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Using (27.12 4 0.14) x 10® y(3686) events collected with the BESIII detector, we present the first
observation of the decays y.; — AAw, where J = 0, 1, 2, with statistical significances of 11.70, 11.20,
and 11.85. The branching fractions of these decays are determined to be B(y., = AAw) =
(237 +£0.22+£0.25) x 107*, B(y, = AAw) = (1.01 £0.10+0.11) x 10™*, and B(y., = AAw) =
(1.40 £0.13 £0.17) x 107*, where the first uncertainties are statistical and the second are systematic.

We observe no clear intermediate structures.
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I. INTRODUCTION

Decays of charmonium states offer insight into the
behavior of confinement in QCD [1]. Charmonium is
unique in this regard since the charm quark mass scale
resides between the perturbative and nonperturbative
regions of QCD. To date, only a limited number of studies
have been performed on the decays y.; — BBM (where B
represents a baryon and M denotes a meson), such as the
decay y., = AAn [2]. Hence, further studies are still highly
desirable to improve our understanding of the properties of
the y.; states and the dynamics of their decays.

In previous studies of charmonium and bottomonium
decays, several unanticipated enhancements with respect to
phase space Monte Carlo (MC) have been observed near
the mass threshold of baryon antibaryon pairs [3-5].
Theoretical models, such as the quark-pair creation model,
the one-boson exchange model, the 3P, model, and the
Bonn meson-exchange model, have been used to interpret
these enhancements [6,7]. Searching for BB mass threshold
enhancements in y., — BBM decays will improve our
understanding of the underlying dynamics of charmonium
decays. At the same time, we can search for potential
excited baryon states in the BM and BM invariant mass
spectra, and search for new structures in the BB invariant
mass spectrum.

In addition, BESIII previously reported evidence for an
excited A state in the decay y(3686) — AAw [8]. Thus, it
is natural to extend the previous work to search for potential
A excited states in y.; decays. The fact that the y,.; mesons
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have different spin parity than the y(3686) offers additional
opportunities to investigate a AA mass threshold enhance-
ment and possible excited states of the A. In this paper, we
report the first observation of ., = AAw, and search for a
AA mass threshold enhancement and possible excited
states of the A. This is based on (27.12 4+ 0.14) x 108
w(3686) events [9] collected with the BESIII detector.

I1. BESIIT DETECTOR AND MONTE CARLO
SIMULATION

The BESIII detector [10] records symmetric e*e”
collisions provided by the BEPCII storage ring [11] in
the center-of-mass energy range from 2.0 to 4.95 GeV,
with a peak luminosity of 1 x 103 cm™2s~! achieved at
/s = 3.77 GeV. BESIII has collected large data samples
in this energy region [12-14]. The cylindrical core of the
BESIII detector covers 93% of the full solid angle and
consists of a helium-based multilayer drift chamber
(MDC), a plastic scintillator time-of-flight system (TOF),
and a CsI(TI) electromagnetic calorimeter (EMC), which
are all enclosed in a superconducting solenoidal magnet
providing a 1.0 T magnetic field. The solenoid is supported
by an octagonal flux-return yoke with resistive plate
counter muon identification modules interleaved with steel.
The charged-particle momentum resolution at 1 GeV/c is
0.5%, and the dE/dx resolution is 6% for electrons from
Bhabha scattering. The EMC measures photon energies
with a resolution of 2.5% (5%) at 1 GeV in the barrel (end
cap) region. The time resolution in the TOF barrel region is
68 ps, while that in the end cap region was 110 ps. The end
cap TOF system was upgraded in 2015 using multigap
resistive plate chamber technology, providing a time
resolution of 60 ps, which benefits 86% of the data used
in this analysis [15].

Simulated data samples produced with a GEANT4-
based [16] MC package, which includes the geometric
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description of the BESIII detector and the detector
response, are used to optimize event selection criteria,
determine detection efficiencies, and estimate backgrounds.
The simulation models the beam energy spread and initial
state radiation (ISR) in the e"e™ annihilations with the
generator KKMC [17]. The inclusive MC sample includes
the production of the y(3686) resonance, the ISR produc-
tion of the J/y resonance, and the continuum processes
incorporated in KKMC. All particle decays are modeled with
EVTGEN [18] using branching fractions either taken from
the Particle Data Group (PDG) [19], whenever available, or
otherwise estimated with LUNDCHARM [20]. In this analy-
sis, we also use the BODY3 [21] model to generate
signal MC events with intermediate structures taken into
consideration.

III. EVENT SELECTION

The A(A) candidates are reconstructed via A(A) —
pr~(pr"), and the @ candidate is reconstructed via
w — ntr 7. We also detect the radiative photon from
the decay w(3686) — yy.;. Thus, all final state particles are
reconstructed in the chain y(3686) = yy ., with y.; = AAw.

Candidate events must contain at least three positively
charged tracks and three negatively charged tracks.
Furthermore, the polar angle of each track measured in
the MDC is required to satisfy |cos@| < 0.93, where
denotes the polar angle defined with respect to the z axis,
which is the symmetry axis of the MDC. The dE/dx
information in the MDC, together with the time of flight in
the TOF detector are combined to identify the type of
particle (PID). For this purpose, confidence levels for pion,
proton, and kaon hypotheses are calculated, and tracks are

assigned to the hypothesis with the highest confidence
level. Since the A(A) has a relatively long lifetime, we
require the decay length of the A(A) to be greater than zero,
where the decay length represents the distance between the
interaction point (IP) to the decay position of the A(A). The
A and A candidates are reconstructed by combining pairs of
oppositely charged tracks with pion and proton mass
hypotheses, fulfilling a secondary vertex constraint [22].
Only the best combination with the smallest AM =
V(M (pr~) —m(A))? + (M(pat) —m(A))? is retained,
where M(pzn~)(M(pzr")) is the invariant mass of the

pr~(pr") system, and m(A)(m(A)) is the nominal mass

of the A(A) [19]. The z* and z~ candidates from the o are
selected from the set of pions not assigned to the A(A).
Furthermore, the distance of closest approach to the IP must
be less than 10 cm along the z-axis, and less than 1 cm in
the transverse plane.

Good photons are selected using clusters in the EMC
with the following requirements: (1) In the barrel region of
the EMC (|cos | < 0.80), the deposited energy must be
greater than 25 MeV, while in the end cap regions
(0.86 < |cos @] < 0.92), the deposited energy must be
greater than 50 MeV. (2) In order to suppress electronic
noise, beam related background, and cosmic rays, the
difference between the EMC time and the event start time
is required to be less than 700 ns. (3) The total number of
photons is required to be at least 3.

In order to further suppress background and improve the
resolution, a five-constraint (5C) kinematic fit (four con-
straints for the 4-momentum and one for the z° mass) is
applied to all combinations of the final state candidates.
Only the combination having the minimal )(%C is retained

TABLEI. Mass veto windows for different background sources, where m(X) is the nominal mass of the X particle
from PDG.
Veto Mass window

Yoy = 2207t L cc.

IM(A7°) — M(prt) + m(A) — m(£°)| > 50 MeV/c? and
|M(Ax™) = M(pr~) + m(A) — m(Z*7)| > 50 MeV/c?

\M(Axt) = M(pr*) + m(A) — m(E+)] > 50 MeV/c? and

[xh
+

[0

]
f=]

Xel =

Yoy = BB 4 cc.

