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We construct a holographic map that reconstructs massless fields (scalars, Maxwell field, and Fierz-Pauli
field) in half-Minkowski spacetime in dþ 1 dimensions terms of smeared primary operators in a large-N
factorizable CFT in Rd−1;1. This map is based on a Weyl (rescaling) transformation from the Poincaré
wedge of AdS to the Minkowski half-space and on the Hamilton-Kabat-Lifschytz-Lowe smearing function,
which reconstructs local bulk operators in the Poincaré AdS in terms of smeared operators on the conformal
boundary of the Poincaré wedge. The massless scalar field is reconstructed up to the level of two-point
functions, while the Maxwell field and massless spin-2 fields are reconstructed at the level of the one-point
function. We also discuss potential ways the map can be generalized to higher dimensions, and to the full
Minkowski space.

DOI: 10.1103/PhysRevD.110.026026

I. INTRODUCTION

Maldacena’s holographic duality or AdS/CFT corre-
spondence [1–4] has provided us with a nonperturbative
formulation of quantum gravity in asymptotically anti–de
Sitter (AdS) spacetimes in terms of a nongravitational
(large-N factorizable) conformal field theory (CFT).
Equipped with this nonperturbative formulation, substan-
tial progress has been made in understanding fundamental
foundational aspects of quantum gravity, such as how a
quasilocal bulk spacetime emerges from the underlying
CFT degrees of freedom, how the quantum entanglement
dynamics of the CFT give rise to gravitational dynamics in
bulk AdS, quantum properties of black holes including the
black hole entropy puzzle, and even led to the prospects of
a resolution of the black hole information paradox via
unitary dynamics of the CFT. However, the situation is
starkly different in backgrounds that are not asymptotically
AdS. Although generic arguments from black hole physics
suggest that, analogously to AdS/CFT, one must have
holographic dual definitions or formulations of quantum
gravity in generic spacetimes, e.g., asymptotically flat or de
Sitter (dS) spacetimes, unlike AdS/CFT we do not have

generic formulations of such holographic dualities apart
from isolated examples [5,6]. Nevertheless, by examining
the (asymptotic) symmetries of a given spacetime, it is
possible to infer the global symmetries of the holographic
dual (field) theory [7–17]. Subsequently, from the infor-
mation about the (global) symmetries of the dual field
theory alone, a lot of the quantum gravitational dynamics
in/of the bulk can be reconstructed or derived. As was
done for AdS in the Hamilton-Kabat-Lifschytz-Lowe
(HKLL) program [18–24], purely using the generic
constraints of conformal symmetries of the dual CFT,
one can reconstruct dynamics quasilocal bulk fields in the
large-N approximation. In this work our interest is in
asymptotically flat spacetimes. There has been tremen-
dous activity on holography in asymptotically flat space-
times, especially in 3þ 1-dimensions, over the past ten
years. The so-called Celestial Holography program (see
[25–30] for a review) whereby one attempts to reconstruct
scattering matrices of interacting local bulk fields (includ-
ing gravitons) inR3;1 out of correlators of conformal fields
[SLð2;CÞ primaries] supported on the so-called celestial
2-sphere S2 obtained by suppressing the null direction of
future null infinity. A second approach is the Carrollian
Holography program [13,31–36]1 whereby the Poincaré
group realized as conformal symmetries of (future) null
infinity, I , and the so-called Carrollian conformal fields
supported on I being dual to local fields in R3;1 (see [37]
for some details).
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For an alternative approach to flat space bulk
reconstruction in terms of holography of information see
[38]. However, in the case of the Celestial Holography or
Carrollian Holography program, the boundary dual field
theory is unknown.2 More generally, one must note that
unlike in the case of the Maldacena duality, one does not
know how to construct explicit gauge theory duals of
asymptotically flat space gravity from top-down string
compactifications.3 While the Blanks-Fischler-Shenker-
Susskind (BFSS) matrix model [5] formulation of M-
theory in the light cone frame does provide a dual quantum
mechanics model of an asymptotically flat gravity back-
ground, the role of conformal infinity and asymptotic
symmetries is not clear in this approach (see [43,44] for
some recent attempts), so the conventional tools of holog-
raphy such as the HKLL map etc cannot be utilized readily.
Notwithstanding, one can try to gain insight into flat space
gravity by constructing the smearing functions for flat
space gravity either in the Celestial or Carrollian hologra-
phy program by replicating the success of the HKLL
program for asymptotically AdS gravity. In this work,
we take a step towards this direction. We consider here half-
Minkowski space, described by the metric in Cartesian
coordinates t, x, z,

ds2 ¼ −dt2 þ dx · dxþ dz2; ð1:1Þ

with a maximal range for t, x, i.e., t; x∈ ð−∞;∞Þ, while z
is allowed to take values on the half-line z∈ ð0;∞Þ,
instead of full Minkowski space. In some ways, the
half-Minkowski space will be a counterpart of the
Poincaré wedge of the global AdS space and are related
to each other via a Weyl rescaling of the metrics. As such,
the dynamics of local fields propagating in half-
Minkowski space which transform nicely under Weyl
rescaling transformations can be obtained from their
dynamics in the Poincaré AdS wedge but the dynamics
of the local fields in the Poincaré wedge of AdSdþ1 can be
obtained from their nonlocal holographic CFT dual
operators living on the conformal boundary (z ¼ 0) of
the Poincaré wedge namely Minkowski space Rd−1;1, via
the HKLL smearing function construction [19,20]. Putting
these two facts together we obtain a holographic smearing
function map for the local operators in the bulk of

half-Minkowksi space, and nonlocal CFT operators in
full Minkowski space with one less spatial dimension.4

We note that this map, just like the HKLL map, is obtained
in the planar limit N → ∞, i.e., the leading semiclassical
approximation in the quantum gravity in the bulk (vanish-
ing Planck length). In this limit, the equations of motion of
the local fields in the bulk are linear (free fields). One can,
of course, perform 1=N corrections to this map and
reconstruct the interacting physics of bulk fields in the
half-Minkowski space as well, as was done for AdS
[21,22,24]. However, we leave that exercise for followup
works.
The plan of the paper is as follows. In Sec. II, we

reconstruct the massless scalar propagating in half-
Minkowski space by smeared primary operators in a
CFT by first mapping the massless scalar to a conformally
coupled scalar in the Poincaré wedge via a conformal
transformation (Weyl rescaling) and then appropriating the
HKLL map (smearing functions) [18–20,23]. Our analysis
is restricted to the case of CFT dimensions, d ¼ 1, 2 for the
sake of convenience; for these conformally coupled scalars,
the HKLL smearing functions is not the correct one for
d ≥ 3, and one should work with more general smearing
constructions [46–48]. After reconstructing the scalar field
itself (one-point function), in Sec. II A, we proceed to
reconstruct the Wightman functions in the half-Minkowski
space in Sec. II B. For d ¼ 1, we are able to reconstruct the
bulk Wightman function (for both spacelike and timelike
separations) analytically, while for d ¼ 2, the smearing
integrals are performed numerically for the timelike sep-
arated case and shown to be equal to the bulk supergravity
(SUGRA) Wightman function. In Sec. III, we take up the
reconstruction of the Maxwell field in 3þ 1 dimensions for
obvious phenomenological reasons. This is accomplished
straightforwardly since the Maxwell equations are con-
formally invariant in 3þ 1 dimensions. We end the section
with comments on extending to higher spacetime dimen-
sions. In Sec. IV, we look at linearized metric fluctuations
in (3þ 1)-dimensional half-Minkowski spacetime. To this
end, we begin with the equation for linearized metric
fluctuation in the holographic gauge [23] in the flat side
and then perform a conformal transformation to the AdS
Poincaré wedge. Conveniently this turns into the equation
of motion for a free massless spin-2 field in AdS space with
AdS radius scaled up by a factor of

ffiffiffi
3

p
, again in the

holographic gauge. This readily allows us to reconstruct the
linearized metric fluctuation in the half-Minkowski space
from the HKLL metric fluctuation reconstruction in holo-
graphic gauge [23]. We end this section with comments on
extending this construction to arbitrary spacetime dimen-
sions. In Sec. V, we discuss our results and provide an

2However, see [39–41] for a boundary description of flat space
Jackiw-Teitelboim (JT) gravity in 1þ 1-dimension in terms of a
matrix model (ensemble of celestial theories).

