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The behavior of a chaotic system and its effect on existing quantum correlation has been
holographically studied in the presence of nonconformality. Keeping in mind the gauge/gravity duality
framework, the nonconformality in the dual field theory has been introduced by considering a
Liouville type dilaton potential for the gravitational theory. The resulting black brane solution is
associated with a parameter η which represents the deviation from conformality. The parameters of
chaos, namely, the Lyapunov exponent and butterfly velocity are computed by following the well-
known shock wave analysis. The obtained results reveal that the presence of nonconformality leads to
suppression of the chaotic nature of a system. Further, for a particular value of the nonconformal
parameter η, the system achieves Lyapunov stability resulting from the vanishing of both the
Lyapunov exponent as well as butterfly velocity. Interestingly, this particular value of η matches with
the previously given upper bound of η known as Gubser bound in the literature. The effects of chaos
and nonconformality on the existing correlation of a thermofield doublet state have been quantified by
holographically computing the thermomutual information in both the presence and absence of the
shock wave. Furthermore, the entanglement velocity is also computed, and the effect of non-
conformality on it has been observed. Finally, the obtained results for the Lyapunov exponent and the
butterfly velocity have also been computed from the pole-skipping analysis. The results from the two
approaches agree with each other.
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I. INTRODUCTION

The study of various properties of a chaotic system has
always been a matter of great interest both theoretically and
experimentally. For a classical system, the characterization
of chaos is done with help of a parameter known as the
Lyapunov exponent λL which can be defined in the
following way:

λL ∼
1

t
ln

�
δξðtÞ
δξ0

�
; ð1Þ

where δξðtÞ denotes the change in the phase-space trajec-
tory of a classical dynamical system due to a change in the
initial condition δξ0. The above relation also advocates
for the fact that chaos is highly sensitive to the initial
conditions. On the other hand, the study of chaos in case of

a quantum many body system is quite nontrivial [1].
Traditionally, one characterizes chaos for a nonclassical
system by comparing its energy spectrum to the spectrum
of random matrices [2]. Apart from this approach,
another way to probe quantum chaos is to compute the
double commutator of two generic local Hermitian oper-
ators V̂ð0Þ and Ŵðx; tÞ. This can be written down in the
following way [3]:

Cðx; tÞ ¼ −h½Ŵðx; tÞ; V̂ð0Þ�2iβ
¼ −hŴðx; tÞV̂ð0ÞŴðx; tÞV̂ð0Þiβ: ð2Þ

The above quantity Cðx; tÞ measures how much effect the
perturbation V̂ð0Þ at an earlier time creates on the later
measurement of Ŵðx; tÞ. In other words, one intends to
study at what rate the information gets transferred between
two spacelike separated points. This property leads to the
phenomenon velocity of the butterfly effect or commonly
known as the butterfly velocity [4,5]. The butterfly velocity
is a state dependent quantity and can be understood as the
low energy analog of the Lieb-Robinson velocity [6]. This
implies that it acts as a bound for the rate of transfer of
information for a quantum mechanical system at low
energy scale. For large-N gauge theories, the four-point
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correlator has the following form which stands to be very
crucial for the study of quantum chaos [4,7,8]:

Cðx; tÞ ∼ exp
�
λL

�
t − t� −

jxj
vB

��
; ð3Þ

where λL is the Lyapunov exponent, and vB is the butterfly
velocity. It is worth noting that in the above relation, λL is
sometimes said to be the quantum mechanical analog of the
classical Lyapunov exponent [9] which characterizes the
growth of quantum chaos. The Lyapunov exponent satisfies
the well-known MSS (Maldacena-Shenker-Stanford)
bound λL ≤ 2π

β , where, β is the inverse of Hawking temper-
ature [10]. The bound is only saturated for maximally
chaotic systems. Furthermore, the relation [given in Eq. (3)]
is true as long as tdis ≪ t < t�, where, tdis is the dissipation
time which controls the late time behavior of Cðx; tÞ
and t� is the scrambling time at which Cðx; tÞ becomes
∼Oð1Þ [11]. The scrambling time basically denotes the
timescale at which the given perturbation gets distributed
among all the degrees of freedom of the chaotic quantum
mechanical system. From Eq. (3), one can observe that
the spacelike separation between the operators further
delays the scrambling of information in the system. On
the other hand, the butterfly velocity characterizes the
growth of the given perturbation V̂ð0Þ. This motivates one

to define a butterfly effect light cone t − t� ¼ jxj
vB

for the
double commutator given in Eq. (2). Inside the cone

(t − t� >
jxj
vB
), Cðx; tÞ ∼Oð1Þ, and outside the cone

(t − t� <
jxj
vB
), Cðx; tÞ ≈ 0.

The initial motivation to study chaos in a holographic
setup lies in the understanding that black holes are intrinsi-
cally thermal systems which are characterized by the
Hawking temperature, and it is a well-known fact that
thermal systems are the primary playgrounds for chaos.
Further, it has been noted that for black holes, the MSS
bound is always saturated [4,10] which depicts the fact that
the black holes are always maximally chaotic, or in other
words, they are the fastest scramblers [12,13]. Keeping
this observation in mind along with the gauge/gravity
duality [14–16], one might propose the following. The
holographic description1 of a maximally chaotic finite
temperature large-N gauge theory is possible as long as
the Lyapunov exponent saturates the MSS bound. Another
interesting fact that we would like to mention is the
following. Inclusion of higher-curvature corrections on
the gravity side does not modify the MSS bound; that
is, the bound still remains λL ¼ 2π

β [8]. However, the
presence of higher-curvature corrections do change the

butterfly velocity [8,17,18]. The conventional approach to
holographically study quantum chaos relies on the dual
description of the thermofield doublet (TFD) state [19,20].
This consists of two completely disjoint quantum mechani-
cal systems Quantum Field Theory (QFT) QFTL and QFTR
along with their energy eigenstates denoted as jniL and
jniR. In this setup, the TFD state can be defined as

jTFDi ¼ 1ffiffiffiffi
Z

p
X
n

e−
βEn
2 jniL ⊗ jniR: ð4Þ

The holographic description of the TFD state is a two-sided
eternal black hole geometry in anti–de Sitter (AdS)
spacetime where the two black hole geometries are con-
nected with each other by a nontraversable wormhole. The
quantum theories are living on the two asymptotic boun-
daries (left and right) of the black hole spacetimes (a simple
visualization of this setup has been given in Fig. 1). As we
mentioned earlier, the associated geometries of the asymp-
totic boundaries are connected with each other via a
nontraversable wormhole, and this ensures that the quan-
tum theories (living on these boundaries) do not interact
with each other. Entanglement is the sole reason due to
which they are aware of each other. The TFD state implies
that if we consider subsystems, namely, A and B which
belong to the systems QFTL and QFTR respectively then
there exists a nonvanishing local correlation between A
and B. One can quantify this correlation with the help of the
holographic thermomutual information (HTMI) IðA∶BÞ
which has the following definition [21]:

IðA∶BÞ ¼ SvnðAÞ þ SvnðBÞ − SvnðA ∪ BÞ; ð5Þ

where Svnð:Þ denotes the von Neumann entropy corre-
sponding to the relevant subsystem. The holographic
thermomutual information is the generalization of the
holographic mutual information [22–24] which was first
introduced in [21]. The computation of HTMI requires a
wormhole which connects the asymptotic boundaries of a

FIG. 1. Dual geometry of the thermofield doublet state.

1Existence of a one spatial dimension higher gravity solution is
said to be the holographic description of a control field theory in
one spatial dimension less.
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two-sided eternal black hole geometry in AdS. Similar to
HTMI, the HTMI is also UV finite and positive definite
quantity. In the absence of chaos, HTMI is nonzero and
positive which depicts the signature of entanglement
between the subsystems A and B [21,22,24]. In order to
observe the butterfly effect one needs to disrupt the existing
local correlation between the subsystems of two copies of
decoupled quantum systems. In other words, one has to
disrupt the structure of TFD given in Eq. (4). In a holo-
graphic setup, this can be done by adding a small
perturbation to the system in the asymptotic past. From
the bulk perspective, the energy of the small perturbation
(which has been added to the system at an early enough
time) gets blueshifted and falls to the black hole which
results in the shock wave modification of the existing
holographic geometry [25,26]. The mentioned process of
perturbing the TFD structure disrupts the previously
existing local correlation between the subsystems, and
then one can follow the approach shown in [4,27] in order
to obtain the Lyapunov exponent and butterfly velocity.
Some of the recent works in this direction can be found
in [28–35]. It is to be noted that the mentioned perturbation
disrupts the correlation between the two decoupled theories
living at the two boundaries of the two-sided eternal black
hole geometry. In other words, it will only affect the term
SvnðA ∪ BÞ, not the individual entanglement pattern SvnðAÞ
or SvnðBÞ. Furthermore, the disruption of this two-sided
correlation is controlled by the entanglement velocity ven
which basically probes the linear growth of SvnðA ∪ BÞ for
(te ≥ t�) in the following way [36–38]:

