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Using a sample of about 10 billion J/y events with the BESIII detector, we search for the weak
decays of J/y — D°z°+cc., J/w —» D% +cc., J/y = D%° +cc., J/w— D"zt +cc., and
J/w — D™p" + c.c.. Since no significant signal is observed, we set the upper limits of the branching
fractions of these decays to be B(J/y — D°2° + c.c.) <4.7x 1077, B(J/yy = D% +c.c.) < 6.8 x 1077,
B(J/w— D" +c.c.)<52x1077, B(J/w —» D™ nt +c.c.) <7.0x 1078, and B(J/w — D p* +c.c.)

< 6.0 x 1077 at the 90% confidence level.
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I. INTRODUCTION

The J/w meson is a bound state of charm quark and
charm antiquark, with a mass of about 3.1 GeV/c? [1].
Lying below the threshold for the production of two open
charm mesons, it cannot decay into two D mesons. Its
decays are dominated by strong and electromagnetic
interactions, which have been extensively studied. Up to
now, only a very limited number of rare weak decay
channels have been studied experimentally [2-7]. Via
the weak interaction, the J/y can potentially decay into
a single charm meson via such as D accompanied by some
noncharm mesons. Searching for the J/y weak decays can
provide an experimental test of the Standard Model (SM)
[8], which predicts the branching fractions of J/y decays
containing a D meson up to an order of about 1073 [9].
Furthermore, this search may offer a unique opportunity to
probe new physics beyond the SM, including the top-color
model [10], the minimal supersymmetric SM with or
without R-parity violation [11], and the two-Higgs doublet
model [12], in which these branching fractions could be
enhanced to be as large as 107 [8,13].

The weak hadronic decays of J/y have been studied in
theory, calculating the branching fractions for several
decays of J/y and w(2S) into (D + P)/(D( + V),
where P and V represent pseudoscalar mesons and vector
mesons, respectively. From this, the ratio of the branching

B(J/y—Dip*) _
BUly=Dr) = 4.2 [9,14].
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without specific indication. The J /yr — D, P decays, such
as J/y — D~ n", J/w — D{n~, or J/w — D°K°, were
studied at BESII, and the upper limits on the branching
fractions at the 90% confidence level (CL) were set at
the order of 107, using a dataset of 5.8 x 107 J /y [3]. For
the J/w — Dy + V decay J/y — Djp*, the upper limit
on the branching fraction of this decay at the 90% CL was
determined to be of the order of 10~ with a data sample of
225.3 million J/y events at BESIII [4]. However, for some
J/w = DP and J/yw — DV decays, such as J/y — D%,
J/w = D°2°, J/yw — D=p*, and J/y — D°p°, which are
mediated via ¢ — d types, no experimental study has been
reported so far. Figure 1 shows the Feynman diagrams for
these decay modes in the SM.

Using a sample of (10087 +44) x 10%J/y events
collected at the BESIII detector [15], we search for the
weak decays J/y — D°2° J/w — D%, J/w — D°p°,
J/w - D zt,and J/w — D p™.

II. DETECTORS AND DATA SAMPLES

The BESII detector [16] records symmetric e*e™
collisions provided by the BEPCII storage ring [17] in
the center-of-mass energy range from 2.0 to 4.95 GeV

with a peak luminosity of 1 x 10%* cm™2s~! achieved at
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FIG. 1. Leading-order Feynman diagrams of (a) J/yr — D%z°,
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/s = 3.77 GeV. BESIII has collected large data samples
in this energy region [18]. The cylindrical core of the
BESII detector covers 93% of the full solid angle and
consists of a helium-based multilayer drift chamber
(MDC), a plastic scintillator time-of-flight system (TOF),
and a CsI(TI) electromagnetic calorimeter (EMC), which
are all enclosed in a superconducting solenoidal magnet
providing a 1.0 T (0.9 T in 2012) magnetic field. The
solenoid is supported by an octagonal flux-return yoke with
resistive plate counter muon identification modules inter-
leaved with steel. The charged-particle momentum reso-
lution at 1 GeV/c is 0.5%, and the dE/dx resolution is 6%
for electrons from Bhabha scattering. The EMC measures
photon energies with a resolution of 2.5% (5%) at 1 GeV in
the barrel (end cap) region. The time resolution in the TOF
barrel region is 68 ps, while that in the end cap region was
110 ps. The end cap TOF system was upgraded in 2015
using multigap resistive plate chamber technology, provid-
ing a time resolution of 60 ps [19].