3One can perhaps consider the M3/LST duality obtained by
deforming a CFT2 by irrelevant couplings [42] as an exception, in
the sense that the background metric is asymptotically flat.
However, in this case, there is a nontrivial dilaton background
that diverges at spatial infinity, and the dual theory (little string
theory) is not a local field theory that does not admit UV
completion.

4In this regard, we should point out to the recent work [45]
where the authors have reconstructed massive fields in full
Minkowski space from observables at the spatial infinity.
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outlook for future work. Finally, in the appendices, we
collect some useful mathematical details.

II. CFT RECONSTRUCTION OF SCALAR FIELDS
IN HALF-MINKOWSKI SPACE

The Poincaré wedge of AdS,

ds2 ¼ l2

z2
ðdz2 þ dxμdxμÞ; z ≥ 0; ð2:1Þ

is conformal to half-Minkowski space, with the conformal
factor Ω2ðxÞ ¼ l2=z2. Consider a massless conformally
coupled scalar in Poincaré AdS,

�
□ −

d − 1

4d
R̄

�
φ̄ ¼ 0; ð2:2Þ

where□ is the d’Alembertian operator in Poincaré AdSdþ1.

Since the Ricci scalar for AdSdþ1 is a constant, R ¼
− dðdþ1Þ

l2 the equation of motion of the conformally coupled
scalar turns into that of a minimally coupled massive scalar
field,

ð□ − μ2Þφ̄ ¼ 0 ð2:3Þ

of mass

μ2 ¼ −
d2 − 1

4
: ð2:4Þ

Note that this mass-squared is in the Breitenlohner-
Freedman stability regime μ2 > − d2

4
. This conformally

coupled scalar is then dual to a quasi primary field in
the CFT with conformal dimension

Δ ¼ dþ 1

2
: ð2:5Þ

Under a Weyl rescaling by the conformal factor, Ω2ðxÞ, we
get

φ̄ ¼ Ω−d−1
2 φ; ð2:6Þ

and Eq. (2.2) turns into a massless (conformally coupled)
scalar field propagating in half-Minkowski space,

□φ ¼ 0: ð2:7Þ

Here □ is the d’Alembertian operator in Rd;1. To see this
we use the transformation properties of□ and the curvature
scalar, R under Weyl rescalings [49],

□ φ̄ ¼ Ω−dþ3
2 □φþ 1 − d

2
Ω−dþ5

2 ðφ□ΩÞ

−
ðd − 1Þðd − 3Þ

4

�
Ω−dþ7

2 φ
�
j∇Ωj2; ð2:8Þ

d − 1

4d
R̄ φ̄ ¼ d − 1

4d
Ω−dþ3

2 Rφþ 1 − d
2

Ω−dþ5
2 ðφ□ΩÞ

−
ðd − 1Þðd − 3Þ

4

�
Ω−dþ7

2 φ
�
j∇Ωj2; ð2:9Þ

where the unbarred quantities are in flat space, and the
barred ones are in AdS space. Putting the above equations
in (2.2) along with the fact that R ¼ 0 in flat space we
get (2.7).

A. The CFT to half-flat smearing function

The conformally coupled scalar in Poincaré AdS can be
reconstructed from the dual CFT defined over R1;d−1 using
the HKLL smearing function [18–20,23],

φ̄ðz; xÞ ¼
Z

ddx0K̄Δðx; zjx0ÞOΔðx0Þ; ð2:10Þ

where

K̄Δðx; zjx0Þ ¼ CðΔ; dÞðσz0ÞΔ−d θðσz0Þ; ð2:11Þ

where σ ¼ σðx; zjx0; z0Þ is the AdS-invariant distance func-
tion for a pair of points namely ðx; zÞ and ðx0; z0Þ in AdS,
and σz0 ≡ limz0→0 σz0. The normalization constant, CðΔ; dÞ
depends on the boundary spacetime dimensions and the
conformal dimension of the primary5 after setting Δ ¼ dþ1

2
.

Then, upon performing the Weyl rescaling transformation
(2.6), the massless scalar in the half-Minkowski space in
d; 1 dimensions can be reconstructed from the CFT in
R1;d−1,

φðz; xÞ ¼
Z

ddx0KΔðz; xjx0ÞOΔðx0Þ; ð2:12Þ

where

K ¼ Ωd−1
2 K̄Δ ¼

�
l
z

�d−1
2

CðdÞðσz0ÞΔ−dθðσz0Þ; ð2:13Þ

where CðΔ ¼ dþ1
2
; dÞ≡ CðdÞ. This CFT to half-flat space

smearing function for conformally coupled scalar fields,
(2.13), can be expressed in Lorentz-invariant form as

KðsÞ ¼ 2
d−1
2 CðdÞs−d−1

2 θðsÞ; ð2:14Þ

5See Appendix A for a short derivation.
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where s ¼ z2 − ðt − t0Þ2 − ðy − y0Þ2 is the Lorentz invariant
interval Wick-rotated in the boundary spatial coordinates
(i.e., y y≡ x). One can directly check (see Appendix B) that
this smearing function satisfies the equation of motion for
the conformally coupled field; namely,

□KðsÞ ¼ 0:

However, since the HKLL smearing function CFT integral
for a scalar is only well-defined for Δ > d − 1 [23], this

flat-space smearing (2.13) is well-defined only for d < 3.
For d ≥ 3, one has to work with a different smearing
function (distribution), e.g., one that can be obtained using
a mode sum approach.

B. CFT reconstruction of bulk Wightman functions

Using the universal form of the CFT two-point function,
one has to show that (2.13) reproduces the usual Wightman
function for free massless scalar in flat space i.e.,

hφðz1; x1Þφðz2; x2Þi ¼
Z

ddx01d
dx02KΔðz1; x1jx01ÞKΔðz2; x2jx02ÞhOΔðx01ÞOΔðx02ÞiCFTd

; ð2:15Þ

where

hOΔðx01ÞOΔðx02ÞiCFTd
¼ 1

ðx01 − x02Þ2Δ
: ð2:16Þ

Recall that we can have either d ¼ 1 or d ¼ 2; we take up
these two cases separately.

