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The chiral phase boundary of nuclear matter is expected to have a critical point where the rapid crossover
of lattice methods at zero chemical potential becomes a first-order phase transition. Phenomenological
models based on the AdS/CFT correspondence, known as AdS=QCD, have succeeded in capturing many
features of nuclear matter, with recent progress in producing the expected critical point. We study a model
that produces a critical point in the chiral phase diagram by introducing a coupling between the scalar chiral
field and the dilaton. We examine the effect of the scalar-dilaton coupling on the critical point. We also
study the zero-temperature chiral dynamics, which must allow for spontaneous chiral symmetry breaking in
the limit of zero quark mass. We find that when the scalar-dilaton coupling is large enough to ensure correct
zero-temperature chiral dynamics, a critical point is present only if the quark mass is greater than 12.8 MeV.
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I. INTRODUCTION

The exploration of the phase structure of quantum
chromodynamics (QCD) at extreme temperature and
density is an important project for both theory and experi-
ment [1–3]. Lattice QCD finds a crossover phase transition
at zero quark chemical potential [4,5], while other models
find a first-order phase transition at high chemical poten-
tial [6]. In combination, these models suggest the existence
of a critical point, but its exact location in the phase
diagram remains an open question [7,8].
Experimentally, the search for the critical point requires a

reduction in center of mass energy [9], motivating the
recently completed beam energy scan at the Relativistic
Heavy Ion Collider [10], as well as current and future fixed-
target experiments [11–13]. From the theoretical perspec-
tive, lattice methods suffer from a well-known sign problem
at finite chemical potential [14]. Extrapolation techniques
allow lattice analysis up to a baryon chemical potential
≈300 MeV, with no evidence of a critical point [15].
The AdS/CFT correspondence [16–18] has emerged as a

powerful tool to study various aspects of QCD, including
the phase diagram [19,20]. The soft-wall AdS=QCD
model, which uses a background dilaton field to encode
confinement, has been extensively used to analyze hadron
spectra [21,22] and the QCD phase diagram [23]. While
there has been success in finding a critical point in the

deconfinement phase transition using holographic tech-
niques [24–32], producing a critical point in the chiral
phase transition has been more elusive.
In this work, we consider a modified soft-wall

AdS=QCD model with a coupling between the scalar
and dilaton fields. Prior work has shown that the intro-
duction of such a coupling can improve the resulting meson
spectra and introduce a critical point in the chiral phase
diagram [33]. We focus on the effect of scalar-dilaton
coupling on the critical point in the QCD phase diagram
and the zero-temperature chiral dynamics.

II. SOFT-WALL MODEL WITH SCALAR-
DILATON COUPLING

We use an anti–de Sitter (AdS) black hole metric

ds2 ¼ L2

z2

�
−fðzÞdt2 þ dx2i þ

dz2

fðzÞ
�
; ð1Þ

with the AdS curvature L ¼ 1 throughout the rest of this
work. Following established procedure [34–36], we model
finite temperature and chemical potential with a charged
black hole described by the 5D AdS-Reissner-Nordström
blackness function

fðzÞ ¼ 1 − ð1þQ2Þ
�
z
zh

�
4

þQ2

�
z
zh

�
6

; ð2Þ

where zh is the black hole horizon, and Q is related to the
black hole charge q by Q ¼ qz3h. The quark chemical
potential and temperature are determined by the charge and
horizon position
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μ ¼ κ
Q
zh

; ð3Þ

T ¼ 1

πzh

�
1 −

Q2

2

�
; ð4Þ

where 0 < Q2 < 2 and κ ¼ 1 [37]. Note that μ is the quark
chemical potential, with a value one-third of the baryon
chemical potential. These relationships are invertible
for zh and q.
In the soft-wall model of AdS=QCD, confinement is

introduced via a dilaton field that smoothly cuts off the
action, as opposed to a hard cutoff of the holographic
coordinate [21]. The dilaton is required to be quadratic in
the IR limit to produce linear confinement as evidenced by
radially excited meson spectra m2

n ∼ n [22]. Previous work
has considered UV modifications to the dilaton to achieve
proper chiral dynamics [38–41], but this is not necessary in
a model with chiral-dilaton coupling [42]. For simplicity,
we use a purely quadratic dilaton