Jw

w(3686) - @X0%0

IM(A7°) — M(pr~) + m(A) — m(Z*0)| > 50 MeV/c?
\M(Az*) = M(pat) + m(A) — m(EY)| > 25 MeV/c? and
IM(Az™) — M(pr~) + m(A) — m(E7)| > 25 MeV/c?
M(Ax") = M(prt) +m(A) —m(ET)| > 6 MeV/c? and
[M(A7®) — M(pa~) +m(A) — m(E%)| > 4 MeV/c?
IM(Az®) — M(pr*) 4+ m(A) — M(E®)| > 9 MeV/c? and
M(An™) — M(pa~) + m(A) —m(E7)| > 10 MeV/c?

IM(AAzt ™) — m(J /y)| > 40 MeV/c?
[RM(z*77) —m(J/y)| > 3 MeV/c?

IM(AyEY) = M(pr~) + m(A) — m(Z%)| > 9 MeV/c?
IM(AyEYY — M(prt) + m(A) = m(£°)| > 10 MeV/c?
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for further analysis. A figure of merit optimization is

performed for the selection on ;(gc, which is based on

maximizing the \/Si—B value [S denotes the signal yield from

the signal MC sample, and B denotes the background yield
from the inclusive MC sample normalized to the integrated
luminosity of data (=3208.53 pb~')]. The optimized )(%C
selection criterion is found to be 30.

The combinatorial backgrounds, mainly composed of
Yoy = Tz, are vetoed by imposing additional selection
criteria, as listed in Table I. The resolution has been
subtracted in the selection criteria. The multiple photon
background channels are suppressed by requiring
Xignal < Xokg> Where x5, denotes the y* under the hypoth-
esis of y.; = AAw, while y7,, denotes the x> under the
hypothesis of y(3686) — 7t 72~J /y or y(3686) — AAw.

To veto y.; — X272 and their charge conjugate
channels, we require M(Az°) and M(Az~) to be outside
the £ and X~ signal windows. The same criteria are
imposed on their charge conjugate channel. To veto
Yes = EYE"70, we require M(Az") and M(Az~) to be
outside the =% and Z~ signal windows. To veto
Yes = Z7E%%, we require M(Az~) and M(Az°) to be
outside the =~ and = signal windows, and the same criteria
are imposed on their charge conjugate channel. To veto
backgrounds containing J/y, we require the invariant mass
M(AAzx*7™) and the recoil mass RM(z"7z~) to be outside
the J/y signal windows. To veto y(3686) — X%, we
require M(Ay*!) and M(Ay*") to be outside the X° and £°
signal windows. Here, the AyE ! denotes the combination of
A and the photon from w(3686) radiative decay. The
rejection requirements are illustrated in Fig. 1.

Other potential background events are investigated by
analyzing the w(3686) inclusive MC sample, with the
TOPOANA package [23]. Only a few events survive the event
selection. Analyzing the specific background MC samples
for the survived events mentioned above, which include
)(CJ_)Z*OE*+7Z_’ XCJ_)Z*_E*()”+’ Xel = Z*+i*_”09 Xel =
B2 n, yo = ZE A0, gy, - BB, y. — pP2020,
Xed _)p+Ai*_’ Xel = ZOiOw, Xel = Z*Oi*_ﬂ+’ Xel =
210, 0 = AT, g = 2027, we find that
the contamination rate of these possible peaking back-
ground is less than 1%, and thus can be safely ignored. We
impose the same event selection criteria for the continuum
data taken at /s = 3.650 GeV. After all the selection
criteria, only one event survives. Therefore, the continuum
contribution is also negligible.

The distributions of M(pr™) versus M(pz~) and
M(z* 72~ z°) after applying all the selection criteria are
illustrated in Fig. 2. The A(A) signal mass window of
M (pr) is chosen as 8 MeV/¢? around the nominal A mass,
and the one-dimensional sideband region is set to be
[1.0887,1.1047) GeV/c* and [1.1267,1.1427] GeV/c>.
The eight squares with equal areas around the signal region
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FIG. 1. Row 1: veto y., — X Zz% 4 c.c. events. Row 2:
veto y.; — ETE%z events. Row 3: veto y,., — E-207" events.
Row 4: veto J/y events. Line 5: Veto y., — 272 7" events.

are taken as two-dimensional (2D) sideband regions, called
AA sideband 1 or 2 regions. The @ signal mass window is
taken as M (z* 7~ z°) €]0.756,0.810] GeV/c>.

IV. SIGNAL YIELD EXTRACTION

The signal yields of y,.; decays are extracted by perform-
ing a simultaneous fit to the M(AAz"z~z°) distributions,
with M ,+ -0 in the @ signal and sideband regions, and with
M,,- and Mj,+ in the AA signal region. This choice is
because the number of y.; events in the @ sideband region
is of the same order as in the @ signal region. The w
sideband region is chosen as [0.693,0.747] GeV/c?
and [0.819,0.873] GeV/c>.
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FIG. 2. The distributions of (left) M(pz™) vs M(pz~) and
(right) M (z* 7~ 7°) of the accepted candidates. In the left figure,
the central red box represents the AA signal region, the green
boxes are the AA sideband region 2, and pink boxes are the AA
sideband region 1. In the right figure, the red dashed line
represents the fitted w signal, and the blue dashed line denotes
the combinatorial background. The gray line is the total fit. The
red arrows denote the w signal region, while the blue arrows
denote the @ sideband regions.

For the fit to the events in the w signal region, as shown
in Fig. 3, the probability density functions of the y.; signals
are modeled by individual simulated signal shapes con-
volved with a Gaussian resolution function which describes
the resolution difference between data and MC simulation.
The parameters of the Gaussian function are shared
between the @ signal and sideband region. The combina-
torial background is described by a second-order
Chebyshev polynomial function [see Fig. 3 (left)]. The
non-w background is constrained by the simultaneous fit to
the events in the @ sideband region. In the fit to the w
sideband region, Fig. 3 (right), the y.; shape convolved
with a Gaussian resolution function is taken from the
simulated y,;, — AAz* 7~ 2% channel, and the combinato-
rial background is described by a second-order Chebyshev
polynomial function. To determine the scale factor between
the w signal and sideband regions, f,,, a fit is performed on
the M(z*z~z") distribution, with results shown in Fig. 2
(right), in which a simulated signal MC shape convolved
with a Gaussian function is used to model the @ signal and
a polynomial function is used to describe the combinatorial
background. The f,, is determined to be 0.530, which is the
ratio between the numbers of background events in the
signal and sideband regions.

For the above two fits, we have also examined the
potential non-AA background by using events with one
correct A(A) and one wrong A(A) [marked by the four pink
boxes in Fig. 1 (left)], and with wrong A and wrong A
[marked by the four green boxes in Fig. 1 (left)]. We find that
this kind of background is negligible in the @ signal region,
while itis about 6.3% in the w sideband region. This is due to
the presence of numerous combinatorial background decays
from the y,, that do not include A(A) and w. Therefore, this
kind of background, which is dominated by the AA sideband
region 1 contribution, is fixed in the fit as shown in Fig. 3
(right), after normalizing by a factor, f 53, of 0.5.

The final fit results are shown in Fig. 3. From these fits,
we obtain the signal yields for .o, = AAw to be 316 +
30,202 + 20 and 251 =+ 23, with statistical significances of
11.70, 11.20, and 11.80, respectively. For each y,; signal,
the statistical significance is calculated with and without
including the signal in the fit and considering the change of
log-likelihood and taking into account the number of
degrees of freedom.

