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The Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT) model is a promising candidate for a nonperturbative
description of type IIB superstring theory. It is known from analytic approaches and numerical simulations
that the IKKT matrix model with a mass term admits interesting cosmological solutions. However, this
mass term is often introduced by hand and serves as a regulator in the theory. In the present paper, we show
that an effective mass matrix can arise naturally in the IKKTmodel by imposing a toroidal compactification
where the space-time fermions acquire antiperiodic boundary conditions. When six spatial dimensions are
chosen to be compact, the effective mass matrix breaks the SO(1,9) space-time symmetry of the IKKT
model to SOð1; 3Þ × SOð6Þ. This paves the way for space-time solutions of the IKKTmodel where SO(1,9)
symmetry is naturally broken to SOð1; 3Þ × SOð6Þ.
DOI: 10.1103/PhysRevD.110.026024

I. INTRODUCTION

Superstring theory is a promising candidate for a self-
consistent unified theory of quantum gravity. An interest-
ing feature of the theory is that the dimensionality of
space-time is not arbitrary, but comes from the consistency
of the theory. Specifically, the theory is only consistently
defined in ten space-time dimensions. For this theory to
describe our world, one must impose that six out of the
nine spatial dimensions are compactified. This can be done
in many ways, resulting in a vast landscape of effective
descriptions of string theory in four dimensions. In
addition to the four-dimensional vacua, there exist other
ways to consistently compactify string theory to an
arbitrary number of dimensions, which results in vacua
that are not four dimensional. Clarifying why four-
dimensional vacua are preferred in the theory remains
an open question, which to this day does not have an
answer in perturbative string theory.
Another area where perturbative string theory lacks

predictive power is in the context of cosmology. While
string theory can be used to make predictions about the
Universe at late times, the cosmic singularity is not
resolved generally in perturbative string theory [1–4].
Therefore, to study the very early Universe and explain

the dimensionality of our world, we definitely need a
nonperturbative description.
There have been many proposals for a nonperturbative

description of string theory, most of them relying on matrix
models [5–7]. Among these theories, the Ishibashi-Kawai-
Kitazawa-Tsuchiya (IKKT) model [7], a nonperturbative
description of type IIB superstring theory, stands out as a
natural choice to explain the birth of the Universe. This
model is built around the action

SIKKT ¼ −
1

4g2
Tr½AM; AN �2 − 1

2g2
Trψ̄ΓM½AM;ψ �; ð1Þ

where large bosonic matrices AM’s encode information
about space-time, and large fermionic matrix ψ ’s are added
to preserve supersymmetry. In the action above, g is a
gauge coupling that is related to the string scale ls via
g ∼ l2s , and the indices are contracted using the Minkowski
metric in the mostly minus sign convention ηMN ¼
diagð1;−1;−1;…;−1Þ. Given the causal structure of the
space, A0 encodes information about time and Ai encodes
information about space, where i∈ f1;…; 9g labels the
nine space dimensions.
Over the years, there have been many attempts to find

solutions of the IKKT model that correspond to an
emergent four-dimensional universe. The first steps
toward finding these solutions were done by analyzing
the model using the Gaussian expansion method [8,9] to
investigate symmetry breaking in the theory. Using this
method, it was shown that the SO(10) symmetry of the
Euclidean version of this model can be spontaneously
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broken to SO(3) [10–13].1 Other studies based on the
complex Langevin method have also shown consistent
results [14,15], and a recent analysis in the context of the
Banks-Fischler-Shenker-Susskind (BFSS) model has a
lso shown progress in this direction [16]. Similarly,
Monte Carlo simulations of the Lorentzian model showed
that an expanding (1þ 3)-dimensional space-time can
emerge from an SO(1,9) symmetric state of the model
after a critical time [17–20]. To achieve this result,
approximations were made to avoid the sign problem of
the Lorentzian theory. However, further studies have
shown that these approximations are no longer valid when
the four space-time dimensions emerge [21]. Since then,
the Lorentzian model has been studied without this
approximation using the complex Langevin method,
where the emergence of four space-time dimensions
remains a topic of study [22–27].
In earlier numerical analyses of the Lorentzian IKKT

model, it was found in [17] that an important feature seems
to be required to obtain the emergence of (1þ 3) dimen-
sions. When (1þ 3) dimensions become large, certain
bounds used to regulate theory,

