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Based on (2712.4 4 14.3) x 10% e*e™ — w(3686) events collected with the BESIII detector operating
at the BEPCII Collider, we report the first evidence of y,, — AA¢ decays and the first observation of
Ye12 = MA@ decays, with significances of 4.16, 11.36 and 13.00, respectively. The decay branching
fractions of y.o ;2 = AA¢ are measured to be (2.99 £ 1.24 +0.19) x 107>, (6.01 £ 0.90 + 0.40) x 107,
and (7.13 +0.81 4 0.36) x 107>, where the first uncertainties are statistical and the second systematic.
No obvious enhancement near the AA production threshold or excited A state is found in the

A¢p (or Ag) system.

DOI: 10.1103/PhysRevD.110.032016

I. INTRODUCTION

In the quark model, the y.;(J =0,1,2) mesons are
identified as P, charmonium states. Due to the conserva-
tion of parity, it was long considered impossible for e* e~
annihilation to directly produce them. As a result, the
decays of y.; have not been studied as extensively as the
vector charmonium states J/y and w(3686) in both
experiment and theory. However, y.; mesons can be
produced via radiative decays of the y(3686) with a sizable
branching fraction (BF) of about 9% [1] for each y; state,
thereby offering an ideal environment to investigate their
properties and decays.

Studies of the processes involving the BBV final states,
where B and V denote baryons and vector mesons,
respectively, are valuable in the search for possible BB
threshold enhancements and excited baryon states decaying
into BV. A threshold enhancement in the pp system was
first observed in the J/w — ypp decay at BESII [2] and
was later confirmed by BESIII with improved precision [3].
Subsequently, an enhancement around the AA production
threshold was observed in various processes, such as
ete” — ¢A/_\ [4], which disfavored an interpretation of
the enhancement as originating from the 7(2225) — AA
decay [5]. In addition, the excited state A(1670) was
observed in the near-threshold reaction K~ p — Ay [6]
and in the An mass spectra in the charmonium decay of
w(3686) — AAn [7]. However, experimental results on the
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AA production threshold enhancement and on excited A
states decaying into A¢ are still limited. Comprehensive
investigations of the BBV system in a wide range of
charmonium decays are desirable. So far, only a few
studies of P wave charmonium decays, y.;, — BBV, have
been performed [1,8—10]. A search for similar decay modes
may provide an opportunity to further investigate the
potential enhancement at the AA production threshold
and the nature of excited A states.

In this paper, by analyzing (2712.4+ 14.3) x
10 y(3686) events [11] collected with the BESIII detec-
tor, we present the first experimental studies of ., — AA¢p
decays.

I1. BESIIT DETECTOR AND MONTE CARLO
SIMULATION

The BESIII detector [12] records ete™ collisions pro-
vided by the BEPCII storage ring [13]. The cylindrical core
of the BESIII detector covers 93% of the full solid angle
and consists of a helium-based multilayer drift chamber
(MDC), a plastic scintillator time-of-flight system (TOF),
and a CsI(TI) electromagnetic calorimeter (EMC), which
are all enclosed in a superconducting solenoidal magnet
providing a 1.0 T magnetic field. The magnet is supported
by an octagonal flux-return yoke with modules of resistive
plate muon counters interleaved with steel. The charged-
particle momentum resolution at 1 GeV/c is 0.5%, and the
dE/dx resolution is 6% for the electrons from Bhabha
scattering at 1 GeV. The EMC measures photon energy
with a resolution of 2.5% (5%) at 1 GeV in the barrel (end-
cap) region. The time resolution of the TOF barrel part is
68 ps, while that of the end-cap part is 110 ps. The end cap
TOF system was upgraded in 2015 using multigap resistive
plate chamber technology, providing a time resolution of

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.032016&domain=pdf&date_stamp=2024-08-15
https://doi.org/10.1103/PhysRevD.110.032016
https://doi.org/10.1103/PhysRevD.110.032016
https://doi.org/10.1103/PhysRevD.110.032016
https://doi.org/10.1103/PhysRevD.110.032016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

M. ABLIKIM et al.

PHYS. REV. D 110, 032016 (2024)

60 ps, which benefits 86% of the data used in this
analysis [14-16].