The branching fractions of y.; — AAw are calculated by

Nigi
Ny 3686) - B(w(3686) = yxey) - [1: B - €
(1)

By = Aw) =

where Ny, is the fitted signal yield of y.;; Ny 36s6) 1S the
total number of w(3686) events; B(w(3686) — yy.;) (for
J =0, 1, 2) are the branching fractions of y(3696) — yx.,;
[ [, B; is the product of branching fractions of the decays of
daughter particles, including Br(A— pz~)=(63.94+0.5)%,
Br(A— prt)=(63.940.5)%, Br(z° — yy) = (98.823 &
0.034)% and Br(w — a*n~2°) = (89.2 +£0.7)% which
are taken from the PDG, while ¢ denotes the detection
efficiencies. The details of the fitted signal yields, detection
efficiencies, statistical significances, and obtained branch-
ing fractions are shown in Table II.

To investigate possible intermediate structures, we
examine the M(AA), M(Aw), and M(Aw) mass distribu-
tions from data with background subtracted. No obvious
structures are observed with the current statistics. To take
into account the slight differences between data and the
PHSP signal MC sample, we develop a data-driven
BODY3 model. The Dalitz plot of M3, versus M3

obtained from data is taken as input for the BODY3 model,
which is corrected for backgrounds and efficiencies. The
data-MC comparison is shown in Fig. 4.

V. SYSTEMATIC UNCERTAINTIES

The relative systematic uncertainties are from the fol-
lowing sources: tracking and PID efficiencies; the
reconstruction efficiency of photons; the reconstruction

efficiency of the A(A); the wrong combination background
(WCB) of the A(A); the 5C kinematic fit; the mass window
selection; the fitting method; the scale factor between the @
signal and sideband regions; modeling the intermediate
states; the quoted branching fractions; and the total number
of y(3686) events. They are discussed below:

(1) Tracking efficiency. The systematic uncertainty due
to pion tracking is estimated using the control
sample of J/y — KYK*z¥. It is estimated to be
1.0% per pion [24].

(i1) PID for pion. The systematic uncertainty due to the
PID efficiency is estimated to be 1.0% for each
pion [24]. We only use PID for the two pions from

032022-4
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Simultaneous fit to the M 3 ,+,- 0 distributions in the w signal (left) and sideband (right) regions. The first row represents the

fit on a logarithmic scale, while the second row shows the normal scale. In the left figures, the red dashed line is the signal, and the green
dashed line is the background contribution constrained by the fit to the @ sideband. Additionally, the blue dashed line is the
combinatorial background. The gray line is the total fit. In the right figures, the green line is from the simulated y,., — AAz" 7z~ 7" shape,
and the red histogram is the fixed contribution from the non-AA background estimated by the AA sideband region of data.

the w. Thus, the systematic uncertainty due to pion
PID is assigned as 2.0%.

(iii) Photon reconstruction. The systematic uncertainty
due to photon reconstruction is estimated with the

TABLE II.  Fitted signal yields (Ny,), detection efficiencies (€),
statistical significance, and the obtained branching fractions (5).
The first and second uncertainties are statistical and systematic,
respectively.

Decay Ng  Significance ¢(%) B(10™)

Yo = Ao 316£30 1176 138 23740224025
Yo = Ao 202£20 1126 2.09 1.01£0.10+0.11
Yo — Ao 251£23 1186 1.92 1.40+0.13+0.17

@iv)
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control sample of J/y — #tr 7% and is estimated
to be 0.5% for each photon [25]. There are three
photons in the final states, so the total systematic
uncertainty due to photon reconstruction is assigned
as 1.5%.

A/A reconstruction. The reconstruction efficiency
of A(A) including tracking and reconstruction is
estimated by using the control sample of J/y —
AztE™ +c.c. [26], in which the signal MC is
reweighted within each bin of p and |cosf|, where
the p denotes the momentum of A. So, the uncer-
tainties are different due to the different p and |cos0)|
distributions of A decays from y,;,. The system-
atic uncertainties of A reconstruction are assigned as
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FIG. 4. Comparisons of M(Aw/Aw) and M(AA) of (top) y.o, (middle) y.,, and (bottom) y,,, between the data and individual BODY?3

signal MC samples after all event selection criteria have been applied.

)

2.5%, 2.7%, and 2.9% for ., and those of A
reconstruction are assigned as 2.2%, 2.4%, and 2.7%
for y.0.1.2, respectively.

WCB of A(A). The potential impact of WCB in the
reconstruction of A(A) is investigated by matching
the angles of the MC generated and reconstructed
track momenta for the A. Events with angle
differences greater than 3° are considered as mis-
matched backgrounds. Any possible bias related to

032022-6

(vi)

WCB is examined by comparing the signal yields
with and without the WCB component included in
the fit. The differences on the branching fractions
are taken as the systematic uncertainties, which
are 1.3%, 0.7%, and 0.4% for y. 2 = AAw,
respectively.

5C kinematic fit. The systematic uncertainty asso-
ciated with the 5C kinematic fit is assigned as the
difference between the efficiencies before and after
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(vii)

(viii)

(ix)

x)

(xi)

the helix correction [27], which are 3.1%, 3.2%, and
2.9% for y.012 = AAw, respectively.
Mass window. To estimate the systematic uncertain-
ties due to the mass windows of A, A, and w, we use
the smearing method. From the simultaneous fit, the
parameters of the Gaussian function which is used to
compensate the resolution difference between data
and MC simulation are obtained. Then, we smear the
simulated signal with the Gaussian function with
these obtained parameters, and the difference be-
tween the efficiencies before and after smearing the
Gaussian resolution function is taken as the system-
atic uncertainty. For the mass windows of A and A,
the systematic uncertainties are negligible for all
signal decays. For the mass window of w, the
systematic uncertainties are 0.1% and 0.8% for
Xc0.1 = Mo, respectively, and that of y., — AAw
is negligible.
Mass vetoes. To estimate the systematic uncertain-
ties for each mass veto, we examine the branching
fractions after enlarging or shrinking the veto region.
For different background vetoes, we vary the cor-
responding mass windows seven times with a step of
1, 2, or 4 MeV/ ¢2. For each case, the deviation
between the alternative and nominal fits is defined as
= | Buominal —Bies|
D-é,nominal _aé.les(
fractions of y.;, - AAw and & denotes its statistical
uncertainty. If { is less than 2.0, the associated
systematic uncertainty is negligible according to the
Barlow test [28]. Otherwise, its relative difference is
assigned as the systematic uncertainty.
Fit range. The systematic uncertainties due to the fit
range are examined by enlarging and shrinking the
fit range seven times, with a 4 MeV/c? change per
step, and the Barlow test is performed as above. The
systematic uncertainties are negligible for . 1, and
0.9% 1is obtained for the y., decay.
Signal shape. The systematic uncertainty arising
from the signal shape is evaluated by comparing the
fitted results obtained from two distinct simulated
signal MC samples. In one sample, the A/A is
generated using the PHSP generator, while in the
other, it is generated with the HYPWK generator [29].
The differences in the measured branching frac-
tions are taken as the systematic uncertainties, which
are 1.5%, 5.5%, and 0.2% for y.1, — AAw,
respectively.
Background shape. The systematic uncertainty due
to the background shape is estimated by replacing
the second-order Chebyshev polynomial function
with a first or third-order Chebyshev polynomial
function. The largest differences in the measured
branching fractions are taken as the systematic

, where B denotes the branching

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

uncertainties, which are 0.8%, 0.3%, and 0.1% for
Xe0.12 = Ao, respectively.