dSvnðA ∪ BÞ
dte

¼ venSthAreaΣ; ð6Þ

where te denotes the time at which the perturbation is added
to the system and AreaΣ ¼ ∂ðA ∪ BÞ. Further, Sth is the
density of the thermal entropy (Bekenstein-Hawking entropy
of the black hole). This behavior has been noted in both
purely field theoretic setup [39,40] and holographic setup,
and it can be explained with the help of the entanglement
tsunami phenomena [41,42]. In [38], it has been argued that
the entanglement velocity is always bounded from above by
the butterfly velocity for any holographic theory obeying the
null energy condition, that is,

ven ≤ vB: ð7Þ

Further, in [43], it was proven that the above relation holds
for any unitary quantum system. It is to be noted that both the
butterfly velocity and entanglement velocity are always less
than the speed of light [43,44] due to causality. On other
hand, recently, it was shown that in case of a quantum many
body system, properties of a chaotic system can be charac-
terized with the help of the energy density retarded Green’s
function [17,45,46]. In the context of AdS/CFT duality,

the mentioned Green’s function can be written down in the
following form [47,48]:

GR
T00T00 ¼ bðω; kÞ

aðω; kÞ : ð8Þ

Now, the “pole-skipping” phenomena [49,50] states that
at some special points of the complex ðω; kÞ plane,
bðω�; k�Þ ¼ aðω�; k�Þ ¼ 0 where ðω�; k�Þ denotes the men-
tioned special point. This implies that, at these special points,
one has a line of zeroes intersecting with the line of poles for
the retarded Green’s function. Further, this implies that at
these points the retarded Green’s function is nonunique or ill
defined. We follow the literature and denote these points as
the pole-skipping points. For theories with holographic
duals, the pole-skipping points can be obtained from the
bulk field equations [45,46,51,52]. In the holographic setup,
the nonuniqueness of the retarded Green’s function corre-
sponding to the boundary theory is mapped to the non-
uniqueness of the ingoing mode of the bulk field at the event
horizon. It has been observed that for a static black hole, the
pole-skipping frequency (leading order) is given by [53–56]

ω� ¼ 2πiTðs − 1Þ; ð9Þ

where s represents the spin of the field operator. The above
relation implies that depending upon the spin of the field, the
position of the pole-skipping frequency varies in the com-
plex-ω plane. Further, it has been observed that for strongly
coupled theories with holographic duals, the leading order
pole-skipping point located in the upper half of the complex-
ω plane is related to the Lyapunov exponent and the
Butterfly velocity in the following way [17,45,57]:

ω� ¼ iλL; k� ¼
iλL
vB

≡ ω�
vB

: ð10Þ

However, the above observation is only true for strongly
coupled theories with holographic dual which are maximally
chaotic. For nonmaximally chaotic (strongly coupled) sys-
tems this is not true as only for the maximally chaotic
systems, the stress tensor dominates chaos, and pole skip-
ping only recovers the contributions of the stress tensor to the
Lyapunov exponent and butterfly velocity [58]. From the
subsequent discussion, we shall find that the results in this
paper are compatible with the conclusions drawn in [58].
The above relation of the Lyapunov exponent together with
the relation given in Eq. (9) depicts the fact that only for
s ¼ 2 field (metric fluctuation) one gets the pole-skipping
points in the upper half of the complex-ω plane, which are
related to the parameters of chaos. Furthermore, one can also
observe that for s ¼ 2, one gets a maximally chaotic system
as in this case, λL ¼ 2πT (saturated MSS bound). On the
other hand, for other fields (s ¼ 0; 1

2
; 1, etc.), the pole-

skipping point is not related to the parameters of chaos
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although the retarded Green’s function is still nonunique at
the pole-skipping points [54]. Some interesting works in this
direction can be found in [18,53–55,58–77].
In this work we consider the black brane solution of the

Einstein-dilaton theory with a Liouville type profile for
the dilaton potential [78–81] as the gravitational theory.
The motivation to consider such a theory lies in the fact that
in the asymptotic limit we get a warped geometry instead of
an AdS geometry. This in turn means that in the context of
gauge/gravity duality, the boundary field theory will be
relativistic but nonconformal in nature [82]. This type of
geometry belongs to the class of geometries (such as
Lifshitz geometry, hyperscaling violating geometry, aniso-
tropic geometry, etc.) which help us to generalize the
gauge/gravity duality. The geometry under consideration is
characterized by the parameter η. In the limit η → 0, we
obtain the Schwarzschild type black brane solution. This
nonconformal parameter also satisfies a certain bound
known as the Gubser bound [83,84].
The plan of this paper is as follows. In Sec. II, we briefly

discuss the holographic gravitational dual of the noncon-
formal theory. We then compute the corresponding shock
wave geometry and compute the Lyapunov exponent and
butterfly velocity in Sec. III. In Sec. IV, we quantify the
effect of shock wave on the holographic thermomutual
information and also compute the entanglement velocity.
We once again compute the Lyapunov exponent and
butterfly velocity from the lowest order pole-skipping points.
This we provide in Sec. V. In this section, we also compute
the higher order pole-skipping points by considering scalar
field fluctuations. We summarize our findings in Sec. VI.

II. EINSTEIN-DILATON THEORY WITH
LIOUVILLE POTENTIAL

The Einstein-Hilbert action corresponding to the
(dþ 1)-dimensional Einstein-dilaton theory with
Liouville type potential reads as [78–81]

SEH¼
1

16πGdþ1
N

Z
ddþ1x

ffiffiffiffiffiffi
−g

p ½R−2ð∂ϕÞ2−VðϕÞ�; ð11Þ

where VðϕÞ ¼ 2Λeηϕ is the Liouville type dilaton poten-
tial. Here Λ represents the cosmological constant Λ < 0,
and η denotes the nonconformal parameter which captures
the deviation of the system from conformality. Further,

η <
ffiffiffiffiffiffiffiffiffi
8d

ðd−1Þ
q

[83,84]. The corresponding Einstein field

equations and the equation of motion for the dilaton field
reads as

Rμν −
1

2
gμνRþ 1

2
gμνVðϕÞ ¼ 2∂μϕ∂νϕ − gμνð∂ϕÞ2

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νϕÞ ¼

1

4

∂VðϕÞ
∂ϕ

: ð12Þ

By solving the above two equations, one can obtain the
following nonconformal black brane geometry2 [78–81,85]:

ds2 ¼ −r2pfðrÞdt2 þ dr2

r2pfðrÞ þ r2p
Xd−1
i¼1

dx2i

fðrÞ ¼ 1 −
�
rþ
r

�
c
; ð13Þ

where we have used

p ¼ 8

8þ ðd − 1Þη2 ; c ¼ 8d − ðd − 1Þη2
8þ ðd − 1Þη2 : ð14Þ

As mentioned earlier, the asymptotic limit of the above
given black brane is not AdS, and therefore the boundary
field theory is not conformal. Further, it can be observed
that in the limit η → 0, one obtains the AdSdþ1-
Schwarzschild black brane solution. Recently, in [86,87],
the authors have applied two different types of scalar
potentials to numerically construct the solutions of hairy
black holes and scalarons to study their properties
systematically. These hairy black holes also bifurcated
from the Schwarzschild black hole.
The Hawking temperature of the black brane geometry

[given in Eq. (13)] reads as

TH ¼ k
2π

¼
�

c
4π

�
r2p−1þ ; ð15Þ

where k is the surface gravity. It is to be observed

that for η ¼
ffiffiffiffiffiffiffiffiffi
8d

ðd−1Þ
q

, the Hawking temperature of the black

brane is zero, irrespective of the value of rþ. Furthermore,
from the above relation, one can express the event
horizon position rþ in terms of the Hawking temperature.
This reads as

rþ ¼
�

c
4πTH

� 1
1−2p ¼

�
βc
4π

� 1
1−2p

: ð16Þ

III. SHOCK WAVE ANALYSIS: LYAPUNOV
EXPONENT AND BUTTERFLY VELOCITY

In this section, we now proceed to compute the
Lyapunov exponent and butterfly velocity by carrying
out the shock wave analysis. In order to obtain the shock
wave geometry in this setup, we first write down the metric
[given in Eq. (13)] in the Kruskal coordinates as it provides
convenience in case of a two-sided geometry setup.

