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In an earlier analysis [Sen et al., Phys. Rev. D 105, 085007 (2022)], we explored the event of acceleration
radiation for an atom freely falling into the event horizon of a quantum corrected Schwarzschild black hole.
We want to explore the acceleration-radiation when the atom is freely falling into the event horizon of a
charged quantum corrected black hole. We consider the quantum effects of the electromagnetic field along
with the gravitational field in an asymptotic safety regime. Introducing the quantum-improved Reissner-
Nordström metric, we have calculated the excitation probability of a two-level atom freely falling into the
event horizon of quantum-improved charged black hole. Recently, in the case of the braneworld black hole
(where the tidal charge has the same dimension as the square of the charge of a Reissner-Nordström black
hole in natural units), we have observed from the form of the transition probability that the temperature will
have no contribution in the first order of the tidal charge. We observe that for a quantum corrected Reissner-
Nordströmblack hole, there is a second-order contribution in the charge parameter in the temperature that can
be read off from the transition probability. Next, we calculate the horizon-brightened acceleration radiation
(HBAR) entropy in this thought experiment and show that this entropy has a leading-order Bekenstein-
Hawking entropy term along with some higher-order correction terms involving logarithmic as well as
fractional terms of the black hole area due to infalling photons. We have finally investigated the validity of
Wien’s displacement law and compared the critical value of the field wavelength with the general
Schwarzschild black hole and its corresponding quantum corrected case.

DOI: 10.1103/PhysRevD.110.026029

I. INTRODUCTION

The theory of general relativity, constructed and devel-
oped by Albert Einstein in the first quarter of the 20th
century [1,2], is considered to be one of the most accurate
classical theories explaining the laws of nature. Later on
with the development of quantum mechanics, people tried
to probe the general relativistic arguments in very small
length scales. The theory of general relativity breaks down
at very small length scales due to its nonrenormalizability
[3,4] and when quantized it leads to several discrepancies
because of the inherent nonlinearity of the theory. This
problem pushed researchers for almost a century to search
for a correct and renormalizable quantum theory of gravity.
Quantum-mechanical effects in the general theory of
relativity can be incorporated in several ways. One of
the ways to do this is the asymptotic safety program, which
is based on the renormalization group approach initially
introduced in [5] which was later discussed in detail in
[6,7]. In the year 2000, in [8] the possible effects of this

approach on the Schwarzschild black hole, where the general
Newton constant was replaced by the running gravitational
constant, were investigated. This type of renormalization
group-improved black holes are also known as “quantum-
improved (corrected) black holes.” The metric for a static
spherically symmetric black hole reads

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2dθ2 þ r2sin2θdϕ2; ð1Þ

where fðrÞ is called the lapse function of the black hole with
fðrÞ ¼ 1 − 2G0M

r for a Schwarzschild black hole in the
natural units with mass of the black hole given by M. For
a quantum corrected Schwarzschild black hole, Newton’s
gravitational constant satisfies a flow equation where the
gravitational constant depends on a cutoff scale. The cutoff
scale can then be related to the radial distance from r ¼ 0
point of the black hole and takes the form [8]

GðrÞ ¼ G0

1þ ω̃G0

r2
; ð2Þ

where ω̃ is a positive constant that involves the quantum
gravity correction and G0 is the general Newton constant.
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The discussion on the positiveness of the constant ω̃ can be
found in [9]. Later on, such quantum correctionwas obtained
in case of evaporating [10] as well as rotating black holes
[11]. There are several other analyses involving the quantum
improved black holes considering the quantum effects of
only the gravitational field [12–18]. The effects of matter
fields in the evolution of cosmological constant and
Newton’s gravitational constant have been studied in
[9,19–22]. In our analysis we shall be more focused on
the quantum corrected Reissner-Nordström black hole. Even
within the classical regime, as the Reissner-Nordstrom
metric exhibits, the electromagnetic interaction significantly
modifies the Schwarzschild solution. Recently, [9] consid-
ered the quantum effects of the electromagnetic field along
with the gravitational field and have observed how this
affects the spacetime structure in the asymptotic safety
scenario [9,23]. It is observed that both the gravitational
constant as well as the charge of the black hole flows
with a cutoff scale. Another analysis [24] has recently
revealed that it is sufficient to work with the flow of the
Newtonian gravitational constant only keeping the charge of
the black hole. The black hole metric in this case takes
the form

fðrÞ ¼ 1 −
2GðrÞM

r
þ e2GðrÞ

r2
; ð3Þ

wheree is the chargeof the blackhole andGðrÞ is the running
gravitational constant given in Eq. (2). We have in our
calculation kept the charge of the black hole to be constant.
Recently there have been several analyses of a two-level

atom falling into the event horizon of a black hole geometry.
The initial analysis was first done in [25], where a stream of
two-level atoms was considered to fall freely in the event
horizon of a Schwarzschild black hole. It was observed that
the atom emits virtual scalar photons and an entropy similar
to that of the Bekenstein-Hawking black hole entropy was
observed [26–30]. This entropy was termed as the horizon-
brightened acceleration radiation entropy, or the HBAR
entropy. Later, numerous amounts of analyses have been
made exploring several other black hole geometries [31–38].
In [39] logarithmic correction was observed for a quantum
gravity corrected for a black hole. Later, in [35],we observed
logarithmic correction to the HBAR entropy for a quantum
corrected black hole. Our aim in this work is to observe
whether the logarithmic corrections are common to such
asymptotic safety-improved black hole geometries and to
obtain any higher-order corrections if possible.
The paper is organized as follows. In Sec. II, we discuss

the running couplings and the modified metric form for a
quantum-improved charged black hole. In Sec. III, we
calculate the atomic trajectories as well as the excitation
and absorption probabilities for the two-level atom falling
into the quantum-improved charged black hole geometry.
In Sec. IV, we obtain the HBAR entropy and in Sec. (V) we

investigate Wien’s displacement law in this setup. Finally,
in Sec. VI, we summarize our results.