Scale factor f,. The f, directly affects the fitted
signal yields. The associated systematic uncertainty is
estimated by changing the w sideband region by +1o,
where ¢ denotes the mass resolution of the . The
largest deviations of the branching fractions are taken
as the systematic uncertainties, which are 0.5%, 2.4%,
and 1.6% for y.o.1, — AAw, respectively.

Scale factor frx. The fa; also affects the fitted
signal yields. The associated systematic uncertainty
is estimated by changing the f,z from 0.5 to the
fitted value 0.53. The deviations of the branching
fractions are taken as the systematic uncertainties,
which are 0.3%, 0.1%, and 0.2% for y o1, — Ao,
respectively.

Background level of BODY3 model. Additionally, the
background events in sideband region also impacts
the background level for the BODY3 model. The
changes in signal efficiencies are considered as
corresponding systematic uncertainties after adjusting
the number of events in the sideband region by +1o,
which serves as the input for the BODY3 generator.
The systematic uncertainties are assigned as 2.5%,
0.3%, and 1.7% for y.o,12 — AAw, respectively.
Binning effect of BODY3 model. To estimate the
systematic uncertainty associated with the binning
effect of the BODY3 model, we change the number
of bins by +£25%. In each case, the Dalitz plot is
obtained by reweighting the pHSP MC sample using
the data subtracted background in the @ and 2D AA
sidebands, and the largest differences of signal
efficiencies are taken as the systematic uncertainties,
which are 0.5%, 1.0%, and 4.4% for y .91, — AAw,
respectively.

Quoted branching fractions. The branching fractions
of w(3686) = yxess A= prn~, A= prt,0— ntna°,
and 7° — yy are quoted from the PDG. Their corre-
sponding uncertainties are taken to calculate the
systematic uncertainties, which are 2.7%, 3.0%, and
2.7% for y o012 = AAw, respectively.

Total number of w(3686) events. The uncertainty of
the total number of y(3686) events, which is
determined with the inclusive hadronic y/(3686)
decays, is assigned as 0.5% [9].

All sources of systematic uncertainty and their contri-
butions are summarized in Table III. Under the assumption
that the systematic uncertainties of reconstructions and
quoted branching fractions for the A are correlated with
those of the A, and all other systematic uncertainties are
independent, the total systematic uncertainty for each
signal decay is obtained by adding all uncertainties in
quadrature, excluding those that are correlated.
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TABLEIIL.  The relative systematic uncertainties (in percent) in
the measurements of the branching fractions of the y.; —» AAw
decays.

Source Xc0 Xel X2
Tracking for z* 2.0 2.0 2.0
7t PID 2.0 2.0 2.0
Photon reconstruction 1.5 1.5 1.5
A reconstruction 2.5 2.7 2.9
A reconstruction 2.2 2.4 2.7
WCB of A(A) 3.6 1.4 1.1

5C kinematic fit 3.1 32 2.9
A signal region e e e
A signal region

 signal region 0.1 0.8

Veto J/l//(AAﬂ+7I_)
Veto J/y(nt 7e.) 5.1 32 1.8
Veto yA 1.6
Veto yA e e 4.2
Veto EYE~ e 1.2 e
Veto 2~ =0 0.9 e 1.0
Veto 2+E? 2.4 . e
Veto T30
Veto X0 L5 2.0 6.0
Fit range 0.7 e 0.5
Signal shape 1.5 5.5 0.2
Background shape 0.8 0.3 0.1
Scale factor f,, 0.5 24 1.6
Scale factor fz 0.3 0.1 0.2
Background level of BODY3 model 2.5 0.3 1.7
Binning effect of BODY3 model 0.5 1.0 4.4
Quoted branching fractions 2.7 3.0 2.7
Total number of y(3686) events 0.5 0.5 0.5
Total 10.4 10.6 12.0

VI. CONCLUSIONS

The decays y,.;, = AAw (J =0, 1, 2) are observed for
the first time with statistical significances of 11.70, 11.20,
and 11.80, using (27.124+0.14) x 10% (3686) events
collected by the BESIII detector. Their branching frac-
tions are determined to be B(y, — AAw) = (2.37 &
0.22 £0.25) x 1074, B(y. — AAw) = (1.01 £0.10 +
0.11) x 10~* and B(y.» = AAw) = (1.404+0.13 £0.17) x
10~*, where the first and second uncertainties are statistical
and systematic, respectively. The analysis improves our
understanding of the properties of y.; particles. With the
current statistics, no deviations are observed between the
data and pasp MC samples for the M(AA) and M(Aw/Aw)
distributions, which means no threshold enhancement or
intermediate states are observed. The analysis aids in the

exploration for potential excited baryon states in the
Aw (Aw) invariant mass spectra and the search for uniden-
tified structures in the AA invariant mass spectrum.

ACKNOWLEDGMENTS

The BESIII Collaboration thanks the staff of BEPCII
and the THEP computing center for their strong support.
This work is supported in part by National Key R&D
Program of China under Contracts No. 2020YFA0406300
and No. 2020YFA0406400; National Natural Science

Foundation of China (NSFC) wunder Contracts
No. 11635010, No. 11735014, No. 11835012,
No. 11935015, No. 11935016, No. 11935018,
No. 11961141012, No. 12025502, No. 12035009,
No. 12035013, No. 12061131003, No. 12192260,
No. 12192261, No. 12192262, No. 12192263,
No. 12192264, No. 12192265, No. 12221005,
No. 12225509, No. 12235017, and No. 12150004;

Program of Science and Technology Development Plan
of Jilin Province of China under Contract
No. 20210508047RQ and No. 20230101021JC; the
Chinese Academy of Sciences (CAS) Large-Scale
Scientific Facility Program; the CAS Center for
Excellence in Particle Physics (CCEPP); Joint Large-
Scale Scientific Facility Funds of the NSFC and CAS
under Contract No. U1832207; CAS Key Research
Program of Frontier Sciences under Contracts
No. QYZDJ-SSW-SLH003 and No. QYZDJ-SSW-
SLHO040; 100 Talents Program of CAS; The Institute of
Nuclear and Particle Physics (INPAC) and Shanghai Key
Laboratory for Particle Physics and Cosmology; European
Union’s Horizon 2020 research and innovation programme
under Marie Sklodowska-Curie grant agreement under
Contract No. 894790; German Research Foundation
DFG under Contracts No. 455635585, Collaborative
Research Center Grants No. CRC 1044, No. FOR5327,
and No. GRK 2149; Istituto Nazionale di Fisica Nucleare,
Italy; Ministry of Development of Turkey under Contract
No. DPT2006K-120470; National Research Foundation of
Korea under Contract No. NRF-2022R1A2C1092335;
National Science and Technology fund of Mongolia;
National Science Research and Innovation Fund (NSRF)
via the Program Management Unit for Human Resources &
Institutional Development, Research and Innovation of
Thailand under Contract No. B16F640076; Polish
National Science Centre under Contract No. 2019/35/0/
ST2/02907; The Swedish Research Council; and U.S.
Department of Energy under Contract No. DE-FGO02-
05ER41374.

032022-8



STUDY OF THE DECAYS ...