ΦðzÞ ¼ μ2gz2 ð5Þ

where μg ∼ ΛQCD sets the confinement scale. Follow-
ing [43], which determined the parameters by a global
fit to meson spectra, we take μg ¼ 440 MeV.
The relevant matter fields are described by the action

S ¼ 1

2k

Z
d5x

ffiffiffiffiffiffi
−g

p
e−ΦðzÞ�Tr½jDXj2 þ VmðX;ΦÞ�

þ γRe½detðXÞ��; ð6Þ

where X contains the scalar and pseudoscalar meson fields.
The ‘t Hooft determinant term provides mixing between
light and heavy flavors. We omit the vector and axial-vector
meson fields to focus on the chiral dynamics.
A quartic term in the scalar potential is required for

spontaneous chiral symmetry breaking [38]. Including
the coupling between the dilaton and scalar field, the
potential is

VmðX;ΦÞ ¼ m2
5jXj2 þ λ1ΦjXj2 þ 4λ4jXj4: ð7Þ

The AdS/CFT dictionary sets the 5D masses of the fields
m2

5 ¼ ðΔ − pÞðΔþ p − 4Þ, whereΔ is the dimension of the
corresponding p-form QCD operator [18,21]. The scalar
field is dual to the q̄q operator, so its mass is m2

5 ¼ −3. In
this flavor-symmetric model, we are most interested in
qualitative behavior, which is not very sensitive to the values
of the free parameters in the scalar potential, as long as the
‘t Hooft determinant coefficient γ is negative to produce a
first-order transition in the chiral limit [39]. For the sake
of comparison, we choose values equivalent to the model
in [44], setting λ4 ¼ 4.2 and γ ¼ −22.6, with the fitting of

these values to experimental data reserved for an antici-
pated 2þ 1-flavor version of this model.
The scalar-dilaton coupling term gives the chiral field an

effective mass that runs with energy scale

m2
5 → −3þ λ1μ

2
gz2: ð8Þ

This running mass has been used to obtain the correct mass
splitting between excited states of meson chiral partners
[43], to reproduce the Columbia plot (Fig. 1) at zero
chemical potential [44], to obtain the correct chiral tran-
sition behavior [42], and to produce a critical point in the
chiral phase diagram [33]. It is worth noting that models
with a modified dilaton profile but without the running
mass (8) achieve the first three of these goals [39,40] but do
not produce the critical point [45].
The scalar field has a z-dependent vacuum expectation

value (VEV) that describes the chiral symmetry breaking of
the model. In a three-flavor model, the VEV becomes

hXi ¼ 1ffiffiffi
2

p

0
B@

χuðzÞ 0 0

0 χdðzÞ 0

0 0 χsðzÞ

1
CA: ð9Þ

In this work, we will focus on the flavor-symmetric case
χu ¼ χd ¼ χs. Varying (6) with respect to χ yields the
following equation of motion:

χ00 −
�
3

z
þΦ0 −

f0

f

�
χ0

−
1

z2f

�ð−3 − λ1ΦÞχ þ 4λ4χ
3 þ 3λ3χ

2
� ¼ 0; ð10Þ

FIG. 1. A sketch of the Columbia plot, which shows the
expected order of the chiral phase transition as a function of
light and strange quark masses [46,47].
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where γ → 6
ffiffiffi
2

p
λ3 is defined for convenient notation.

As the chiral field is the source of the q̄q operator, the
AdS/CFT dictionary identifies its coefficients at the UV
boundary with the sources of chiral symmetry breaking,

χðz → 0Þ ∼mqζzþ
σ

ζ
z3; ð11Þ

where ζ ¼ ffiffiffiffiffiffi
Nc

p
=ð2πÞ [48], the quark massmq is the source

of explicit chiral symmetry breaking, and the chiral con-
densate σ is the source of spontaneous chiral symmetry
breaking.