2We have set GN ¼ 1 and AdS radius R ¼ 1, for the sake of
simplicity.
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The first step is to introduce the Tortoise coordinate. For
a general metric of the form

ds2 ¼ −GttðrÞdt2 þ GrrðrÞdr2 þ GijðrÞdxidxj; ð17Þ

the Tortoise coordinate is defined as

dr� ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GrrðrÞ
GttðrÞ

s
dr: ð18Þ

For the metric given in Eq. (13), the above equation leads to

dr� ¼ −
dr

r2pfðrÞ : ð19Þ

With the above transformation in hand, we now move on to
the following Kruskal coordinates:

u ¼ e−kðt−r�Þ; v ¼ −ekðtþr�Þ: ð20Þ

By incorporating the Kruskal coordinate transformation,
one obtains the following form:

ds2 ¼ 2Ωðu; vÞdudvþ gijðu; vÞdxidxj; ð21Þ

where

2Ωðu; vÞ ¼ β2r2pfðrÞ
4π2uv

: ð22Þ

In Kruskal coordinates, the event horizon lies at u ¼ 0 or
v ¼ 0. The exterior regions are located at u > 0, v < 0
(right exterior) or u < 0, v > 0 (left exterior). On the other
hand, the singularity is located at uv ¼ 1, and the boundary
is at uv ¼ −1. In Fig. 1, we have given the Penrose-Carter
diagram depicting all the facts mentioned above. One
can now assume the following general form of the stress
tensor [26] corresponding to the unperturbed metric given
in Eq. (13):

Tmatter¼Tuudu2þTvvdv2þ2TuvdudvþTijdxidxj; ð23Þ

where the components Tuu, Tuv, Tvv, and Tij are functions
of u and v. This general form of the stress tensor will be
used later as an ansatz in the backreacted shock wave
geometry. Further, we assume that the metric given in
Eq. (21) is a solution of the following Einstein equation:

Rab −
1

2
gabR ¼ 8πTmatter

ab ; ð24Þ

where the form of the components Tmatter
ab are given in

Eq. (23). It is to be mentioned that the contribution coming
from the cosmological constant has also been taken care by
the part Tmatter

ab [32]. Next, we consider that a tiny pulse of

energy E0 is added to left side of the geometry from the
boundary at an earlier time t. Considering t ¼ 0 as the
reference frame, the energy of the added perturbation (at
earlier time t) gets blueshifted, and it follows an almost null
trajectory toward the past horizon. This process introduces
nontrivial modification to the original geometry [25,26].
Our motivation is to compute the change to the unperturbed
geometry [given in Eq. (21)] and the associated stress
tensor [given in Eq. (23)] due to the presence of the null
pulse. In order to do this, we assume that the null pulse of
energy is localized at u ¼ 0, and it propagates along the v
direction. In terms of the Penrose diagram, this consid-
eration creates an extension along the v direction.
Mathematically, this extension can be incorporated by
considering the following transformations:

v → vþ θðuÞαðt; xiÞ
dv → dvþ θðuÞ∂iαðt; xiÞdxi; ð25Þ

where the form of the function αðt; xiÞ is to be determined
from the Einstein field equations. The theta function θðuÞ
ensures that the changes are constrained to the region u > 0
(left exterior). As mentioned earlier, the said nontrivial
modification to the original spacetime can be understood
with the help of a Penrose diagram. This we have given in
Fig. 2. We now incorporate the transformations given in
Eq. (25) to the unperturbed metric [given in Eq. (21)] and
obtain the following form for the backreacted geometry:

ds2 ¼ 2Ωðu; vþ θðuÞαðt; xiÞÞduðdvþ θðuÞ∂iαðt; xiÞdxiÞ
þ gijðu; vþ θðuÞαðt; xiÞÞdxidxj: ð26Þ

For the sake of convenience, we now introduce the
following set of new coordinates:

ū ¼ u

v̄ ¼ vþ θðuÞαðt; xiÞ
x̄i ¼ xi: ð27Þ

FIG. 2. Penrose diagram of the shock wave geometry.
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From the above given coordinate transformations, one can
easily show the following relation:

dvþ θðuÞ∂iαðt; xiÞdxi ¼ dv̄ − δðuÞαðt; xiÞdu
¼ dv̄ − δðūÞαðt; x̄iÞdū: ð28Þ

In terms of these new coordinates, the backreacted metric
[given in Eq. (26)] takes the following form:

ds2 ¼ 2Ωðū; v̄Þdū½dv̄ − δðūÞαðt; x̄iÞdū� þ gijðū; v̄Þdx̄idx̄j:
ð29Þ

In obtaining the above metric, we have used the relation
given in Eq. (28). The above given metric is usually
denoted as the general form of the shock wave metric.
On the other hand, the general energy-momentum stress
tensor corresponding to the matter part [given in Eq. (23)] is
also modified as

Tmatter ¼ ½T̄uu − 2δðūÞαðt; x̄iÞT̄uv þ δ2ðūÞα2ðt; x̄iÞT̄vv�dū2
þ T̄vvdv̄2 þ 2½T̄uv − αðt; x̄iÞδðūÞT̄vv�dūdv̄
þ T̄ijdx̄idx̄j; ð30Þ

where Tabðu; vþ θðuÞαðt; xiÞÞ≡ T̄ab. Furthermore, the
stress tensor associated to the shock wave is assumed to
have the following form [4]:

TSW ¼ E0e
2π
β tδðūÞdū2δðx̄iÞ; ð31Þ

where E0 is the asymptotic energy of the null pulse, and e
2π
β t

is the blue shift factor. Further δðx̄iÞ ensures that the
perturbation is localized at xi ¼ 0. In order to find the
profile of αðt; x̄iÞ, we assume that the perturbed metric
[given in Eq. (29)] is a valid solution of the following
Einstein equation:

Rab −
1

2
gabR ¼ 8πðTmatter

ab þ TSW
ab Þ; ð32Þ

where the expressions of Tmatter
ab and TSW

ab are given in
Eqs. (30) and (31) respectively. For the sake of simplicity,
we now introduce a bookkeeping parameter ϵ in αðt; x̄iÞ as,
αðt; x̄iÞ → ϵαðt; x̄iÞ and TSW

ab as TSW
ab → ϵTSW

ab , where
jϵj ≪ 1. This process helps us in recovering the unperturbed
Einstein equation [given in Eq. (24)] in the limit ϵ → 0.
Firstly, we solve the unperturbed Einstein field equation

[given in Eq. (24)] in order to obtain the values of Tuu, Tvv,
and Tuv. We then substitute these values in the uu
component of the perturbed Einstein field equation given
in Eq. (32) and keep terms up to ∼OðϵÞ. We then observe
that the shock wave parameter αðt; x̄iÞ satisfies the follow-
ing equation (on the horizon u ¼ 0 or r ¼ rþ):

δðūÞgij
h
Ωðū; v̄Þ∂i∂j −

1

2
gij;ū v̄

i
αðt; x̄iÞ ¼ 8πTSW

uu : ð33Þ

The above equation can be obtained from the uu compo-
nent of the perturbed Einstein equation [given in Eq. (32)].
We would like to mention that in obtaining the above
equation, the following conditions must hold [26,29]:

Ωðū; v̄Þ;v̄ ¼ gij;v̄ ¼ Tmatter
vv ¼ 0 at ū ¼ 0: ð34Þ

We now proceed to express Eq. (33) in terms of the t and r
coordinates in which the background spacetime [Eq. (13)]
was initially expressed. Furthermore, one needs to keep in
mind the fact that Eq. (33) is to be evaluated on the horizon
ū ¼ 0 or r ¼ rþ. This motivates us to consider the
following near-horizon expansion of the black hole lapse
function ξðrÞ≡ r2pfðrÞ∶

ξðrÞ ¼ ξðrþÞ þ ∂rξðrÞjr¼rþðr − rþÞ þ � � � :
¼ cr2p−1þ ðr − rþÞ þ � � � : ð35Þ

In the above computation we have used the fact that
fðrÞjr¼rþ ¼ 0. By using the above near-horizon form,
one can show that the Tortoise coordinate takes the
following form:

r� ≈
�

1

cr2p−1þ

�
ln

�
r − rþ
rþ

�
: ð36Þ

Further, the expression of uv is obtained to be in the
near-horizon limit

uv ¼ e
4π
β r� ≈ elnð

r−rþ
rþ Þ: ð37Þ

We now make use of the above near-horizon expressions to
compute the expression ofΩðū; v̄Þ and gij;ū v̄ on the horizon
ū ¼ 0 which appears in Eq. (33). This reads as