PHYS. REV. D 110, 032022 (2024)

[1] N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt, G. T.
Bodwin, E. Eichten, A.D. Frawley, A.B. Meyer, R.E.
Mitchell, V. Papadimitriou et al., Eur. Phys. J. C 71, 1534
(2011).

[2] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 106,
072004 (2022).

[3] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 107,
112001 (2023).

[4] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 104,
052006 (2021).

[5] Y.-W. Chang et al. (Belle Collaboration), Phys. Rev. D 79,
052006 (2009).

[6] L. Zhao, N. Li, S. L. Zhu, and B. S. Zou, Phys. Rev. D 87,
054034 (2013).

[71 Y. Dong, A. Faessler, T. Gutsche, Q.F. Lii, and V.E.
Lyubovitskij, Phys. Rev. D 96, 074027 (2017).

[8] M. Ablikim ef al. (BESIII Collaboration), Phys. Rev. D 106,
112011 (2022).

[9] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 42,
023001 (2018).

[10] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 614, 345 (2010).

[11] C.H. Yu et al., in Proceedings of IPAC2016, Busan, Korea
(JACoW, Busan, 2016), 10.18429/JACoW-IPAC2016-
TUYAOI.

[12] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 44,
040001 (2020).

[13] J. Lu, Y. Xiao, and X. Ji, Radiat. Detect. Technol. Methods
4, 337 (2020).

[14] J. W. Zhang et al., Radiat. Detect. Technol. Methods 6, 289
(2022).

[15] X. Li et al., Radiat. Detect. Technol. Methods 1, 13 (2017);
Y. X. Guo et al., Radiat. Detect. Technol. Methods 1, 15

(2017); P. Cao et al., Nucl. Instrum. Methods Phys. Res.,
Sect. A 953, 163053 (2020).

[16] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum.
Methods Phys. Res., Sect. A 506, 250 (2003).

[17] S. Jadach, B.F.L. Ward, and Z. Was, Phys. Rev. D 63,
113009 (2001); Comput. Phys. Commun. 130, 260 (2000).

[18] R. G. Ping, Chin. Phys. C 32, 599 (2008).

[19] R. L. Workman et al. (Particle Data Group), Prog. Theor.
Exp. Phys. 2022, 083C01 (2022).

[20] J.C. Chen, G.S. Huang, X.R. Qi, D. H. Zhang, and Y. S.
Zhu, Phys. Rev. D 62, 034003 (2000); R.L. Yang, R.G.
Ping, and H. Chen, Chin. Phys. Lett. 31, 061301 (2014).

[21] D.J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A
462, 152 (2001).

[22] M. Xu et al., Chin. Phys. C 33, 428 (2009).

[23] X. Zhou, S. Du, G. Li, and C. Shen, Comput. Phys.
Commun. 258, 107540 (2021).

[24] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 83,
112005 (2011).

[25] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 81,
052005 (2010).

[26] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 108,
112012 (2023).

[27] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 88,
112001 (2013).

[28] Data Analysis in High Energy Physics—A Practical
Guide to Statistical Methods, edited by O. Behnke, K.
Kroninger, G. Schott, and T. Schorner-Sadenius (Wiley-
VCH, Berlin, Germany, 2013), 10.1002/9783527653416;
R. Wanke, How to deal with systematic uncertainties,
lecture at the terascale statistics tools school DESY (2013)
(accessed January 16, 2019).

[29] R. G. Ping, Chin. Phys. C 32, 599 (2008).

M. Ablikim," M. N. Achasov,*® P. Adlarson,” O. Afedulidis,” X.C. AL,*® R. Aliberti,”> A. Amoroso, **™* Q. An,”"*%*
Y. Bai,57 0. Bakina,36 I Balossino,zga Y. Ban,‘“”h H.-R. Bao,63 V. Batozskaya,l'44 K. Begzsuren,3 ZN. Berger,3 3
M. Berlowski,** M. Bertani,”® D. Bettoni,””* F. Bianchi,”**’* E. Bianco,”**’* A. Bortone, **’* 1. Boyko,™ R. A. Briere,’
A. Brueggemann,”® H. Cai,”® X. Cai,"*® A. Calcaterra,”® G.F. Cao,"** N. Cao0,"* S. A. Cetin,*** J. F. Chang,"™®
G.R. Che,*” G. Chelkov,’*” C. Chen,*” C. H. Chen,’ Chao Chen,” G. Chen,' H. S. Chen,"** H. Y. Chen,”” M. L. Chen,"***
S.J. Chen,” S.L. Chen,” S.M. Chen,®’ T. Chen,"®* X.R. Chen,*"** X. T. Chen,"®® Y. B. Chen,"® Y. Q. Chen,**
Z.J. Chen, ™ Z.Y. Chen,"** S. K. Choi,'’ G. Cibinetto,”” F. Cossio,”* J.J. Cui,”® H. L. Dai,"*® J. P. Dai,”® A. Dbeyssi,'®
R.E. de Boer,” D. Dedovich,*® C. Q. Deng,72 Z. Y. Deng,l A. Denig,35 1. Denysenko,36 M. Destefanis, *74
F. De Mori,"**”* B. Ding,®*' X. X. Ding,**" Y. Ding,* Y. Ding,* J. Dong,"*® L. Y. Dong,"* M. Y. Dong,'**®* X. Dong,”®
M. C. Du,] S. X. Du,8° Y. Y Duan,55 Z.H. Duan,42 P. Egorov,‘%’b Y. H. Fan,45 J. Fang,59 J. Fang,l‘58 S.S. Fang,l’63
W. X. Fang,' Y. Fang,' Y. Q. Fang,"*® R. Farinelli,” L. Fava,”**’* F. Feldbauer,” G. Felici,”® C. Q. Feng,”"® J. H. Feng,”’
Y. T Feng,71’58 M. Fritsch,3 C.D. Fu,1 J.L. Fu,63 Y. W. Fu,l’63 H. Gao,63 X.B. Gao,41 Y. N. Gao,46’h Yang Gao,“’58
S. Garbolino,740 I Garzia,zga’29b L. Ge,80 P.T. Ge,76 Z.W. Ge,42 C. Geng,59 E.M. Gersabe(:k,67 A. Gilman,69 K. Goetzen,13
L. Gong, W. X. Gong,"”® W. Gradl,”® S. Gramigna,”**" M. Greco,”**"* M. H. Gu,"”® Y. T. Gu,”” C. Y. Guan,"*
A.Q. Gu0,31’63 L.B. Guo,41 M. J. Guo,50 R.P. Guo,49 Y.P. Guo,lz’g A. Gusl<0v,36’b J. Gutierrez,27 K.L. Han,63 T.T. Han,1
F. Hanisch,” X. Q. Hao," F. A. Harris,” K. K. He,” K. L. He,"® F. H. Heinsius,” C. H. Heinz,> Y. K. Heng,'"*%
C. Herold,” T. Holtmann,® P. C. Hong,** G. Y. Hou,"®* X.T. Hou,"® Y. R. Hou,”> Z. L. Hou,' B. Y. Hu,”” H. M. Hu,"®
J.F. Hu,56’j S.L. Hu,lz’g T. Hu,1’58’63 Y. Hu,1 G.S. Huang,71’58 K. X. Huang,59 L.Q. Huang,31’63 X.T. Huang,50 Y. P Huang,1