1. d = 1 case

For this case, the bulk SUGRA Wightman function is

hϕðz1; t1Þϕðz2; t2Þi ¼
1

4π
ln

�ðt1 − t2Þ2 − ðz1 þ z2Þ2
ðt1 − t2Þ2 − ðz1 − z2Þ2

�
;

ð2:17Þ

(see Appendix C).
CFT reconstruction: For d ¼ 1, Δ − d ¼ 0 and the

smearing function (2.13) is simply the step function,
restricting the support to the spacelike region. We proceed

separately for two cases. First, we consider bulk operator
insertions at spacelike separated points. For spacelike
separated bulk points, we can choose t1 ¼ t2 ¼ 0 and
the right-hand side of (2.15) is

hϕðz1; 0Þϕðz2; 0Þi ¼ C1
2

Z
z1

−z1
dt01

Z
z2

−z2
dt02

1

ðt01 − t02 − iεÞ2 ;

¼ C1
2

Z
z1

−z1
dt01

�
1

t01 − z2
−

1

t01 þ z02

�
;

¼ C1
2 ln

ðz1 − z2Þ2
ðz1 þ z2Þ2

: ð2:18Þ

Next we consider the case when the bulk operators
locations are timelike separated. To further simplify the
situation, we choose t2 ¼ 0 and z1 ¼ z2 ¼ z (note that the
condition for no overlap over the boundary smearing
supports is t1 ≥ 2z),

hϕðt1; zÞϕð0; zÞi ¼ C1
2

Z
t1þz

t1−z
dt01

Z
z

−z
dt02

1

ðt01 − t02 − iεÞ2 ;

¼ C1
2

�Z
t1þz

t1−z

dt01
t01 − zþ iε

−
Z

t1þz

t1−z

dt01
t01 þ zþ iε

�
;

¼ C1
2½lnðt1 − iεÞ − lnðt1 − 2z − iεÞ − lnðt1 þ 2z − iεÞ þ lnðt1 − iεÞ�;

¼ C1
2 ln

ðt1 − iεÞ2
ðt1 − iεÞ2 − 4z2

: ð2:19Þ

Thus, in both cases, we recover the SUGRA result (C7) if
we identify the factor C1

2 ¼ − 1
4π. The sign discrepancy

arises from the fact that we are using the “mostly minus”
metric convention for field theory (CFT) while on the
SUGRA side, we are using the “mostly plus” convention

appropriate to GR. The factor of 4π is due to the difference
in normalizing the coefficient of the two-point function in
CFT (where it is 1) versus the usual SUGRA normalization
of the two-point function. This 4π can be easily fixed by
inserting a factor 1=

ffiffiffiffiffiffi
4π

p
in the smearing function (2.13).
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2. d = 2 case

The half-Minkowski space (bulk) Wightman function
when d ¼ 2 is

hφðXÞφðYÞi ¼ 1

4π

�
1

jX − Yj þ
1

jX − Y�j
�
; ð2:20Þ

where X ¼ ðt1; x1; z1Þ, Y ¼ ðt2; x2; z2Þ are the location of
two local operators and Y� ¼ ðt2;−x1;−z2Þ is the location

of the image operator. As is usual for the Wightman
function, one needs to introduce an iε prescription by
replacing t1 → t1 þ iε. Refer to Appendix C for the details.
We are content with reconstructing the case for which X, Y
are timelike separated, X ¼ ðt1; 0; zÞ and Y ¼ ðt2; 0; zÞ,
with t1 − t2 > 2z so that there is no need for the iε
prescription.
CFT reconstruction: Noting that Δ ¼ 3

2
for d ¼ 2 from

(2.5), and using (2.13) and (2.15), the CFT integral
representation of the bulk Wightman function for d ¼ 2 is

hφðt1; 0; z1Þφðt2; 0; z2ÞÞi ¼ 2lC2
2

Z
dx01dx

0
2dt

0
1dt

0
2

½ð−ðt01 − t1Þ2 − x021 þ z21Þð−ðt02 − t2Þ2 − x022 þ z22Þ�−
1
2

½−ðt01 − t02Þ2 − ðx01 − x02Þ2�
3
2

: ð2:21Þ

The range of the integrals is determined by

ðt01 − t1Þ2 þ x012 ≤ z12; ðt02 − t2Þ2 þ x022 ≤ z22:

Here we have set x1 ¼ x2 ¼ 0. For timelike separated points, we can conveniently choose z1 ¼ z2 ¼ z and t2 ¼ 0, and
additionally, we can set t1 > 2z so that the two smeared operators in the CFT do not overlap. In such case, the above
expression becomes

hφðt1; 0; zÞφð0; 0; zÞi ¼ 2lC2
2

Z
ðt0
1
−t1Þ2þx02

1
≤z2

dx01dt
0
1

Z
t02
2
þx02

2
≤z2

dx02dt
0
2

½ð−ðt01 − t1Þ2 − x021 þ z2Þð−t022 − x022 þ z2Þ�−1
2

½−ðt01 − t02Þ2 − ðx01 − x02Þ2�
3
2

:

To determine the constant α, we perform the integrals for small z and compare with the small z expansion of the bulk
SUGRA Wightman function (C5) (see Appendix D). We obtain

C2 ¼
1

4π3=2l1=2
: ð2:22Þ

Thus, the appropriately normalized (SUGRA norm) smeared CFT two-point function becomes

FIG. 1. Two-point function as a function of t for different values of z.
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hφðt1; 0; zÞφð0; 0; zÞi ¼
1

8π3

Z
z

−z
dx01

Z
t1þ

ffiffiffiffiffiffiffiffiffi
z2−x02

1

p

t1−
ffiffiffiffiffiffiffiffiffi
z2−x02

1

p dt01

Z
z

−z
dx02

Z ffiffiffiffiffiffiffiffiffi
z2−x02

2

p

−
ffiffiffiffiffiffiffiffiffi
z2−x02

2

p dt02
½ð−ðt01 − t1Þ2 − x021 þ z2Þð−t022 − x022 þ z2Þ�−1

2

½−ðt01 − t02Þ2 − ðx01 − x02Þ2�
3
2

:

ð2:23Þ

This integral is not tractable analytically and we proceed
further numerically. The integral is computed numerically for
three distinct values of z, and for many different values t1 for
each z. The results are shown graphically in Fig. 1, where the
CFT integral representation of the bulk two-point function
(2.23) is plotted as a function of t1. The solid curves in the
correspond to the bulk result (C5) while the points are the
numerically computed values of the CFT smearing integral
(2.23). Figure 2 shows the log-log plot version of the same
data [solid curves represent the bulk Wightman function,
while the points represent numerically computed values of
(2.23)]. From the numerical estimates, it is obvious the
smearing of the boundary (CFT2) Wightman function (2.23)
reconstructs that bulk Wightman function (C5) for the
timelike separated case (with nonoverlapping smearing
regions, t1 > 2z). The spacelike separated case is a bit more
subtle as one has to keep an iε prescription in the CFT two-
point function due to the overlapping of the smeared regions
along the time direction. We leave this case for future work.

III. MAXWELL FIELD RECONSTRUCTION

Now we discuss the CFT reconstruction of a Maxwell
field in half-Minkowski spacetime, specifically in 3þ 1

dimensions. We start with the AdS4 metric in Poincaré
patch. We remind ourselves that this metric is conformal to
Minkowski half-space with the conformal factor is defined
in the Sec. II. Now we know that Maxwell theory, defined
by the action,

S ¼ −
1

4

Z
d4xFμνFμν; ð3:1Þ

remains invariant under the conformal transformation of the
form mentioned below (2.1) in 3þ 1 spacetime dimen-
sions. It can be also shown that, Fμν hence Aμ remains
invariant under this scale transformation in 3þ 1 dimen-
sions. In [23], the reconstruction of the Maxwell gauge
field have been done for Poincaré AdSd. Given the fact that
in 3þ 1 dimensions gauge field remains invariant under
conformal transformation, it straightforwardly follows that
we can reconstruct the bulk Maxwell gauge field for the
Minkowski half-spacetime and the kernel will be identical
to that given in [23] provided one use the same gauge as
[23], namely the holographic gauge where we choose

Azðz; xÞ ¼ 0; ∂
μAμ ¼ 0: ð3:2Þ

FIG. 2. Log-log plot of two-point function as a function of t for high values of z.
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We should note that, here, the CFT data is given at z ¼ 0
hyperplane, which is not the null infinity of Minkowski
space. It is also obvious that the reconstruction of the
Maxwell two-point function using CFT smeared operators
will proceed identically to [23] in a holographic gauge. As
observed for the scalar case, if one projects out the pieces of
the two-point function (in general n-point function) which
are not invariant under translation symmetry, then one
obtains a reconstruct the Maxwell field for the entire
Minkowski spacetime from a CFT.
Note that the Maxwell theory is not invariant under scale

transformation other than 3þ 1 dimensions. So the argu-
ment presented here will not hold other than 3þ 1
dimensions. However, as will become evident from the
CFT reconstruction of graviton fields in the next section,
there is a possible way to deal with the CFT reconstruction
of Maxwell fields in general spacetime dimensions even
without the conformal invariance of Maxwell action.