III. NUMERICAL PROCEDURE

Finding the chiral condensate requires solving (10)
numerically and using the AdS/CFT dictionary to relate
the solution for χðzÞ to the parameters mq; σ. The presence

of a singular point at z ¼ zh presents a challenge to this
procedure. A commonly used numerical method begins
with a UVapproximation for the chiral field and integrates
toward the horizon [40,43,49]. While this method works
well near the chiral transition temperature, it is less reliable
at low temperatures. Instead, we use a method that starts
with the asymptotic solution at the black hole horizon zh
and integrates toward the UV boundary [41]. A comparison
between these two methods is discussed in the Appendix.
The near-horizon solution is approximated by the Taylor

series

χðu → 1Þ ¼ d0 þ d1ð1 − uÞ þ d2ð1 − uÞ2 þ… ð12Þ

where u ¼ z=zh and the higher-order coefficients are
solved by substitution into (10). The result is

d1 ¼
d0

2ðQ2 − 2Þ
	
3þ λ1z2hμ

2
g − 3d0λ3 − 4d20λ4



; ð13Þ

d2 ¼
1

16ðQ2 − 2Þ2
n
6d1ð−6þQ2 þQ4Þ þ 4d30ð14 − 13Q2Þλ4

þ d20
�ð42 − 39Q2Þλ3 − 24d1ðQ2 − 2Þλ4

�
− 2d1ðQ2 − 2Þð4Q2 − 8 − λ1Þz2hμ2g

þ 3d0
�
−14þ 13Q2 þ 8d1λ3 − 4d1Q2λ3 þ λ1ð3Q2 − 2Þz2hμ2g

�o
: ð14Þ

For each value of T, μ, we vary d0 and compare the numerical solution to the UV expansion of the chiral field

χðu → 0Þ ≈mqζzhu − 3m2
qζ

2λ3z2hu
2 þ σ

ζ
z3hu

3 þ 1

4

�
m3

qζ
3ðλ4 − 36λ23Þ þ 2mqζμ

2
gðλ1 − 2Þ�z3hu3 logðzhuÞ þ…: ð15Þ

The terms of order u and u3 have their coefficients defined by the AdS/CFT dictionary and the other coefficients are found
by solving (10) order by order.
We evaluate the numerical solution and its derivative at a small value ui ≈ 10−3 and calculate the coefficients by

comparing to the UV expansion (15). Keeping terms up to order u3, the relationships are analytically solvable,

mq ¼
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3λ3ð3χUV − uiχ0UVÞ

p
3λ3ζuizh

; ð16Þ

σ ¼ ζ

 
1 − 3λ3ð2χUV þ uiχ0UVÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3λ3ð3χUV − uiχ0UVÞ

p
3u3i z

3
hλ3

!
; ð17Þ

where χUV ¼ χðuiÞ and χ0UV ¼ χ0ðuiÞ. The quadratic relationship has another set of solutions, which produce unphysical
values of mq; σ < 0. In the two-flavor case, λ3 ¼ 0 and the above relationships cannot be used. Instead we find

mq ¼
3χUV − uiχ0UV

2ζzhui
; ð18Þ

σ ¼ ζ
uiχ0UV − χUV

2z3hu
3
i

: ð19Þ
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IV. RESULTS

In this section, we find the dependence of the chiral
condensate σ on quark mass mq for various values of the
scalar-dilaton coupling λ1. We show that there is a mini-
mum value of λ1 that allows for spontaneous chiral
symmetry breaking in the chiral limit mq → 0. We show
how the (pseudo)critical temperature is found and how
crossover and first-order transitions are distinguished.
Finally, we show how the location of the critical point is
affected by the value of λ1.

A. Spontaneous chiral symmetry breaking

Separate sources of spontaneous and explicit chiral
symmetry breaking are required in the theory. The original
soft-wall model did not achieve this, finding σ ∼mq

instead [22]. Including a quartic term in the scalar potential
allows these quantities to be independent, crucially main-
taining spontaneous chiral symmetry breaking in the chiral
limit mq ¼ 0 [38].
The relationship between mq and σ in this model

depends on the strength of the scalar-dilaton coupling λ1.
We check this relationship in both the two-flavor (λ3 ¼ 0)
and three-flavor (λ3 ≠ 0) cases. In the two-flavor case,
the relationship between σ and mq is one-to-one for quark
mass mq ≥ 0. For small values of the scalar-dilaton
coupling, the spontaneous chiral symmetry breaking van-
ishes as mq → 0, but at higher values of λ1 ≥ 6.0, σ is
nonzero in the chiral limit, as seen in Fig. 2.
In the three-flavor case, we find the same requirement