Ωðū; v̄Þjū¼0 ¼
β2r2pfðrÞ
8π2uv

����
ū¼0

≈
1

2

�
2

cr2p−1þ

�
2

cr2p−1þ ðr − rþÞe− lnðr−rþrþ Þ þ � � �

≈
2

cr2p−2þ
≡ΩðrþÞ: ð38Þ

In the above computation, we have used the near-horizon
expansions given in Eqs. (35) and (36). We now proceed to

compute 1
2

dgij
dðū v̄Þ jū¼0. This reads as

dgij
dðū v̄Þ

����
ū¼0

¼
�
dgij
dr�

��
dr�

dðū v̄Þ
�����

ū¼0

¼ r2pfðrÞ β

4π
e−

4πr�
β ∂rgij

����
r¼rþ

; ð39Þ
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where β ¼ 4π
cr2p−1þ

is the inverse Hawking temperature. Next,

we use the near-horizon expansions given in Eqs. (35)
and (36) in the above expression. This in turn gives us

dgij
dðū v̄Þ

����
ū¼0

≈ ðcr2p−1þ Þ
�
r − rþ
cr2p−1þ

�
e− lnðr−rþrþ Þ

∂rgij

����
r¼rþ

¼ rþ∂rgijjr¼rþ : ð40Þ

For the sake of simplicity, we have denoted rþ∂rgijjr¼rþ
as rþ∂rgijðrþÞ.
By using the above results in Eq. (33), we obtain the

following form:

gijðrþÞ
�
ΩðrþÞ∂i∂j−

rþ
2
∂rgijðrþÞ

�
αðt;xiÞ¼ 8πE0e

2π
β tδðx̄iÞ:

ð41Þ

We now choose the direction of propagation for the
perturbation as xi ¼ x1. This further simplifies the
Eq. (41) to the following form:

½∂2x1 −M2�αðt; x1Þ ¼ E0e
2π
β ðt−t�Þδðx̄iÞ; ð42Þ

where

M2 ¼ ðd − 1Þrþ
2ΩðrþÞ

∂rgx1x1ðrþÞ;

t� ¼
�
β

2π

�
log

�
ΩðrþÞ

8πgx1x1ðrþÞ
�
: ð43Þ

We nowmake use of the metric given in Eq. (13) along with
Eq. (38) and the fact that gx1x1ðrþÞ ¼ r2pþ in order to obtain
explicit expressions for M2 and t�. These read as

M2 ¼ c
2
pðd − 1Þr2ð2p−1Þþ ð44Þ

t� ¼
�
β

2π

�
log

�
rpðd−1Þþ

4πcrpðdþ2Þ−2
þ

�
: ð45Þ

In the above expression, t� represents the scrambling time
which can be recast to the following standard form:

t� ≈
�
β

2π

�
logðSBHÞ; ð46Þ

where SBH is the Bekenstein-Hawking entropy density of
the nonconformal black brane which has the form

SBH ¼ rpðd−1Þþ
4

: ð47Þ

We now proceed to solve Eq. (42). For jx1j ≠ 0, the
solution for αðt; x1Þ reads as

αðt; x1Þ ¼
(
c0eMx1 ; for x < 0

c1e−Mx1 ; for x > 0:
ð48Þ

The above solution for both the regions must be continuous
at x ¼ 0 which gives the condition c0 ¼ c1. On the other
hand, by integrating Eq. (42) one obtains

lim
ϵ→0

�Z
x1¼0þϵ

x1¼0−ϵ
ð∂2x1 −M2Þαðt; x1Þdx1

�

¼ E0e
2π
β ðt−t�Þlim

ϵ→0

�Z
x1¼0þϵ

x1¼0−ϵ
δðx1Þdx1

�
⇒ lim

ϵ→0
½∂x1αðt; x1Þjx1¼0þϵ − ∂x1αðt; x1Þjx1¼0−ϵ�

¼ E0e
2π
β ðt−t�Þ: ð49Þ

We now make use of the solution given in Eq. (48) in the
above equation which in turn gives

c0 þ c1 ¼
E0

M
e
2π
β ðt−t�Þ: ð50Þ

By using the condition c0 ¼ c1 along with Eq. (50),
we obtain the solution for Eq. (42) to be

αðt; x1Þ ¼
E0

2M
e
2π
β ðt−t�Þ−Mjx1j

∼ constant × e
2π
β ðt−t�Þ−Mjx1j: ð51Þ

A few comments are in order now. Keeping in mind
Eq. (2), it is to be noted that the difference between states
created by Ŵðx; tÞV̂ð0Þ and V̂ð0ÞŴðx; tÞ is related to the
null shift of the operator V̂ð0Þ created by the shock wave
profile αðx; tÞ. As the commutator h½Ŵðx; tÞ; V̂ð0Þ�2iβ is

determined by the real part of hŴðx; tÞV̂ð0ÞŴðx; tÞV̂ð0Þiβ
[8,88], at early times β < t < t� þ x

vB
, one has [5,8,88]

Cðt; xÞ ∼ αðt; xÞ: ð52Þ

We now compute the expressions for the Lyapunov
exponent and butterfly velocity by comparing the above
with Eq. (3). This yields the following results:

λL ¼ 2π

β
; vB ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8d

d − 1
− η2

r
; ð53Þ

where the expression for β is given in Eq. (15). In the
conformal limit η → 0, one obtains β ¼ drþ

4π and

vB ¼
ffiffiffiffiffiffiffiffiffiffiffi

d
2ðd−1Þ

q
. This in turn means that in this particular

limit one recovers the SAdSdþ1 results given in [4].
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We would now like to make a few comments regarding our
results. It can be observed that the form of the Lyapunov
exponent remains unchanged, that is, λL ¼ 2πTH, and this
form is universal for any maximally chaotic holographic
theory. Further, it also depicts the fact that the Lyapunov
exponent depends only on the Hawking temperature TH
(which is also the temperature of the dual field theory).
However, the Hawking temperature is subject to the holo-
graphic model under consideration which in our case
corresponds to the nonconformal black brane solution.
Here, the parameter η in the gravitational solution charac-
terizes the theory since it appears in the bulk action
[Eq. (11)]. From the perspective of the dual theory, η
corresponds to turning on some deformation away from
conformality, which implies choosing a particular boun-
dary theory. Once η is chosen, we would then fix β, which
characterizes the thermal state of the dual field theory, to
make plots of the various quantities that we shall compute
in the subsequent sections. From Fig. 3 we observe that an
increase in the value of the parameter η decreases the value

of the butterfly velocity vB and finally for η ¼
ffiffiffiffiffiffi
8d
d−1

q
it

vanishes. This implies that due to the presence of non-
conformality, the speed of information spreading (vB) in
the system gets decreased representing the delay in the
growth of the initial perturbation provided to the system.

For η ¼
ffiffiffiffiffiffi
8d
d−1

q
, the system attains something known as the

Lyapunov stability as for this particular value of η, the
Hawking temperature of the nonconformal black brane is
zero which in turn gives us a vanishing Lyapunov exponent,
that is, λL ¼ 0. This can also be understood as the steady
state. In this case, the signature of chaos in the system
vanishes, and the system becomes conservative. As a
consequence of the Lyapunov stability, the butterfly effect
also vanishes which is being manifested here as vB ¼ 0 [2].
We have already mentioned that this particular value of

η ¼
ffiffiffiffiffiffi
8d
d−1

q
has the interpretation of being the upper bound

(Gubser bound) of η [83,84]. The physics behind the
Gubser bound is the following. For the Einstein-dilaton

black brane geometry to be thermodynamically stable, η2

should always be less than 8d
d−1. This value is known as the

Gubser bound. When η2 exceeds this value, the Einstein-
dilaton black brane and its dual theory are unstable
thermodynamically [78,80]. It can also be seen from the
solution for fðrÞ [Eq. (13)] that c becomes negative when
η2 exceeds the Gubser bound. So η2 ≤ 8d

d−1 for c to be
positive. From our obtained results, we also confirm this
observation from the point of view of chaos, as for

η <
ffiffiffiffiffiffi
8d
d−1

q
, the system is chaotic as both λL and vB are

positive and for η ¼
ffiffiffiffiffiffi
8d
d−1

q
, the system is conservative.

One can also recast the expressions given in Eq. (53) to the
following forms:

λL ¼ λðcÞL

�
βðcÞ

β

�

vB ¼ vðcÞB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

ðd − 1Þη2
8d

�s
: ð54Þ

The above forms helps us to point out the nonconformal

corrections to the conformal results. Here, λðcÞL , βðcÞ, and

vðcÞB ¼
ffiffiffiffiffiffiffiffiffiffiffi

d
2ðd−1Þ

q
correspond to the Lyapunov exponent,

inverse Hawking temperature, and butterfly velocity for
the SAdSdþ1 black brane. As one shall have the SAdSdþ1

black brane solution in the conformal limit η → 0, we
denote the corresponding results as conformal results [that
is why we use the superscript (c)].

IV. TWO-SIDED HTMI AND ENTANGLEMENT
VELOCITY

In this section, we compute the HTMI between the two
decoupled quantum mechanical systems existing on both
left and right asymptotic boundaries of the two-sided black
hole geometry [21]. Further, we do this for both unper-
turbed and perturbed geometries in order to quantify the
effect of shock wave on HTMI.