II. THE QUANTUM-IMPROVED CHARGED
BLACK HOLE METRIC AND THE HORIZON

A. Running couplings

The theoretical way of incorporating nonperturbative
quantum corrections to the solution of the nonlinear
Einstein field equations is by making use of the exact
renormalization group flow equation. The backbone of this
idea is that Einstein’s general relativity is a theory at low
energies coming from a theory that is valid at very high
energy scales [5]. The improvement to Einstein’s gravity is
generally done in three different ways [5–8,10,11]. The first
way is to substitute the running couplings directly into the
components of themetric tensor. The secondway to improve
is done directly to the field equations, and the third way of
improvement is done at the level of the action. The simplest
one is to incorporate the running couplings in the metric
components. Themotivation for this simple approach (which
is taken in [8] as well as in this paper) is as follows.
In classical general relativity, the lapse function fðrÞ has a
meaning without the need of a test particle. However, in the
approach in [8], the improvement directly at the level of the
metric fðrÞ is regarded as a way to put in the information
about the dynamics of the test particle near the body of mass
M. This is an approximation and can be regarded as an axiom
in these approaches. The prescription for constructing such a
quantum-improved geometry goes as [8,16,40,41]
(1) From the exact renormalization group equations

obtain the scale-dependent coupling constants.
(2) Express the renormalization group UV cutoff scale

as a function of the position which comes out to be
dependent on the radial coordinate in the case of
spherically symmetric geometries. This scale iden-
tification is done in primarily two ways. These are
(a) Based on scalars constructed out of curvature

entities like the Ricci scalar, RαβRαβ, or the
Kretschmann scalar.

(b) Based on the UV fixed point that separates a
weak-coupling regime from a strong-coupling
regime.

(3) The final step is to include the quantum improve-
ments which can be done in three ways.
(a) In the classical solution the fundamental con-

stants are improved by the position-dependent
running couplings.

(b) One can also consider the generic Einstein field
equations given by

Gμν ¼ 8πG0Tμν − gμνΛ0; ð4Þ

where G0 is the well-known Newtonian gravi-
tational constant and Λ0 is the cosmological
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constant. Next, G0 and Λ0 are replaced by the
position-dependent running couplings in Eq. (4)
and the resulting field equations read

Gμν ¼ 8πGðxÞTμν − gμνΛðxÞ: ð5Þ

Here, the running of matter couplings is ignored.
(c) The final way is to replace the constants by

position-dependent running couplings at the
action level. In the case of the Einstein-Hilbert
action the improved Lagrangian density reads

L ¼
ffiffiffiffiffiffi−gp

16πGðxÞ ðR − 2ΛðxÞÞ: ð6Þ

The simplest approach as described earlier is to
modify at the solution level.

For a Reissner-Norsdtröm black hole, one can consider the
running of the Newtonian gravitational constant as well as
the charge of the black hole. Making use of the functional
renormalization group in Uð1Þ-coupled gravity theories,
the Uð1Þ gauge completion of Uð1Þ gauge theory was done
in [42]. Later this method was adopted in [9], to obtain a
renormalization group improved Reissner-Nordström black
hole where both the Newton’s gravitational constant and
the charge were considered as running couplings. One can
write the beta functions corresponding to the running
couplings as [23,42]

k
dG̃
dk

¼ 2G̃
�
1 −

G̃
4πα̃

�
; ð7Þ

k
de
dk

¼ e
4π

�
be2

4π2
− G̃

�
; ð8Þ

where G̃ðkÞ ¼ k2GðkÞ, and α̃ and b are parameters. These
parameters specify the fixed points G̃� ¼ 4πα̃ and e2� ¼
ð4πÞ2 α̃

b. As can be seen from [24], one can also progress with
a flowing Newton gravitational constant with a fixed charge
of the black hole. For such a case, the parameter α̃ can be
identified with some parameter ω̃0 as

ω̃0 ¼ 1

4πα̃
: ð9Þ

This ω̃0 parameter is very small and for a zero value of this
parameter, the black hole spacetime loses all of the quantum
gravity contributions [5]. The value of α̃ can be determined
using the renormalization group equations for Uð1Þ gauge
couplings [42] and turns out to be positive. Hence, ω̃0 is also
positive.

Solving Eq. (7), one can then obtain

GðkÞ ¼ Gðk0Þ
1þ ðk2−k2

0
Þ

4πα̃ Gðk0Þ
; ð10Þ

where the integration has been done from k0 to k. One can
set k0 ¼ 0 and making use of Eq. (9), one arrives at the
following result:

GðkÞ ¼ G0

1þ ω̃0k2G0

; ð11Þ

where G0 ≡Gð0Þ. The cutoff identification k for a spheri-
cally symmetric spacetime can be expressed in terms of a
radial distance dðrÞ as [23,42]

k ¼ ξ

dðrÞ : ð12Þ

We are probing the near-horizon structure of the black hole
r ≫ 0, which allows one to approximate dðrÞ ∼ r. As a
result the cutoff parameter k goes as [42]

k ≃
ξ

r
: ð13Þ

Using the redefinition ω̃ ¼ ξ2ω̃0, one can recast Eq. (11) as

GðrÞ ¼ G0

1þ ω̃G0

r2
; ð14Þ

which is the same as the running gravitational constant
given in Eq. (2).

