
New limit on dark photon kinetic mixing in the 0.2–1.2 μeV mass range
from the Dark E-field Radio experiment

Joseph Levine , Benjamin Godfrey , J. Anthony Tyson ,* S. Mani Tripathi , Daniel Polin , and Amin Aminaei
Physics and Astronomy Department, University of California, Davis, Davis, California 95616, USA

Brian H. Kolner
Electrical and Computer Engineering Department, University of California, Davis,

Davis, California 95616, USA
and Physics and Astronomy Department, University of California, Davis, Davis, California 95616, USA

Paul Stucky
Chemistry Department, University of California, Davis, Davis, California 95616, USA

(Received 24 May 2024; accepted 24 June 2024; published 9 August 2024)

We report new limits on the kinetic mixing strength of the dark photon spanning the mass range
0.21 − 1.24 μeV corresponding to a frequency span of 50–300 MHz. The Dark E-field Radio experiment is
a wideband search for dark photon dark matter. In this paper we detail changes in calibration and upgrades
since our proof-of-concept pilot run. Our detector employs a wide-bandwidth E-field antenna moved to
multiple positions in a shielded room, a low noise amplifier, wideband analog-to-digital converter, followed
by a 224-point fast Fourier transform. An optimal filter searches for signals with Q ≈ 106. In nine days of
integration, this system is capable of detecting dark photon signals corresponding to a kinetic mixing
strength ϵ several orders of magnitude lower than previous limits. We find a 95% exclusion limit on ϵ over
this mass range between 6 × 10−15 and 6 × 10−13, tracking the complex resonant mode structure in the
shielded room.
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I. INTRODUCTION

Dark matter was discovered via its gravitational effects on
large scale dynamics of galaxies and stars within galaxies.
Indeed, galaxies are held together by their dark matter halos,
which supply much more mass than the baryons (stars and
gas). While abundant astrophysical and astronomical obser-
vations have characterized the gravitational interactions of
dark matter over a variety of length and time scales, no other
interactions have been conclusively detected. Recently,
searches have largely focused on the WIMP hypothesis
and found nothing [1]. However, the parameter space of dark
matter is vast, motivating the need for alternative theories
and detection techniques. The Snowmass 2021 Cosmic
Frontier report highlights the need to delve deep and search
wide through development of small pathfinder experiments
and new detector technologies [2,3].

The dark photon is a hypothetical, low-mass vector
boson, which has been posed as a candidate for dark matter.
Dark photons could account for much of the dark matter,
and are theoretically motivated via fluctuations of a vector
field during the early inflation epoch of our Universe.
A relic abundance of such a field could be produced
nonrelativistically in the early Universe through either
the misalignment mechanism [4] or through quantum
fluctuations of the field during inflation [5].
A dark photon is identified as the boson of an extra U(1)

symmetry [6]. Such a symmetry would mix between the
Standard Model photon and the new gauge boson provid-
ing a detection portal. The Lagrangian then varies from the
Standard Model, LSM, as

L ¼ −
1

4
F0
μνF0μν þ 1

2
m2A0

μA0μ −
1

2
ϵF0

μνF
μν
EM þ LSM: ð1Þ

Here m is the mass of the dark photon, Fμν
EM and Aμ are

the electromagnetic field tensor and gauge potential, F0
μν

and A0
μ are the dark photon field tensor and gauge potential,

and ϵ is the dark photon-to-electromagnetic kinetic
mixing factor which must be measured. The mixing term
between the two coupled fields is then 1

2
ϵF0

μνF
μν
EM. Through
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kinetic mixing, dark photons would be detectable in
electromagnetic searches, and ϵ can be measured. Null
results place constraints on the mass-ϵ parameter space.
Astronomical observations [7–9], particularly the stellar

data from the Gaia satellite, constrain the mean energy
density of dark matter ρDM at our position in our Galaxy:
ρDM ≈ 450� 100 TeV=m3. For dark photons in free space,
converting this energy density to its corresponding electric
field gives [10]

jEantj ≈ ϵ

ffiffiffiffiffiffiffiffiffiffiffiffi
2

ε0
ρDM

s
; ð2Þ

where Eant is an electric field observed at an antenna, ϵ is
the small, dimensionless kinetic mixing parameter between
the dark photon and electromagnetism and ε0 is the
permittivity of free space. This equation assumes that the
dark photon corresponds to all of the dark matter. For our
local dark matter energy density estimate Eq. (2) gives an
electric field of jEantj ≈ ϵ × 4 kV=m.
Knowledge of dark photon properties informs exper-

imental design and search methodology. The small cou-
pling to classical electromagnetism of order ϵ necessitates
placing the experiment in an environment where the level
of external interfering signals is significantly reduced. Dark
photons, if they are a component of the dark matter, will be
present everywhere including inside a radio-frequency
(RF)-shielded room. The mass (or frequency) is unknown,
motivating a wide search in frequency. The known stellar
velocity dispersion in our Galaxy broadens the predicted
linewidth to a quality factor QDP ≈ 106 [11]. This enables
optimal filtering of the data for a narrow band, constant
signal buried in the noise, as discussed below.
At its core, the Dark E-field Radio (DER) experiment is a

fast Fourier transform (FFT)-based radio-frequency spec-
trum analyzer, searching for a small power excess on the
wideband thermal noise spectrum received from an antenna
in a cavity. Details are presented in Sec. II.
The remainder of the paper is arranged as follows.

Section II outlines the experimental details and how they
are motivated by dark photon properties, as well as data
collection. Section III provides details on how the data are
processed to search for a dark photon signal, and provides a
statistical exclusion limit on the lack of a signal detection
(Table I). Section IV takes the limit generated in Sec. III
and converts it into a limit on ϵ. Section V discusses
systematic uncertainties, the elimination of a single can-
didate, and summarizes the null result of our current run.
Finally, Sec. VI reviews our experiment and presents a plan
for future searches. Table II provides a summary of select
parameters and references where they are first introduced.