IV. RECONSTRUCTION OF BULK METRIC
FLUCTUATIONS

Finally, we will discuss the possibility of reconstructing
the graviton field for half-Minkowski spacetime from CFT.
Note that we want to reconstruct the graviton field, which
satisfies the (3þ 1)-dimensional Einstein’s equations.
First, we note the following property of the linearized
massless spin-2 field under Weyl rescalings,

hμν ¼ Ω2h̃μν; Ω ¼ z: ð4:1Þ

We set the AdS radius to unity at this point for convenience.
We will restore it in the final step. Here hμν satisfies the
linearized Einstein equation in (3þ 1)-dimensional half-
Minkowski spacetime while h̄ is the linearized metric
perturbation in Poincaré AdS [but with a different cosmo-
logical constant, refer to (4.14)]. To be precise, h̃μν satisfies
the corresponding linearized equation obtained by Weyl
transforming the linearized Einstein equation in flat space
to the AdS4 spacetime in the Poincaré patch. In (3þ 1)-
dimensional (half)-Minkowski spacetime, the linearized
Einstein equation can be found from the linearized Ricci
flat equation, i.e.,

Rμν ¼ 0: ð4:2Þ

Under the conformal transformation (4.1) for generic
metric gμν ¼ Ω2g̃μν we get,

Rμν ¼ R̃μν − g̃μν∇̃2 lnðΩÞ þ ðd − 2Þð−∇̃μ∂ν lnðΩÞ
þ ∂μ lnðΩÞ∂ν lnðΩÞ − g̃μν∂α lnðΩÞ∂α lnðΩÞÞ; ð4:3Þ

where d is the spacetime dimensions. Now we need to
linearize it, i.e.,

gð0Þμν þ hμν ¼ Ω2ðg̃ð0Þμν þ h̃μνÞ: ð4:4Þ

We will eventually consider the background metrics gð0Þμν

and g̃ð0Þμν are half-Minkowski and AdS metric, respectively.
First of all, we note that by linearizing the left-hand side of
(4.3) and setting to zero we get the usual linearized Einstein
equation for hμν i.e.,

1

2
∇2hμν þ∇ðμvνÞ ¼ 0; vν ¼

1

2
∂νh −∇αhαν: ð4:5Þ

h is the trace of hμν. Also, we have set d ¼ 4. We can
further simplify this to get,

∂
2hμν − ∂αð∂μhαν þ ∂νhαμÞ þ 2∂μ∂νh ¼ 0: ð4:6Þ

This is the usual wave equation for graviton on the (half)-
Minkowski spacetime.
We also linearize the right-hand side of (4.3). From the

zeroth-order term we get

R̃ð0Þ
μν − g̃ð0Þμν

eð∇ð0ÞÞ2 lnðΩÞ þ 2ð−∇̃ð0Þ
μ ∂ν lnðΩÞ

þ ð∂μ lnðΩÞÞð∂ν lnðΩÞÞ − g̃ð0Þμν ð∂ lnðΩÞÞ2Þ ¼ 0: ð4:7Þ

This indeed gives the following equation in 3þ 1 dimen-
sions for Ω ¼ z,

R̃ð0Þ
μν ¼ Λg̃ð0Þμν : ð4:8Þ

Λ is the four-dimensional cosmological constant,

Λ ¼ −3:

This is exactly what the AdS4 metric should satisfy. Next
we look at the linearized equation for the perturbation h̃μν.
We get the following:

1

2
∇̃ð0Þ

α ð∇̃ð0Þ
μ hαν þ ∇̃ð0Þ

ν hαμÞ −
1

2
∇̃μ∂νh −

1

2
ð∇̃ð0ÞÞ2hμν − hμνð∇̃ð0ÞÞ2 lnðΩÞ

þ
�
g̃ð0Þμν ∇̃ð0Þβhαβ −

1

2
g̃ð0Þμν ∇̃ð0Þαhþ ∇̃ð0Þ

μ hαν þ ∇̃ð0Þ
ν hαμ

�
∂α lnðΩÞ

þ g̃ð0Þμν hαβ∇̃ð0Þ
α ∇̃ð0Þ

β lnðΩÞ − 2ðhμνð∂ lnðΩÞÞ2 − g̃ð0Þμν hαβ∂α lnðΩÞ∂β lnðΩÞÞ: ð4:9Þ
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Noting that

ð∇̃ð0ÞÞ2 lnðΩÞ ¼ −3;

we can see that first line of (4.9) is coming from linearizing
the Ricci equation on the AdS background i.e., linearizing
the left-hand side of the equation below,

Rμν þ 3gμν ¼ 0: ð4:10Þ

Next following [23], we choose the holographic gauge i.e.,

hzz ¼ 0 ¼ hzz; hzμ ¼ 0 ¼ hzμ; haa ¼ 0;

where a takes three values t, x, y. Note that, h ¼ hzz þ haa.
By the choice of the gauge hzz ¼ 0 and haa ¼ 0. Hence,
h ¼ 0. Also, the derivatives are with respect to the back-

ground metric; hence, i.e., ∇̃ð0Þαg̃ð0Þγβ ¼ 0. So in this gauge,
only nonvanishing contribution to (4.9) comes from the
following terms:

1

2
∇̃ð0Þ

α ð∇̃ð0Þ
μ hαν þ ∇̃ð0Þ

ν hαμÞ −
1

2
∇̃μ∂νh

−
1

2
ð∇̃ð0ÞÞ2hμν − hμνð∇̃ð0ÞÞ2 lnðΩÞ − 2hμνð∂ lnðΩÞÞ2:

ð4:11Þ

Now ð∇ð0ÞÞ2 lnðΩÞ ¼ −3 and ð∂ lnðΩÞÞ2 ¼ 1. So we get

1

2
∇̃ð0Þ

α ð∇̃ð0Þ
μ hαν þ ∇̃ð0Þ

ν hαμÞ −
1

2
∇̃μ∂νh −

1

2
∇̃ð0Þhμν þ hμν:

ð4:12Þ

The first four terms come from linearizing the Ricci tensor.
So this entire expression comes from varying left hand-side
of the following Ricci equation,

Rμν þ gμν ¼ 0: ð4:13Þ

Restoring the AdS length scale (l) we get,

Rμν þ
1

l2
gμν ¼ 0: ð4:14Þ

Note that the AdS in 3þ 1 dimensions satisfies the
following equation:

Rμν þ
3

l2
gμν ¼ 0: ð4:15Þ

The perturbation in (3þ 1)-dimensional spacetime satisfies
a similar equation to (4.15) after a conformal transforma-
tion but with length scale scaled by a factor

ffiffiffi
3

p
, i.e.,→

ffiffiffi
3

p
l

as evident from (4.14).

The linearized metric perturbations of (4.14) can be
reconstructed using the holographic gauge HKLL smearing
functions [23] from the CFT3 stress tensor. Schematically,

habðz; xÞ ¼
Z

d3xKðz; xjyÞTabðyÞ; ð4:16Þ

where y is the Wick-rotated boundary coordinate. In this
section, the Greek indices μ, ν denote the bulk spacetime
components and the Latin indices a, b denote the CFT
indices. Finally, one can perform a reverse Weyl rescaling
to go back to the original half-flat space, thereby complet-
ing the bulk reconstruction of the half-flat space metric
perturbation in terms of the smeared stress-tensor of
the CFT3.