B. Black hole spacetime

The most general renormalization group improved
Reissner-Nordström black solution must have a flowing
gravitational constant as well as a flowing charge where the
cutoff parameter is k. In our scenario, we restrict ourselves
to flowing only the gravitational constant, and the corre-
sponding metric structure is given in Eq. (3). The justifi-
cation for flowing only the gravitational constant has been
provided in [24], where it has been argued that the running
gauge couplings become significant near the Planckian
length scales. In our analysis, our goal is focused on the
acceleration radiation of a single atom in the outskirts of the
outer event-horizon radius of the black hole. It therefore
allows one to consider only the flow of Newton’s gravi-
tational constant. This is consistent with the flow equations
[Eqs. (7) and (8)].
If we need to know the trajectories of a particle near

the black hole horizon, we should find the event horizon
first. To find the horizons for the quantum-improved
charged black hole, we need to set fðrÞ ¼ 0 and obtain
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the r value(s) satisfying this equation. The horizon radii
are obtained as

r� ¼ MG0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2G2

0 − ðe2 þ ω̃ÞG0

q
: ð15Þ

It is important to note that ω̃ is a small parameter and as a
result, we can proceed with a perturbative approach. In
Eq. (15), rþ and r− are the outer (event horizon) and the
inner (Cauchy horizon) horizon, respectively. Since we are
mostly interested in the outer horizon, so by setting
2G0M ¼ 1 and ω̃ to be very small, we get the outer
event-horizon radius up to first order in ω̃ as

rþ ≃
1

2
ð1þ qÞ − ω̃

2Mq
; ð16Þ

where q≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2e2

M

q
. Our next aim is to obtain the atom

trajectories while the atom is freely falling into the event
horizon of the black hole.

III. ATOM FALLING INTO THE QUANTUM
CORRECTED CHARGED BLACK HOLE

In [25], a two-level atom with an angular frequency ω
was considered to fall freely into the event horizon of a
Schwarzschild black hole. In this work, we repeat this
thought experiment in the presence of the quantum-
improved nonrotating charged black hole geometry with
the mass and the charge of the black hole given, respec-
tively, by M and e. The atom is falling along a radial
trajectory from infinity with zero initial velocity. The atom
trajectory is given by the following set of equations for a
specific black hole lapse function fðrÞ as

τðrÞ¼−
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−fðrÞp ; tðrÞ¼−

Z
dr

fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−fðrÞp : ð17Þ

To obtain the trajectories in the quantum-improved charged
black hole geometry, we consider a change of variables
given by z≡ r − rþ such that the value of the parameter z is
zero at the event horizon of the black hole. As we are
considering near-horizon regimes, z ≪ 1. Making use of a
new constant as a≡ 1

2
ð1þ qÞ and using a perturbative

approach, we obtain the atom trajectories as

τðrÞ ¼ −
Z

drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞp

≃ −
Z

dz

�
1þ 2qy

ðqþ 1Þ2 −
2ω̃yðq2 þ 1Þ
Mqðqþ 1Þ4

�

¼ −z −
qz2

ðqþ 1Þ2
�
1 −

ω̃ðq2 þ 1Þ
Mq2ðqþ 1Þ2

�
þ C1; ð18Þ

tðrÞ ¼ −
Z

dr

fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞp

≃ −
�ð1þ qÞ2

4q
þ ð1þ q2Þω̃

4Mq3

�
ln z

þ
�ð1 − qÞ2

4q2
−
3

2
þ ω̃ð1 − qþ q2Þ

2Mq4

�
zþ C2; ð19Þ

with C1 and C2 being the integration constants.1 The
constant q as has been defined earlier is related to the
charge of the black hole. For the sake of calculation, we
have set 2G0M to be unity, which will be restored later.
Now, for a scalar photon in the Regge-Wheeler coordinates,
we obtain

r�ðrÞ ¼
Z

dðrÞ
fðrÞ

⇒ r�ðzÞ ≃
�ð1þ qÞ2

4q
þ ω̃ðq2 þ 1Þ

4Mq3

�
ln z

−
�ðqþ 1Þ2

4q2
−

ω̃

2Mq3

�
zþ C3;

with C3 being an integration constant. The covariant Klein-
Gordon equation takes the form

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νÞψðt; x⃗Þ −m2ψðt; x⃗Þ ¼ 0: ð20Þ

For a massless scalar photon with wave function ψ and
neglecting the contribution from the angular part, one can
recast Eq. (20) as

1

TðtÞ
d2TðtÞ
dt2

−
fðrÞ
r2RðrÞ

d
dr

�
r2fðrÞ dRðrÞ

dr

�
¼ 0; ð21Þ

where the ψðt; rÞ has the form

ψðr; tÞ ¼ RðrÞTðtÞ: ð22Þ

The general solution of Eq. (21) has the form

ψνðt; rÞ ¼
Ψνðt; rÞ;

r
ð23Þ

where the analytical form of Ψνðt; rÞ reads

Ψνðt; rÞ ¼ exp

�
−iνtþ iν

Z
dr
fðrÞ

�
: ð24Þ

1It is important to note that the form of the proper time τðzÞ in
terms of z is kept up to second order in z. It is necessary as later in
the calculation we need to calculate ∂τðzÞ

∂z which will give a proper
estimate of the transition probability and a correct perturbative
result when τðzÞ is kept up to second order in z.
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In the above equation, ν denotes the frequency of the
emitted photon measured by a distant observer. It is
important to note that since we are mainly interested in
the near-horizon behavior of the solution, hence the spheri-
cally symmetric solution can be easily approximated

by [25] ψνðt;rÞ∼Ψνðt;rÞ
rþ

. It is important to note that rþ∼1

for 2G0M ¼ 1, and as a result it is always possible to
approximate the solution of the single-mode massless
scalar field using Ψνðt; rÞ only.
With the atom-field trajectories in hand, we shall now

proceed to calculate the transition probability. To calculate
the transition probability, we need to write the atom-field
interaction Hamiltonian, which is given as