1

N
TrðA0Þ2 ≤ κ

1

N
TrðAiÞ2; ð2Þ

1

N
TrðAiÞ2 ≤ κL2; ð3Þ

become saturated. Saturating the constraints above is
equivalent to adding the following piece to the IKKT
action:

Sconst ¼
λ̃

2
TrðA2

0 − κL2Þ − λ

2
TrðA2

i − L2Þ; ð4Þ

where λ and λ̃ are Lagrange multipliers. Minimizing the
IKKT action in the presence of the constraint above, it was
shown analytically [28] and numerically [29] that various
cosmological solutions of the equation of motions can be
found. An important point to notice is that adding the
constraint piece in Eq. (4) to the IKKT action is equivalent
to adding a mass term to the theory, which may or may not
be Lorentz invariant depending on the choice of λ and λ̃.
Hence, adding a mass term to the theory can lead to
interesting cosmological solutions. In fact, various analyses
of the Lorentzian IKKT model with a mass term have been

done before, in which case it was shown that cosmological
solutions can also be found [30–33].2
Since an effective mass term arises as a possible

explanation for the emergence of cosmological solutions,
it seems natural to ask what conditions are necessary for a
mass term to naturally appear in the theory and what causes
the symmetry of space-time to break from SO(1,9) to
SOð1; 3Þ × SOð6Þ. In the present paper, we explore this
question by studying compactifications of the IKKTmodel.
We find that if six spatial dimensions are compactified in a
way that supersymmetry is broken, space-time fermions are
quenched and the IKKT model action develops an effective
mass matrix that breaks the SO(1,9) symmetry of the model
to SOð1; 3Þ × SOð6Þ. This leads the way for solutions of the
IKKT model where the SO(1,9) symmetry of space-time is
naturally broken to SOð1; 3Þ × SOð6Þ.

A. Outline

To obtain the mass matrix, we will proceed as follows. In
Sec. II, we will Wick rotate the Lorentzian IKKT model by
imposing the change of variables A0 → iA0 and Γi → iΓi to
obtain the Euclidean IKKT model action

SIKKT ¼ −
1

4g2
Tr½AM; AN �2 − i

2g2
Trψ̄ΓM½AM;ψ �: ð5Þ

This transformation to Euclidean space will be done
to simplify computations. Then, we will give the theory
boundary conditions similar to the Scherk-Schwarz
torus [42]. Namely, we will compactify the theory on a
six-dimensional torus where supersymmetry is broken by
imposing that the space-time fermionsψ acquire antiperiodic
boundary conditions. As a result, the IKKT model action
under compactification will become equivalent to a six-
dimensional Yang-Mills theory with the following action:

SC ¼ L6

2g2eff

Z
dσ6Tr

�
1

2
FabFab þDaAμDaAμ

−
1

2
½Aμ; Aν�2 þ ψ̄ΓaDaψ − iψ̄Γμ½Aμ;ψ �

�
; ð6Þ

where we have substituted the mode expansion

AM ¼
X

na ∈Z6

AMðnaÞei2πLnaσa ;

ψ ¼
X

ra ∈Z6þ1=2

ψðraÞei2πLraσa : ð7Þ

Here, μ∈ f0;…; 3g labels the noncompact directions,
a∈ f4; 5;…; 9g labels the compact directions, g2eff ¼
g2=N is an effective gauge coupling, and N is a large1Earlier results [10–12] showed that SO(10) is broken to

SO(4), while a more recent and careful study [13] suggests that
SO(10) is broken to SO(3) instead. The relationship between this
SO(3) symmetry and our four-dimensional universe is still under
study.

2See [34–38] for other deformations of the IKKT model which
admit cosmological solutions and [39–41] for recent progress in
the study of cosmological solutions in the IKKT model.
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integer that we will introduce later. In this six-dimensional
Yang-Mills theory, the zero modes describe noncompact
degrees of freedom, and the nonzero models describe
interactions between these noncompact degrees of free-
dom. Hence, by integrating out the nonzero modes in the
theory, one can obtain a Wilsonian effective action for the
noncompact degrees of freedom in the theory. In Sec. III,
we will compute this Wilsonian effective action from the
expression

S0eff ¼ − ln

 Y0

na ∈Z6

Y
rb ∈Z6þ1=2

Z
DAMðnaÞDψðrbÞe−SE

!
:

ð8Þ

Here,
Q0 means that we are not integrating over the zero

modes na ¼ 0 of the theory. This computation will be
done in the decompactification limit L ≫ g1=2eff , where
perturbation theory is valid and we expect to obtain a
result close to the IKKT action without the compactifi-
cation constraint [Eq. (1)]. Carrying out the computation
to leading order in perturbation theory and Wick rotating
back to Lorentzian space, we will find that the effective
action takes the form

S0eff ¼ −
1

4g2eff
Tr½AMð0Þ; ANð0Þ�2

þ 1

2
M2

MNTrðAMð0ÞANð0ÞÞ2 þ � � � ; ð9Þ

where the mass matrix

M2
MN ¼

"
ημνM2

4 0

0 ηabM2
6

#
ð10Þ

arises as a first-order correction which breaks SO(1,9)
symmetry to SOð1; 3Þ × SOð6Þ. In the expression above,
the masses M2

4 and M2
6 take the values

M2
4 ¼ 16ðSF1

− SB1
ÞNM
L2

; ð11Þ

M2
6 ¼

32

3
ðSF1

− SB1
ÞNM
L2

; ð12Þ

where the constants SB1
and SF1

are determined by the
following sums:

SB1
¼
X0

na ∈Z6

1

ð2πnaÞ2 ; SF1
¼

X
ra∈Z6þ1=2

1

ð2πraÞ2 : ð13Þ

The sums SB1
are SF1

are divergent in the large na and ra

limit. However, the difference between these two sums is

finite and takes the value SF1
− SB1

≈ 0.0397887 when
evaluated numerically.
The reason why we obtain Eq. (9) and not Eq. (1) in the

decompactification limit is because of broken supersym-
metry. Since the fermions have antiperiodic boundary
conditions, the fermionic zero modes are projected away
in the mode expansion. Hence, the fermionic sector does
not enter the zero-mode effective action. We are left with
the bosonic part of the IKKT action and a mass matrix
coming from integrating out interactions between the zero-
mode degrees of freedom in the theory. If supersymmetry is
restored by imposing that fermions have periodic boundary
conditions, ra becomes summed over Z6 instead of Z6 þ
1=2 in the sum SF1

. In this case, the masses M2
4 and M2

6

vanish since SB1
¼ SB2

, the fermions acquire a zero-mode
term, and we obtain the IKKT model action [Eq. (1)] with
an effective gauge coupling geff .

II. COMPACTIFICATION OF THE IKKT MODEL

Compactifying a matrix model presents a different chal-
lenge than compactifying a field theory. For one, there are no
free parameters in the matrix model that we can choose to be
compact. Hence, we must impose conditions on the matrices
themselves. To overcome this challenge, wewill make use of
the method of mirror images, which was first brought
forward by Washington Taylor in the context of D-brane
mechanics [43]. This method proved successful to explain
graviton scattering under toroidal compactification of the
BFSS model [44] and has recently been used to explain three
graviton amplitudes [45] and soft theorems [46] in this
same model.
This method builds on the fact that toroidal compacti-

fication is equivalent to duplicating a fundamental region of
the target space an infinite number of times along said
direction. For example, let us suppose we wish to compac-
tify the real line x∈R on a circle S1 of radius R. One option
would be to confine the real line to an interval x∈ ½0; 2πR½
where we impose periodic boundary conditions. Another
would be to invoke the fact that periodic boundary con-
ditions are equivalent to duplicating the interval ½0; 2πR½ an
infinite number of times along the real line. In other words,
each point on the real line can be associated with a point a
distance x → xþ 2πR away from this point. The math-
ematical term for this operation is called going to the
universal cover of the circle.
The same procedure can be applied to matrix models

to impose a compactification. Since the matrix model
describes a target space, we can impose that the target
space contains duplicated objects in the direction wewant to
compactify in an attempt to replicate the effects of a
compact space. To see how this is done in the context of
the IKKT model, let us first Wick rotate the Lorentzian
IKKT model to Euclidean space by imposing the change of
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variables A0 → iA0 and Γi → iΓi in the Lorentzian IKKT
model action. We obtain