II. EXPERIMENT

The DER experiment consists of a linearly polarized
biconical E-field antenna [12] (designed to operate between

25 and 300 MHz) inside of a cavity. The cavity is a room-
temperature, commercial, shielded room [13] of nominal
dimensions 3.05 × 2.44 × 3.66 m. The room serves both
to isolate the experiment from external radio-frequency
interference (RFI) and to provide resonant enhancement
of potential dark photons after they have converted to
Standard Model photons.
Figure 1 shows a schematic diagram of our radio-

frequency spectrum analyzer system. A low noise amplifier
(LNA), secondary amplifier chain and a band-pass filter
provide analog signal conditioning before the radio-
frequency signal is directly digitized by a two channel
analog-to-digital converter (ADC). From the ADC, time
domain records are sent to a graphics processing unit
(GPU) which performs a FFT. This system is discussed
further in Sec. II B.
An identical antenna is placed outside of the shielded

room to monitor the local environment for RFI. If any
candidate signal is detected by the main channel (B) and
can be correlated within a 3-minute window to a similar
signal in the “veto” channel (A), the contaminated scan can
be excluded. This process is performed offline during the
analysis stage. If no candidates are tagged in the analysis,
these veto data are not used.

A. Experimental considerations

1. Background: Noise and interfering signals

The overarching goal of the experiment is to measure
weak, coherent, electric fields (≈40 pV=m) embedded in a
wide-bandwidth background. The background is primarily
composed of coherent RFI, ≈100 μV=m (measured in
the lab), and room-temperature black body spectrum

FIG. 1. Schematic diagram of the Dark E-field Radio system
with nominal gain and noise temperature of 74 dB and 115 K
respectively. The shielded room provides > 110 dB of isolation
over the 50–300 MHz frequency span and radiates a room-
temperature black body spectrum which is the dominant back-
ground measured. An identical antenna outside of the shielded
room monitors local RFI. The 50 Ω terminator provides a known
thermal noise source which is helpful for monitoring amplifiers
over a data run and checking for interfering candidates. Band-pass
and low-pass filters (BPF and LPF) provide anti-aliasing, and
define the bandwidth of the signal received from both antennas.
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≈1 nV=ðHz1=2mÞ. To reduce the effects of RFI, the experi-
ment is placed in an RF-shielded environment. In order to
make external RFI a subdominant contribution to our total
noise floor, shielding effectiveness (SE) in excess of
100 dB is required. At the time of the experiment the
SE was measured to be at least 110 dB, and greater than
130 dB at some frequencies.
Contributions from the ADC (ADC effects) further

reduce our sensitivity. Introducing a gain factor GðνÞ
before the ADC greatly reduces these effects to near-
negligible levels. The ADC’s noise floor is approximately 5
orders of magnitude lower than the experiment’s output-
referred thermal noise density, making it negligible since this
noise will average down along with the thermal noise of the
experiment. Spurious signals produced internal to the ADC,
however, will behave similarly to a candidate, emerging
further above the noise with increased averaging. By termi-
nating the input of the ADC, these spurious signals were
measured. The most significant of these was 10−14 W,
output-referred. We correctly predicted this would become
detectable after approximately 3 days of averaging. This is our
only false positive signal and is discussed further in Sec. VB.
The LNA contributes approximately 0.3 nV=Hz1=2 of

input-referred noise (LNA Noise). Band-pass filters are
added to reduce the total-integrated power received
outside of the band-limited region of interest. This allows
for more gain and therefore a smaller relative contribution
of ADC effects.
The above considerations can be summarized in the

following equation for output-referred power spectral
density (PSD) SoðνÞ, assuming no dark photon signal is
present:

SoðνÞ¼ADCEffects

þG

�
RFI
SE

þThermalNoiseþLNANoise

�
; ð3Þ

where each term is a function of frequency. We convert this
output-referred PSD to an input-referred PSD by dividing
by G; SiðνÞ≡ So=G. This quantity is standard in the
literature, however we are more interested in the antenna
referred spectrum SantðνÞ, which is the noise delivered to
the LNA before the addition of LNA noise.

SantðνÞ≡ Si − LNA Noise

¼ ADC Effects
G

þ RFI
SE

þ Thermal Noise

≈ Thermal Noise: ð4Þ

Sant is a useful quantity because its only non-negligible
component is the thermal noise received by the antenna
which ultimately sets the sensitivity of the experiment
(assuming negligible ADC effects, RFI and no dark photon
signal). It is worth noting that while Sant scales like the

square root of total integration time, the limit on ϵ scales
like the square root of Sant, and therefore the quarter root of
integration time. Our choice of a 9 day data run is set by this
scaling (see [14] for a discussion).

2. Frequency resolution ΔνRF

As discussed in Sec. I and in [11], the fractional
linewidth of the dark photon is relatively well accepted.
While we will use a specific Rayleigh line shape during data
analysis, knowing the expected Q of the dark photon line
QDP ≈ 106, allows us to set the frequency resolution ΔνRF
of the FFT. Since our thermal background has a constant
PSD, it seems advantageous to make ΔνRF as narrow as
possible in order to minimize the thermal noise power
contained in each bin. However, once ν=ΔνRF>QDP, the
signal’s power will also be split between bins. While a
narrow ΔνRF splits both signal and noise between bins,
decreasing ΔνRF entails performing longer FFTs, which
results in acquiring fewer FFTs for a fixed total integration
time τ. In other words, signal-to-noise-ratio (SNR) improves
as ΔνRF is reduced until it reaches the expected width of the
signal. For a constant τ, it can be shown that

SNR ∝

(
Δν−1=2RF if ΔνRF ≥ ν=QDP

Δν1=2RF if ΔνRF < ν=QDP:
ð5Þ

This motivates choosing νmin=ΔνRF ≈QDP, or
ΔνRF ≈ 50 Hz, for a scan beginning at νmin ¼ 50 MHz.
ΔνRF is set through the length of the FFT and sample rate.
Constraints on these parameters dictate that we set ΔνRF
to 47.7 Hz.