032022-9


https://doi.org/10.1140/epjc/s10052-010-1534-9
https://doi.org/10.1140/epjc/s10052-010-1534-9
https://doi.org/10.1103/PhysRevD.106.072004
https://doi.org/10.1103/PhysRevD.106.072004
https://doi.org/10.1103/PhysRevD.107.112001
https://doi.org/10.1103/PhysRevD.107.112001
https://doi.org/10.1103/PhysRevD.104.052006
https://doi.org/10.1103/PhysRevD.104.052006
https://doi.org/10.1103/PhysRevD.79.052006
https://doi.org/10.1103/PhysRevD.79.052006
https://doi.org/10.1103/PhysRevD.87.054034
https://doi.org/10.1103/PhysRevD.87.054034
https://doi.org/10.1103/PhysRevD.96.074027
https://doi.org/10.1103/PhysRevD.106.112011
https://doi.org/10.1103/PhysRevD.106.112011
https://doi.org/10.1088/1674-1137/42/2/023001
https://doi.org/10.1088/1674-1137/42/2/023001
https://doi.org/10.1016/j.nima.2009.12.050
https://doi.org/10.1016/j.nima.2009.12.050
https://doi.org/10.18429/JACoW-IPAC2016-TUYA01
https://doi.org/10.18429/JACoW-IPAC2016-TUYA01
https://doi.org/10.1088/1674-1137/44/4/040001
https://doi.org/10.1088/1674-1137/44/4/040001
https://doi.org/10.1007/s41605-020-00188-8
https://doi.org/10.1007/s41605-020-00188-8
https://doi.org/10.1007/s41605-022-00331-7
https://doi.org/10.1007/s41605-022-00331-7
https://doi.org/10.1007/s41605-017-0014-2
https://doi.org/10.1007/s41605-017-0012-4
https://doi.org/10.1007/s41605-017-0012-4
https://doi.org/10.1016/j.nima.2019.163053
https://doi.org/10.1016/j.nima.2019.163053
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1016/S0168-9002(03)01368-8
https://doi.org/10.1103/PhysRevD.63.113009
https://doi.org/10.1103/PhysRevD.63.113009
https://doi.org/10.1016/S0010-4655(00)00048-5
https://doi.org/10.1088/1674-1137/32/8/001
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.62.034003
https://doi.org/10.1088/0256-307X/31/6/061301
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1016/S0168-9002(01)00089-4
https://doi.org/10.1088/1674-1137/33/6/005
https://doi.org/10.1016/j.cpc.2020.107540
https://doi.org/10.1016/j.cpc.2020.107540
https://doi.org/10.1103/PhysRevD.83.112005
https://doi.org/10.1103/PhysRevD.83.112005
https://doi.org/10.1103/PhysRevD.81.052005
https://doi.org/10.1103/PhysRevD.81.052005
https://doi.org/10.1103/PhysRevD.108.112012
https://doi.org/10.1103/PhysRevD.108.112012
https://doi.org/10.1103/PhysRevD.88.112001
https://doi.org/10.1103/PhysRevD.88.112001
https://doi.org/10.1002/9783527653416
https://doi.org/10.1088/1674-1137/32/8/001