V. DISCUSSIONS AND OUTLOOK

In this work, we constructed smearing functions
(extrapolate dictionary) representing local operators in
half-Minkowksi space as nonlocal operators in a CFT with
one less spatial dimension. The bulk fields reconstructed
here are massless (conformally coupled) scalar, Maxwell
field, and Fierz-Pauli field (linearized metric perturbations)
and all have nice transformation properties under bulk
conformal transformations, and we exploited this property
to first map them to corresponding fields in the Poincaré
wedge of AdS and then use the bulk reconstruction
program for Poincaré AdS [19,23]. This is an alternative
to traditional holographic bulk reconstruction whereby one
reconstructs bulk fields in terms of nonlocal operators on
the conformal boundary of the space. Instead, here the bulk
(half-Minkowski) spacetime possesses a physical boundary
at z ¼ 0 (a “Dirichlet” screen, since the bulk fields vanish
here) and the holographic dual CFT degrees of freedom are
localized on this screen. In this regard, our half-flat space
holographic construction can be thought of as a alternative
to the celestial or Carrollian holographic constructions. Our
set up can be contrasted with the type of flat space bulk
holography one can attempt to obtain by taking a large AdS
radius (flat limit) of AdS/CFT [50]. We do not directly send
the AdS radius to infinity here but instead use a Weyl
rescaling transformation to get rid of the AdS-metric
conformal factor in Poincaré coordinates. Our construction
was performed entirely in the leading supergravity approxi-
mation (large N, large λ) where the bulk fields are free. We
verified that the smearing function can be used to recon-
struct massless conformally coupled scalar fields both at
the one-point function and the two-point function
(Wightman) level (for timelike separated local operator
insertions). For the case of the Maxwell field, we restricted
ourselves to 3þ 1 dimensions where the Maxwell equa-
tions remains invariant under conformal transformations
and we operated entirely in the holographic gauge [23]. We
verified that the Maxwell equations in holographic gauge in
flat space in holographic are indeed obeyed by the smeared
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CFT3 operators proposed. Finally we considered the
linearized metric perturbations (Fierz-Pauli field) again
in 3þ 1 dimensions for phenomenological reasons.
Although the (fully nonlinear) Einstein field equations in
3þ 1 dimensions are not Weyl invariant, we demonstrated
that the under the Weyl rescaling transformation (which
takes half-flat space to Poincaré AdS), the flat space
Einstein field equations transform to the field equations
in AdS space with a rescaled AdS radius. This result is true
regardless of the choice of gauge. Once we are in AdS
space the metric perturbations can be reconstructed using
the holographic gauge HKLL smearing functions [23] and
then one can perform a reverse Weyl rescaling to go back to
the original half-flat space.
Our work can be further extended and generalized in

several directions thus providing interesting avenues for
future investigations. The first and perhaps most natural
check our proposal is to verify the bulk reconstruction at the
level of two-point functions for the Maxwell field and
linearized metric perturbations using the CFT3 two-point
functions. We only checked the bulk reconstruction of
Maxwell and linearized metric perturbations here at the
one-point function level. Although this might appear
tedious (more components, gauge fixing etc.), conceptually
it is no more challenging that the reconstruction of the bulk
two-point functions for the conformally coupled (massless)
scalar fields. The second straightforward generalization one
can do is the scalar bulk reconstruction for d ≥ 3 using the
appropriate generalized smearing functions [46–48]. We
leave this for a followup work. The third and perhaps less
obvious exercise is to extend our construction to massive
bulk scalars. In this case our intuition is that we will have to
start with a massive scalar in Poincaré AdS with a suitable
spacetime-dependent mass terms, so that after performing a
Weyl rescaling we end up with a normal massive scalar in
(half)-flat spacetime. We leave this construction for a
followup work. Next, regarding the case of Maxwell and
linerized metric fluctuations, we restricted ourselves to
3þ 1 dimensions whereby we were aided by certain
dimensional advantages. It would be interesting to extend
this construction to arbitrary dimensions. For example, we
know that in higher or general dimensions the Maxwell
equations are not conformal invariant, so starting from a
Maxwell equations in (half-)flat space would lead us to
Maxwell equation in Poincaré AdS with some extra terms
(i.e., inhomogeneous Maxwell equations with spacetime
dependent sources). However the important point is that the
equation would still be linear in the fields and one can use a
spacelike Green’s function to reconstruct this Maxwell
field. Then, in principle, one can use the holographic gauge
smearing function to reconstruct the complimentary func-
tion part of the solution, and the spacelike AdS Green’s
function term as a particular integral. Once we have this full
CFTd solution to the inhomogeneous Maxwell equation in
Poincaré AdSdþ1 spacetime, we can perform the inverse

Weyl transformation back to half-flat spacetime, thereby
accomplishing the bulk reconstruction at leading order. A
similar trick can be applied for reconstructing linearized
metric perturbations of the Einstein field equations in
arbitrary ðdþ 1Þ-dimensional half-flat spacetimes in terms
of Einstein field equations with a source in Poincaré AdS
space. We leave the task of reconstructing Maxwell and
Fierz-Pauli fields in general (dþ 1)-dimensional half-flat
space for a followup work. Another interesting direction to
extend our work is to attempt 1=N corrections, i.e.,
reconstructing interacting fields in half-flat space. In this
work we restricted ourselves to the free field equations or
equivalently infinite N, but one would certainly need to go
beyond the free field limit or equivalently CFT two-point
functions as was performed in the AdS case [21,23,24] to
gain more insight into gravitational dressings in flat
spacetime. To this end, we believe that the method of
Kabat, Lifschytz and Lowe of using spacelike Green’s
functions and higher-dimensional multitrace CFToperators
can exported with suitable minor alterations (owing to the
Weyl rescaling transformations) to the (half-)flat spacetime.
These alterations would entail, as alluded to earlier, starting
with the AdS couplings which are spacetime dependent to
offset the effects of Weyl rescaling transformations from
half-flat space to AdS space (see [51] for inclusion of such
spacetime dependent quartic scalar couplings and mass
underWeyl rescalings albeit in a different context). Another
interesting direction where this work can be extended is by
including fermions. In this work, we have exclusively
worked with bosonic fields. However, one also needs to
understand reconstruction of fermions coupled to (quan-
tum) gravity in holographic setups e.g., [52]. Finally,
perhaps the most crucial issue would be to extend our
results to the full Minkowski space instead of the half-
Minkowski space.6 To this end, recall that in the half-flat
spacetime, the bulk fields are required to vanish at the
holographic screen z ¼ 0, as a simple consequence of the
normalizable fall behavior of quantum fields at the con-
formal boundary (again z ¼ 0), in Poincaré AdS. Thus, if
one would consider quantum fields in Poincaré AdS with
more general (dynamical) boundary conditions (see e.g.,
[54]) at the conformal boundary. With such dynamical
boundary conditions on the fields, if one performs a Weyl
transformation to half-flat space, one expects to get rid of
the rigid or vanishing (Dirichlet) boundary conditions at the
z ¼ 0 hyperplane in the Weyl transformed half-flat space.
Then by continuity one can extend the solution beyond the
z ¼ 0, i.e., to the z < 0 half of flat space. Although this is a
bit of a long shot, if such an exercise is pursued to fruition,
it would truly lead to a holographic formulation of quantum

6Recently some authors have explored holographic in bulk
spacetimes with a physical boundary, e.g., in [53], the authors
consider holography in half-de Sitter spacetime. However our
half-flat space holographic reconstruction has no relation to the
half-de Sitter holography.
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gravity in flat space in terms of a more garden variety
relativistic CFTwith one less space dimension (as opposed
to a Carrollian or Celestial CFT) such as N ¼ 4 Super-
Yang-Mills theory.
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APPENDIX A: A QUICK DERIVATION OF THE
HKLL SMEARING FUNCTION