V̂IðτÞ¼ℏG½b̂νψνðtðτÞ;rðτÞÞþH:c:�½ζ̂e−iΩτþH:c:�; ð25Þ

where G is the atom-field coupling constant, b̂ν is the
annihilation operator corresponding to the scalar photon, Ω
is the transition frequency corresponding to the atom, and
ζ̂ ¼ jgihej is the lowering operator of the atom. Initially, the
atom is in the ground state and there is no scalar photon in

this ground state. Here, the field is initially in the Boulware
vacuum [43].
Before the interaction starts, one can always consider the

state of the system to be a tensor product state given as
j0ν; gi and the final state of the system is given as j1ν; ei. It
is important to note that there is no photon initially in the
ground state of the atom and a simultaneous emission
happens with that of the excitation of the atom to its excited
state. That is why it is known as a virtual transition and the
corresponding atom-field transition probability is given by

Pexc ¼
1

ℏ2

����
Z

dτh1ν; ejV̂IðτÞj0ν; gi
����
2

¼ G2

����
Z

zf

0

dz

�
dτ
dz

�
eiνtðzÞ−iνr�ðzÞeiΩτðzÞ

����
2

; ð26Þ

where the forms of τðzÞ and tðzÞ are given in Eqs. (18)
and (19) and the expression for r�ðzÞ is obtained in
Eq. (20). In the above equation, zf denotes the initial
distance of a freely falling atom from the event horizon of
the black hole. The form of the excitation probability from
Eq. (26) now can be recast as

Pexc ¼ G2

����
Z

zf

0

dz

�
1þ 2qz

ð1þ qÞ2
�
1 −

ω̃ð1þ q2Þ
Mq2ð1þ qÞ2

��
e
−iν

�
ð1þqÞ2

2q þω̃ð1þq2Þ
2Mq3

	
ln zþiν



1−2q2

2q2
þω̃ð1−qÞ2

2Mq4

�
z
e−iΩz

����
2

¼ G2

����
Z

zf

0

dz

�
1þ 2qz

ð1þ qÞ2
�
1 −

ω̃ð1þ q2Þ
Mq2ð1þ qÞ2

��
z
−iν

�
ð1þqÞ2

2q þω̃ð1þq2Þ
2Mq3

	
e
−iΩz



1−ν

Ω



ð1−2q2Þ
2q2

þω̃ð1−qÞ2
2Mq4

������
2

: ð27Þ

Now, let us take a change of variable zΩ ¼ y, whereΩ ≫ 1
and hence we obtain the form of the excitation probability
Pexc as

Pexc ¼
G2

Ω2

����
Z

yf

0

dy

�
1þ 2qy

Ωð1þ qÞ2
�
1 −

ω̃ð1þ q2Þ
Mq2ð1þ qÞ2

��

× y
−iν

�
ð1þqÞ2

2q þω̃ð1þq2Þ
2Mq3

	
e
−iy

�
1−ν

Ω



ð1−2q2Þ
2q2

þω̃ð1−qÞ2
2Mq4

�	����
2

; ð28Þ

where yf ¼ zfΩ. In order to execute the above integral, we
now consider another change of variable given as

ξ≡ y

�
1þ ν

Ω

�
1 −

1

2q2
−
ω̃ð1 − qÞ2
2Mq4

��
; ð29Þ

such that the integration limits remain the same. Using the
change of variables in the above equation, we can recast the
transition probability in Eq. (28) as

Pexc ≃
G2

Ω2

�
1−

2ν

Ω

�
1−

1

2q2
−
ω̃ð1− qÞ2
2Mq4

������
Z

ξf

0

dξ

�
1þ 2qξ

Ωð1þ qÞ2
�
1−

ν

Ω

�
1−

1

2q2

�
−

ω̃ð1þ q2Þ
Mq2ð1þ qÞ2 −

ω̃νð1− 3q2Þ
2Mq2Ωð1þ qÞ2

��

× ξ
−2iν½ð1þqÞ2

4q þω̃ð1þq2Þ
4Mq3

�
exp½−iξ�

����
2

; ð30Þ

where ξf ¼ yf½1þ ν
Ω ð1 − 1

2q2 −
ω̃ð1−qÞ2
2Mq4 Þ�.

We define a new quantity given as

B≡ 2q
Ωð1þ qÞ2

�
1 −

ν

Ω

�
1 −

1

2q2

�
−

ω̃ð1þ q2Þ
Mq2ð1þ qÞ2 −

ω̃νð1 − 3q2Þ
2Mq2Ωð1þ qÞ2

�
: ð31Þ
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Using Eq. (31), we can recast Eq. (30) as

Pexc ≃
G2

Ω2

�
1 −

2ν

Ω

�
1 −

1

2q2
−
ω̃ð1 − qÞ2
2Mq4

������
Z

ξf

0

dξ

× ð1þ BξÞξ
−2iν

�
ð1þqÞ2

4q þω̃ð1þq2Þ
4Mq3

�
exp½−iξ�

����
2

: ð32Þ

We need to solve the above integral, in order to obtain the
form of the transition probability from the above equation.