A. HTMI for the unperturbed Einstein-dilaton black
brane geometry

First, we holographically compute the two-sided ther-
momutual information in absence of the shock wave.
In order to do this, we consider two striplike, identical
subsystems of length l, namely, A and B which belong to
the left and right asymptotic boundaries respectively.
The geometry of these striplike subsystems (A and B)
can be specified as − l

2
≤ x1 ≤ l

2
and − L

2
≤ xm ≤ L

2
for

m ¼ 2;…; d − 1. As mentioned previously, the expression
for HTMI is given by Eq. (5). To calculate this, one needs to
compute the von Neumann entropies associated to sub-
system A, B and A ∪ B. In the gauge/gravity setup, one can

FIG. 3. Variation of the butterfly velocity (vB) with respect to
the nonconformal parameter η, where we set d ¼ 3.
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holographically do this by incorporating the RT proposal
[89–91] which states that the von Neumann entropy of a
subsystem (for example A) can be computed with the
help of the extremal surface with minimal area γA. By
incorporating this proposal, one can obtain the following
result [85]:

SvnðAÞ ¼ SvnðBÞ

¼ 2Ld−2

4

Z
∞

rt

rpðd−3Þdrffiffiffiffiffiffiffiffiffi
fðrÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ðrtrÞ2pðd−1Þ
q ; ð55Þ

where rt is the turning point of the static minimal surface
of interest. On the other hand, the relation between the
subsystem size l and the turning point rt stands to be

l ¼ 2

Z
∞

rt

dr

r2p
ffiffiffiffiffiffiffiffiffi
fðrÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð rrtÞ2p − 1
q : ð56Þ

The computation of SvnðA ∪ BÞ is tricky. For this, one
proceeds with the surface γwormhole ¼ γ1 ∪ γ2 which bifur-
cates the event horizon in order to connect the asymptotic
boundaries of the two-sided eternal black hole spacetime.
This is basically a nontraversable wormhole geometry
which induces entanglement between the two decoupled
theories (at right and left asymptotic boundaries of the
spacetime geometry). It is to be noted that γ1 corresponds to
the x1 ¼ − l

2
hyperplane and γ2 corresponds to the x1 ¼ l

2

hyperplane. If we consider the area of a single surface (with
such properties), then symmetry tells us that the total area
will be four times the area of the single surface. A graphical
representation of the setup has been shown in Fig. 4. This
leads to the following expression:

SvnðA ∪ B; α ¼ 0Þ≡ AreaðγwormholeÞ
4

¼ 4Ld−2

4

Z
∞

rþ

rpðd−3Þdrffiffiffiffiffiffiffiffiffi
fðrÞp : ð57Þ

We now substitute the expressions from Eqs. (55) and (57)
in Eq. (5) and obtain the following form of the two-sided
HTMI (in the absence of shock wave):

IðA∶B; α ¼ 0Þ ¼ Ld−2

2
6664
Z

∞

rt

rpðd−3Þdrffiffiffiffiffiffiffiffiffi
fðrÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
�
rt
r

	
2pðd−1Þ

r

−
Z

∞

rþ

rpðd−3Þdrffiffiffiffiffiffiffiffiffi
fðrÞp

3
7775: ð58Þ

The above expression represents the mutual correlation
between the two decoupled theories living at the right and
left asymptotic boundaries of the two-sided nonconformal
black brane geometry [given in Eq. (13)]. It can be seen that
the expression is written in terms of the bulk coordinate r
and one can represent it in terms of the boundary coordinate
(subsystem size l) with the help of Eq. (56).

B. HTMI for the shock wave geometry

We now proceed to compute the expression of IðA∶BÞ
in the presence of the shock wave modification of the
original geometry. In order to do this, we follow the
computational procedure shown in [27]. In this work, we
are considering a homogeneous shock wave which is
introducing deformation on the horizon along the v
coordinate which in turn stretches the wormhole geom-
etry. We denote this new elongated wormhole geometry
as γSWwormhole ¼ γ1 ∪ γ2. This leads to the fact that only the
term SvnðA∶BÞ gets affected due to the presence of the
shock wave as it is the only term in Eq. (5) which depends
on the wormhole geometry. A nice review related to this
topic can be found in [92]. SvnðAÞ and SvnðBÞ remain
unchanged as their associated extremal surfaces do not
bifurcate the event horizon [93]. This can be graphically
represented by a schematic diagram which has been
provided in Fig. 5. Keeping this in mind, for the shock
wave geometry, one can write down the following
expression:

IðA∶B; αÞ ¼ SvnðAÞ þ SvnðBÞ − SvnðA ∪ B; αÞ
¼ SvnðAÞ þ SvnðBÞ − SvnðA ∪ B; α ¼ 0Þ
− ½SvnðA ∪ B; αÞ − SvnðA ∪ B;α ¼ 0Þ�

¼ IðA∶B; α ¼ 0Þ − Sregvn ðA ∪ B; αÞ; ð59Þ

FIG. 4. Schematic representation of the two-sided eternal black
hole geometry in the absence of the shock wave. Here, γA and γB
(in red) are Ryu-Takayanagi surfaces associated to the subsys-
tems A and B. γ1 and γ2 (in blue) lead to the extremal surface
γwormhole ¼ γ1 ∪ γ2 which connects the two decoupled boundaries
(right and left).
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where IðA∶B;α¼0Þ is given in Eq. (58) and Sregvn ðA∪B;αÞ
represents a regularized expression for the von Neumann
entropy which is free of the universal divergence term.
Furthermore, in the above computation we have also

introduced SvnðA ∪ B; α ¼ 0Þ, which we have already
computed in Eq. (57). The expression given in Eq. (59)
in turn means that we need to compute only the term
Sregvn ðA ∪ B; αÞ. In order to compute SvnðA ∪ B; αÞ we first
specify the parametrization of the corresponding Hubeny-
Ryu-Takayanagi (HRT) surfaces r ¼ rðtÞ; x1 ¼ � l

2
, and

− L
2
≤ xm ≤ L

2
for m ¼ 2;…; d − 1. This leads to the cor-

responding area functional,

AreaðγSWwormholeÞ ¼ Ld−2
Z

rpðd−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞ þ ṙ2

r4pfðrÞ

s
dt:

ð60Þ

It is to be noted that the above area functional for the
wormhole has been computed by using the original
geometry. However, unlike the unperturbed scenario [given
in Eq. (57)], one has to make use of the HRT proposal for
the computation as the time-dependent shock wave per-
turbation makes the bulk direction time dependent, that is,
r ¼ rðtÞ, and introduces time-dependent modification to
the wormhole geometry [27] (see Fig. 5):

γwormhole αðt; x1Þ
⟶

γSWwormhole: ð61Þ

The Lagrangian density can be read off from the above
action and has the form

Lðr; ṙ; tÞ ¼ Ld−2rpðd−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞ þ ṙ2

r4pfðrÞ

s
: ð62Þ

The corresponding Hamiltonian density can easily be
obtained from the definition

Hðr; pr; tÞ ¼ prṙ − L; pr ¼
∂L
∂ṙ

: ð63Þ

This in turn gives

Hðr; prÞ ¼ rpðd−1Þ
fðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−fðrÞ þ ṙ2

r4pfðrÞ
q ; ð64Þ

where it can be observed that the Hamiltonian Hðr; prÞ
does not have an explicit dependency on time t. Hence, the
Hamiltonian is a constant of motion. This can be written
down as

Hðr; prÞ ¼ C≡ constant; ð65Þ

where the conserved quantity C can be evaluated at the
point r ¼ r0 where ṙjr¼r0 ¼ 0. This reads as

C ¼ Hjr¼r0 ≡ −rpðd−1Þ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
: ð66Þ

The on shell area functional therefore reads as

AreaðγSWwormholeÞ¼Ld−1
Z

rpðd−3Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ−
r0

r

�
2pðd−1Þfðr0Þ

q : ð67Þ

On the other hand, the time coordinate can be represented
in the following way:

tðrÞ ¼ �
Z

dr

r2pfðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −



r
r0

�
2pðd−1Þ fðrÞ

fðr0Þ
q : ð68Þ

We now proceed to specify the domain of integration for
the above expressions. The domain of interest can be
divided into three segments which has been pointed out
in Fig. 6. It can be observed that segment II and segment III
have the same area. Keeping these observations in mind,
we write down the following form:

SvnðA∪B;αÞ¼4Ld−2

4

2
64Z ∞

rþ

rpðd−3Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ−
r0

r

�
2pðd−1Þfðr0Þ

q

þ2

Z
rþ

r0

rpðd−3Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ−
r0

r

�
2pðd−1Þfðr0Þ

q
3
75: ð69Þ

With the above result in hand, we now make use of the
expression for SvnðA ∪ B; α ¼ 0Þ [given in Eq. (57)] in
order to obtain the regularized version of SvnðA ∪ B; αÞ.