3. Clock stability

The raw, digitized output of our experiment is a time
series, sampled at the digitizer’s clock rate. Since the
discrete Fourier transform (DFT) of a perfect sinusoid
sampled by an unstable clock will have a finite spectral
width, clock stability must be better than the expected
spectral width of candidate signals, which in our case is set
by the expected QDP ≈ 106. To achieve the required
stability, we synchronize the sample clock (Valon 5009
RF synthesizer) of our ADC to a 10 MHz rubidium
frequency standard (Stanford Research Systems FS725)
which is further steered by the one pulse-per-second (pps)
signal from a GPS receiver. This system has medium and
long term fractional frequency stability (Allan deviation) of
σyðτÞ < 3 × 10−12 (where τ is the averaging time) and
phase noise of less than −65 dBc=Hz at offset frequencies
> 50 Hz from the carrier. This means that over the course
of a single acquisition, the power contained in a bin will
spread to an adjacent bin by less than 1 part in 106 which is
more than sufficient for our experiment.
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4. Statistical uniformity

In practice, an antenna in a cavity exhibits extreme
sensitivity to the location of any conductors within the
cavity including the location of the antenna itself. The
cavity and everything within it form a coupled resonant
system whose resonances are strongly affected by the
physical setup. Very small physical disturbances of the
system result in large variations in measurements. To
combat this effect and to allow for repeatable measure-
ments, the concept of statistical uniformity is used by those
who employ cavities as reverberation chambers [15,16].
With this in mind, a necessary modification to the antenna
aperture (defined in Sec. IV) is to replace the notion of an
antenna having a single aperture with that of an antenna-
cavity system having an average aperture, where the
average is taken over many configurations of the system.
We denote this averaging over system configurations with
the use of hi [17,18].
As previously stated, the resonances of the coupled

antenna-cavity system are highly dependent on the con-
figuration of the system. Each observed resonance occurs
with some characteristics (i.e. frequency and Q) as a result
of nearby modes interacting with it. By intentionally
changing the configuration of the system, each individual
mode will be pulled around by its neighbors. The configu-
rations which are averaged over can be created through the
rotation of metal mode stirrers which are large enough to
occupy a significant volume of the cavity [19].
We accomplish a similar effect by moving the antenna to

9 positions and polarizations throughout the course of the
run. This is similar to the effect of a turntable frequently
employed by microwave ovens. While this does not ensure
statistical uniformity, it allows us to perform a simulation
which we find agrees reasonably well with measurement.
This is further discussed in Sec. VA.
Proper mode stirring requires the reverberation chamber

to be operated where the modal density is sufficiently
high, far above the so-called lowest usable frequency.
This is approximately 200 MHz for a cavity of our
dimensions [20]. Operating in this regime allows for an
approximate analytic solution of chamber parameters
which is outlined in [21]. Since we operate the experiment
at frequencies below 200 MHz (the undermoded region),
we do not have a well stirred chamber and must rely on
simulation for calibration. We plan to upgrade our chamber
with mode stirrers in future, higher frequency runs.

B. GPU-based real-time spectrum analyzer

The use of commercial spectrum analyzers (SAs) which
feature so-called real time spectrum analyzer (RTSA) mode
come with several restrictions which limit the efficiency
with which they are able to perform wideband scans with
narrow frequency resolution, as we pointed out in our pilot
run [14]. The number of frequency bins output by a real

DFT is equal to half of the number of time domain samples,
while the bandwidth is given by half of the sample rate.
Furthermore, the ability to acquire data in real time requires
a DFT algorithm (generally implemented as a fast Fourier
transform, FFT) and computational resources which can
operate on time domain data at least as fast as it is acquired.
In practice, real-time DFTs with high frequency resolution
and wide bandwidth require modest memory, transfer rates
and processing resources. For this reason, we have con-
structed our own SA based on the Teledyne ADQ32 PCIE
digitizer, which is wide bandwidth (up to 1.25 GHz), high
resolution (224-point FFT), and nearly 100% real time.
Indeed, we have been unable to find a commercial SAwith
comparable capabilities.
The first component of our SA is the Teledyne ADC

which directly samples at a rate of 800 MHz and bit depth of
12 bits. From the ADC, records of length 224 are acquired
and sent to a GPU which computes an FFT. Approximately
104 FFTs are performed and added to a cumulative sum on
the GPU (representing about 3 minutes of real-time data).
Dividing by the number of FFTs provides an averaged
spectrum that is saved for offline processing. This preaver-
aging reduces the raw ≈1.5 GB=s=channel data stream to
≈0.15 MB=s=channel, which greatly reduces storage
requirements. However, this comes at the cost of temporal
resolution of transient candidates.

C. Data acquisition run

Data were collected during a 9-day run from May 10 to
May 19, 2023. Each day was subdivided into data collec-
tion (23 hours 15 minutes) and setup (45 minutes) periods.
The setup period includes moving the antenna, changing a
12 V battery for the LNA, file management and documen-
tation. In order to reduce the data rate and storage require-
ments, all data were preaveraged into 3-minute chunks and
then saved. This is shown in Fig. 2. For the data analysis, all
9 days of data were averaged together to create a single
spectrum So (Fig. 3). If candidates are found, their time
dependence can be observed by looking at the 3-minute
preaverages. All further analysis is performed on the full
9-day So spectrum and is described below (Sec. III).

D. Raw data, So

All 9 days of preaveraged data from the run are averaged
together. The stability of our sample clock ensures that this
is a simple process; frequency bins corresponding to a
given frequency are added and normalized to the total
number of preaveraged spectra. This process produces the
raw spectrum, So (Fig. 3), on which we will perform a
search for power excess.
Inspection of So reveals small power variations over

spans of tens of kHz. Given an antenna in a cavity in
thermal equilibrium with the input of an LNA, whose input
is assumed to be real and matched, one would expect an
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output PSD which is constant with respect to frequency up
to small variations in LNA gain. The theory for this is
outlined in [22]. These variations are not noise; for a given
antenna position we repeatedly measure the same shape
(though the noise riding on these variations is random). The
origin of the observed small variations lies in the effective
temperature difference between the room and LNA causing
a net power flow from the antenna into the LNA. This
effective temperature difference partially excites modes of
the antenna/cavity system, causing the observed variations.
We suspect this effect originates from a small reactive
component of the LNA’s input causing the electronic
cooling described originally by Radeka [23]. This effect
can be eliminated by adding an isolator between the
antenna and LNA [24,25] though for our experiment, it
is impractical to get an isolator that covers such a wide band
at relatively low frequency. Furthermore, the relatively
wide (tens of kHz) variations can be handled by fitting to
them which we discuss in Sec. III.