λ1 ≥ 6.0 for σ to remain finite as the quark mass goes to
zero. In Fig. 3, it is evident that σ becomes multivalued for
intermediate values of λ1. In these cases, the smaller value
of σ is thermodynamically favored. This means that in the

case of e.g., λ1 ¼ 5.7 it appears that there are finite
solutions of σ at zero quark mass, but these solutions
are unphysical, and the lower branch of the graph shows
σ ∼mq at small quark mass for these values of λ1.
Another hallmark of chiral symmetry breaking is the

Gell-Mann–Oakes–Renner (GOR) relation, which relates
the pion mass and pion decay constant to the quark mass
and chiral condensate, 2mqσ ¼ f2πm2

π [50]. The GOR
relation arises from the minimal AdS=QCD setup, through
an analysis of the axial-vector and pseudoscalar sectors
[21,22,51]. The equations of motion for these sectors are
not directly coupled to the scalar potential, so considering
higher-order terms in the scalar potential does not affect this
result, which has been confirmed numerically [41,43,52].
Numerical investigation of meson spectra and the GOR
relation is reserved for future work.

B. Chiral phase transition

For a given value of the chemical potential μ and quark
mass mq, we find the values of σ for a range of temper-
atures. The order of the chiral phase transition is deter-
mined by the way in which σ transitions to a smaller value.
Smooth transitions are considered crossover, while a first-
order phase transition is characterized by the chiral con-
densate becoming multivalued, as illustrated in Fig. 4.
In crossover transitions, the pseudocritical temperature

is the temperature where the chiral susceptibility jdσ=dTj
is maximized. For first-order transitions, the critical
temperature occurs at the lowest temperature where σ is
multivalued.
The values of λ1 that produce unphysical chiral dynamics

at zero temperature also show unphysical behavior in the
chiral phase transition. The chiral condensate is plotted as a

FIG. 2. The relationship between σ and mq for a variety of
values of the scalar-dilaton coupling λ1 with two flavors at zero
temperature and chemical potential. For λ1 ≥ 6.0, the chiral
condensate is present even in the chiral limit mq ¼ 0.

FIG. 3. The relationship between σ and mq for a variety of
values of the scalar-dilaton coupling λ1 with three flavors. When
σ is multivalued, the lowest value is thermodynamically favored.
For λ1 ≥ 6.0, the chiral condensate is present even in the chiral
limit mq ¼ 0.
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function of temperature at μ ¼ 0 in the chiral limit for two
flavors (Fig. 5) and three flavors (Fig. 6). Note that the two-
flavor case allows negative values of σ ↔ −σ as solutions.
This symmetry is broken in the three-flavor case and
also when mq > 0, although negative solutions are still
present [39]. These nonphysical solutions are ignored in the
rest of the analysis.
The chiral phase transition has the expected low T

behavior in the chiral limit. As this parameter is decreased,
the “bump” below the critical temperature becomes more
pronounced. When λ1 is below a certain value, the chiral
condensate disappears at low temperature. This unphysical
result is further evidence for a minimum value for the
scalar-dilaton coupling in this model.

C. Phase diagram and critical point

The chiral phase diagram is produced by plotting the
(pseudo)critical temperature as a function of the chemical

potential. A critical end point is found for combinations of
mq and λ1 that produce a crossover phase transition at zero
chemical potential. At sufficiently large μ, the phase
transition becomes first order.
To examine the effect of scalar-dilaton coupling on the

location of the critical point, we show in Fig. 7 phase
boundaries for a sample quark massmq ¼ 15 for varying λ1
with three symmetric quark flavors. The critical point
occurs at smaller chemical potential as λ1 is increased.
At the same time, the (pseudo)critical temperature is
increased at all values of μ.
When the scalar-dilaton coupling is sufficiently large, the

phase transition is first order at μ ¼ 0, and the critical point
vanishes. This is seen in Fig. 8, where the location of the
critical point is plotted for several values of the quark mass.
When the quark mass is large, a critical point can still be
found when λ1 ≥ 6.0, as required for the proper chiral
dynamics detailed in Sec. IVA. At low values of the quark
mass, obtaining a critical point requires λ1 < 6.0. We find
that the minimum quark mass with a critical point in the

FIG. 4. These plots illustrate the difference between a crossover phase transition and a first-order phase transition. At zero chemical
potential (left), the transition is smooth, but at higher μ (right), the value of σ becomes multivalued, indicating a first-order phase
transition. Both plots use mq ¼ 15 MeV and λ1 ¼ 6.