Monte Carlo (MC) simulated data samples are produced
with a GEANT4-based [17] software package, which
includes the geometric description [18] of the BESIII
detector and the detector response. They are used to
optimize the event selection criteria, and estimate the signal
efficiency and the level of background. The simulation
models the beam-energy spread and initial-state radiation in
the e*e™ annihilation using the generator KkMcC [19,20].
The inclusive MC sample includes the production of the
w(3686) resonance, the initial-state radiation production of
the J/y meson, and the continuum processes incorporated
in KKMC. Particle decays are generated by EvtGen [21,22] for
the known decay modes with BFs taken from the Particle
Data Group (PDG) [1] and LUNDCHARM [23,24] for the
unknown ones. Radiation from charged final-state particles
is included using the PHOTOS package [25].

To determine the detection efficiency for each signal
process, signal MC samples are generated with a modified
data-driven generator BODY3 [21,22], which simulates
contributions from different intermediate states in data for a
given three-body final state, as discussed in Sec. IV.

III. EVENT SELECTION

The A/A and ¢ particles are reconstructed via their
decays A/A — pa~/pn* and ¢p - K*K~. Charged tracks
detected in the MDC are required to be within a polar angle
0 such that | cos 6| < 0.93, where @ is defined with respect
to the symmetry axis of the MDC. The A and A candidates
are reconstructed by combining pairs of oppositely charged
tracks with pion and proton mass hypotheses satisfying a
secondary vertex constraint [26]. Events with at least one
pr~(A) and one pz*(A) candidate are selected. In the case
of multiple AA pair candidates, the one with the minimum

value of \/(Mp,,f —mp)? + (Mp,+ —m5)* is chosen,
where M- (Mj,+) is the invariant mass of the pz~

(pxt) system, and m, (my) is the know mass of A(A) [1].

Considering that A(A) has a relatively long lifetime, we
require the decay length of A(A) to be greater than zero.
The charged tracks other than those originating from the
AA pair are taken as originating from the ¢ decay. For these
tracks, the distance of closest approach to the e'e”
interaction point must be less than 10 cm in the beam
axis and less than 1 cm in the plane perpendicular to this
axis. The measurements of the flight time in the TOF and
dE/dx in the MDC for each charged track are combined to
compute particle identification (PID) confidence levels for
the pion, kaon, and proton hypotheses. Tracks are identified
as K if the confidence level for the kaon hypothesis is the
highest among the three hypotheses of z, K, and p. The ¢
signal is reconstructed by the invariant mass of the charged

kaon pair’s candidate with |Mg:g- —m,| < 18 MeV/c?,

and the region of 1055 < Mg+ x- < 1127 MeV/c? is taken
as the ¢ sideband, where m,; is the ¢ known mass [1]. The
range here is determined based on the mass resolution
obtained from the signal MC sample.

Photon candidates are identified using showers in the
EMC. The deposited energy of each shower must be greater
than 25 MeV in the barrel region (| cos 8| < 0.80) or greater
than 50 MeV in the end-cap region (0.86 < |cosd| <0.92).
To suppress electronic noise and energy depositions not
associated with the event, the EMC cluster timing from the
reconstructed event start time is further required to satisfy
0 <t <700 ns.

To further suppress the combinatorial background, a
four-constraint (4C) kinematic fit imposing four-momen-
tum conservation under the hypothesis of w(3686) —
yAAK* K~ is performed. The combination with the mini-
mum y7 is retained for further analysis if the number of
photons is more than one. Furthermore, the y3- of the
kinematic fit is required to be less than 60 by optimizing the

figure of merit . £ [27] via the y,, decay mode, where ¢
2 bkg

is the detection efficiency, a = 3 is the expected signifi-
cance of this measurement process, and N, is the number
of background events estimated from the inclusive y(3686)
MC sample. Additionally, the background events of y.; —
Q Q" are vetoed by the two-dimensional (2D) mass
window, |Mx- —mq-| > 12 MeV/c? U |Mjg+ —mg: | >
12 MeV/c?, where Mq-(g+) 18 the known mass of the
Q~(QF) baryon [1].

Figure 1 shows the 2D distribution of the invariant mass
for pn~ versus px™ for data after all selection criteria are
applied. A clear AA pair signal can be observed. The one-
dimensional (ID) A and A signal region are defined as
\M -5ty — MAR)| < 6 MeV/c?. The 2D signal region of
AA and its 2D AA sideband regions are shown in Fig. 1.
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FIG. 1. The2D distribution of M+ versus M , - of the accepted
candidates, where the box in red solid lines is the AA signal region,
and the boxes in green dashed lines are the sideband regions.