III. DATA ANALYSIS

At this point, we have compiled a single, averaged,
output-referred power spectrum, So (Fig. 3). The task of
analysis (depicted in Fig. 4) is to extract a dark photon
signal from this spectrum if it is present. Otherwise, in its
absence, we would like to set a limit on the amount of
output-referred power one would be able to detect most of
the time were a narrow signal to be present in this averaged
dataset. We quantify the meaning of “most of the time” by
conducting a series of Monte Carlo (MC) “pseudoexperi-
ments” on artificial signal-containing spectra for synthetic
signals of varying powers and frequencies. The following
subsections are organized as follows:
(III A) Fit So to extract an estimate of the background B

(which we call B̂) whose origin was discussed in
Sec. II D. See Fig. 5.

(III B) Divide the spectrum by B̂ to generate the nor-
malized spectrum, which very nearly follows a
Gaussian distribution. Discuss statistics of the
normalized spectrum and choose a global signifi-
cance level and its associated significance thresh-
old. See Fig. 6.

(III C) Apply a matched filter to the normalized spectrum
and establish a significance threshold on its output
using the same method defined in the previous
section. See Fig. 7. The previous three steps
comprise our detection algorithm which is shown
in Fig. 4.

(III D) Perform a Monte Carlo analysis to simulate the
required power of a signal that can be detected
above the significance threshold 95% of the time.
We use this to recover a 95% exclusion limit on
the output-referred power spectrum.

In Sec. IV we convert this threshold on So into an actual
limit on ϵ.

FIG. 3. Averaged output-referred power spectrum, So. Data
were taken over a 9-day period at 9 antenna positions. The narrow
variations are mainly due to the effective temperature difference
between the room and LNA, though there is a small contribution
due to amplifier gain and noise temperature variations (see
Sec. II D). The variations seen here are not noise; their shape
is repeatable for a given antenna position. The noise on this
background is not visible at this level of zoom, but can be seen in
Fig. 5, which shows a zoomed-in view of the spectrum at
240 MHz.

FIG. 2. Real-time data acquisition data stream. Approximately
104 time series records (about 3 minutes of real-time data) are
written from the ADC directly to GPU buffers. FFTs are
performed on these records resulting in a preaveraged spectrum
which can be saved to disk. This set up is duplicated for channels
A and B, though the data rates indicate the sum of both channels.
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Throughout the figures of this section we will follow a
relatively large (40fW, output-referred) software-injected,
synthetic dark photon signal at 240 MHz to illustrate
what a candidate would look like as it passes through
the analysis procedure. This signal is added to So. For
clarity, we have removed a single interfering candidate
which we discuss in Sec. V B.

A. Fit background, B̂ðνÞ
As shown in Fig. 3, the measured power spectrum

looks like flat thermal noise multiplied by some fre-
quency dependent background, BðνÞ. However, for
this section we will not concern ourselves with the origin
of B or any details of the experiment aside from two
assumptions:
(1) The measured background is the product of a

normally distributed spectrum and some back-
ground. This is enforced by the central limit theorem
due to the large number of averaged spectra,
independent of any experimental specifics.

(2) The line shape of the signal is known and the width
of this signal is much narrower than the width of
features on the background, viz. ΔνDP ≪ ΔνB.

The first assumption (1) implies that if we were able
to extract the background, dividing So by this extracted
background would yield a dimensionless, normally dis-
tributed power spectral density on which to perform a
search for a dimensionless signal. The second assumption
(2) will be critical in both performing the fit to the
background (this section), and performing matched filter-
ing (Sec. III C).
In light of these assumptions, we attempt to fit for the

background power spectrum. Since this fit estimates B, we
use the symbol B̂ to refer to it. As discussed in [26], a
particularly effective fitting technique that can discriminate

between the wide bumps of So and a narrow signal is to use
a low-pass filter. We implement this filter in two stages:
(1) A median pre-filter (51 bins or about 2.4 kHz wide)

attenuates any very narrow, very large excursions
which would interfere with any following filters,
causing them to “ring”.

(2) A 6th-order Butterworth low-pass filter (corner
frequency of 210 bins or 10 kHz).

These bin widths/frequencies should be interpreted as
the width of spectral features on So that are attenuated and
will, therefore, not show up in the background fit. A narrow
zoom of this fit with a synthetic signal is shown in orange
in Fig. 5.

B. Normalized spectrum, Snorm
o

Once we have a fit to the background, B̂, division of So
by this fit yields a dimensionless, Gaussian distributed
spectrum

Snormo ≡ So
B̂
: ð6Þ

As we discuss in [14], this normalized spectrum (Fig. 6)
should have a mean μnorm ¼ 1 and a standard devia-
tion given by the Dicke radiometer equation σnorm ¼
ðτΔνRFÞ−1=2 where τ is the total integration time
(≈9 days) and ΔνRF is the width of a bin (47.7 Hz).
This works out to a predicted σnorm of 1.727 × 10−4. μnorm
and σnorm calculated from the data are 1 − 1.2 × 10−5

and 1.741 × 10−4 respectively, which agree with the
predicted values to better than 1%. Knowing the statistics