FIG. 5. Schematic representation of the shock wave geometry.
In presence of the shock wave, only the extremal surface
γSWwormhole ¼ γ1 ∪ γ2 (in blue) is getting affected.
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This reads as

Sregvn ðA∪B;αÞ¼SvnðA∪B;αÞ−SvnðA∪B;α¼0Þ

¼4Ld−2

4

2
64Z ∞

rþ
rpðd−3Þ

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ−
r0
r

�
2pðd−1Þfðr0Þ

q −
1ffiffiffiffiffiffiffiffiffi
fðrÞp

1
CAdrþ2

Z
rþ

r0

rpðd−3Þdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ−
r0

r

�
2pðd−1Þfðr0Þ

q
3
75: ð70Þ

As we have explained in Eq. (59), the above expression of
Sregvn ðA ∪ B; αÞ along with the expression of IðA∶B; α ¼ 0Þ
[given in Eq. (58)] leads us to the desired result of
IðA∶B; αÞ. It is to be observed from the above expression
of Sregvn ðA ∪ B; αÞ that it is a function of r0. Before we
proceed further we would like to make few comments.
From Eq. (70) one can observe that in the limit r0 → rþ,
SvnðA ∪ B; αÞ ¼ SvnðA ∪ B; α ¼ 0Þ. We would like to
point out that the emergence of the point r0 in the black
hole interior (see Fig. 6) is precisely due to the shock
wave perturbation of the original geometry. This in turn
means that we need to find the relation between α (the
shock wave parameter) and r0 so that we can depict the
variation of Sregvn ðA ∪ B; αÞ with respect to the shock wave
parameter. In order to do this, we follow the approach
given in [27]. As we have mentioned earlier, our domain
of interest can be divided into three segments, namely, I,
II, and III. This precise partitioning of the concerned
region is solely due to the presence of the shock wave. In
terms of the Kruskal coordinates, segment I connects
ðu; vÞ ¼ ð1;−1Þ (boundary) to ðu; vÞ ¼ ðu1; 0Þ (horizon).
Segment II connects ðu; vÞ ¼ ðu1; 0Þ (horizon) to the
point r0 which is at ðu; vÞ ¼ ðu2; v2Þ, and segment III
connects the point r0, that is, ðu; vÞ ¼ ðu2; v2Þ to

ðu; vÞ ¼ ð0; α=2Þ. Keeping these coordinates in mind
and by using the Kruskal coordinates, one can show
the following relations:

u21 ¼ exp

0
B@4π

β

Z
∞

rþ

dr
r2pfðrÞ

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −


r
r0

�
2pðd−1Þ fðrÞ

fðr0Þ
q − 1

3
75
1
CA;

u22 ¼ exp

0
B@4π

β

Z
rþ

r0

dr
r2pfðrÞ

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −


r
r0

�
2pðd−1Þ fðrÞ

fðr0Þ
q − 1

3
75
1
CA;

v2 ¼
1

u2
exp

�
−
4π

β

Z
r̄

r0

dr
r2pfðrÞ

�
: ð71Þ

In the last of the above equations, the r̄ point resides
inside the horizon at which r� ¼ 0. From segment III, one
can show the following relation by incorporating the
variation in the v coordinate:

α2

4v22
¼ exp

0
B@4π

β

Z
r0

rþ

dr
r2pfðrÞ

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð rr0Þ2pðd−1Þ
fðrÞ
fðr0Þ

q − 1

3
75
1
CA

¼ u21
u22

: ð72Þ

Now by using the relation given by Eq. (71) in the above
equation and after some simplifications, one obtains the
following relation:

αðr0Þ ¼ 2 expðξI þ ξII þ ξIIIÞ; ð73Þ

where

ξI ¼
4π

β

Z
r0

r̄

dr
r2pfðrÞ

ξII ¼
2π

β

Z
∞

rþ

dr
r2pfðrÞ

2
641 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð rr0Þ2pðd−1Þ
fðrÞ
fðr0Þ

q
3
75

ξIII ¼
4π

β

Z
rþ

r0

dr
r2pfðrÞ

2
641 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð rr0Þ2pðd−1Þ
fðrÞ
fðr0Þ

q
3
75: ð74Þ

FIG. 6. Deformation of the extremal surface γSWwormhole (in blue)
due to the shock wave. We have divided the left half of the surface
into three parts, segment I which spans from the boundary
(r ¼ ∞) to the horizon rþ, and both segment II and segment III
spans from r0 to the horizon rþ. Thus, segment II and segment III
have same area.
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In Fig. 7, we have graphically represented the relation
given in Eq. (73) with β ¼ 4π. We observe that αðr0Þ
decreases with the increase in the value of the r0 and
ultimately vanishes at r0 ¼ rþ. The lesson that one can
learn from this observation is the following. For a fixed β,
an increase in the value of the nonconformal parameter η
increases the value of rþ. This can be understood from the
relation provided in Eq. (16). This in turn means that the
presence of nonconformality leads to a higher value of r0 at
which the shock wave parameter vanishes. It is also to be
noted that for a critical value of r0, namely, at r0 ¼ rc the
shock wave parameter αðr0Þ diverges. In fact, it can also
be observed that at this particular value r0 ¼ rc, only ξIII
diverges which depicts the fact that in the limit r0 → rc, ξIII
is the dominating piece in the expression of αðr0Þ [given in
Eq. (73)]. One can derive the value of rc by performing a
Taylor expansion of the integrand of ξIII around r0 ≈ rc and
equating the coefficient of ðr0 − rcÞ to zero [29,31,32]. We
shall follow this approach to derive the explicit expression
of rc. Firstly, the expression of ξIII around r ≈ r0 has the
following form:

ξIII≈
4π

β

Z
rþ

r0

dr

r2p0 fðr0Þ

2
66641− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

−2pðd−1Þ
r0

− f0ðr0Þ
fðr0Þ

�
ðr−r0Þ

s
3
7775:

ð75Þ

The above expression diverges at

−
2pðd − 1Þ

r0
−
f0ðr0Þ
fðr0Þ

����
r0¼rc

¼ 0:

By solving this one obtains

rc ¼ rþ

�
1 −

c
2pðd − 1Þ

�1
c

: ð76Þ

In the limit η → 0, one obtains the conformal result [27]

rc ¼ rþ

�
d − 2

2ðd − 1Þ
�1

d

: ð77Þ

We now make use of the relation given in Eq. (16) in order
to recast the expression of rc [given in Eq. (76)] to the
following form:

rc ¼
�
βc
4π

� 1
1−2p

�
1 −

c
2pðd − 1Þ

�1
c

: ð78Þ

In Fig. 8, we have graphically represented the above
expression of rc for a fixed value of β in order to capture
the effect of nonconformality on it. We observe that
nonconformality decreases the value of rc which implies
the fact that nonconformality helps to probe the black hole
interior further. In Fig. 9, the behavior of Sregvn ðA ∪ B; αÞ and
IðA∶B;αÞ

IðA∶B;α¼0Þ ¼ 1 − Sregvn ðA∪B;αÞ
IðA∶B;α¼0Þ with respect to the logarithm of

the shock wave parameter (log α) has been provided. We
observe that for a fixed value of logα, Sregvn ðA ∪ B; αÞ
increases with the increase in the value of the nonconformal
parameter η. On the other hand, due to nonconformality,
Sregvn ðA ∪ B; αÞ becomes equal to IðA∶B; α ¼ 0Þ (resulting
in IðA∶B;αÞ

IðA∶B;α¼0Þ ¼ 0) for a smaller value of log α.

C. Entanglement velocity

We now proceed to study the behavior of Sregvn ðA ∪ B; αÞ
with respect to the time t at which the initial perturbation
was added. It can be observed that Sregvn ðA ∪ B; αÞ grows
linearly with respect to log α which in turn means it grows

 0

 10

 20

 30

 40

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

�
 (r

0)

r0

� = 0.0
� = 1.0
� = 1.5

FIG. 7. Behavior of the shock wave parameter αðr0Þ with
respect to the turning point r0. We have set β ¼ 4π and d ¼ 3.
Here, the right curve is for η ¼ 1.5, the middle curve is for
η ¼ 1.0, and the left curve is for η ¼ 0.0.