032016-2



STUDY OF THE DECAYS y.; - AA¢

PHYS. REV. D 110, 032016 (2024)

Potential remaining background contributions are inves-
tigated with the inclusive y(3686) MC events, using the
event-type analysis tool TopoAna [28]. The dominant
background comes from the nonresonant y(3686) decay
of w(3686) — yAAg.

To investigate possible continuum background, the same
selection criteria are applied to the data samples collected at
the center-of-mass energies of 3.650 GeV and 3.682 GeV,
corresponding to an integrated luminosity of 454 pb~! and
404 pb~!. No event survives after applying all the selection
criteria. Hence, the continuum background is considered to
be negligible.

IV. SIGNAL YIELDS

The signal yields of the y.,, — AA¢ decays are
obtained by performing a simultaneous fit to the M 7+ k-
spectra of the events in the ¢ signal and sideband regions. In
the fit, the signal shapes are described by the MC-simulated
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FIG. 2. Fit to the Mg~ distribution of the accepted candi-
dates. The pink arrows show the ¢ signal region, and the pair of
green arrows shows the ¢ sideband region.
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shapes convolved with a Gaussian function, and their
parameters are floated and shared by all y.; signal
contributions.

We also examine the impact of fake A and A candidates.
After considering the number of candidates in the 2D
sideband region (denoted as four green boxes in Fig. 1)
this background is judged to be negligible. The non-y,,
radiative background is described by the MC-simulated
shape of the y(3686) — yAA¢ decay, and the number of
events is taken as a free parameter. There is the possibility of
a K™K~ background that does not come from ¢ resonance.
The shape of this background contribution is derived from
the MC sample of y(3686) — yy.s, xey = AAKTK~, and
its yield is treated as a shared parameter for the two modes,
with its contribution multiplied by a normalization factor f.
The normalization factors, f,, between the ¢ signal and
sideband regions are determined to be 0.71 by comparing the
numbers of background events in the ¢ signal and sideband
regions, as shown in Fig. 2. Specifically, in the fitting of the
K™K~ invariant-mass spectrum, the signal component is
modeled with the MC-simulated shape convolved with a
Gaussian function to account for the possible difference in
the mass resolution between data and MC simulation. The
remaining combinatorial background shape is described by
a reverse ARGUS function [29]. The fit result is shown in
Fig. 3, and the obtained signal yields are summarized in
Table 1.

The significances of y,, — AA¢ and y., — AA¢p are
determined to be 11.36 and 13.00, respectively, by com-
paring the difference of likelihoods with and without
including each signal in the fit. To estimate the significance
of y.0 = AA¢, we apply another approach due to the low
signal yield. We assume that the number of signal and back-
ground events in the y. signal region follow a Poisson
distribution with mean n = s 4+ b [30], where the signal
region is [m, —22,m, +22] MeV/c? (two times the

X0
mass resolution), with m, the known y. mass [1].
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Simultaneous fit to the M ,zx+ - distributions in the ¢ (left) signal and (right) sideband regions.
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TABLE I. The signal yields (N’ggfs), significances, efficiencies, and the obtained BFs. The first uncertainties are
statistical and the second systematic. The significances include systematic uncertainties.

Xc0 Xel Xe2
N’gg’s 7.24+3.0 51.6£7.7 94.4 +£10.7
Significance (o) 4.1 11.3 13.0
e(xes = ANQ) (%) 0.45 1.61 254

B(w(3686) = 1xcs) - Blres = AAP)(x107°)
B(x.; = AA)(x107)

2924+1.22+0.19
2.99+£1.24 £0.19

5.86 £0.87 +0.39
6.01 +0.90 + 0.40

6.79+£0.77 £ 0.35
7.13+£0.81 £0.36

Here, s = 6 represents the expected number of signal
events, while b = 0.6 represents the expected number of
Poisson-distributed background events. All numbers are
counted in the signal region where significant accumula-
tions of events are expected to appear. Then the p value for
the null hypothesis without a resonance (H) is

o pn
p(nobs) = P(l’l > nobs|H0) = Z _'e_b
N=Nps n:
Ngps—1 b
=1- —|e_b,
0 n.

where n,, is the number of events observed in the signal
region. The p value is obtained by calculating the prob-
ability of the number of background events fluctuating to
the number of observed events in the y ., signal region. The
p value for the y., — AA¢ decay is 3.89 x 107>, corre-
sponding to a significance of 4.1c. In determining this

significance, the systematic uncertainties are accounted for
by repeating the fits with variations of the signal shape,
background shape, and fit range.

