J Jw and eTe” — wa®, resulting in the uncertainty
as a function of z° momentum. The systematic uncertain-
ties in the 7° reconstruction are assigned according to the
momentum of z° in the final state, which are 5.5%, 5.2%,
1.0%, and 1.0% for the decay modes I, II, III, and IV,
respectively. The systematic uncertainty of the 7

The branching fractions (or their upper limit at 90% confidence level) for each h. decay together with the corrected

detection efficiencies, the fitted signal yields, and the signal significances with systematic uncertainties included. The first uncertainties

are statistical, the second are systematic.

Mode e(%) Signal yield Signal significance B [This work] B [PDG] [6]

I 17.7 472 + 56 9.60 (1.36 £ 0.16 £ 0.14) x 1073 (1.9 £0.5) x 1073
11 9.7 62+ 16 3.5¢ (3.26 + 0.84 £+ 0.36) x 10~ <6x 107*

I 13.1 324+11 3.30 (3.13 £ 1.08 £ 0.38) x 104 <1.0x 1073
v 14.2 <44.5 e <4.0x 1074 e
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reconstruction is estimated to be 1.0% using a high purity
control sample of J/w — ppn [35]. Since the uncertainties
between two z%s or between z° and 5 are assumed to be
correlated, their values are added linearly.

The systematic uncertainties associated with the 6C
kinematic fit are assigned as the differences between the
efficiencies before and after the helix correction [36], which
are 0.6%, 1.0%, 0.9%, and 0.9% for modes I, II, III, and IV,
respectively.

A Barlow test [37] is performed to evaluate the uncer-
tainty from the mass window requirements. The significant
deviation ¢ is defined as

|Bnominal - Btest' . (3)

2 2
o — 0
| Bnominal Elesl

where B represents the branching fractions and 0%; is the
statistical uncertainty of 3. To obtain the ¢ distributions, we
examine the branching fractions after enlarging or shrink-
ing the veto region. For different background vetoes, we
vary the corresponding mass windows several times with a
step of 1 MeV/c?. Since there is no obvious change larger
than 1.00 for each requirement, we do not assign a
systematic uncertainty to this term.

The uncertainty of the total number of y/(3686) events in
data is 0.5% [11]. In the branching fraction calculations,
the B(y(3686) — n°h.), B(z° — yy), and B(n — yy)
are quoted from PDG. The total uncertainty due to these
quoted branching fractions, which is dominated by
B(y(3686) — n°h,), is 5.5% [6,38].

The additive systematic uncertainties are estimated
below. The uncertainties due to the fit range are estimated
by enlarging or shrinking the nominal fit range of
(3.50,3.55) GeV/c*> to be (3.49,3.55) GeV/c?> and
(3.51,3.55) GeV/c?. The differences of the fitted signal
yields between the nominal and alternative results are taken
as the systematic uncertainties. In the nominal fits, the
signals are described by the MC-simulated shape con-
volved with a free-parameter Gaussian function. Since the
numbers of signal events are limited for the decay modes II,
II, and IV, the uncertainty from the mass resolution
difference between data and MC simulation is estimated
by changing the standard deviation of the Gaussian
function to 1 MeV/c?, which is determined from the i, —
a7~ 7° model. The differences relative to the nominal fits
are taken as the systematic uncertainties. The uncertainties
due to the background shape are considered by changing
the nominal ARGUS background shape to a second-order
Chebyshev polynomial function. The differences in the
fitted signal yields are taken as the systematic uncertainties.

When the upper limit of the number of signal events in
mode IV is determined, the additive systematic uncertain-
ties are considered by retaining the largest upper limit by a
maximum-likelihood fit with different fit ranges, signal

TABLE III. The relative systematic uncertainties (%) on the
branching fraction measurements. In mode IV, there are no
systematic uncertainties of the efficiency correction and fit pro-
cedure due to no evidence for a signal in the data. The uncertainty
due to the fit procedure is additive, the others are multiplicative.

Source/Mode I I 111 v
Tracking 2.0 2.0 2.0 2.0
PID 2.0 2.0 2.0 2.0
Reconstruction of z° and # 5.5 5.2 2.0 2.0
Kinematic fit 0.6 1.0 0.9 0.9
Ny (3686) 0.5 0.5 0.5 0.5
B(w(3686) — z°h,) 5.5 5.5 5.5 55
Fit procedure 6.6 7.3 10.1 e
Sum 10.6 10.9 12.1 6.6

shapes, and background shapes. To incorporate the multi-
plicative terms, we convolve the likelihood distribution
L(Ng,) with the quadratic sum of the multiplicative
terms [39,40].

The individual uncertainties are assumed to be indepen-
dent and added in quadrature to obtain the total systematic
uncertainty. In Table III, the multiplicative terms are listed
separately, and “Fit procedure” denotes the quadratic sum
of the additive terms.

VI. SUMMARY

Using (2712.4 £ 14.3) x 10° y(3686) events, the modes
h, —» ntnn’ h,— K"K 2°, and h, - K*K™n are
found with significances of 9.60, 3.5¢, and 3.30,
respectively. Their decay branching fractions are determined
to be B(h, - a7 2%) = (1.36 £0.16 = 0.14) x 1073,
B(h, - K*K~7°) = (3.26 - 0.84 £ 0.36) x 107,  and
B(h, - K*K™n) = (3.13 £ 1.08 = 0.38) x 10™*, where
the first uncertainties are statistical and the second
are systematic. These results are consistent with the
PDG values [6], as summarized in Table II. No obvious
signal of h, — z*n~n decay is observed, and the upper
limit of its decay branching fraction is determined to be
B(h, = ntz™n) <4.0 x 107 at 90% confidence level.
The isospin conservation in the process h, — KKn
leads to a relationship of B(h,—K*K 7°):B(h.—
K°K=n"):B(h,—K°K*zn~):B(h.—K°K°z%)=1:2:2:1.
The B(h. —» KKz) = (0.20 + 0.05)% extrapolated in this
work is consistent with that obtained via the 7. — K$K* 7~
decay mode [41]. Theoretically, B(h, — KKx) is predicted
to be (1.4 £ 0.9)% for pQCD or (5.5 + 3.3)% for NRQCD
[10]. Since the large uncertainty mainly arises from the
input values of B(n, — KKr) and I'(5.) quoted from PDG
2000 [42], we take the most recent results from the PDG [6]
and reweigh the B(h, — KKr) in Ref. [10]. The branching
fraction of 1, — KK is calculated to be (4.4 + 0.8)% with
pQCD or (16.9 +7.3)% with NRQCD, which strongly
deviates from the experimental results. Since only the
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leading-order terms are evaluated in the theoretical calcu-
lations from both pQCD and NRQCD, higher precision from
theory is desirable.
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