If we define λ≡ ð1þqÞ2
4q þ ω̃ð1þq2Þ

4Mq3 then we need to solve two

integrals given as

I1 ¼
Z

ξf

0

dξ ξ−2iνλe−iξ; ð33Þ

I2 ¼
Z

ξf

0

dξ ξ1−2iνλe−iξ: ð34Þ

As has been discussed in [31,37], the integration limits in I1
can be extended from ξf to ∞. The primary reason behind
this consideration is that while e−iξ behaves as a highly
oscillatory function, ξ−2iνλ has a “Russian doll”-like behav-
ior resulting in decreasing negligible contributions towards
the overall integration value with higher values of yf (as a
result ξf), whereas the I2 integral in Eq. (34) has no such
properties resulting in a definite integral with finite inte-
gration limits. As, we have already observed in [37], the
integral I2 gives incomplete Gamma functions which lead
to a slightly deformed Planckian behavior. However, if one
is considering the atom very near the event horizon or zf
very close to zero then the Planckian nature is much more
prominent, as we shall see while calculating the form of the
transition probability. As Bξ ≪ 1, we can simply ignore
the effects from I2 and consider I1 instead. Making use of
the following result:

Z
∞

0

dx x2iν exp½ix� ¼ π exp½−πν�
sinh ð2πνÞΓ½−2iν� ; ð35Þ

we obtain the analytical form of the excitation probability as

Pexc ≃
4πG2ν

Ω2

�ð1þ qÞ2
4q

�
1 −

2ν

Ω

�
1 −

1

2q2

��

þ ω̃ð1þ q2Þ
4Mq3

�
1 −

νðq4 þ 3q2 − 2Þ
Ωq2ð1þ q2Þ

��

×
1

e
4πν



ð1þqÞ2

4q þω̃ð1þq2Þ
4Mq3

�
− 1

: ð36Þ

Equation (36) is one of the main results in our paper. For the
sake of completeness of our calculation, we shall also keep
the I2 integral in our calculation as well and obtain the

transition probability.2 The transition probability in
Eq. (32), can simply be written as a combination of two
integrals,

Pexc ¼
AG2

Ω2
ðI1jξf→∞ þ BI2ÞðI�1jξf→∞ þ BI�2Þ; ð37Þ

where

A≡ 1 −
2ν

Ω

�
1 −

1

2q2
−
ω̃ð1 − qÞ2
2Mq4

�
: ð38Þ

Denoting I1jξf→∞ as I1∞, we obtain the form of the
combined integral as

I1∞ þ BI2

¼ −2λνe−πνλ
�
Γ½−2iλν� þ B

2λν
γ½2 − 2iλν; iξf�

�
; ð39Þ

where γ½2 − 2iλν; iξf� is the lower incomplete gamma
function given as

γ½2 − 2iλν; iξf� ¼ Γ½2 − 2iλν� − Γ½2 − 2iλν; iξf�: ð40Þ

In Eq. (36), the I1∞I�1∞ term only contributed from
Eq. (37). It is easy to check from this deformed transition
probability that it is non-Planckian in nature but we restrict
ourselves from investigating that part in our current
analysis. We confine ourselves strictly to a near-horizon
analysis. We shall now move towards a direct comparison
of the above black hole metric with that of the general
Reissner-Norsdström black hole metric. The transition
probability in Eq. (36) can more simply be expressed as
(considering the ν ≪ Ω approximation)

Pexc ≃
4πG2ν

Ω2

�ð1þ qÞ2
4q

þ ω̃ð1þ q2Þ
4Mq3

�
1

e
4πν



ð1þqÞ2

4q þω̃ð1þq2Þ
4Mq3

�
− 1

:

ð41Þ

In order to truly understand the importance of the above
result, we start by setting ω̃ → 0 limit in Eq. (41) which
surely reproduces the Reissner-Nordström case without any
quantum gravity correction. In the e2 ≪ M limit, the
transition probability takes the form given as (neglecting
any higher-order ν=Ω contribution)

Pexcjω̃→0 ≃
4πG2ν

Ω2

�
1þ e4

4M2

�
1

e4πν


1þ e4

4M2

�
− 1

: ð42Þ

2We shall though be using Eq. (36) for obtaining the rest of the
results in our paper.
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It is crucial to note that all lower-order e2
M kind of

contributions have canceled out and the charge contribution
appears in the next-higher order in the coefficient factor as
well as the exponent. Such lower-order cancellation also
happens for extra-dimensional black holes with a tidal
charge [38]. Now, in the presence of a flowing gravitational
constant, the same transition probability takes the form
(again neglecting ν

Ω kind of small contributions as ν ≪ Ω)

Pexc ≃
4πG2ν

Ω2

�
1þ ω̃

2M
þ ω̃e2

M2
þ e4

4M2

�
1þ 9ω̃

M

��

×
1

e4πν


1þ ω̃

2Mþω̃e2

M2þ e4

4M2



1þ9ω̃

M

��
− 1

: ð43Þ

We observe from the above result that e2=M order of
contribution occurs in the transition probability purely due
to the induced quantum gravitational effects into the theory
in contrast to the result obtained in Eq. (42). With a proper
dimensional reconstruction, we can now recast Eq. (36) in
the following form:

Pexc ≃
4πG2ν

Ω2

�
2G0M
c3

ð1þ qÞ2
4q

�
1 −

2ν

Ω

�
1 −

1

2q2

��

þ ℏω̃ð1þ q2Þ
4Mc2q3

�
1 −

νðq4 þ 3q2 − 2Þ
Ωq2ð1þ q2Þ

��

×
1

e
4πν



2G0M

c3
ð1þqÞ2

4q þℏω̃ð1þq2Þ
4Mc2q3

�
− 1

: ð44Þ

Now, the photon absorption probability can be directly
obtained by replacing ν by −ν in the above equation, and
the analytical form is given by