M. ABLIKIM et al. PHYS. REV. D 110, 032022 (2024)

Y.S. Huang,59 T. Hussain,73 F. Hijlzken,3 N. Hiisken,3 >N. in der Wiesche,68 J.J ackson,27 S. Janchiv,32 J.H. Jeong,10 Q. Ji,1
Q.P.Ji," w. 3, X.B. Ji, " XL I Y Y 00 XL Q. Jia, ™ Z. K. Jia,”* D. Jiang,"® H. B. Jiang,”® P.C. Jiang,**"
S.S. Jiang,” T.J. Jiang,'® X. S. Jiang,"**® Y. Jiang,” J. B. Jiao,”’ J. K. Jiao,™ Z. Jiao,” S. Jin,* Y. Jin,® M. Q. Jing,"*
X. M. Jing,()3 T. Johansson,75 S. Kabana,3 SN Kalantar—Nayestanaki,(’4 X. L. Kang,9 X.S. Kang,40 M. Kavatsyuk,64
B.C. Ke,80 V. Khachatryan,27 A. Khoukaz,68 R. Kiuchi,1 O.B. Kolcu,62a B. Kopf,3 M. Kuessner,3 X. Kui,l’63 N. Kumar,26
A. Kupsc,44’75 W. Kl'jhn,37 J.1 Lane,67 P. Larin,18 L. Lavezzi,ma’74C T.T. Lei,71’58 Z.H. Lei,“’58 M. Lellmann,35 T. Lenz,35
C.Li,Y C.Li,” C.H.Li,” Cheng Li,”"”* D. M. Li,** E. Li,"”® G. Li, H. B. Li,"** H.J. Li," H. N. Li,”® Hui Li,* J. R. Li,”!
J.S.Li”K. Ly, L.J.Li,"® L. K. L, Lei Li, * M. H. L, * P R. Li,”* Q. M. Li,"® Q. X. Li, * R. Li,"*' S. X. Li, * T. Li,”
W.D. Li,"® W.G. Li,"* X. Li,"” X.H. Li,/"®* X.L. L, X. Y. Li,"® X. Z. Li,” Y.G. Li,"*" Z.J. Li,”” Z. Y. Li,®
C. Liang,"” H. Liang,”"”® H. Liang,"®” Y. F. Liang,”* Y. T. Liang,”"® G.R. Liao,"" L. Z. Liao, Y. P. Liao,"® J. Libby,*
A. Limphirat, C.C. Lin,”® D. X. Lin,”"* T. Lin,' B.J. Liu,' B.X. Lin,”° C. Liu,** C. X. Liv,' E. Liu,' F. H. Liu,”
Feng Liu,® G. M. Liu,”® H. Liu,**' H. B. Liu,"” H. H. Liu," H. M. Liu,"*® Huihui Liu,*' J. B. Liu,”"® J. Y. Liu,"*
K. Liv,®*" K. Y. Liv,” Ke Liu,” L. Liu,"*® L. C. Liv,® Lu Liv, M. H. Liu,'"*¢ P.L. Liu,' Q. Liu,”® S.B. Liu,”"*®
T. Liu,'*¢ W. K. Liu,® W. M. Liv,”"® X. Liv,” X. Liv,™*" Y. Liu,®' Y. Liv,* Y. B. Liv,” Z. A. Liv,"”** Z.D. Liu,’
Z.Q.Liv,” X.C. Lou,"*® E X. Lu,”” H.J. Lu,”’ J.G. Lu,"”® X.L. Lu,' Y. Lu,” Y.P. Lu,"*® Z.H. Lu,"*® C.L. Luo,"
J.R. Luo,” M. X. Luo,” T. Luo,'* X.L. Luo,"”® X.R. Lyu,”* Y.F. Lyu,* F.C. Ma,"” H. Ma,”® H.L. Ma,' J.L. Ma,"*
L.L. Ma,” M. M. Ma,"*” Q.M. Ma,' R. Q. Ma,"®” T. Ma,”"”® X. T. Ma,"** X. Y. Ma,"”® Y. Ma,**" Y. M. Ma,”!
F.E. Maas,'"® M. Maggiora,”*™* S. Malde,” Y.J. Mao,**" Z.P. Mao,' S. Marcello,”**"* 7. X. Meng,66
J.G. Messchendorp,n’64 G. Mezzadri,29a H. Miao,l’63 T.J. Min,42 R.E. Mitchell,27 X. H. Mo,l’sg’63 B. Moses,27
N. Yu. Muchnoi,** J. Muskalla,” Y. Nefedov,”® F. Nerling,'®¢ L. S. Nie,” I. B. Nikolaev,* Z. Ning,"”® S. Nisar,'""
Q.L. Niu,”* W.D. Niu,” Y. Niu,” S.L. Olsen,”® Q. Ouyang,'”** S. Pacetti,”**** X. Pan,” Y. Pan,”’ A. Pathak,*
P. Patteri,z&’l Y. P Pei,ﬂ’58 M. Pelizaeus,3 H.P. Peng,71’58 Y. Y Peng,38’k’1 K. Peters,l‘%"e J.L. Ping,“ R.G. Ping,l’63 S. Plura,35
V. Prasad,” F.Z. Qi,' H. Qi,/"® H.R. Qi,*’ M. Qi,” T. Y. Qi,'*% S. Qian,"”® W. B. Qian,”® C.F. Qiao,”* X. K. Qiao,*
J.J. Qin,”” L. Q. Qin," L. Y. Qin,”* X.S. Qin,”® Z. H. Qin,"”® J. F. Qiu,' Z. H. Qu,”* C.F. Redmer,” K.J. Ren,”
A. Rivetti,74c M. Rolo,74c G. Rong,l’63 Ch. Rosner,l8 S.N. Ruan,43 N. Salone,44 A. Sarantsev,%’c1 Y. Schelhaas,35
K. Schoenning,75 M. Scodeggio,zga K.Y. Shan,'*¢ W. Shan,** X. Y. Shan,”"*® Z.1J. Shang,%’k’1 JLE Shangguan,55
L. G. Shao,"* M. Shao,”"”® C. P. Shen,'*¢ H. F. Shen,"* W. H. Shen,”® X. Y. Shen,"®* B. A. Shi,** H. Shi,”"”* H. C. Shi,”"*®
J.L. Shi,"*¢ J.Y. Shi,' Q.Q. Shi,”® S.Y. Shi,”* X. Shi,"*® J.J. Song," T.Z. Song,” W.M. Song,**' Y.J. Song,'**
Y. X. Song,**™ S. Sosio,**™* S. Spataro,”**”* F. Stieler,” Y.J. Su,* G.B. Sun,”® G. X. Sun,' H. Sun,”® H.K. Sun,'
J.E. Sun,” K. Sun,”" L. Sun,”® S.S. Sun,"® T. Sun,” W. Y. Sun,** Y. Sun,” Y.J. Sun,”"*® Y. Z. Sun,' Z. Q. Sun,"**
Z.T. Sun,50 C.J. Tzamg,54 G.Y Tang,l . Tang,59 M. Tang,”’58 Y. A. Tang,76 LY Tao,72 QT Tao,zs’i M. Tat,69
J. X Teng,71’58 V. Thoren,75 W. H. Tian,59 Y. Tiam,31’63 Z.F Tian,76 I Uman,62b Y. Wan,55 S.J. Wang,50 B. Wang,1
B.L. Wang,63 Bo W21ng,71’58 D.Y. Wang,%’h F. Wang,72 H.J. Wang,38’k’l J.J. Wang,76 J.P Wang,50 K. Wang,l’58
L.L. Wang,1 M. Wang,50 N.Y. Wang,()3 S. \’\72111g,38’k’1 S. V\Jang,u’g T. Wang,lz’g T.J. Wang,43 W. Wang,72 W. Wang,59
W. P. Wang,”""° X. Wang,**" X. F. Wang,”*' X.J. Wang,” X.L. Wang,'*® X.N. Wang,' Y. Wang,"" Y. D. Wang,*
Y.F. Wang,l’s&63 Y. L. Wang,lg Y. N. Wang,45 Y.Q. Wang,1 Yaqgian Wang,17 Yi Wang,61 Z. Wang,l’58 Z. L. Wang,72
Z.Y. Wang,"®® Ziyi Wang,” D. H. Wei,'* F. Weidner,”® S. P. Wen,' Y. R. Wen,” U. Wiedner,” G. Wilkinson,”” M. Wolke,”
L. Wollenberg,” C. Wu,”” I.E. Wu,"® L. H. Wu,' L.J. Wu," X. Wu,'*¢ X H. Wu, > Y. Wu,”"® Y.H. Wu, ™ Y. J. Wu,”!
Z. Wu,"® L. Xia,”"® X. M. Xian,”® B. H. Xiang,"* T. Xiang,**" D. Xiao,”*"' G. Y. Xia0,** S.Y. Xiao,' Y.L. Xiao,'**
Z.J. Xiao,"' C. Xie,* X. H. Xie,"*" Y. Xie, Y. G. Xie,"”® Y. H. Xie,® Z. P. Xie,”™® T. Y. Xing,"*” C.F. Xu,"* C.J. Xu,”’
G.F. Xu,' H. Y. Xu,*" M. Xu,”"*® Q.7. Xu,'® Q. N. Xu,”” W. Xu,! W.L. Xu,*® X.P. Xu,” Y.C. Xu,”” Z.P. Xu,"
Z.S. Xu,” F. Yan,"*® L. Yan,'”® W.B. Yan,”"”® W.C. Yan,*" X. Q. Yan,' H.J. Yang,”"" H.L. Yang,** H. X. Yang,'
T. Yang,' Y. Yang,"*® Y.F. Yang,"” Y.F. Yang,” Y. X. Yang,"* Z. W. Yang,***' Z.P. Ya0,”” M. Ye,"”® M. H. Ye,?
JH. Yin, Z.Y. You,” B. X. Yu,"*® C.X. Yo, G. Yu.," 1.S. Yu,™' T. Yu,”” X. D. Yu,*" Y. C. Yu,** C.Z. Yuan,"®
J. Yuan,34 J. Yuan,45 L. Yualn,2 S.C. Yuan,l’63 Y. Yuan,l’63 Z.Y. Yuan,59 C.X. Yue,39 A A. Zafalr,73 F. R. Zeng,so
S.H. Zeng,72 X. Zeng,lz’g Y. Zeng,zs’i Y. J. Zeng,59 Y.J. Zeng,l’63 X.Y. Zhai,34 Y. C. Zhai,50 Y. H. Zhan,59 A. Q. Zhang,l’63
B.L. Zhang,"® B. X. Zhang,' D. H. Zhang,” G. Y. Zhang," H. Zhang,*® H. Zhang,”"*® H. C. Zhang,"*** H. H. Zhang,*
H. H. Zhang,”® H. Q. Zhang,""*® H.R. Zhang,”"”® H. Y. Zhang,"*® J. Zhang,*® J. Zhang,”® J.J. Zhang,”* J. L. Zhang,”

032022-10



STUDY OF THE DECAYS ... PHYS. REV. D 110, 032022 (2024)

J.Q. Zhang,*' J.S. Zhang,'** J. W. Zhang,"*** J. X. Zhang,™*' J. Y. Zhang,' J. Z. Zhang,"* Jianyu Zhang,*