The existence of potential intermediate states in the AA¢p
final state are investigated through scrutiny of the Dalitz
plots, except for the y ., mode, where the signal yield is too
low. Figure 4 shows the invariant masses of different two-
body combinations for y., signals, after subtracting the
background contributions using the normalized sideband
events. No obvious structures are observed. Nevertheless,
the mass spectra do not agree well with the signal MC shapes
generated with the PHSP model, which will lead to a bias in
the efficiency correction made based on this model.
Therefore, the PHSP model is replaced by the modified
data-driven generator BODY3 [21,22], which was devel-
oped to simulate different intermediate states in data for a
given three-body final state. The Dalitz plot of M3 » Versus

M/Z-\ 4 found in the data, including a binwise correction for
backgrounds and efficiencies, is taken as an input to the
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Invariant-mass distributions of different two-body combinations of the decays of (top row) y.; — AA¢ and (bottom row)

X2 = AA@. The data are background subtracted. Two MC predictions are shown, one based on the PHSP model, the other on the

BODY3 model.
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BODY3 generator. The updated data-MC comparisons
based on the BODY3 signal MC samples are shown in
Fig. 4, where the data-MC agreement is improved compared
to the PHSP model.

V. NUMERICAL RESULTS
The BFs of y.; — AA¢ are calculated by

_ N)(r!
B AA — obs _ ; 1
(res = AR) Nyiese) [ [iBi - €(xes = AAP) M

where N%/ is the y,; signal yield; [ ], B; is the product BFs
of w(3686) = yy.;» A — pm, and ¢ > KTK~, as taken
from the PDG [1]; Ny, (366) is the total number of y(3686)
events [11]; and e(y.; — AA@) is the detection efficiency.
The measured BFs of each decay mode are summarized in

Table 1.

VI. SYSTEMATIC UNCERTAINTIES

Several sources of systematic uncertainty have been

considered and are detailed below.

(1) Kaon tracking: The systematic uncertainty associ-
ated with the tracking efficiency is estimated with a
control sample of J/y — KYK*z¥ decays, and
determined to be 1.0% [31] for each kaon.

(2) Kaon PID: The systematic uncertainty associated
with the kaon-PID efficiency is determined to be
1% [31] for each kaon, based on the same sample
used to estimate the kaon tracking efficiency.

(3) Photon reconstruction: The systematic uncer-
tainty arising from the knowledge of the photon
reconstruction efficiency is assigned to be 1.0% [32],
from studies of the control sample of J/y —
atn 7 decays.

(4) 4C kinematic fit: To assign the systematic uncer-
tainty related to the 4C kinematic fit, control samples
of w(3686) =t J/y,J /w— AA and w(3686) —
nJ )y, J)w = AAxtz~, events which have similar
topologies as the signal modes are employed. The
efficiency of the 4C kinematic fit is defined as the
ratio of the signal yields with and without the same
x* requirement as the signal channel. The larger
difference in efficiencies between data and MC
simulation of the two control samples, 1.3%, is
taken as the systematic uncertainty.

(5) A(A) reconstruction: The combined efficiency in-
cluding proton/antiproton and charged pion tracking,
and A and A reconstruction are studied with a control
sample of J/y — pK~2(—yA)+c.c. decays.
The differences in reconstruction efficiencies be-
tween data and MC simulation, 1.8% per A and
1.5% per A, are taken as the corresponding systematic
uncertainties.

032016-5

(6) Signal yield determination

(a) Mass window: The systematic uncertainties as-
sociated with each mass window are estimated
by varying each mass window by 1 standard
deviation of the corresponding mass resolution.
The larger change of the remeasured BF is taken
as the corresponding systematic uncertainty.