FIG. 4. Flow chart outlining the logic of signal processing in
the detection algorithm of sections III A through III C. B̂ is the
smoothed fit to So generated by low-pass filtering. The output,
Detection?, is a Boolean array which signifies a detection or
lack thereof at each frequency bin. We detect a candidate if a
bin contains more power than a significance threshold (ST)
(Sec. III B). FIG. 5. Fitting background B̂ in the presence of a synthetic

signal injected at 240 MHz. Starting from the averaged, output-
referred spectrum (So), we fit the background using a series of
filters (section III A, and Fig. 4). This figure is a highly zoomed in
view (240 MHz� 20 kHz) in order to show the noisy Rayleigh
signal shape.
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of the background allow us to set a threshold above
which we have some confidence that a candidate is not
a random fluctuation. We briefly derive this threshold as
described below.
The probability that all N bins are less than z standard

deviations, zσ, for a standard normal distribution is given
by f1

2
½1þ erfðz= ffiffiffi

2
p Þ�gN, where erfðzÞ is the standard error

function and z is real. Setting this equal to 100% − X
(where X is the significance or the desired probability a
fluctuation crosses the zσ threshold assuming no signal),
and inverting erfðzÞ yields a ST. We choose X ¼ 5%
corresponding to a 5% probability that an observed
fluctuation above this ST is due to chance rather than a
significant effect (i.e. a signal). A 5% ST for 5.2 × 106 bins
(our 50–300 MHz analysis span) works out to 5.6σ. This is
shown in Fig. 6.
It should be noted that it is common in physics to discuss

“5σ significance”. This means that a given experiment has
a 1 − erfð5= ffiffiffi

2
p Þ probability (about 1 in 3 × 106) of a false

positive. The analysis of our normalized spectrum involves
testing many independent frequency bins to see if any one
of them exceeds some threshold. It is helpful to view these
bins as “independent experiments,” each involving a
random draw from the same parent Gaussian distribution.
In this context, we discuss global significance (all of the
bins) in contrast to local significance (a single bin). Setting

a global 5% significance threshold is equivalent to setting a
local threshold of 5.6σ given 5.2 × 106 bins.
It is possible to set a simple limit using this significance

threshold on the normalized spectrum, which was our
method in [14]. However, knowing the line shape of the
dark photon signal provides additional information that
improves sensitivity (up to a factor of ≈2) at the higher
frequency end of the spectrum, as shown in Fig. 8.

C. Signal-matched filter

As discussed in Sec. III B, one simple method to set a
limit is to look for single-bin excursions above some
threshold. However, galactic dynamics impart a dark
photon candidate with a Rayleigh-distributed, spectral
signature, which has a dimensionless widthQDP≈106 [11].
This means that the expected width of a candidate signal
over our analysis span (50–300 MHz) varies between
50–300 Hz. We set ΔνRF ¼ 47.7 Hz to maximize SNR
for the lowest expected signal width (see Sec. II A 2).
However, this divides signal power between adjacent
bins, an effect that becomes more pronounced at higher
frequencies, leading to a decrease in sensitivity. By using a
signal processing technique known as signal-matched
filtering [27,28], we restore some of the sensitivity lost
due to the splitting of signal between the fixed-width
frequency bins of the FFT. A similar “optimal weighting”
procedure has been well established in axion haloscope
experiments, notably by [26,29]. Below, we refer to the
signal-matched filter simply as a matched filter.
For a known signal shape, the detection technique which

optimizes SNR is the matched filter. This is implemented
on the normalized power spectrum using the Rayleigh
spectral line shape of [11] as a template. Since we have a
constant ΔνRF and expect the width of the signal to vary
across our span, we must calculate several templates of
varying width to match the expected line shape. Every 10%
of fractional frequency change, a new template is generated
and used to search that small subspan of the normalized
spectrum, each of which is also normally distributed though
with its own standard deviation. This results in 20 subspans
(50–55 MHz, 55–60.5 MHz etc.). The normalized spectra
of all 20 subspans and the histogram of the 227–250 MHz
subspan are shown in Fig. 7.
As the width of the templates increase, the standard

deviation of the output decreases, resulting in the ν−1=2

shape of the 5% significance threshold shown in Fig. 7. It
should be noted that since the total number of bins remains
5.2 million, the 5% significance threshold still corresponds
to 5.6σ; the shaping in Fig. 7 is due to the variation in σ for
different templates, not a change in the z ¼ 5.6 prefactor.

D. Monte Carlo: Pseudoexperiments

The previous three subsections outline the procedure for
detecting the presence of a signal of known spectral line

FIG. 6. Dividing So by B̂ yields a dimensionless, normally
distributed power spectrum that we define as Snormo . We show
Snormo in two ways: a normalized power/frequency spectrum (left)
and rescaled into Z-score units and collapsed into a histogram
(right). The histogram shows power excess and Gaussian fit, but
frequency information is lost. We compute a 5% significance
threshold ST (dashed red), above which we will detect a
candidate by chance 5% of the time. Bins adjacent to the
240 MHz synthetic signal show up in orange on both plots. A
single interfering signal has been removed for clarity. We discuss
this further in Sec. V B.

NEW LIMIT ON DARK PHOTON KINETIC MIXING … PHYS. REV. D 110, 032010 (2024)

032010-7



shape embedded in wideband noise. We refer to this
procedure as a detection algorithm (see Fig. 4) which
we now calibrate through a Monte Carlo method.
A synthetic spectrum is constructed by multiplying some

B by randomly generated Gaussian white noise charac-
terized by μnorm and σnorm, as discussed in Sec. III B. A
signal of known, total-integrated, output-referred power
and frequency, λðp; νÞ, can now be added to this spectrum
to create a test spectrum which can be passed through
the detection algorithm. The frequencies of the synthetic
signals are evenly spaced (approximately every 10 MHz).
However because the signal spans a limited number of bins
(one to six), the shape of the discretized signal is very
sensitive to where its peak lands relative to the bins. To
compensate for the fact we do not know where a dark
photon’s peak would land relative to the frequency bins,

the frequency of the synthetic signal is randomly jittered
by �ΔνRF=2, which is drawn from a uniform probability
distribution at each iteration of the Monte Carlo. By
repeating this with randomly generated Gaussian noise
and various synthetic signals (including a small jittering
of signal frequency outlined above), statistics are built up
about how much total-integrated power is required to detect
a signal as a function of frequency most of the time.
We quantify this as the statistical power of the detection
algorithm and denote it 100% − Y ¼ 95% following the
standard convention of hypothesis testing.
This Monte Carlo allows us to treat the detection

algorithm as a black box which can be calibrated by
passing it a known input (a synthetic So containing a
synthetic signal, both software-generated) and looking at its
output; a Boolean array of frequency bins representing
signal detection. The limit on the total power contained in
injected signals which can be detected 95% of the time Plimo
is shown in Fig. 8 in blue. Also shown in Fig. 8 is a limit
that does not include any matched filtering (orange) to
highlight the frequency dependent improvement of the
matched filter; this limit is only for illustration and not used
in the following sections.
The limit set in this section is referred to the output of the

amplifier chain. The topic of the next section will be to
work back through the amp chain, to an E-field limit in the
cavity and ultimately to a limit on ϵ.