L. M. Zhang,m Lei Zhang,42 P. Zhang,]’63 QY. Zhang,34 R.Y. Zhang,38’k’] S.H. Zhang,]’63 Shulei Zhang,zS’1 X.D. Zhang,45
X. M. Zhang,I X. Y. Zhang,50 Y. Zhang,72 Y. Zhang,l Y. T Zhang,80 Y. H. Zhang,]’58 Y. M. Zhang,39 Yan Zhang,71‘58
Z.D. Zhang,1 Z. H. Zhang,1 Z.L. Zhang,34 Z.Y. Zhang,76 Z.Y. Zhang,43 7.7. Zhang,45 G. Zhao,1 Y. Zhao,l’63
J.Z. Zhao,"*® L. Zhao,' Lei Zhao,”"*® M. G. Zhao,* N. Zhao,”® R. P. Zhao,”* S.J. Zhao,* Y. B. Zhao,"® Y. X. Zhao,*"®*
Z.G. Zhao,ﬂ’58 A. Zhemchugov,%’b B. Zheng,72 B. M. Zheng,34 J.P Zheng,l’58 W.J. Zheng,l’63 Y. H. Zheng,63 B. Zhong,41
X. Zhong,”® H. Zhou,” 1. Y. Zhou,** L.P. Zhou,"* S. Zhou,® X. Zhou,”® X. K. Zhou,® X.R. Zhou,”"*® X.Y. Zhou,”
Y.Z. Zhou,'*¢ J. Zhu,® K. Zhu,' K. J. Zhu,"%® K. S. Zhu,"*¢ L. Zhu,** L. X. Zhu,”* S. H. Zhu,”’ S. Q. Zhu,** T. J. Zhu,'*¢
W.D. Zhu,' Y. C. Zhu,"® Z. A. Zhu,"® J.H. Zou,' and J. Zu""®

(BESIII Collaboration)

'Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2Beihang University, Beijing 100191, People’s Republic of China
*Bochum Ruhr-University, D-44780 Bochum, Germany
*Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
5Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
®Central China Normal University, Wuhan 430079, People’s Republic of China
"Central South University, Changsha 410083, People’s Republic of China
$China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
China University of Geosciences, Wuhan 430074, People’s Republic of China
10Chung-Ang University, Seoul, 06974, Republic of Korea
"COMSATS University Islamabad, Lahore Campus, Defence Road,
Off Raiwind Road, 54000 Lahore, Pakistan
Fudan University, Shanghai 200433, People’s Republic of China
GSI Helmholizcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
14Guangxi Normal University, Guilin 541004, People’s Republic of China
15Guangxi University, Nanning 530004, People’s Republic of China
'6Hangzh0u Normal University, Hangzhou 310036, People’s Republic of China
"Hebei University, Baoding 071002, People’s Republic of China
BHelmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
Henan Normal University, Xinxiang 453007, People’s Republic of China
“Henan University, Kaifeng 475004, People’s Republic of China
*'Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
Henan University of Technology, Zhengzhou 450001, People’s Republic of China
23Huangshan College, Huangshan 245000, People’s Republic of China
*Hunan Normal University, Changsha 410081, People’s Republic of China
»Hunan University, Changsha 410082, People’s Republic of China
Indian Institute of Technology Madras, Chennai 600036, India
T Indiana University, Bloomington, Indiana 47405, USA
INFN Laboratori Nazionali di Frascati, 1-00044, Frascati, Italy
O INFN Sezione di Perugia, 1-06100, Perugia, Italy
28CUniversity of Perugia, 1-06100, Perugia, Italy
PUNFEN Sezione di Ferrara, 1-44122, Ferrara, Italy
29bUm'versity of Ferrara, 1-44122, Ferrara, Italy
*Inner Mongolia University, Hohhot 010021, People’s Republic of China
M nstitute of Modern Physics, Lanzhou 730000, People’s Republic of China
2 nstitute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
Bnstituto de Alta Investigacion, Universidad de Tarapacd, Casilla 7D, Arica 1000000, Chile
M Jilin University, Changchun 130012, People’s Republic of China
3 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
*Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
37Justus-Lieblg-Universitaet Giessen, II. Physikalisches Institut,
Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
¥ Lanzhou University, Lanzhou 730000, People’s Republic of China
39Liaoning Normal University, Dalian 116029, People’s Republic of China

032022-11


https://ror.org/03v8tnc06
https://ror.org/00js3aw79

M. ABLIKIM et al. PHYS. REV. D 110, 032022 (2024)

4OLiaoning University, Shenyang 110036, People’s Republic of China
41Nanjing Normal University, Nanjing 210023, People’s Republic of China
42Nanjing University, Nanjing 210093, People’s Republic of China
“Nankai University, Tianjin 300071, People’s Republic of China
*National Centre for Nuclear Research, Warsaw 02-093, Poland
“North China Electric Power University, Beijing 102206, People’s Republic of China
46Peking University, Beijing 100871, People’s Republic of China
47Quﬁ4 Normal University, Qufu 273165, People’s Republic of China
B Renmin University of China, Beijing 100872, People’s Republic of China
YShandong Normal University, Jinan 250014, People’s Republic of China
50Shandong University, Jinan 250100, People’s Republic of China
5'Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
32Shanxi Normal University, Linfen 041004, People’s Republic of China
33 Shanxi University, Taiyuan 030006, People’s Republic of China
3Sichuan University, Chengdu 610064, People’s Republic of China
>Soochow University, Suzhou 215006, People’s Republic of China
8South China Normal University, Guangzhou 510006, People’s Republic of China
T Southeast University, Nanjing 211100, People’s Republic of China
EState Key Laboratory of Particle Detection and Electronics, Beijing 100049,
Hefei 230026, People’s Republic of China
Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
OSuranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
6'Tsinghua University, Beijing 100084, People’s Republic of China
%Tyurkish Accelerator Center Particle Factory Group, Istinye University, 34010, Istanbul, Turkey
°Near East University, Nicosia, North Cyprus, 99138, Mersin 10, Turkey
63University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
% University of Groningen, NL-9747 AA Groningen, The Netherlands
65University of Hawaii, Honolulu, Hawaii 96822, USA
66Um'versity of Jinan, Jinan 250022, People’s Republic of China
67University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
68University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
69University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
70University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
"WUniversity of Science and Technology of China, Hefei 230026, People’s Republic of China
72University of South China, Hengyang 421001, People’s Republic of China
" University of the Punjab, Lahore-54590, Pakistan
74aUniversity of Turin and INFN, University of Turin, I-10125, Turin, Italy
74bUniversity of Eastern Piedmont, I-15121, Alessandria, Italy
"INFN, I-10125, Turin, Italy
Uppsala University, Box 516, SE-75120 Uppsala, Sweden
"*Wuhan University, Wuhan 430072, People’s Republic of China
"Yantai University, Yantai 264005, People’s Republic of China
" Yunnan University, Kunming 650500, People’s Republic of China
79Zhejiang University, Hangzhou 310027, People’s Republic of China
8OZhengzhou University, Zhengzhou 450001, People’s Republic of China

*Deceased.

®Also at Moscow Institute of Physics and Technology, Moscow 141700, Russia.

“Also at Novosibirsk State University, Novosibirsk, 630090, Russia.

4Also at NRC “Kurchatov Institute”, PNPI, 188300, Gatchina, Russia.

°_Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany.

'Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for
Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China.
£Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University,
Shanghai 200443, People’s Republic of China.

kalso at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China.
fAlso at School of Physics and Electronics, Hunan University, Changsha 410082, China.

JAlso at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University,
Guangzhou 510006, China.

032022-12



STUDY OF THE DECAYS ... PHYS. REV. D 110, 032022 (2024)

“Also at MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China.
'Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China.

"Also at Department of Mathematical Sciences, IBA, Karachi 75270, Pakistan.

"Also at Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

°Also at Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany.

PAlso at School of Physics, Beihang University, Beijing 100191, China.

032022-13