Simulated data samples produced with a GEANT4-based
[20] Monte Carlo (MC) package, which includes the
geometric description of the BESIII detector and the
detector response [21], are used to determine detection
efficiencies and to estimate backgrounds. The simulation
models the beam energy spread and initial state radiation
(ISR) in the eTe™ annihilations with the generator KKMC
[22]. For the signal process, J/y decays into D meson
accompanied with a light hadron is generated using the
QCDF decay model [23]. The inclusive MC sample
includes both the production of the J/w resonance and
the continuum processes incorporated in KKMC [22]. All
particle decays are modeled with EVTGEN [24,25] using
branching fractions either taken from the Particle Data
Group [1], when available, or otherwise estimated with
LUNDCHARM [26]. Final state radiation (FSR) from charged
final state particles is incorporated using the PHOTOS
package [27].

III. EVENT SELECTION AND DATA ANALYSIS

To avoid high background from conventional J/y
hadronic decays, the D° and D~ mesons are tagged by
the semileptonic decays D® — K*e~7, and D~ — K%e ™0,
with K% — ztz~. Since the neutrino is undetectable at
BESIIL, the DY and D~ mesons cannot be directly recon-
structed by the invariant mass of their decay products.
However, for the two body J/y decays investigated in this
study, the DY and D~ mesons can be identified in the
distributions of masses recoiling against the z°, , p°, 7+,
and p™ with 2%/ —=yy, p° - 2t2~, and p™ — zta°
decays, respectively. Specifically, for the signal decay
modes J/y — D°p" and J/y — D~ p*, to be conservative,
we omit the non-p contributions.

Charged tracks detected in the MDC are required to be
within a polar angle (0) range of | cos 8| < 0.93, where 0 is

defined with respect to the z-axis, which is the symmetry
axis of the MDC. For charged tracks, the distance of closest
approach to the interaction point (IP) must be less than
10 cm along the z-axis, |V,|, and less than 1 c¢cm in the
transverse plane, |V,,|.

Charged particle identification (PID) is performed by
combining the TOF information and the ionization energy
loss measured in the MDC. The information of the EMC is
also included to identify electron candidates. Combined
confidence levels for electron, pion and kaon hypotheses
(CL,, CL, and CLg) are calculated individually. Charged
tracks with CLg(;) > CL, k) are identified as kaons
(pions), and those with CL, > CL,, CL, > CLg and
CL, > 0.001 are identified as electrons. To further suppress
the backgrounds from charged pions, the E,/p, > 0.8
requirement is imposed on electron candidates, where E,
and p, are the deposited energy in the EMC and the
momentum measured by the MDC, respectively.

Photon candidates are identified using showers in the
EMC. The deposited energy of each shower must be more
than 25 MeV in the barrel region (| cos 8| < 0.80) and more
than 50 MeV in the end cap region (0.86 < |cos 8| < 0.92).
To exclude showers that originate from charged tracks, the
angle subtended by the EMC shower and the position of the
closest charged track at the EMC must be greater than
10 degrees as measured from the IP. To suppress electronic
noise and showers unrelated to the event, the difference
between the EMC time and the event start time is required
to be within [0, 700] ns.

Each K9 candidate is reconstructed from two oppositely
charged tracks satisfying |V.| < 20 cm. The two charged
tracks are assigned as z 7z~ without imposing further PID
criteria. They are constrained to originate from a common
vertex and are required to have an invariant mass within
Mg = mgo| < 12 MeV/c?, where mys is the K§ nomi-
nal mass [1]. The decay length of the K candidate is
required to be greater than twice the vertex resolution away
from the IP. If there are multiple K candidates in an event,
the one with the smallest y? of the secondary vertex fit is
retained.