Pabs ≃
4πG2ν

Ω2

�
2G0M
c3

ð1þ qÞ2
4q

�
1þ 2ν

Ω

�
1 −

1

2q2

��

þ ℏω̃ð1þ q2Þ
4Mc2q3

�
1þ νðq4 þ 3q2 − 2Þ

Ωq2ð1þ q2Þ
��

×
1

1 − e
−4πν



2G0M

c3
ð1þqÞ2

4q þℏω̃ð1þq2Þ
4Mc2q3

� : ð45Þ

In these types of calculations, one can consider the atomic
frequency to be much higher than the field frequency, i.e.,
Ω ≫ ν. In that case, the excitation probability in Eq. (44)
takes the form given as3

Pexc ≃
4πG2ν

Ω2

�
2G0M
c3

ð1þ qÞ2
4q

þ ℏω̃ð1þ q2Þ
4Mc2q3

�

×
1

exp
�
4πν



2G0M
c3

ð1þqÞ2
4q þ ℏω̃ð1þq2Þ

4Mc2q3
�	

− 1
; ð46Þ

and the absorption probability in Eq. (45) reads

Pabs ≃
4πG2ν

Ω2

�
2G0M
c3

ð1þ qÞ2
4q

þ ℏω̃ð1þ q2Þ
4Mc2q3

�

×
1

1 − exp
�
−4πν



2G0M
c3

ð1þqÞ2
4q þ ℏω̃ð1þq2Þ

4Mc2q3
�	 : ð47Þ

The excitation and absorption probability contain the
Planck-like factor containing the field frequency, whereas
the atomic frequency appears in the coefficient of the
transition probabilities.

IV. CALCULATING THE MODIFIED
HBAR ENTROPY

The HBAR entropy was introduced to distinguish
between the Bekenstein-Hawking entropy and entropy
due to the atom falling into the black hole [25]. In this
section, we will calculate the HBAR entropy for the
quantum-improved charged black hole. Here, we have
considered a cloud of two-level atoms with angular
frequency Ω and we consider that they are falling in a
linear stream into the quantum-improved charged black
hole with an infall rate of κ and the atoms emit and absorb
the acceleration radiation. We shall calculate the entropy in
this case by using the method of quantum-statistical
mechanics for which we need to find the density matrix
for the field first.
For a microscopic change of δρi of the field-density

matrix due to one atom, the total change in the same for
ΔN number of atoms is given by

Δρ ¼
X
j

δρj ¼ ΔN δρ; ð48Þ

where for a time duration of Δt, we know that

ΔN
Δt

¼ κ: ð49Þ

Putting the form of ΔN from Eq. (48) in the above
equation, we obtain

Δρ
Δt

¼ κδρ: ð50Þ

If jni denotes the state of the field containing n number of
scalar photons, then the equation of motion for the field-
density matrix can be written as

3An alternative way of obtaining the transition probability will
be to follow the near- and beyond-near horizon methods followed
in [31,37].
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ρ̇n;n ¼ −Γabsðnρn;n − ðnþ 1Þρnþ1;nþ1Þ
− Γexcððnþ 1Þρn;n − nρn−1;n−1Þ; ð51Þ

whereΓexc andΓabs are the excitation rate and absorption rate
defined as Γexc=abs ¼ κPexc=abs. We need the steady-state
solution to find the HBAR entropy. For the steady-state

solution, we shall set ρ̈n;n ¼ 0 when n ¼ 0, and hence we
shall obtain the following relation by using tr½ρ� ¼ 1:

ρs:s:n;n ¼
�
Γexc

Γabs

�
n
�
1 −

Γexc

Γabs

�
: ð52Þ

In the high atomic-frequency limit (ν ≪ Ω) and making
use of Eqs. (44) and (45), we obtain

Γexc

Γabs
≃ e

−4πν
�
2G0M

c3
ð1þqÞ2

4q þℏω̃ð1þq2Þ
4Mc2q3

	�
1 −

4ν

Ω

�
1 −

1

2q2

�
−

ν

Ω
ℏω̃cðq4 þ 3q2 − 2Þ
G0M2q4ð1þ qÞ2

�
: ð53Þ

Using the above equation back in Eq. (52), we obtain the steady-state solution of the density matrix to be

ρs:s:n;n ¼ e
−4πnν

�
2G0M

c3
ð1þqÞ2

4q þℏω̃ð1þq2Þ
4Mc2q3

	�
1 −

4ν

Ω

�
1 −

1

2q2

�
−

ν

Ω
ℏω̃cðq4 þ 3q2 − 2Þ
G0M2q4ð1þ qÞ2

�
n
�
1 −

Γexc

Γabs

�
: ð54Þ

The von Neumann entropy for the system is given by

Sρ ¼ −kB
X
n;ν

ρn;n lnðρn;nÞ; ð55Þ

and the rate of change of entropy due to the generation of
real photons using the steady-state solution of the field-
density matrix is [25]

Ṡρ ≃ −kB
X
n;ν

ρ̇n;n lnðρs:s:n;nÞ: ð56Þ

Now, putting the steady-state solution of the density matrix
from Eq. (54) in the above equation, we obtain

Ṡρ ≃ 4πKB

�
R
c
ð1þ qÞ2

4q
þ ℏω̃ð1þ q2Þ

4Mc2q3

�X
ν

˙̄nνν

þ 4KB

Ω

�
1 −

1

2q2

�X
ν

˙̄nνν

þ ℏω̃KBcðq4 þ 3q2 − 2Þ
ΩG0M2q4ð1þ qÞ2

X
ν

˙̄nνν; ð57Þ

where R is the Schwarzschild radius given by R ¼ 2G0M
c2

and ˙̄nν is the flux due to photons emitted from the atoms
freely falling in the black hole and the total rate of energy
loss due to emitted photons is ℏ