IV. CALIBRATION OF ϵ LIMIT

In this section we describe the calibration of our experi-
ment and estimate our uncertainty. The previous section

FIG. 7. Snormo after it has been passed through a matched
filter. The template varies in width throughout the frequency
span resulting in 20 subspans, each with a constant 5% signifi-
cance threshold ST (dashed red). Histogram only includes
227–250 MHz subspan (enclosed in the green box). The
signal-to-threshold ratio of the synthetic signal (orange) improves
by a factor of about 1.8 as compared to Fig. 6 without a matched
filter. The frequency dependence of this effect is shown in Fig. 8.
A single interfering signal has been removed for clarity.

FIG. 8. Limit on output-referred total-integrated signal power,
Plimo . Limits computed with (blue) and without (orange) a
matched filter (Sec. III C). The limits are similar at lower
frequency but the matched filter improves sensitivity at higher
frequencies where the signal power is split among more bins. The
blue curve is used in the following sections.

TABLE I. Threshold parameters that are part of the detection
algorithm and Monte Carlo. X is the significance of the analysis.
It is a parameter passed to the detection algorithm which specifies
the significance threshold. The quantity 100% − Y is the stat-
istical power of the analysis. It is a parameter in the MC, which
specifies a threshold on signal power where a given signal is
detected in 100% − Y of the MC iterations. We choose both X
and Y ¼ 5%.

Only noise Noiseþ Signal

Detection X 100% − Y
No detection 100% − X Y
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concluded with a limit on the output-referred power Plimo
(Fig. 8), which we now must convert into a frequency
dependent limit on ϵ.
We begin by inverting Eq. (2)

ϵðνÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jElim

ant j2ε0
2ρDM

s
; ð7Þ

where the lim superscript indicates a limit, below which a
detectable electric field may be hiding. The < should be
taken to mean that in setting a limit on jElim

ant j, ϵ is
constrained to be less than the right hand side (if it exists
at all).
As discussed in Sec. II A, the first step of calibration is to

convert from output-referred power to antenna-referred
power. This represents the signal power presented to the
LNA by the antenna via a matched transmission line and is
given by

PantðνÞ ¼
Po
G

− TampkBΔνRF; ð8Þ

where G and Tamp are the frequency-dependent amplifier
gain and noise temperature (74–75 dB and 100–120 K
respectively, measured via the Y-factor method [30]) and kB

is Boltzmann’s constant.
Ultimately, the exclusion limit is set by fluctuations on

this baseline described by

Plimant ðνÞ ¼
Plimo
G

−
�
2

n

�
1=2

TampkBΔνRF

¼ Plimo
G

−
�
2ΔνRF

τ

�
1=2

TampkB; ð9Þ

where the lim superscript indicates an exclusion limit, n is
the total number of spectra averaged together, and τ is the
total integration time. In the second line we have used
n ¼ ΔνRFτ. In practice, the LNA correction is small; the
first term divided by the second varies with frequency
between 7 and 50. The τ−1=2 dependence of Plimo is implicit
because it was calculated from So which is itself an
averaged spectrum. As mentioned above, this τ−1=2 depend-
ence implies that the limit on epsilon scales as τ−1=4.
In the remainder of this section we explore the relation-

ship between Plimant and jElim
ant j allowing us to use our

experimental data to set a constraining limit on ϵ by
employing Eq. (7).

A. Average effective aperture, hAeðνÞi
An antenna’s effective aperture, Ae½m2�, represents the

effective area that it has to collect power density or
irradiance [W=m2] from an incident Poynting vector. It
is a directional quantity which varies with the antenna’s

directivityDðΩÞ, whereΩ represents solid angle around the
antenna. It varies with frequency ν, though it is generally
discussed in terms of wavelength λ. Three matching
parameters are introduced to describe how much actual
power the antenna is able to deliver to a transmission line;
p the polarization match of the wave to the antenna, m the
impedance match of the antenna to the transmission line
and ηa the efficiency of the antenna which represents how
much power is absorbed compared to that lost to Joule
heating of the antenna. p, m and ηa are all real, dimension-
less and vary between 0 and 1.

Ae ≡ λ2

4π
DðΩÞpmηa: ð10Þ

We define Ae following [21], though some authors do not
include p in the definition [31,32].
Ae is useful for an antenna in free space, however some

modifications must be made to construct an analogous
quantity for an antenna in a cavity.
The first modification is to average over many configu-

rations of the system. The background for this is given in
Sec. II. As discussed, we denote this averaging with hi so
that the average, effective aperture is denoted hAei. It is
interesting to note that by averaging over configura-
tions (namely antenna direction), hAei simplifies since
hDðΩÞi ¼ 1 by construction [21].
The second modification is to introduce a resonant

enhancement factor which corresponds to the system’s
tendency to “ring up” in the same way any resonator will.
We refer to this as composite Q and represent it as Q̃. It is
analogous to the standard quality factor of a resonator with
one important modification; we operate our experiment
across a wide frequency range so we define Q̃ across the
continuum of these resonances, not only on classical
eigenmodes of the system.
These modifications allow us to construct a relationship

between an observable E-field [Eant in Eqs. (2) and (7)]
and the power available at the port of an antenna for a
given aperture

hPanti ¼
jEantj2
η0

hQ̃Aei; ð11Þ

where η0 is the impedance of free space. With this in mind,
we perform an RF simulation to compute hQ̃Aei.