The 7°/n candidates are reconstructed from candidate
photon pairs. A kinematic fit, constraining the invariant mass
of the photon pair to the world-average value of the z°/5
mass [1] is performed. The combination with the minimum
x* from the kinematic fit and satisfying y* < 20 and 0.115 <
M(yy)<0.150GeV/c?* (0.50<M(yy)<0.57GeV/c?) for
7° (i) is kept for further analysis. The p° and p* candidates
are selected in the regions 0.62 < M+, -/M .0 <
0.95 GeV/c?.

The numbers of charged track candidates are two,
two, four, four, and four, while at least two, two, zero,
zero, and two photons are required for J/y — D%z°,
J/w—D%, J/w—D°", J/w—D zx*, and J/y—
D™ p™, respectively.
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FIG. 2. Distribution of U, from (a) J/y — D°z°, (b) J/y — D%, (c) J/w — D°p°, (d) J/yw — D~x*, and (e) J/w — D™ p*. The
black dots with error bars represent data and the red thick lines show the signal MC sample. The region between the two blue arrows

marks the signal region of U g-

For the channel J/y — D°M, where M represents the
mesons 70, 7, or p®, the undetected neutrino carries a
missing-energy E = Ej, — Ey — Eg+ —E,- and a
missing-momentum pyiis = P/, — Py — D+ — P~ accord-
ing to energy-momentum conservation. Correspondingly,
the missing-energy and missing-momentum for the decay
mode J/y — D™N, where N marks the mesons z* and p™,
are EJ/y/ —Ey— EK% -E.- and ﬁJ/y/ - ﬁN - ﬁK% - ﬁe’-
Here, the energies and momenta of M, N, K+, K(S), and
e~ are taken in the rest frame of the initial e*e™ collision.
The kinematic quantity Uiss = Enmiss — €| Pmiss| 1S used to
identify the missing neutrino and the criterion of U, is
applied to suppress the backgrounds with multi-z°/y and
the misidentification of electron/pion and kaon/pion in the
final states. The requirements of U ;,, for the decay modes
J/w — D°2°, J)w — D, J/w — D°°, J/w — D~ x*,
and J/y — D™ p* are within the regions (—0.083,0.119),
(—=0.050,0.060), (—0.040,0.050), (—0.037,0.040), and
(—0.058,0.074) GeV, respectively. Figure 2 shows the
distributions of U, of the accepted candidates for the
five decay modes. From the inclusive MC sample, no
obvious peaking background in the signal regions is
observed. We select those events for which the recoiling
mass against the 7°, 5, p°, 77, and p* falls within the mass
window (1.80,1.95) GeV/c? for all decay modes. Using
signal MC events, the detection efficiencies for
J/w = D% J/y — D%, J/y — D°°, J/y — D xt,
and J/y — D™ p* are determined to be 41.3%, 34.2%,
32.2%, 35.5%, and 14.2%, respectively.

IV. UPPER LIMITS

Figure 3 shows the recoiling mass spectra of the accepted
candidates for J/y — D°z°, J/y — D%, J/y — D°p°,
J/w — D~ n", and J/yw — D™ p*. No significant signal is
observed in any of the decay modes. As shown in Fig. 3, an
unbinned extended maximum likelihood fit is performed to
extract the signal yields. In the fits, the signal is modeled by
the signal MC shape of the recoiling mass spectrum and the
background is modeled by a first-order polynomial func-
tion. Table I shows the fit results. The branching fraction of
signal decay is calculated as

Nsig

B(J/y — DM(N)) :m,
74 su

(1)

where N, is the number of signal events, N, is the total
number of J/y events [15], e is the signal detection
efficiency, and By, is the product of the branching fractions
of all possible intermediate decays.

To set the upper limit on the branching fraction via a
Bayesian approach [28], we perform a likelihood scan with
a series of fits, where the numbers of signal events N, are
fixed to a series of values in the scan region, which are
shown in Table I. Since the branching fraction is only
meaningful in the physical region (B > 0), the upper limit
on the branching fraction is calculated in this region by
taking into account the systematic uncertainties, which
include additive and multiplicative items as described in
Sec. V. The additive uncertainties are irrelevant to the
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FIG. 3.