P
ν
˙̄nνν ¼ ṁpc2. So now,

the rate of change of entropy becomes

Ṡρ ¼
4πKB

ℏ

�
R
c
ð1þ qÞ2

4q
þ ℏω̃ð1þ q2Þ

4Mc2q3

�
ṁpc2

þ 4KB

ℏΩ

�
1 −

1

2q2

�
ṁpc2

þ ω̃KBcðq4 þ 3q2 − 2Þ
ΩG0M2q4ð1þ qÞ2 ṁpc2: ð58Þ

In our current analysis, the area of the quantum corrected
charged black hole is given by

AQCBH ¼ 4πr2þ

≃
4πG2

0M
2

c4
ð1þ qÞ2 − 4πℏω̃G0

qc3
ð1þ qÞ: ð59Þ

The rate of change of the black hole area from the above
equation is obtained as

ȦQCBH ¼ 8πG2
0MṀ

c4q
ð1þ qÞ2

þ 4πℏω̃G0

c3q

�
1

q2
− 1

��
Ṁ
M

�
; ð60Þ

where Ṁ is the total change of mass of the black hole due to
the emission of scalar photons and the addition of freely
falling atoms. It is therefore always possible to express Ṁ
as [25,35]

Ṁ ¼ ṁp þ ṁatom; ð61Þ

where ṁp denotes the rate of change in the mass of the
black hole due to emitting photons and ṁatom denotes
the rate of change of the mass of the black hole due to the
infalling atoms. Hence, we can define the rate of change of
the area of the black hole due to the emission of photons as

Ȧp ¼ 8πG2
0Mṁp

c4q
ð1þ qÞ2

þ 4πℏω̃G0

c3q

�
1

q2
− 1

��
ṁp

M

�
: ð62Þ

When no atom is falling into the black hole, the change in
the area of the black hole due to freely falling atoms, Aatom,
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is zero and as a result Ap is the same as the area of the black
hole AQCBH [25,35]. Now, if we consider very high atomic
frequency such that ℏΩ ≫ mpc2, we can neglect the last
two terms in Eq. (58), and we can write the rate of change
of the entropy [keeping terms up to Oðω̃2Þ� as

Ṡρ ≃
4πKB

ℏ

�
R
c
ð1þ qÞ2

4q
þ ℏω̃ð1þ q2Þ

4Mc2q3

�
ṁpc2

≃
kBȦpc3

4ℏG0

þ πω̃kB
d
dt

ðlnApÞ: ð63Þ

The above result can be written in much more dimension-
ally correct form as

Ṡρ ≃
d
dt

�
kBc3

4ℏG0

Ap þ πω̃kB ln

�
Apc3

4ℏG0

��
: ð64Þ

This is a very strong result in our paper as it exactly matches
with the HBAR entropy result in [35] up to the subleading
logarithmic correction term. The surprising thing is that the
HBAR entropy also has matching coefficients in the sub-
leading correction which proves the universality of loga-
rithmic corrections for such quantum-improved black hole
geometries. The leading-order term as can be seen from
Eq. (63) is following the “area-divided four law” observed in
all of the earlier analyses [25,34–38]. Here, the HBAR
entropy we are getting is the Bekenstein-Hawking entropy
with some quantum gravity correction terms which contain
the charge of the black hole. We can see that some of the
correction terms are similar to the entropy correction terms
obtained for the quantum-improved Schwarzschild black
hole [39].

V. WIEN DISPLACEMENT FOR THE QUANTUM
CORRECTED CHARGED BLACK HOLE

In this section, we investigate the validity of Wien’s
displacement law for the background quantum corrected
black hole geometry and compare the wavelength plotted
against the mass as well as the charge parameter for this
black hole with the classical Schwarzcihild as well as the
quantum corrected Schwarzschild geometries. The excita-
tion probabilities for a Schwarzschild geometry [25] as well
as the quantum corrected black hole geometry,

PSch
exc ðνÞ ≃

4πG2Rν

cΩ2

�
1 −

4ν

Ω

�
1

e
4πRν
c − 1

; ð65Þ

PQBH
exc ðνÞ ≃ 4πG2ν

Ω2

�
R
c
þ ℏω̃
2Mc2

��
1 −

ν

Ω

�

×
1

e4πν


R
cþ ℏω̃

2Mc2

�
− 1;

ð66Þ

where we have used Eq. (44) and set the q → 1 (e → 0)
limit. The temperatures of the thermal baths corresponding
to the thermal distributions in Eqs. (65) and (66) read

TSch ¼
ℏc

4πkBR
; ð67Þ

TQBH ¼ ℏ

4πkB


R
c þ ℏω̃

2Mc2
� ≃ ℏc

4πkBR

�
1 −

ℏω̃
2MRc

�
: ð68Þ

We need to express PexcðνÞdν as PexcðλÞdλ to truly
investigate Wien’s law. Throughout our analysis, we have
considered ν ≪ Ω, which implies Ωλ ≫ 1. Keeping in
mind the above approximation, we can write the PðλÞdλ
factor from Eqs. (65) and (66) as

PSch
exc ðλÞdλ ≃

4πG2R
cλ3Ω2

dλ

e
ℏ

λkBTSch − 1
; ð69Þ

PQBH
exc ðλÞdλ ≃ 4πG2

λ3Ω2

�
R
c
þ ℏω̃
2Mc2

�
dλ

e
ℏ

λkBTQBH − 1
: ð70Þ

It is very straightforward to see that both the terms have
similar dependence on the photon wavelength, which is
given by the following two functions:

DSchðλÞ ¼ λ3Ω2


e

ℏ
λkBTSch − 1

�
; ð71Þ

DQBHðλÞ ¼ λ3Ω2


e

ℏ
λkBTQBH − 1

�
: ð72Þ

We want to find out the value of the wavelength of the
scalar photon for which the excitation probability becomes
maximum. For doing so, we start by finding out the λ value
for which Eqs. (71) and (72) becomes minimum.