FIG. 8. Effect of the nonconformal parameter η on rc. We have
set d ¼ 3 and β ¼ 4π.
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linearly with respect to t (as α ≈ e
2π
β t). This can be

observed from the left plot of Fig. 9. This linear behavior
of Sregvn ðA ∪ B; αÞ in turn helps us to quantify the spreading
of entanglement in a chaotic system by introducing the

entanglement velocity in this setup. In order to capture the
behavior of Sregvn ðA ∪ B; αÞ around r0 ≈ rc, we first expand
Sregvn ðA ∪ B; αÞ up to linear order in ðr − r0Þ. This leads to
the following form:

Sregvn ðA ∪ B; αÞ ≈ 2Ld−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
rpðd−1Þ0

Z
rþ

r0

dr

r2p0 fðr0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
− 2pðd−1Þ

r0
− f0ðr0Þ

fðr0Þ
	
ðr − r0Þ

r

¼ 2Ld−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
rpðd−1Þ0

Z
rþ

r0

dr

r2p0 fðr0Þ

2
6641 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

− 2pðd−1Þ
r0

− f0ðr0Þ
fðr0Þ

	
ðr − r0Þ

r
3
775

− 2Ld−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
rpðd−1Þ0

Z
rþ

r0

dr

r2p0 fðr0Þ
: ð79Þ

Now, by using the relation given in Eq. (75), we can write
down the following form of Sregvn ðA ∪ B; αÞ and proceed to
consider the r0 → rc limit,

Sregvn ðA ∪ B; αÞ ≈ 2Ld−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðr0Þ

p
rpðd−1Þ0

×

�
β

4π

�
log αðr0Þ

����
r0¼rc

: ð80Þ

Keeping in mind the exponential growth of the given

perturbation, that is, α ∼ exp
2πt
β , one can write down the

following equation [36,38,41–43]:

dSregvn ðA ∪ B; αÞ
dt

¼ 2Ld−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrcÞ

p
rpðd−1Þc

�
β

4π

��
2π

β

�

¼ 4Ld−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrcÞ

p �
rc
rþ

�
pðd−1Þ�rpðd−1Þþ

4

�
¼ sthAΣven; ð81Þ

where sth is the thermal entropy density sth ¼ rpðd−1Þþ
4

, AΣ ¼
4Ld−2 is the area of the hyperplane, and ven is the
entanglement velocity which has the following form:

ven ¼
�
rc
rþ

�
pðd−1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−fðrcÞ
p

: ð82Þ

-0.5

 0.5

 1.5

 2.5

 3.5

 4.5

 5.5

 6.5

 7.5

 8.5

 9.5

 0  2  4  6  8  10

Sre
g (A

 U
 B

; �
)(r

0)

log�(r0)

� = 0.0
� = 1.0
� = 1.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12

I(A
:B

; �
)/I

(A
:B

;�
=0

)

log�(r0)

� = 0.0
� = 1.0
� = 1.5

FIG. 9. The left plot represents the behavior of Sregvn ðA ∪ B; αÞ with respect to log α. The right plot captures the behavior of the
thermomutual information in the presence of the shock wave. Here, we have set β ¼ 4π, L ¼ 1 and d ¼ 3. Left plot: the upper curve is
for η ¼ 1.5, the middle curve is for η ¼ 1.0 and the lower curve is for η ¼ 0.0. Right plot: the upper curve is for η ¼ 0.0, the middle curve
is for η ¼ 1.0 and the lower curve is for η ¼ 1.5.
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By using the explicit value of rc [given in Eq. (76)], one can
obtain an exact expression for the entanglement velocity.
This reads as

ven ¼
�
1 −

c
2pðd − 1Þ

�pðd−1Þ
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

2pðd − 1Þ − c

r
: ð83Þ

In the limit η → 0, one obtains the standard conformal
result (result for SAdSdþ1). This reads as [36]

ven ¼
ffiffiffi
d

p ðd − 2Þ12−1
d

½2ðd − 1Þ�1−1
d

: ð84Þ

From our obtained result of entanglement velocity [given in
Eq. (83)], we observe that similar to the butterfly velocity
and Lyapunov exponent, it also decreases with the increase
in the value of the nonconformal parameter η. Furthermore,

ven also vanishes for η ¼
ffiffiffiffiffiffiffiffiffi
8d

ðd−1Þ
q

representing the complete

disruption of quantum entanglement. We have represented
our observations graphically in Fig. 10. Figure 10 also
reveals that in the presence of nonconformality, entangle-
ment velocity still satisfies the property ven ≤ vB. Further,
both of these velocities are always less than the speed of
light (as speed of light vc ¼ 1).

V. POLE-SKIPPING ANALYSIS: LYAPUNOV
EXPONENT AND BUTTERFLY VELOCITY

In this section, we will point out the special points,
known as the pole-skipping points, in the complex ðω; kÞ
plane at which the near-horizon solution of the bulk field is
ill defined which leads to the nonunique nature of the
corresponding retarded Green’s function. As mentioned
earlier, the location of these points in the complex ðω; kÞ
(upper half or lower half) depends on the spin s of the bulk
field. As we have already shown in Eq. (10), only the upper
half pole-skipping points are related to the Lyapunov
exponent and the butterfly velocity. As we are interested

in the near-horizon analysis of the bulk field equation of
motion, we recast the bulk metric [given in Eq. (13)] in the
ingoing Eddington-Finkelstein coordinate system,

v ¼ tþ r�: ð85Þ

In the above coordinate system, the bulk metric takes the
following form:

ds2¼−r2pfðrÞdv2þ2dvdrþhðrÞ
Xd−1
i¼1

dx2i ; hðrÞ¼ r2p:

ð86Þ

On the other hand, we assume the following linear
perturbation of the metric and the dilaton field (in the x1
direction):

δgμνðv; r; x1Þ ¼ δgμνðrÞe−iωvþikx1

δϕðv; r; x1Þ ¼ δϕðrÞe−iωvþikx1 : ð87Þ

In the sound mode, the relevant perturbations are δgvv, δgvr,
δgvx1 , δgrr, δgrx1 , δgxixi along with δϕ which can couple to
any of these metric fluctuations. As the location of the pole-
skipping point ðω�; k�Þ depends on the behavior of the
background metric on the horizon, one has to consider
the near-horizon behavior of these perturbations [45,46,69].
In the near-horizon regime, the perturbations behave in the
following way:

δgμνðrÞ ¼ δgð0Þμν þ δgð1Þμν ðr − rþÞ þOðr − rþÞ2…
δϕðrÞ ¼ δϕð0Þ þ δϕð1Þðr − rþÞ þOðr − rþÞ2…: ð88Þ

We now follow the approach given in [45].
By substituting the above forms of perturbations in the

Einstein field equations [given in Eq. (12)] and by con-
sidering the near-horizon limit, one observes that the vv
component of the Einstein-field equation assumes the
following universal form [45]:

�
−i

ðd − 1Þ
2

ωh0ðrþÞ þ k2
�
δgð0Þvv

− ið2πTH þ iωÞ
�
ωδgð0Þxixi þ 2kδgð0Þvx1

	
¼ 0: ð89Þ

By incorporating the background metric information from
Eq. (86), we obtain the following form for the case we have
in hand:

�
−i

ðd − 1Þ
2

ω∂rr2pjr¼rþ þ k2
�
δgð0Þvv

− ið2πTH þ iωÞ
�
ωδgð0Þxixi þ 2kδgð0Þvx1

	
¼ 0: ð90Þ

FIG. 10. Comparison between the variations of the butterfly
velocity (the upper curve) and entanglement velocity (the lower
curve) with respect to the nonconformal parameter η.

ASHIS SAHA and SUNANDAN GANGOPADHYAY PHYS. REV. D 110, 026025 (2024)

026025-14



From the above equation, one can easily point out the
special values of ω and k for which the equation gets
satisfied. The values of ω read as

ω ¼ i2πTH ≡ ω�: ð91Þ

On the other hand, for k, the corresponding special value is
given by

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i
ðd − 1Þ

2
ω�∂rr2pjr¼rþ

r
¼ i

2πTHffiffiffiffiffiffiffiffiffiffiffiffiffi
c

2pðd−1Þ
q ¼ k�: ð92Þ

We now make use of the relations given in Eq. (10) along
with the above obtained values of ω� and k� to obtain the
following results:

λL ¼ 2π

β
ð93Þ

vB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
2pðd − 1Þ

r
≡ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8d

d − 1
− η2

r
: ð94Þ

The above results agrees perfectly with that obtained from
the shock wave analysis [Eq. (53)]. A few remarks are in
order now. From the above computation, one can conclude
that the metric perturbation in the sound channel leads to
the energy density Green’s functions which have the pole-
skipping points in the upper half of the complex ðω; kÞ
plane. The importance of these points lying in the upper
half plane is that they lead to the parameters of chaos, based
upon the relations given in Eq. (10). This further verifies the
previously mentioned statement that for a strongly coupled
theory with holographic dual which is maximally chaotic,
the pole-skipping points are related to the parameters of
chaos. However, it is to be kept in mind that the association
of the pole-skipping points with the parameters of chaos
can be made as long as the pole-skipping points are in the
upper half of the complex ðw; kÞ plane. In the Appendix, we
show that for a scalar field perturbation, the pole-skipping
points lie in the lower half of the complex ðω; kÞ plane and
hence are not related to the parameters of chaos even for a
maximally chaotic system.