Fits of the accepted candidates to the recoiling mass spectra for (a) J/y — D%z, (b) J/yw — D%, (c) J/w — D°p°,

0

(d) J/w —» Dz, and (e) J/w — D~ p*. The dots with error bars are data and the orange dotted lines are polynomial functions
describing the background. The blue solid curves are the total fits. The inclusive MC samples are shown by the green filled histograms.

efficiencies but are associated with the fit procedure, so
they are considered separately. We repeat the maximum-
likelihood fits by varying the background shape and take
the most conservative upper limit among different choices
of background shapes. Then we follow the method dis-
cussed in Ref. [29] that incorporates multiplicative sys-
tematic uncertainties into the upper limits. The distribution
of the maximum likelihood scan L(n), as a function of the
yield n is smeared with the multiplicative uncertainty o,
which is the quadratic sum of the various multiplicative
systematic uncertainties, namely

TABLE L.

The signal yields N, obtained from fits and the upper limits on the signal yields N

where ¢ is the nominal efficiency based on the signal MC
sample. The normalized likelihood versus N, is shown in
Fig. 4, and the upper limits on the branching fractions at the
90% CL are obtained by integrating from zero to 90% of
the likelihood curve in the physical region. The results are
summarized in Table 1.

}de, (2)

4 and branching fractions B at the

90% CL, where the uncertainties of N, are statistical only, and the fifth column represents the previous results.

Mode Nae NYL B (90% CL) B (90% CL)
J )y — DOx° —49.5 +69.3 <68.8 <47 x 1077

J/w — D —28.9 4345 <329 <68 x 1077

JJy — D0 2.0 +37.1 <59.9 <52 x 1077 e

J)w — D-n+ -43+103 <144 <7.0x 1078 <7.5% 1075 [3]
J)w — D p* 18.6 & 26.2 <514 <6.0x 1077 .
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FIG. 4. Normalized likelihood distributions for the fitted yields of signal events and corresponding branching fractions of
(@) J/y = D°°, (b) J/y = D, (c) J/w — D°°, (d) J/w — D~z*, and (e) J/y — D~ p*, with (green solid curves) and without
(orange dashed lines) smearing the systematic uncertainties. The blue arrows mark the upper limits at the 90% CL.

V. SYSTEMATIC UNCERTAINTIES

The sources of systematic uncertainties on the branching
fraction measurements of J/y — D°z°, J/y — D%,
J/w = D°°, J)w — D x*, and J/y — D™p* are clas-
sified into two types: additive and multiplicative.
Multiplicative ones are involved in efficiency determina-
tion, and they are summarized in Table II; additive ones
affect the signal yield determination, such as background
shapes and signal shapes in signal yield fits.

The uncertainties due to tracking and PID efficiencies for
kaons and pions are determined by analyzing doubly-
tagged D™D~ hadronic events from /(3770) data [30].

Using partially reconstructed hadronic decays of Dt —
K-ztn" and D~ — K"z~ x~ where one z~ or K meson is
not reconstructed, the uncertainties are estimated to be
1.0% per track. In addition, the uncertainty from the
electron tracking efficiency is studied using a control
sample of radiative Bhabha events eTe™ — yeTe™ pro-
duced at /s = 3.08 GeV, while the PID uncertainty is
studied using a mixed control sample of ete™ — yeTe™
events and J/y — ete (ypsr) events produced at
Vs =3.097 GeV. We quote 1.0% and 1.0% as the sys-
tematic uncertainties on the tracking and the PID efficiency
for the electron, respectively. The uncertainty from photon

TABLE II. Multiplicative systematic uncertainties in the measured branching fractions for J/y — D70, Don, DO/)O, D=n™t,
and D p™.
Multiplicative (in %)

Source J)w = D=0 J/w = D% J/w = D0 J/w - D nt J/w - D p*
Tracking 2.0 2.0 4.0 4.0 4.0