FIG. 5. The two-flavor results in the chiral limit for chiral
condensate σ as a function of temperature at zero chemical
potential. For scalar-dilaton coupling λ1 ≤ 6, σ vanishes at low
temperatures.

FIG. 6. The three-flavor results in the chiral limit for chiral
condensate σ as a function of temperature at zero chemical
potential. For scalar-dilaton coupling λ1 ≤ 5.5, σ vanishes at low
temperatures.
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phase diagram when λ1 ¼ 6.0 is mq ¼ 12.8 MeV. In the
chiral limit, we find that the chiral phase transition is
always first order, regardless of the value of λ1, and no
critical point is present.

V. DISCUSSION

In this work, we used a soft-wall holographic QCD
model with a scalar-dilaton coupling to study the chiral
phase transition at finite temperature and density. Our
analysis shows that a coupling λ1 ≥ 6.0 is necessary for
achieving the correct chiral dynamics with either two or

three symmetric quark flavors, in line with the requirement
that holographic models mirror the chiral symmetry break-
ing mechanism of QCD [21,22]. Furthermore, the presence
of a critical point in this model’s chiral phase diagram
contributes to the ongoing effort to comprehend the phase
structure of QCD, a topic of considerable theoretical and
experimental interest [53,54].
Previous soft-wall AdS=QCD models that achieved

correct chiral dynamics at zero chemical potential by using
a UV-modified dilaton [39,45] could be extended to include
a scalar-dilaton coupling term. It may be interesting to
examine whether this will circumvent the problems shown
in the current work at small values of the scalar-dilaton
coupling.
Looking ahead, we will allow the strange quark mass to

differ from the light quark masses and explore the 2þ 1-
flavor results at a range of scalar-dilaton coupling. These
results will be compared to the Columbia plot shown in
Fig. 1. Another goal is to combine the analysis of the
chiral transition with the deconfinement phase transition.
Previous work combining a scalar chiral field with the
dynamical Einstein-Maxwell-dilaton model have shown
some promise in the case of two quark flavors [55].
Including the scalar-dilaton mixing term produces the
crossover chiral transition that is expected for two quark
flavors withmq > 0 [56]. Considering these extensions will
allow a more thorough exploration of all aspects of the
holographic QCD phase diagram.
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APPENDIX: COMPARISON OF NUMERICAL
METHODS

Another commonly used numerical method for solving
the chiral equation of motion (10) uses the UV expansion
of (15) as one boundary condition and the regularity of the
chiral field at the horizon z ¼ zh is used as the other.
Regularity is difficult to check numerically, so a “test”
function is defined that includes all the potentially singular
parts of the equation of motion,

−z2
f0ðzÞ
fðzÞ χ

0ðzÞ þ 1

fðzÞ
�ð−3 − λ1ΦÞχ þ 4λ4χ

3 þ 3λ3χ
2
�
:

ðA1Þ

This collection of terms must be zero at the horizon,
otherwise there will be a divergence as f → 0. Ensuring

FIG. 8. The locations of the critical point for different values of
the quark mass and scalar-dilaton coupling λ1 are shown. The
curves are labeled by the value of the quark mass.

FIG. 7. The phase diagram is shown for mq ¼ 15 MeV for
various values of the scalar-dilaton coupling parameter λ1.
Dashed lines indicate a crossover and solid lines indicate a
first-order phase transition. The critical points are indicated by a
large dot. Increasing λ1 moves the critical point to smaller
chemical potential values while also increasing the crossover
temperature at μ ¼ 0.
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the test function is zero becomes the second boundary
condition.

The shooting method [57] is implemented with the
required quark mass given as an input parameter and σ
varied until the boundary condition is met near the black
hole horizon. This method is used to find the allowed
values of σ for a given T, μ, and mq.
The limitations of this method are revealed at low

temperature T ≪ Tc. At low temperature, zh ∼ T−1 becomes
large, and numerical instabilities in the numerical solution
to (10) make it difficult to determine the correct value of σ.
This has not been a problem in previous publications that
focus on the chiral phase transition. Typically, the value of σ
approaches a constant value as temperature is decreased
below the transition temperature. However, this is not always
the case in this model, where σ ¼ 0 at low temperatures for
some values of λ1, as seen in Fig. 9.
The method of integrating from the UV boundary is

trustworthy near the transition temperature. However, in
this work we are also interested in the low temperature
chiral dynamics, particularly in ensuring separate sources
of explicit and spontaneous chiral symmetry breaking, as
discussed in Sec. IVA. By starting near the singular point
and integrating away from it, the method of Sec. III is more
numerically stable at lower temperatures.