VI. CONCLUSION

We now summarize our findings. In this work, we have
holographically studied the behavior of the parameters
of chaos in the presence of nonconformality. By incorpo-
rating the gauge/gravity framework, we have introduced the
two-sided black hole geometry which is the well-known
dual description for the thermofield doublet state. This
realization helps us to quantify the effects of chaos on
the correlation which exists between the right and left
boundary theories of the two-sided geometry. The

nonconformality in the boundary theories has been holo-
graphically introduced by considering the black brane
solution of the Einstein-dilaton theory where the dilaton
potential is of Liouville type. The asymptote of the black
brane geometry is a warped geometry instead of a pure AdS
geometry. This implies that the boundary theory is non-
conformal as the scale transformations are broken; how-
ever, it is relativistic as the Poincáre symmetry is still
restored. The black brane solution is associated with a
parameter η which characterizes the deviation from con-
formality as in the limit η → 0, one obtains the usual
Schwarzschild black brane solution. In order to keep things
general, we have considered the gravitational theory is
(dþ 1)-dimensional which in turn means the boundary
theories are d-dimensional. In order to compute the
parameters of chaos which are the Lyapunov exponent
and the butterfly velocity, we obtain the shock wave
geometry corresponding to the black brane solution under
consideration. The shock wave geometry arises due to the
introduction of a tiny pulse of energy in the geometry (or in
dual sense, adding of perturbation at the boundary theory).
Owing to the presence of the event horizon, the energy of
the pulse gets blueshifted resulting in a nontrivial modi-
fication to the original geometry. The obtained results for
the Lyapunov exponent and butterfly velocity from the
shock wave analysis reveal some interesting observations.
We observed that the form of the Lyapunov exponent
remains unchanged, that is, λL ¼ 2πTH, as this form is
universal for any maximally chaotic holographic theory. It
is important to note that the Lyapunov exponent depends
only on the Hawking temperature TH (which is also the
temperature of the dual field theory). On the other hand, the
effect of nonconformality on the butterfly velocity (vB) is
pretty straightforward to see from the computed expression.
Further, we observe that vB decreases with an increase in
the value of the nonconformal parameter η, and finally it

vanishes for η ¼
ffiffiffiffiffiffi
8d
d−1

q
. We believe this represents

Lyapunov stability for the system as for this particular
value of η, the Hawking temperature of the black brane
becomes zero (irrespective of the value of rþ) which leads
to the vanishing of the Lyapunov exponent, that is, λL ¼ 0.
This particular value of η matches perfectly with the
previously known upper bound of η, known as the
Gubser bound. Our results also confirm the value of this
bound from the point of view of chaos. Our results also
indicate that nonconformality helps to suppress the chaotic
nature for a system. On the other hand, it is a well-known
fact that the left and right boundary theories of a two-sided
geometry share a nonvanishing quantum correlation
between them which can be characterized by the thermo-
mutual information between the mentioned two sides. In
order to observe the effects of chaos and nonconformality,
we compute the HTMI both in the presence and absence of
the shock wave. We observe that nonconformality increases
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the existing entanglement between the boundary theories,
namely, A and B. This can be understood from the behavior
of Sregvn ðA ∪ B; αÞ as its value increases with the increase
in the value of η (for a fixed value of the shock wave
parameter log α). We also note that there is a critical value
for r0, namely, rc at which the shock wave parameter
diverges. Furthermore, an increase in the value of η
decreases the value of rc. This in turn means that the
presence of nonconformality helps us to probe further the
black hole interior as the point r0 resides inside the black
hole interior. In order to understand the spreading of
entanglement for a chaotic system, we proceed to compute
the entanglement velocity. We observe that similar to the
butterfly velocity, this quantity also decreases with the
increase in nonconformality, maintaining the bound
vB < ven. Finally, we once again obtain the Lyapunov
exponent and butterfly velocity from the lowest pole-
skipping points in the upper half of the complex-ðω; kÞ
plane. We observe that the obtained results match perfectly
with that obtained from the shock wave analysis. We also
compute higher order pole-skipping points [in the lower
half of the complex-ðω; kÞ plane] by considering scalar
field fluctuation in the bulk geometry and give the results in
the Appendix.
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APPENDIX: SCALAR FIELD PERTURBATION
AND POLE-SKIPPING POINTS IN THE LOWER

HALF OF THE COMPLEX ðω; kÞ PLANE
In this appendix, we compute the pole-skipping points

by considering scalar field fluctuations in the gravitational
background. We start our analysis by considering a
minimally coupled massive scalar field Ψðv; r; x1Þ, the
equation of motion for which is governed by the following
Klein-Gordon equation:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
gμν∂νΨÞ −m2Ψ ¼ 0; ðA1Þ

with the background metric being given by Eq. (86).
The above equation assumes the following form in the

Eddington-Finkelstein coordinate:

pðd − 1Þrpðd−1Þ−1∂vΨþ 2rpðd−1Þ∂v∂rΨþ pðdþ 1Þrpðdþ1Þ−1fðrÞ∂rΨþ rpðdþ1Þf0ðrÞ∂rΨþ rpðdþ1ÞfðrÞ∂2rΨþ rpðd−3Þ∂2x1Ψ

− rpðd−1Þm2Ψ ¼ 0: ðA2Þ

We now consider the following Fourier decomposition of
the massive scalar field:

Ψðv; r; x1Þ ¼ ψðrÞe−iωvþikx1 : ðA3Þ

By substituting Eq. (A3) in Eq. (A2), we obtain

ψ 00ðrÞ þ Δ1ðrÞψ 0ðrÞ þ Δ2ðrÞψðrÞ ¼ 0; ðA4Þ
where

Δ1ðrÞ ¼
r2pf0ðrÞ þ pðdþ 1Þr2p−1fðrÞ − 2iω

r2pfðrÞ

Δ2ðrÞ ¼ −
k2

r2p þm2 þ iω
r pðd − 1Þ

r2pfðrÞ : ðA5Þ

In order to find out the pole-skipping points, one needs to
consider the near-horizon limit. The near-horizon expan-
sion for the scalar field reads ψðrÞ as

ψðrÞ ¼ ψ0 þ ψ1ðr − rþÞ þ ψ2ðr − rþÞ2 þ � � � : ðA6Þ
By substituting the above near-horizon form of ψðrÞ in
Eq. (A4) and by equating the coefficients of ðr − rþÞj (for
j ¼ 0, 1, 2,…) to zero, one obtains a set of linear equations
which read as

χ00ψ0 þ χ01ψ1 ¼ 0;

χ10ψ0 þ χ11ψ1 þ χ12ψ2 ¼ 0;

χ20ψ0 þ χ21ψ1 þ χ22ψ2 þ χ23ψ3 ¼ 0

…; ðA7Þ

where

χ00 ¼ −
�
k2

r2pþ
þm2 þ iω

rþ
pðd − 1Þ

�

χ01 ¼ r2pþ f0ðrþÞ − 2iω

χ10 ¼ 0

χ11 ¼ 2r2pþ f00ðrþÞ þ pðdþ 1Þr2p−1þ f0ðrþÞ

−
�
k2

r2pþ
þm2 þ iω

rþ
pðd − 1Þ

�

χ12 ¼ 4r2pþ f0ðrþÞ − 4iω

:

:

: ðA8Þ
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The coefficients χij can be arranged to form a square matrix:

M ¼

2
6664
χ00 χ01 0 0 …

χ10 χ11 χ12 0 …

χ20 χ21 χ22 χ23 …

… … … …

3
7775:

The pole-skipping points are to be obtained by simultaneously solving the equations [46]

χn−1n ¼ 0; detðMÞ ¼ 0: ðA9Þ

We now provide the locations of some of these pole-skipping points. These read as

ω1 ¼ −i2πTH; k1 ¼ −i
2πTHffiffiffiffiffiffiffiffiffiffiffiffiffi

c
2pðd−1Þ

q �
1þ m2

2pðd − 1Þπ
�
4π

c

� 1
ð2p−1Þ

T
2−2p
2p−1
H

�
1=2

;

ω2 ¼ −i4πTH; k2 ¼ −i
4πTHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
pðd−1Þþ2ðcþ1Þ−pðdþ1Þ

q �
1þ m2

ð4πÞ2
�

c
pðd − 1Þ þ 2ðcþ 1Þ − pðdþ 1Þ

��
4π

c

� 2p
2p−1

T
2−2p
2p−1
H

�1=2
;

:

:

:

From the above one can observe that the pole-skipping points reside in the lower half of the complex ðω; kÞ plane. This is
quite expected from the relation given in Eq. (9) as we have considered scalar field fluctuation which has spin s ¼ 0. These
points are not related to the parameters of chaos as they are negative.
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