Calculating dDðλÞ
dλ and setting it equal to zero we, obtain

the following two relations:

dDSchðλÞ
dλ

¼ 0 ⇒ 1 − e−
ℏ

λkBTSch ¼ ℏ
3λkBTSch

; ð73Þ

dDQBHðλÞ
dλ

¼ 0 ⇒ 1 − e
− ℏ
λkBTQBH ¼ ℏ

3λkBTQBH
: ð74Þ

Numerically solving Eqs. (73) and (74), we arrive at the
following two results:

λSchTSch ≃
0.3544ℏ

kB
; λQBHTQBH ≃

0.3544ℏ
kB

: ð75Þ

It is important to note that for the above λ values,DSchðλÞ as
well asDQBHðλÞ, becomes minimum and as a result both of
the transition probabilities hit a maximum value. At the
same time Eq. (75) indicates λT ¼ constant, confirming
Wien’s displacement law. Now, considering Eq. (44) and
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neglecting the ν
Ω terms in the coefficient factor, we arrive at

the same displacement law given as

λQCBHTQCBH ¼ 0.3544ℏ
kB

; ð76Þ

where the thermal-bath temperature corresponding to the
charged-quantum corrected geometry reads

TQCBH ¼ ℏ

4πkB


R
c
ð1þqÞ2
4q þ ℏω̃ð1þq2Þ

4Mc2q3
�

≃
ℏqc

πkBRð1þ qÞ2
�
1 −

ℏω̃
RMcq2

1þ q2

ð1þ qÞ2
�
: ð77Þ

We shall now compare the threewavelengths using Eqs. (75)
and (76) and plot them against themass of the black hole. It is
important to note that ℏω̃

RMc as a hole is a dimensionless
constant factor and as a result we can set ω̃ in such away that
the entire contribution is less than unity. We have set ω̃ to be
equal to 1033 to amplify the effect of the quantum gravity
factor. For plotting λQCBH against the mass of the black hole,
we set the charge q of the black hole to e ¼ 0.06 C. In
general, ω̃ is a very small factor, and the enhancement in the
value of this parameter is done solely due to the amplification
of the quantum gravity effect. The plot of λ vs themass of the
black hole is given in Fig. 1.We observe fromFig. 1 that with
increasing charge, the critical wavelength value deviates
more for lower-mass black holes and approaches the zero-
charge case for black holes with higher masses. The q
parameter restricts the charge and mass of the black hole to
vary independently. For a black holewith a fixedmassM, the
charge must obey the following relation e ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πε0G

p
M,

which also puts a restriction on arbitrarily using the charge
value while plotting Fig. 1.

VI. CONCLUSION

In this paper we consider the simple gedanken experi-
ment where a two-level atom is freely falling into the
event horizon of a quantum corrected and charged black
hole. Previously in [35], we analyzed this acceleration
radiation due to freely falling atoms in the quantum
corrected Schwarzschild black hole geometry. It is impor-
tant to note that the black hole is covered by a mirror in
order to prevent the emitted radiation from interacting
with the Hawking radiation from the black hole. Now, the
freely falling atoms emit acceleration radiation and we
calculate the corresponding transition probability. Here,
we follow a slightly different approach in order to obtain
the atomic trajectories where the radial coordinates in the
integrand have been expressed in terms of the distance
from the event horizon of the black hole together with the
outer event-horizon radius, which is a constant. We finally
obtain the transition probability of the atom for going
from its ground state to a higher excited state and emitting
a virtual photon simultaneously. We observe that the
exponential term in the Planck factor of the transition
probabilities picks up corrections proportional to e2

M, which
is absent in the general Reissner-Nordström black hole
without any quantum gravity correction. In the absence of
this quantum gravity correction, the charge contribution
comes in the fourth order of electrical charge and all
quadratic-order charge contributions cancel away. This is
one of the most important observations in our work. We
have then moved towards obtaining the HBAR entropy for
a quantum corrected charged black hole. We have con-
sidered a cloud of two-level atoms falling freely into the
event horizon of the quantum-improved charged black
hole. We have then calculated the HBAR entropy by the
quantum-statistical mechanics approach and found that
the entropy contains the Bekenstein-Hawking entropy
term with subleading correction proportional to the
logarithmic in the area of the black hole. Exactly similar
subleading corrections have also been observed earlier in
[35], where we have claimed that logarithmic contribu-
tions in the HBAR entropy can only originate from such
quantum gravity corrections. Our current analysis rein-
forces the claim made in [35] and proves that for quantum-
improved black hole geometries, logarithmic corrections
are universal. Finally, we investigate Wien’s displacement
law in the case of the quantum corrected charged black
hole and compare it with the Schwarzschild- as well as the
quantum corrected black hole case. We have then plotted
the critical value of the wavelength (for which the
excitation probability becomes maximum) against the
mass of the black hole and observed higher deflections
in the lower mass region for black holes with higher
charge values.

FIG. 1. Plot of the dimensionless wavelength (λ=lp) from
Wien’s displacement law against the dimensionless mass
(M=mp) of the black hole. Here, lp and mp indicate the Planck
length and Planck mass, respectively.
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