[1] H. Elfner and B. Müller, J. Phys. G 50, 103001 (2023).
[2] X. An et al., Nucl. Phys. A1017, 122343 (2022).
[3] A. Pandav, D. Mallick, and B. Mohanty, Prog. Part. Nucl.

Phys. 125, 103960 (2022).
[4] Y. Aoki, G. Endrődi, Z. Fodor, S. D. Katz, and K. K. Szabó,

Nature (London) 443, 675 (2006).
[5] G. Aarts et al., Prog. Part. Nucl. Phys. 133, 104070 (2023).
[6] K. Fukushima and C. Sasaki, Prog. Part. Nucl. Phys. 72, 99

(2013).
[7] R. Bellwied, S. Borsányi, Z. Fodor, J. Günther, S. Katz, A.

Pásztor, C. Ratti, and K. Szabó, Nucl. Phys. A956, 797
(2016).

[8] P. J. Gunkel and C. S. Fischer, Phys. Rev. D 104, 054022
(2021).

[9] L. Adamczyk et al., Phys. Rev. Lett. 112, 032302 (2014).
[10] STAR Collaboration, arXiv:1007.2613.
[11] K. Meehan, Nucl. Phys. A967, 808 (2017).
[12] T. Ablyazimov et al., Eur. Phys. J. A 53, 60 (2017).
[13] D. Almaalol et al., arXiv:2209.05009.
[14] O. Philipsen, Prog. Part. Nucl. Phys. 70, 55 (2013).
[15] S. Borsanyi, Z. Fodor, J. N. Guenther, R. Kara, S. D. Katz, P.

Parotto, A. Pasztor, C. Ratti, and K. K. Szabó, Phys. Rev.
Lett. 125, 052001 (2020).

[16] J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).
[17] E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998).
[18] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).
[19] S. S. Gubser and A. Nellore, Phys. Rev. D 78, 086007

(2008).

[20] S. S. Gubser, A. Nellore, S. S. Pufu, and F. D. Rocha, Phys.
Rev. Lett. 101, 131601 (2008).

[21] J. Erlich, E. Katz, D. T. Son, and M. A. Stephanov, Phys.
Rev. Lett. 95, 261602 (2005).

[22] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys.
Rev. D 74, 015005 (2006).

[23] R. Rougemont, J. Grefa, M. Hippert, J. Noronha, J.
Noronha-Hostler, I. Portillo, and C. Ratti, Prog. Part. Nucl.
Phys. 135, 104093 (2024).

[24] O. DeWolfe, S. S. Gubser, and C. Rosen, Phys. Rev. D 83,
086005 (2011).

[25] O. DeWolfe, S. S. Gubser, and C. Rosen, Phys. Rev. D 84,
126014 (2011).

[26] Z. Li, Y. Chen, D. Li, and M. Huang, Chin. Phys. C 42,
013103 (2018).

[27] R. Critelli, J. Noronha, J. Noronha-Hostler, I. Portillo,
C. Ratti, and R. Rougemont, Phys. Rev. D 96, 096026
(2017).

[28] R. Rougemont, R. Critelli, and J. Noronha, Phys. Rev. D 98,
034028 (2018).

[29] J. Grefa, J. Noronha, J. Noronha-Hostler, I. Portillo, C.
Ratti, and R. Rougemont, Phys. Rev. D 104, 034002 (2021).

[30] R.-G. Cai, S. He, L. Li, and Y.-X. Wang, Phys. Rev. D 106,
L121902 (2022).

[31] M. Hippert, J. Grefa, T. A. Manning, J. Noronha, J.
Noronha-Hostler, I. P. Vazquez, C. Ratti, R. Rougemont,
and M. Trujillo, arXiv:2309.00579.

[32] Q. Fu, S. He, L. Li, and Z. Li, arXiv:2404.12109.