B. Simulation of hQ̃Aei
It is difficult to make claims about statistical uniformity

in the “undermoded” regime where modes are not suffi-
ciently mixed [33], so we have employed a commercial
electromagnetic finite-element modeling software package
(COMSOL Multiphysics RF module [34]). Within the
simulation, a model of the antenna (with a 50Ω feed) is
placed in a simplified room with wall features removed.
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Spot testing at various frequencies has shown that averag-
ing results from various antenna positions using this
simplified simulation behaves very similarly to one with
the room features included at a fraction of computational
complexity.
Two similar simulations are run; driving an E-field while

measuring the antenna’s response and driving a second
small monopole antenna and measuring the response of the
primary antenna.
In the first simulation, we drive currents on the walls

which correspond to a surface E-field magnitude of 1 V=m
(made up of equal components in the x, y and z directions)
using COMSOL’s source electric field option. This field
takes the place of Eant in Eq. (11). The antenna/cavity
system resonates and causes an enhancement by Q̃. The
power received at the antenna’s port is measured, allowing
the calculation of Q̃Ae, again from Eq. (11). By repeating
this simulation for several positions, averaging allows us to
compute hQ̃Aei.
The second simulation shares the same geometry, but

is used to compute a correction factor to account for
differences between simulation and measurement and to
estimate uncertainty on the first simulation through com-
parison to physical measurement. Rather than driving the
system through currents on the walls, power is injected
into the system with a 40 cm monopole. From this
simulation, two port scattering parameters (S parameters,
defined in IV C) are computed. A similar test is performed
on the physical system using a vector network analyzer
which provides a physical measurement of the S parameters
to compare with the simulation. The processing of the
simulated and measured S parameter datasets are discussed
in the following subsection.
Both simulations are run at the same 18 positions; 9 of

which are approximately equivalent to the physical antenna
positions while the other 9 are different in order to estimate
how many positions are required for decent convergence
of hQ̃Aei. Repeatedly averaging 9 different, random
positions (with replacement) results in about 20% variation
on their averaged S12 coefficients at each frequency,
allowing us to conclude 9 positions and polarizations
provides acceptable convergence.

C. Correction and uncertainty of hQ̃Aei
As outlined above, we approximate the uncertainty of the

simulation by injecting power into the system via a second
antenna and comparing the results to simulation.
For a two port microwave device, the ratio between the

voltage presented at port one and the voltage measured
at port two is known as S21. For our system, S21 is a
measurable quantity which is similar to a dark photon
detection in that it requires the antenna to convert an
electric field (which has interacted with the room) into a
port voltage. Having frequency dependent measurements of
S21 for simulation and measurement give us a correction to

the simulation (to account for discrepancies in geometry)
and estimate the uncertainty on hQ̃Aei.
The difference between the measured and simulated

values of hjS21ji can be described by

hjSmeas
21 j2i ¼ αhjSsim21 j2i; ð12Þ

where meas/sim indicates measured/simulated and the
average is over all 18 measured/simulated positions and
orientations of the antenna. We have taken the square since
we are interested in the aperture, which is proportional to
the square of the voltage. This equation implies α is a
frequency dependent, multiplicative correction factor
which results in a corrected hjSsim21 j2i. We find α to have
a mean of 0.6, a minimum of 0.1 and a maximum of 2.
To determine uncertainty on effective aperture, we define

the following test statistic:

Δ ¼ hjSmeas
21;n j2i − αhjSsim21;nj2i

hjSmeas
21 j2i ; ð13Þ

where n refers to the subset of n measured/simulated
positions sampled randomly with replacement. Δ defines
the fractional difference between corrected, simulated S21
and measured S21. The test statistic, Δ, is calculated 1000
times, providing a distribution of frequency dependent Δs.
The curves bounding 63% of these curves are taken to be
the uncertainty on Δ. Thus we can calculate the corrected
hQ̃Aei as well as its uncertainty. This is shown as a function
of frequency in Fig. 9. The uncertainty on it is shown in
gray, and is simply

δhQ̃Aei ¼ hQ̃AeiδΔ: ð14Þ

FIG. 9. Corrected average effective aperture. Calculated with
COMSOL RF. The aperture correction α [Eq. (12)] and its
uncertainty (gray) are estimated by comparing simulations to
measured S parameters.
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A brief summary of the system’s aperture is in order.
In free space an antenna’s ability to couple an incoming
wave’s power density into a transmission line is given by its
effective aperture, Eq. (10). An antenna in a cavity acts
as a coupled oscillator which exhibits very complex
resonances above the first few modes (around 100 MHz
for our system). Attempts to simulate an aperture for the
antenna-cavity system are difficult because of the system’s
extreme dependence on placement of any conductor in
the room, especially the antenna. Averaging over system
configurations (antenna positions and polarizations in our
case) allows for a significantly more repeatable statistical
treatment of the aperture/quality factor, which we call
hQ̃Aei. Comparison of simulated and measured S21 gives
a small, dimensionless correction factor α, Eq. (12).
Armed with αhQ̃Aei we are now able to compute a limit

on epsilon using measured and simulated quantities via
Eqs. (9) and (11),

ϵðνÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2cρDM

Plimant
αhQ̃Aei

s
; ð15Þ

where c is the speed of light, ρDM is the local dark matter
density and Plimant is defined in Eq. (9). We have separated the
equation into constants (or in the case of ρDM, values which
we fix) and values which we measure or simulate.
In order to validate our entire detection system, we inject

subthreshold signals into the shielded room to verify we are
able to detect them.

D. Hardware RF injection tests

To validate detection methodology, we performed a sep-
arate, proof-of-concept run with a proxy dark photon signal
injected into the shielded roomvia a smallmonopole antenna.
Otherwise, the setup was equivalent to that described in
Sec. IVC and the data analysis the same as described in
Sec. III. The realistic, dark photon line shape was created
using the frequency hopping method of Zhu et al. [35].
First, we set the power on a signal generator such that

the signal was predicted to be detected in about one hour
of total integration, assuming the αhQ̃Aei computed in
Sec. IVA. Due to the large uncertainty on αhQ̃Aei,
3.6 hours of data were collected, and saved in 30 second
preaverages so that progressively more data could be
averaged if the signal was not detected at the predicted
time. The injection test was blind, in that the frequency of
the injected signal was unknown during analysis. The
injected signal was at 268.60608 MHz where it is split
between 5 or 6 bins, and the matched filter provides a
significant improvement in sensitivity, as shown in Fig. 8.
The antenna was moved to 9 positions. Spectra resulting

from 9 antenna positions and 30 seconds of preaveraging at
each position were averaged together giving 4.5 minute
time resolution. Three of these spectra are shown in Fig. 10.