(b) Fit range: To examine potential systematic
uncertainty associated with the choice of fit
range, we perform a Barlow test [33] to examine
the significance of deviation ({) between the
baseline fit and the systematic test, defined as

Vominal — tes
é« | nominal test' (2)

- 9
2 2
\/'GV nominal UVIest|

where V is the measured BF and oy is the
statistical uncertainty of V. The ¢ distribution is
obtained by varying the fit range ten times, by
shrinking or enlarging the interval (3390,
3590) MeV/c? to (3370,3610) MeV/c?, with
a step of 2 MeV/c?. After these tests, the
associated systematic uncertainty is found to
be negligible since the ¢ distribution shows no
significant deviation.

(c) Signal shape: To assess the systematic uncer-
tainty due to the choice of signal shape, we
use an alternative Breit-Wigner (BW) func-
tion BW(Myz,) X E; x D(E,) to describe
the signal distribution, where BW(M\z,) =
(Mpzg—m, )*+5T2 )7! [9] is the nonrela-
tivistic BW function with width I, = and mass

m,, . fixed to their individual PDG values [1];

Ey = (mi/(%gé) - Mf\/-\(/))/2mw<3686) is the en-
ergy of the transition photon in the yw(3686)
rest frame; and D(E,) is a damping factor that
suppresses the divergent tail due to E; This
damping factor is described by D(E,) =
exp(—E2/8f%) with f8 constrained to the CLEO
measurement (65.0 = 2.5) MeV [34]. The differ-
ence in the signal yields between fits with the
two different signal functions is taken as the
systematic uncertainty.

(d) Background shape: The systematic uncertain-
ties due to the background shape are estimated
by replacing the MC-simulated shape of
w(3686) — yAAg with a second-order polyno-
mial function. The change of the fitted signal
yield is taken as the systematic uncertainty.

(e) Normalization factor: The systematic uncer-
tainty of the normalization factor of the ¢
sideband, f,, is estimated by varying the side-
band region by +16, where ¢ denotes the mass
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TABLE 1II. Systematic uncertainties (%) in the BF measure-
ments, where “neg” indicates that the associated systematic
uncertainty is negligible, and the three dots indicates that the
systematic uncertainty is not applicable.

Source Xc0 Xel X2
Kaon tracking 2.0 2.0 2.0
Kaon PID 2.0 2.0 2.0
Photon reconstruction 1.0 1.0 1.0
4C kinematic fit 1.3 1.3 1.3
A reconstruction 1.8 1.8 1.8
A reconstruction 1.5 1.5 1.5
Mass window 1.0 04 1.0
Fit range neg neg neg
Signal shape 3.1 3.1 0.5
Background shape 2.8 0.8 0.3
Normalization factor 0.3 0.2 0.3
MC model e 2.6 0.5
Input BFs 2.8 3.1 2.8
Ny (3686) 0.5 0.5 0.5
Total 6.5 6.6 5.1

resolution. The largest differences of the BFs
from the baseline results are assigned as the
corresponding systematic uncertainties.

(7) MC model: The systematic uncertainty due to the
MC model is estimated by varying the bin size by
+25%, and varying the number of background
events by 1 standard deviation in the input Dalitz
plot in the BODY3 generator, under the assumption
that the background satisfies a Poisson distribution.
Combining the results from the two sources, the
larger difference relative to the baseline efficiency is
used to determine the systematic uncertainty.

(8) Input BF's: The uncertainties of the BFs of y(3686) —
YXc0> W(3686) > YXcls W(3686) > YXc2» A — pr,
and ¢ - KK~ taken from the PDG [1] are 2.0%,
2.5%, 2.1%, 1.6% and 1.0%, respectively.

(9) Ny (3686): The uncertainty on the value of the total
number of y(3686) events, determined with inclu-
sive hadronic y(3686) decays, is 0.5% [11].

All the systematic uncertainties are assumed to be inde-

pendent of each other and combined in quadrature to obtain
the overall systematic uncertainty as listed in Table II.

VII. SUMMARY

By analyzing (2712.4 4 14.3) x 10% y/(3686) events,
we observe the signals of y., — AA¢ for the first
time and find the evidence of y,, — AA¢ with a signifi-
cance of 4.16. We determine their decay BFs to be
By = AA@) = (2.99 £ 1.24 £0.19) x 107, B(y. —
AA@) = (6.01£0.90+£0.40) x 107 and B(y., — AAp) =
(7.13 £0.81 £ 0.36) x 107>, where the first uncertainties

are statistical and the second systematic. No obvious
enhancement near the AA production threshold is found.
No obvious excited A state is found in the My, or My,
spectra, either.
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