An AdS-invariant function of two points ðx; zÞ and

ðx0; z0Þ must be of the form fðσÞ where σ ¼ ðx−x0Þ2þz2þz02
2zz0

is the AdS-invariant distance function (chordal distance).
The action of the Klein-Gordon operator on such a
function, i.e.,

ð□ −m2ÞfðσÞ ¼ 0;

is equivalent to the ordinary second-order differential
equation,7

�
ðσ2−1Þ d2

dσ2
þðdþ1Þσ d

dσ
−ΔðΔ−dÞ

�
fðσÞ¼ 0; ðA1Þ

where Δ≡ d
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd
2
Þ2 þm2R2

q
. This equation can be easily

solved with the appropriate boundary conditions to yield
Wightman functions for a scalar field and so on. Now, if we
want to compute the smearing function, one needs to take
the limit, z0 → 0 in which case σ becomes ill-defined,
limz0→0 σ → ∞. So in this limit one needs to consider the
combination, σz0, and express the smearing function in
terms of this well defined quantity, σz0. In this limit, in
terms of σz0 variable Eq. (A1) becomes

�
ðσz0Þ2 d2

dðσz0Þ2 þ ðdþ 1Þðσz0Þ d
dðσz0Þ − ΔðΔ − dÞ

�
× Kðσz0Þ ¼ 0: ðA2Þ

This is a homogeneous equation, and the solution will be a
monomial. For spacelike support i.e., for σ > 1 or equiv-
alently, σz0 > 0 in the limit z0 → 0, we need to include a
factor of θðσz0Þ. Thus, we arrive at the following ansatz for
the smearing function:

Kðσz0Þ ¼ ðσz0Þα θðσz0Þ;

for positive α.8 Inserting this ansatz and solving for α
gives us

α ¼ Δ − d;−Δ:

Choosing the positive root, we arrive at the HKLL smear-
ing function expression in the Poincaré chart,

Kðσz0Þ ¼ ðσz0ÞΔ−d θðσz0Þ:

7For this we have used the simplification,

□fðσÞ ¼ 1ffiffiffiffiffiffi−gp ∂Mð
ffiffiffiffiffiffi
−g

p
gMN

∂NfðσÞÞ

¼ 1ffiffiffiffiffiffi−gp ∂Mð
ffiffiffiffiffiffi
−g

p
gMN

∂Nσ f0ðσÞÞ

¼ 1ffiffiffiffiffiffi−gp ð ffiffiffiffiffiffi
−g

p
gMN

∂Nσ ∂Mf0ðσÞÞ þ
1ffiffiffiffiffiffi−gp ∂Mð

ffiffiffiffiffiffi
−g

p
gMN

∂NσÞf0ðσÞ

¼ ðgMN
∂Nσ ∂MσÞ f00ðσÞ þ

1ffiffiffiffiffiffi−gp ∂Mð
ffiffiffiffiffiffi
−g

p
gMN

∂NσÞf0ðσÞ

¼
�
σ2 − 1

R2

d2

dσ2
þ
�
dþ 1

R2

�
σ

d
dσ

�
fðσÞ:

8If α assumes negative values, the action of derivatives on Kðσz0Þ produces singularities and Eq. (A2) is not satisfied.
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APPENDIX B: LORENTZ INVARIANT FORM OF
THE SMEARING FUNCTION

This CFT to half-flat space smearing function for
conformally coupled scalar fields, (2.13), can be expressed
in Lorentz-invariant form as

KðsÞ ¼ 2
d−1
2 s−

d−1
2 θðsÞ; ðB1Þ

where s ¼ z2 − ðt − t0Þ2 − ðy − y0Þ2 is the Lorentz invariant
interval Wick-rotated in the y directions i.e., y ¼ ix. Here
we directly check that this smearing function satisfies the
equation of motion for conformally coupled fields; namely,

□KðsÞ ¼ 0:

To this end, we use the form of the□ acting on any function
of the Lorentz-invariant interval,

□KðsÞ ¼ ηMN ∂

∂xM
∂

∂xN
KðsÞ;

¼ ηMN ∂

∂xM

�
∂s
∂xN

K0ðsÞ
�
;

¼ ηMN ∂
2s

∂xM∂xN
K0ðsÞ þ ηMN ∂s

∂xM
∂s
∂xN

K”ðsÞ:
ðB2Þ

In the Wick-rotated signature, ηMN ¼ ðþ;− −…Þ. So we
get,

ηMN ∂
2s

∂xM∂xN
¼ 2ðdþ 1Þ; ηMN ∂s

∂xM
∂s
∂xN

¼ 4s:

Plugging this in (B2), we obtain the desired result,

□KðsÞ ¼ 2ðdþ 1ÞK0ðsÞ þ 4sK00ðsÞ;

¼ 2ðdþ 1Þ d
ds

ð2d−1
2 s−

d−1
2 θðsÞÞ þ 4s

d2

ds2
ð2d−1

2 s−
d−1
2 θðsÞÞ;

¼ 2
dþ1
2 ðdþ 1Þ

�
−
d − 1

2
s−

dþ1
2 θðsÞ þ s−

d−1
2 δðsÞ

�
þ 2

dþ3
2 s

d
ds

�
−
d − 1

2
s−

dþ1
2 θðsÞ þ s−

d−1
2 δðsÞ

�
;

¼ 2
dþ1
2 ðdþ 1Þ

�
−
d − 1

2
s−

dþ1
2 θðsÞ þ s−

d−1
2 δðsÞ

�

þ 2
dþ3
2 s

��
d − 1

2

��
dþ 1

2

�
s−

dþ3
2 θðsÞ − ðd − 1Þs−dþ1

2 δðsÞ þ s−
d−1
2 δ0ðsÞ

�
;

¼ ½−2d−1
2 ðdþ 1Þðd − 1Þs−dþ1

2 θðsÞ þ 2
dþ1
2 ðdþ 1Þs−d−1

2 δðsÞ�
þ ½2d−1

2 ðdþ 1Þðd − 1Þs−dþ1
2 θðsÞ − 2

dþ3
2 ðd − 1Þs−dþ1

2 δðsÞ þ 2
dþ3
2 s−

d−3
2 δ0ðsÞ�;

¼ 2
dþ1
2 ð3 − dÞs−d−1

2 δðsÞ þ 2
dþ3
2 s−

d−3
2 δ0ðsÞ;

¼ 2
dþ1
2 ð3 − dÞs−d−1

2 δðsÞ − 2
dþ3
2

d
ds

ðs−d−3
2 Þ δðsÞ;

¼ 2
dþ1
2 ð3 − dÞs−d−1

2 δðsÞ þ 2
dþ1
2 ðd − 3Þs−d−1

2 δðsÞ;
¼ 0:

APPENDIX C: BULK SUGRA WIGHTMAN FFUNCTION

For half-Minkowski space, the normalized mode functions are

fkðXÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞd−1πωk

p e−iωktþik·x sin kzz; k ¼ ðk1; k2;…; kd−1Þ: ðC1Þ

Specializing to the case where X, Y are spacelike separated, we can choose for convenience,

X ¼ ð0; 0; z1Þ; Y ¼ ð0; 0; z2Þ:

CFT RECONSTRUCTION OF LOCAL BULK OPERATORS IN … PHYS. REV. D 110, 026026 (2024)

026026-11



Then the Wightman function expression reads,

ΔþðX; YÞ ¼
1

ð2πÞd
Z

∞

−∞
dd−1k

Z
∞

−∞
dkz

sin kzz1 sin kzz2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ k2z

p
¼ 1

ð2πÞd
Z

ddk
jkj sin kzz1 sin kzz2:

Note that now k is a d-dimensional Euclidean vector. Next we massage this expression so that it looks exactly like the
difference of a pair of Wightman functions in full Minkowski space,

ΔþðX; YÞ ¼
1

2ð2πÞd
Z

ddk
jkj cos kzðz1 − z2Þ − cos kzðz1 þ z2Þ

¼ 1

4ð2πÞd
Z

ddk
jkj ðe

ikzðz1−z2Þ þ e−ikzðz1−z2Þ − eikzðz1þz2Þ − e−ikzðz1þz2ÞÞ

¼ 1

4ð2πÞd
Z

ddk
jkj ðe

ikzðz1−z2Þ − eikzðz1þz2ÞÞ þ 1

4ð2πÞd
Z

ddk
jkj ðe

−ikzðz1−z2Þ − e−ikzðz1þz2ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
k→−k

¼ 1

2ð2πÞd
Z

ddk
jkj e

ikzðz1−z2Þ −
1

2ð2πÞd
Z

ddk
jkj e

ikzðz1þz2Þ

¼ DþðX; YÞ −DþðX; Y�Þ;

where Y� ¼ ð0; 0;−z2Þ is the location of insertion of an “image” operator and Dþ is the Wightman function for massless
scalar fields in full Minkowski space. Next we compute DþðX; YÞ.

DþðX; YÞ ¼
1

2ð2πÞd
Z

ddk
jkj e

ikzðz1−z2Þ:

Going over to polar coordinates, ðq; θ; χ Þ; χ ∈ Sd−2, in k-space,

DþðX; YÞ ¼
Ωd−2

2ð2πÞd
Z

∞

0

dq qd−2
Z

π

0

dθðsin θÞd−2 eiqjz1−z2j cos θ;

where Ωn ¼ 2πn=2

Γðn=2Þ is the volume of the n-sphere ðSnÞ. Using the identity,

Z
π

0

eiα cos θ sin2m θdθ ¼ ffiffiffi
π

p
2m Γ

�
mþ 1

2

�
jαj−m jJmðjαjÞ

we get

DþðX; YÞ ¼
Ωd−2

ffiffiffi
π

p
2m Γðd−1

2
Þ

2ð2πÞdjz1 − z2jd−22
Z

∞

0

dq q
d−2
2 Jd−2

2
ðqjz1 − z2jÞ:

Next, defining, y ¼ qjz1 − z2j, we obtain

DþðX; YÞ ¼
Ωd−22

d−2
2

ffiffiffi
π

p
Γðd−1

2
Þ

2ð2πÞdjz1 − z2jd−1
Z

∞

0

dy y
d−2
2 Jd−2

2
ðyÞ

¼ Ωd−2 2
d−3 Γ2ðd−1

2
Þ

ð2πÞd
1

jz1 − z2jd−1
: ðC2Þ

For d ¼ 2,
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DþðX; YÞ ¼
1

4π

1

jz1 − z2j

and for d ¼ 3, we get,

DþðX; YÞ ¼
1

4π2
1

jz1 − z2j2
;

which can be also be obtained by taking a massless limit
(m → 0) of the Wightman function of a massive scalar for
spacelike separations, namelyΔþðrÞ ¼ m

4π2r K1ðmrÞ. Finally
for spacelike separated points in the half-Minkowski space,
we get the Wightman function,

Δþð0;0; z1j0;0; z2Þ

¼Ωd−2 2
d−3Γ2ðd−1

2
Þ

ð2πÞd
�

1

jz1 − z2jd−1
−

1

jz1þ z2jd−1
�
: ðC3Þ

For timelike separations we can choose,
X ¼ ðt; 0; zÞ; Y ¼ ð0; 0; zÞ. Then the Wightman function
expression reads,

ΔþðX; YÞ ¼
1

ð2πÞd
Z

∞

−∞

ddk
jkj e

−ijkjt sin2 kzz;

¼ 1

2ð2πÞd
Z

∞

−∞

ddk
jkj e

−ijkjt ð1 − cos 2kzzÞ

¼ 1

2ð2πÞd
Z

∞

−∞

ddk
jkj e

−ijkjt
�
2 − ei 2kzz − e−i 2kzz

2

�

¼ 1

2ð2πÞd
Z

∞

−∞

ddk
jkj e

−ijkjt ð1 − ei 2kzzÞ

¼ 1

2ð2πÞd
Z

∞

−∞

ddk
jkj e

−ijkjt

−
1

2ð2πÞd
Z

∞

−∞

ddk
jkj e

−iðjkjt−kzð2zÞÞ

¼ DþðX; YÞ −DþðX; Y�Þ;

where Y� ¼ ð0; 0;−zÞ is the location of insertion of an
“image” operator and Dþ is the Wightman function for
massless scalar fields in full Minkowski space. Next we
compute DþðX; YÞ,

DþðX; YÞ ¼
1

2ð2πÞd
Z

∞

−∞

ddk
jkj e

−ijkjt:

Switching to polar coordinates,

DþðtÞ ¼
Ωd−1

2ð2πÞd
Z

∞

0

dqqd−2e−iqðt−iεÞ;

¼ Ωd−1

2ð2πÞd
�
i
d
dt

�
d−2

�Z
∞

0

dqe−iqðt−iεÞ
�

¼ Ωd−1

2ð2πÞd
�
i
d
dt

�
d−2

�
1

iðt − iεÞ
�

¼ Ωd−1 Γðd − 1Þð−Þd−2id−2
2ð2πÞdi

1

ðt − iεÞd−1

¼ Ωd−1 Γðd − 1Þ
2ð2πÞdid−1

1

ðt − iεÞd−1

¼ Ωd−2 2
d−3Γ2ðd−1

2
Þ

ð2πÞdid−1
1

ðt − iεÞd−1 :

Here in the last step, we have used the identity,

ffiffiffi
π

p
2

Γðd−1
2
Þ

Γðd
2
Þ Γðd − 1Þ ¼ 2d−3Γ2

�
d − 1

2

�
: ðC4Þ

Next we compute,

DþðX; Y�Þ ¼
1

2ð2πÞd
Z

∞

−∞

ddk
jkj e

−iðjkjt−kzð2zÞÞ:

Switching to polar coordinates we get

DþðX;Y�Þ¼
Ωd−2

2ð2πÞd
Z

∞

0

dqqd−2e−iqðt−iεÞ

×
Z

π

0

dθsind−2θei2zqcosθ

¼Ωd−2
ffiffiffi
π

p
Γðd−1

2
Þ

2ð2πÞdjzjd−22
Z

∞

0

dqq
d−2
2 e−iqðt−iεÞJd−2

2
ð2jzjqÞ

¼Ωd−2
ffiffiffi
π

p
Γðd−1

2
Þ

2ð2πÞdjzjd−12d
2

Z
∞

0

dyy
d−2
2 e−iyð

t−iε
2jzj ÞJd−2

2
ðyÞ

¼Ωd−2 2
d−3Γ2ðd−1

2
Þ

ð2πÞdid−1
1

ððt− iεÞ2−4z2Þd−12 :

Thus, for timelike separations, the Wightman function in
half-Minkowski space is

Δþðt; 0; zj0; 0; zÞ

¼ Ωd−2 2
d−3Γ2ðd−1

2
Þ

ð2πÞdid−1
�

1

ðt − iεÞd−1 −
1

ððt − iεÞ2 − 4z2Þd−12
�
:

ðC5Þ

The d ¼ 1 case has to be done separately since the
expression for general dimensions (C2) becomes trivial
when d ¼ 1. For d ¼ 1, the normalized (positive energy)
modes have the form,
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fkðx; tÞ ¼
e−iωt sinðkxÞffiffiffiffiffiffi