FIG. 9. This comparison of the numerical methods shows
agreement between them, but more spurious points when
integrating from the UV. The data shown are for two represen-
tative values of the scalar-dilaton coupling λ1 with mq ¼ 1 MeV
and μ ¼ 0.

CHIRAL PHASE TRANSITION IN SOFT-WALL ADS=QCD WITH … PHYS. REV. D 110, 026027 (2024)

026027-7

https://doi.org/10.1088/1361-6471/ace824
https://doi.org/10.1016/j.nuclphysa.2021.122343
https://doi.org/10.1016/j.ppnp.2022.103960
https://doi.org/10.1016/j.ppnp.2022.103960
https://doi.org/10.1038/nature05120
https://doi.org/10.1016/j.ppnp.2023.104070
https://doi.org/10.1016/j.ppnp.2013.05.003
https://doi.org/10.1016/j.ppnp.2013.05.003
https://doi.org/10.1016/j.nuclphysa.2016.02.010
https://doi.org/10.1016/j.nuclphysa.2016.02.010
https://doi.org/10.1103/PhysRevD.104.054022
https://doi.org/10.1103/PhysRevD.104.054022
https://doi.org/10.1103/PhysRevLett.112.032302
https://arXiv.org/abs/1007.2613
https://doi.org/10.1016/j.nuclphysa.2017.06.007
https://doi.org/10.1140/epja/i2017-12248-y
https://arXiv.org/abs/2209.05009
https://doi.org/10.1016/j.ppnp.2012.09.003
https://doi.org/10.1103/PhysRevLett.125.052001
https://doi.org/10.1103/PhysRevLett.125.052001
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n3.a3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevD.78.086007
https://doi.org/10.1103/PhysRevD.78.086007
https://doi.org/10.1103/PhysRevLett.101.131601
https://doi.org/10.1103/PhysRevLett.101.131601
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1103/PhysRevLett.95.261602
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1016/j.ppnp.2023.104093
https://doi.org/10.1016/j.ppnp.2023.104093
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1103/PhysRevD.83.086005
https://doi.org/10.1103/PhysRevD.84.126014
https://doi.org/10.1103/PhysRevD.84.126014
https://doi.org/10.1088/1674-1137/42/1/013103
https://doi.org/10.1088/1674-1137/42/1/013103
https://doi.org/10.1103/PhysRevD.96.096026
https://doi.org/10.1103/PhysRevD.96.096026
https://doi.org/10.1103/PhysRevD.98.034028
https://doi.org/10.1103/PhysRevD.98.034028
https://doi.org/10.1103/PhysRevD.104.034002
https://doi.org/10.1103/PhysRevD.106.L121902
https://doi.org/10.1103/PhysRevD.106.L121902
https://arXiv.org/abs/2309.00579
https://arXiv.org/abs/2404.12109


[33] Z. Fang, Y.-L. Wu, and L. Zhang, Phys. Rev. D 99, 034028
(2019).

[34] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers,
Phys. Rev. D 60, 064018 (1999).

[35] C. Park, Phys. Rev. D 81, 045009 (2010).
[36] P. Colangelo, F. Giannuzzi, and S. Nicotri, Phys. Rev. D 83,

035015 (2011).
[37] P. Colangelo, F. Giannuzzi, S. Nicotri, and V. Tangorra, Eur.

Phys. J. C 72, 2096 (2012).
[38] T. Gherghetta, J. I. Kapusta, and T. M. Kelley, Phys. Rev. D

79, 076003 (2009).
[39] K. Chelabi, Z. Fang, M. Huang, D. Li, and Y.-L. Wu, J. High

Energy Phys. 04 (2016) 036.
[40] S. P. Bartz and T. Jacobson, Phys. Rev. D 94, 075022

(2016).
[41] A. Ballon-Bayona, L. A. H. Mamani, and D. M. Rodrigues,

Phys. Rev. D 104, 126029 (2021).
[42] Z. Fang and Y.-L. Wu, Chin. Phys. C 44, 103101

(2020).
[43] Z. Fang, Y.-L. Wu, and L. Zhang, Phys. Lett. B 762, 86

(2016).
[44] Z. Fang, Y.-L. Wu, and L. Zhang, Phys. Rev. D 98, 114003

(2018).
[45] S. P. Bartz and T. Jacobson, Phys. Rev. C 97, 044908

(2018).