PID 2.0 2.0 4.0 2.0 2.0
Photon selection 2.0 2.0 e e 2.0

;(%C 0.7 e e 0.7

K9 reconstruction ok e L5 1.5
p*/p° requirement e e 2.8 . 5.1

U piss Tequirement 0.8 1.5 0.9 1.0 1.0
Model 0.5 0.6 0.8 0.6 1.0
Branching fraction 0.8 0.9 0.8 1.5 1.5
Ny 0.5 0.5 0.5 0.5 0.5

MC statistics 0.3 0.3 0.3 0.3 0.5
Total 3.8 4.0 6.8 5.1 7.6
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detection efficiency is 1.0% per photon, which is deter-
mined from the decays J/y — p°z° and the study of
photon conversion via ete™ — yy [31]. The uncertainties
of one-constraint (1C) of z° and 5 kinematic fit are
determined to be 0.7% and 0.08% by using the control
samples J/y — ppn’ and J/yw — ¢n, where the latter is
less than 0.1% and is negligible. The systematic uncertainty
associated with K(S) reconstruction is studied with control
samples of the decays J/y — K**KT and J/y —
dKIK*x¥ [32]. The systematic uncertainty for each K
is assigned as 1.5%. Using the control samples J/y —
ptr~ and J/y — p°x°, the differences in efficiencies
between data and MC simulation, 5.1% and 2.8%, are
assigned as the systematic uncertainties on mass windows
of p* and p°, respectively. The systematic uncertainties
associated with the U, requirement for J/y — D°z°,
D%, D°p®, D=zt and D™ p* are estimated by changing the
U iss selection region from (—0.083,0.119) to (—0.093,
0.129), from (—0.050,0.060) to (—0.056,0.066), from
(—0.040,0.050) to (—0.044,0.054), from (—0.037,0.040)
to (—0.041,0.044) and from (—0.058,0.074) to (—0.065,
0.081) GeV, respectively. The differences in the upper
limits are taken as the corresponding systematic uncertain-
ties. To estimate the systematic uncertainty due to the signal
MC model, we use the “VSS” and “VVS_PWAVE” models
from EvtGen [24] to simulate signal MC events, and the
efficiency differences of the “VSS(VVS PWAVE)” and
QCDF model [23], assigning uncertainties 0.5%, 0.6%,
0.8%, 0.6%, and 1.0% for J/yw — D°z°, D, D°p°, D~x+,
and D™ p™, respectively. The systematic uncertainties asso-
ciated with the branching fractions of intermediate decays
are quoted from PDG [1]. We quote a relative uncertainty of
0.5% determined using J/y inclusive hadronic decays for
the N;,, as the systematic uncertainty from Ref. [15].
Finally, the uncertainty from the MC statistics is taken into
account. The total multiplicative systematic uncertainty is
determined by adding the above systematic uncertainties in
quadrature. The additive systematic uncertainty due to the
signal shape is negligible because it results mainly from the
model as discussed earlier. The additive systematic uncer-
tainty due to the background shape is estimated by altering
the function from the first-order to the second-order
polynomial, and is found to be negligible.

VI. SUMMARY

We report the first search for the weak decays of
J/w = D°2°, J/w— D%, J/w— D°°, and J/y —
D~ p* using (10087 + 44) x 10° J /y events collected with
the BESIII detector. With this data sample, we search for
J/w — D~ z". No evidence for any of these decays has
been found. The upper limits at the 90% CL on the
branching fractions are determined to be: B(J/y—

DP7%+c.c.)<4.7x1077, B(J/w— D p+c.c.)<6.8x107,
B(J/w—D % +c.c.)<52x1077, B(J/w—D n"+c.c.)<
7.0x1078, and B(J/y — D™ p* +c.c.) < 6.0 x 1077, The
upper limit on the branching fraction of J/yw — D™z " +
c.c. has been improved by three orders of magnitude
compared to the previous result [3]. All results are in
agreement with the SM, but more data will be helpful to test
the branching fractions of these weak decays of J/y to the
order of 107% to constrain the parameter spaces of several
theories beyond the SM.
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