The standard deviation of these spectra average down
with the square root of time, closely following the Dicke
radiometer equation (discussed in Sec. III B).
These spectra were generated one at a time and passed

through the detection algorithm described in detail in
Sec. III. The first spectrum where a signal was detected
was at 36 minutes, shown in blue in Fig. 10. Although
hardly detectable to the eye, the matched filter detects the
signal with 5% significance. At the point the signal was
detected (i.e. before all data were averaged together), the
injection frequency was confirmed to have been correctly
identified, resulting in a successful blind injection test.

V. RESULTS

In this section, we report a 95%, frequency-dependent,
exclusion limit on the kinetic mixing strength ϵ of the dark
photon (Fig. 11). We discuss uncertainties on measured data,
identification of a candidate signal and our process to exclude
it. Finally, we display our results in context by plotting these
new limits on top of an aggregation of existing limits in
Fig. 12. Future runs of this experiment from 0.3–14 GHz in
similar room-temperature RF enclosures and 100 K noise
temperature LNAs are indicated. We have only indicated
planned runs, however at microwave frequencies, highly
resonant cryogenic cavities and cryogenic LNAs as well as

FIG. 10. Output-referred power spectral density from the hard-
ware injection test illustrating noise averaging down to reveal a
persistent, hardware-injected, dark photon proxy signal. Spectra
shown are highly zoomed around the injected frequency,
268.60608 MHz. The red, blue and green spectra represent 4.5,
36 and 216 minutes of integration time respectively. The standard
deviation of these spectra (excluding the bins containing the injected
signal) average down with the square root of time as expected. The
blue spectrumshows the amount of averaging required for the signal
to be detected by the detection algorithm (including the matched
filter) at 5% significance. The tight zoom shown here is less than 1
part in 104 of the full 50–300 MHz spectrum analyzed.
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sub-THz instrumentation are feasible and could result in an
order of magnitude improvement in the limit over the
indicated frequency range and beyond.

A. Discussion of uncertainties

The systematic uncertainty in this experiment comes
primarily from three sources, listed in order of their
contribution from greatest to least:

(1) Fractional uncertainty on the simulated antenna
aperture, which is discussed in IV C, ≈60%.

(2) Fractional uncertainty on the first-stage amplifier
noise temperature, ≈10%.

(3) Fractional uncertainty on the gain of the amplifier
chain, ≈5%.

The uncertainty on the simulated antenna aperture is
significantly larger than the other two, and so we neglect
them in the uncertainty in the ϵ limit.
We follow the convention of similar experiments where

we fix the value of ρDM and solve for an ϵ limit given this
value. Therefore we treat ρDM as a known constant with no
uncertainty.

B. Rejection of a single candidate

Passing So through the detection algorithm diagrammed
in Fig. 4 yields a single candidate at 299.97 MHz which is
approximately 1 kHz wide. This candidate first became
detectable above the noise after about 4 days of averaging,
indicating it is just on the threshold of what we are able to
detect. Four factors cause us to conclude the candidate is an
interfering signal originating from within the personal
computer (PC) or ADC, allowing us to remove it:

(i) The candidate is present not only in the main
spectrum but also the veto and terminator spectrum.

(ii) Inspection of the time evolution of this signal shows a
narrow signal (about two bins, or 100 Hz wide) which
seems to wander in frequency periodically over the
course of a day and therefore with temperature. This
is expected behavior for a quartz oscillator.

FIG. 11. 95% exclusion limit on ϵ with uncertainty shown in
orange shaded region. This is based on a local dark matter density
of ρDM ¼ 0.45 GeV=cm3. The error estimate does not take the
comparatively small gain and amplifier noise temperature errors
into account.

FIG. 12. Dark photon limits of various experiments with this work shown in red. The ragged lower bound is due to the complex
structure of the resonant modes of the shielded room. Plot adapted from [36] using code found at [37] and includes limit projections of
various axion experiments. Astrophysical limits such as CMB interactions with the dark photon are in the region labeled Cosmology.
Planned wideband extensions of our experiment search from 0.3–14 GHz in similar room-temperature RF enclosures are indicated
(yellow).
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(iii) Reducing the gain of the system causes the SNR
of the candidate to increase, indicating it enters the
signal path after the gain stages.

(iv) Changing the clock rate causes the frequency of the
candidate to change.

VI. DISCUSSION

This experiment extends the earlier results of our pilot
experiment [14], which was designed to demonstrate

feasibility of the Dark E-field Radio technique. The pilot
experiment was run over the same frequency range as the
experiment reported here, but did not make use of the
calibration techniques to approximate statistical uniformity,
nor did it fully account for the resonant enhancement of
the cavity. In this paper we describe how we randomize
antenna positions by moving it many times during the run.
In addition, we detail EM simulations which give the
average relation between the E-field at the antenna and
the voltage into the LNA, accounting for resonant enhance-
ment of the cavity. A 224-point FFT produces a spectrum
dominated by background thermal noise which varies
gradually with frequency.
We then searched over the full 50–300 MHz frequency

span for any narrow-band dark photon signal of at least 5%
global significance. Optimally filtering the resulting spec-
trum, we detect a single candidate which we are able to
identify as interference, likely from our electronics.
Rejecting this candidate, we obtain a null result for any
signal which could be attributed to the dark photon in our
frequency range. The resulting 95% exclusion limit for the
dark photon kinetic coupling ϵ is then obtained over this
mass range of 0.2 − 1.2 μeV. Our null result is a factor of
≈100 more sensitive than current astrophysical limits.
Ultimately, we can apply this detection technique at

higher frequencies, ultimately going up to the sub-THz
band. This will require new antennas and microwave
electronics. Cryogenic cavities and LNAs could improve
our sensitivity by an order of magnitude.
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