πω
p ; k ¼ ω > 0: ðC6Þ

The bulk Wightman function is then

hϕðz1; t1Þϕðz2; t2Þi ¼
Z

∞

0

dkffiffiffiffiffi
πk

p
Z

∞

0

dpffiffiffiffiffiffi
πp

p e−iðkt1−pt2Þ sin kz1 sinpz2δðk − pÞ

¼
Z

∞

0

dk
πk

e−ikðt1−t2Þ sin kz1 sin kz2

¼ 1

4π
ln

�ðt1 − t2Þ2 − ðz1 þ z2Þ2
ðt1 − t2Þ2 − ðz1 − z2Þ2

�
: ðC7Þ

Here as usual we need the prescription t1 − t2 − iε to define
the Wightman function smoothly in the limit when t1 ¼ t2.
The half-Minkowski space does not have translation
invariance in the z-direction, and this is reflected in the
dependence on ðz1 þ z2Þ. As in the case for d > 0, the
Dirichlet boundary at z ¼ 0 can be replaced by the full
Minkowski space with an image operator placed at
ðt2;−z2Þ so that the final answer (C7) is an image sum
i.e., the sum of the full Minkowski space Wightman
functions,

hϕðz1; t1Þϕðz2; t2Þi þ hϕðz1; t1Þϕð−z2; t2Þi:

APPENDIX D: MATCHING THE SUGRA AND
CFT NORMALIZATION OF THE TWO-POINT

FUNCTIONS

The CFT representation of a local bulk operator in half-
Minkowski space is

φðx; zÞ ¼ Cd

�
l
z

�d−1
2

Z
jy−xj<z

ddy

�
z2 − ðy − xÞ2

2z

�Δ−d
OðyÞ:

Switching to spherical polar coordinates,

y − x ¼ ρ χ ; χ · χ ¼ 1;

where the points χ lies on Sd−1. We get

φðx; zÞ ¼ Cd

�
l
z

�d−1
2

Z
z

0

dρ ρd−1
�
z2 − ρ2

2z

�Δ−d Z
dΩd−1Oðxþ ρχ Þ:

Next we define, ρ ¼ zw, and get

φðx; zÞ ¼ Cd

�
l
z

�d−1
2 zdþ2ðΔ−dÞ

ð2zÞΔ−d
Z

1

0

dwwd−1ð1 − w2ÞΔ−d
Z

dΩd−1Oðxþ z wχ Þ;

¼ CdðlÞd−12
2Δ−d

zΔ−
d−1
2

Z
1

0

dwwd−1ð1 − w2ÞΔ−d
Z

dΩd−1Oðxþ z wχ Þ:

The only place where z appears now is in the integrand of the angular integral. We expand the angular integrand around
z → 0 and keep only the leading term,

Oðxþ z wχ Þ ≈OðxÞ:

In this limit (extrapolate limit), the SUGRA field works out to be
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φðx; zÞ ∼ CdðlÞd−12
2Δ−d

�Z
1

0

dwwd−1ð1 − w2ÞΔ−d
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1
2
Bðd

2
;Δ−dþ1Þ

�Z
dΩd−1

�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Ωd−1

zΔ−
d−1
2 OðxÞ;

∼
CdðlÞd−12 Ωd−1Γðd2ÞΓðΔ − dþ 1Þ

2Δ−dþ1ΓðΔ − d
2
þ 1Þ zΔ−

d−1
2 OðxÞ:

Finally, we put in

Δ ¼ dþ 1

2

and obtain,

φðx; zÞ ∼ Cdl
d−1
2 Ωd−1Γðd2ÞΓð3−d2 Þ
2

3−d
2 Γð3

2
Þ zOðxÞ: ðD1Þ

For d ¼ 1, one has Δ ¼ 1 and we get

φðt; zÞ ∼ C1Ω0Γð12ÞΓð1Þ
2Γð3

2
Þ zOðtÞ

∼ 2C1 zOðtÞ:

So the z → 0 limit of two-point function is

hφðt1; z1Þφðt2; z2Þi ∼ 4C2
1z

2 hOðt1ÞOðt2Þi

∼ 4C2
1z

2
1

ðt1 − t2Þ2
: ðD2Þ

In particular for z1 ¼ z2 ¼ z and t1 ¼ t; t2 ¼ 0,

hφðt; zÞφð0; zÞi ∼ 4C2
1z

2
1

t2
:

From the direct SUGRA calculation, we find

hφðt; zÞφð0; zÞi ∼ lim
z→0

1

4π
ln

�
t2

t2 − 4z2

�

∼
1

π

z2

t2
: ðD3Þ

Comparing the two forms (D2) and (D3) we get

4C2
1 ¼

1

π
⇒ C1 ¼

1

2
ffiffiffi
π

p :

Next, for d ¼ 2 (i.e., Δ ¼ 3
2
)

φðx; zÞ ∼ C2 l
1
2Ω1Γð1ÞΓð12Þ
2
1
2 Γð3

2
Þ zOðxÞ

∼ C2 l
1
22

3
2π zOðxÞ:

So, the z ¼ 0 limit of the SUGRA two-point function
(setting l ¼ 1) is

hφðx1; z1Þφðx2; z2Þi ∼ C2
2 8π

2 z1z2 hOðx1ÞOðx2Þi:

In particular for x1 ¼ ðt; 0Þ and x2 ¼ ð0; 0Þ and z1 ¼ z2 ¼
z we get

hφðt; 0; zÞφð0; 0; zÞi ∼ C2
28π

2 z2 hOðt; 0ÞOð0; 0Þi

∼ C2
2 8π

2
z2

ð−t2Þ3=2 : ðD4Þ

From the direct bulk calculation we find

hφðt; 0; zÞφð0; 0; zÞi ∼ lim
z→0

i
4π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − 4z2
p −

1

t

�

∼
i
4π

�
1

t

�
1þ 2z2

t2

�
−
1

t

�

∼
1

2π

z2

ð−t2Þ3=2 : ðD5Þ

Comparing the two asymptotic forms (D4) and (D5),
we get

C2
2 8π

2 ¼ 1

2π

or,

C2 ¼
1

4π3=2
:

More generally, for arbitrary d, direct bulk calculation
gives
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hφðt; 0; zÞφð0; 0; zÞi ¼ Ωd−2 2
d−3Γ2ðd−1

2
Þ

ð2πÞdid−1
�

1

ðt − iεÞd−1 −
1

ððt − iεÞ2 − 4z2Þd−12
�
; d ≠ 1:

Then, taking the z → 0 limit, we get

lim
z→0

hφðt; 0; zÞφð0; 0; zÞi ¼ Ωd−2 2
d−2Γ2ðd−1

2
Þðd − 1Þ

ð2πÞd
z2

½−ðt − iεÞ2�dþ1
2

; d ≠ 1;

but from the boundary smearing function construction (D1),

lim
z→0

hφðt; 0; zÞφð0; 0; zÞi ¼
�
Cdl

d−1
2 Ωd−1Γðd2ÞΓð3−d2 Þ
2

3−d
2 Γð3

2
Þ

�2 z2

½−ðt − iεÞ2�dþ1
2

; d < 3:

Comparing these two we obtain

Cd ¼
�
Ωd−2 2

d−2Γ2ðd−1
2
Þðd − 1Þ

ð2πÞd
�

1=2 2
3−d
2 Γð3

2
Þ

l
d−1
2 Ωd−1Γðd2ÞΓð3−d2 Þ ; d ≠ 1: ðD6Þ

In particular, for d ¼ 2, one obtains

C2 ¼
�
1

2π

�
1=2 1

l
1
22

3
2π

¼ 1

4π3=2l1=2
:
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