[46] F. R. Brown, F. P. Butler, H. Chen, N. H. Christ, Z. Dong, W.
Schaffer, L. I. Unger, and A. Vaccarino, Phys. Rev. Lett. 65,
2491 (1990).

[47] P. de Forcrand and O. Philipsen, J. High Energy Phys. 01
(2007) 077.

[48] A. Cherman, T. D. Cohen, and E. S. Werbos, Phys. Rev. C
79, 045203 (2009).

[49] D. Li, M. Huang, and Q.-S. Yan, Eur. Phys. J. C 73, 2615
(2013).

[50] M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,
2195 (1968).

[51] A. Cherman, T. D. Cohen, and E. S. Werbos, Phys. Rev. C
79, 045203 (2009).

[52] T. M. Kelley, S. P. Bartz, and J. I. Kapusta, Phys. Rev. D 83,
016002 (2011).

[53] K. Rajagopal, Nucl. Phys. A661, 150 (1999).
[54] E. Laermann and O. Philipsen, Annu. Rev. Nucl. Part. Sci.

53, 163 (2003).
[55] Y. Yang and P.-H. Yuan, Phys. Lett. B 832, 137212 (2022).
[56] X.-Y. Liu, X.-C. Peng, Y.-L. Wu, and Z. Fang, Phys. Rev.

D 109, 054032 (2024).
[57] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes 3rd Edition: The Art of
Scientific Computing, 3 ed. (Cambridge University Press,
Cambridge, England, 2007).

BARTZ, MEADOWS, and BROCK PHYS. REV. D 110, 026027 (2024)

026027-8

https://doi.org/10.1103/PhysRevD.99.034028
https://doi.org/10.1103/PhysRevD.99.034028
https://doi.org/10.1103/PhysRevD.60.064018
https://doi.org/10.1103/PhysRevD.81.045009
https://doi.org/10.1103/PhysRevD.83.035015
https://doi.org/10.1103/PhysRevD.83.035015
https://doi.org/10.1140/epjc/s10052-012-2096-9
https://doi.org/10.1140/epjc/s10052-012-2096-9
https://doi.org/10.1103/PhysRevD.79.076003
https://doi.org/10.1103/PhysRevD.79.076003
https://doi.org/10.1007/JHEP04(2016)036
https://doi.org/10.1007/JHEP04(2016)036
https://doi.org/10.1103/PhysRevD.94.075022
https://doi.org/10.1103/PhysRevD.94.075022
https://doi.org/10.1103/PhysRevD.104.126029
https://doi.org/10.1088/1674-1137/abab90
https://doi.org/10.1088/1674-1137/abab90
https://doi.org/10.1016/j.physletb.2016.09.009
https://doi.org/10.1016/j.physletb.2016.09.009
https://doi.org/10.1103/PhysRevD.98.114003
https://doi.org/10.1103/PhysRevD.98.114003
https://doi.org/10.1103/PhysRevC.97.044908
https://doi.org/10.1103/PhysRevC.97.044908
https://doi.org/10.1103/PhysRevLett.65.2491
https://doi.org/10.1103/PhysRevLett.65.2491
https://doi.org/10.1088/1126-6708/2007/01/077
https://doi.org/10.1088/1126-6708/2007/01/077
https://doi.org/10.1103/PhysRevC.79.045203
https://doi.org/10.1103/PhysRevC.79.045203
https://doi.org/10.1140/epjc/s10052-013-2615-3
https://doi.org/10.1140/epjc/s10052-013-2615-3
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1103/PhysRev.175.2195
https://doi.org/10.1103/PhysRevC.79.045203
https://doi.org/10.1103/PhysRevC.79.045203
https://doi.org/10.1103/PhysRevD.83.016002
https://doi.org/10.1103/PhysRevD.83.016002
https://doi.org/10.1016/S0375-9474(99)85017-9
https://doi.org/10.1146/annurev.nucl.53.041002.110609
https://doi.org/10.1146/annurev.nucl.53.041002.110609
https://doi.org/10.1016/j.physletb.2022.137212
https://doi.org/10.1103/PhysRevD.109.054032
https://doi.org/10.1103/PhysRevD.109.054032