SIKKT ¼ −
1

4g2
Tr½AM; AN �2 − i

2g2
Trψ̄ΓM½AM;ψ �: ð14Þ

As previously mentioned, we will be interested in configu-
rations of the IKKT model where six spatial directions Aa

are compact and where fermions acquire antiperiodic
boundary conditions. Such compactifications were first
studied by Scherk and Schwarz [42] in the context of
supergravity as a way to break supersymmetry in the lower-
dimensional theory. Similar studies were also done by
Rohm in string theory [47] and by Banks and Motl in
the context of matrix models [48]. In the present case, we
will generalize the one-dimensional case in [49], where
these boundary conditions were used to obtain a thermal
state of the IKKT model, to the case where six dimensions
are compactified. To do this, we will invoke the existence of
unitary operators Ua, which generate a translation in the Aa

direction of the target space. In addition, we impose that
these operators commute with each other,

UaUb ¼ UbUa; ð15Þ

so that translations in different compact directions can be
made independently of each other. Following our previous
discussion, compactifying the target space on a six-dimen-
sional torus where fermions acquire antiperiodic boundary
conditions should be equivalent to imposing the conditions

ðUbÞ−1AμUb ¼ Aμ; ð16Þ

ðUbÞ−1AaUb ¼ Aa þ 2πLδab; ð17Þ

ðUbÞ−1ψUb ¼ −ψ ; ð18Þ

where L is the torus radius. Here, μ labels the noncompact
space-time directions and a labels the compact space
directions. To solve the constraint equation above, we will
use an approach similar to the one in [50] and assume that
the Hilbert space that the A’s and ψ’s act on has the tensor
product form

X ¼ Y ⊗ Z; ð19Þ

where X is aM ×M matrix that will remain invariant under
the translation, and Z is a N × N matrix associated with the
Hilbert space the translations act on. We will then invoke
that Ua takes the following form:

Ua ¼ IM ⊗ e−i2πq
a
e−ip

a
; ð20Þ

where IM is the M-dimensional identity operator and qa

and pb are operators that satisfy the Heisenberg algebra

½qa; pb� ¼ iδab. With the form above, the unitary operator
Ua satisfies ðUaÞ−1qaUa ¼ qa þ 1 and generates a shift
from qa to qa þ 1. The extra factor of e−i2πq

a
does not affect

this shift. However, it will play a role in achieving the
antiperiodic boundary conditions for the fermions. Next, we
will note that a matrix of the form

B ¼
X
na

BðnaÞ ⊗ ein
apa

; ð21Þ

satisfies ðUaÞ−1BUa ¼ B if na is an integer, and
ðUaÞ−1BUa ¼ −B if na if a half-integer. Consequently, it
is possible to solve the constraint equations by imposing
that the matrices Aμ, Aa, and ψ take the following form:

Aμ ¼
X

nb ∈Z6

AμðnbÞ ⊗ ein
bpb

; ð22Þ

Aa ¼
X

nb ∈Z6

AaðnbÞ ⊗ ein
bpb þ 2πLIM ⊗ qa; ð23Þ

ψ ¼
X

rb ∈Z6þ1=2

ψðrbÞ ⊗ eir
bpb

: ð24Þ

In the expressions above, nb and rb are summed over N
integers and half-integers, respectively, where N is taken to
be large but finite. It is possible to show that, when written
in the jqai basis, the matrices above take the block Toeplitz
form depicted in Fig. 1. In this block Toeplitz form, the
diagonal blocks describe the distribution of objects within
an interval ½0; 2πL½ and their interactions. The off-diagonal
blocks, on their side, describe interactions between the
duplicated fundamental regions. Substituting the matrices
above in the IKKT model action and using the identities

½qa;einpb �¼−neinpb
δab; Treiðn�mÞpb ¼Nδðn�mÞ; ð25Þ

we obtain the momentum space representation of the Yang-
Mills action

SC ¼ L6

2g2eff

Z
dσ6Tr

�
1

2
FabFab þDaAμDaAμ

−
1

2
½Aμ; Aν�2 þ ψ̄ΓaDaψ − iψ̄Γμ½Aμ;ψ �

�
; ð26Þ

where g2eff ¼ g2=N is an effective gauge coupling and AM

and ψ are expanded using the mode decomposition

AM ¼
X

na ∈Z6

AMðnaÞei2πLnaσa ;

ψ ¼
X

ra ∈Z6þ1=2

ψðraÞei2πLraσa : ð27Þ
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Here, σ takes values inside the interval ½0; L−1½. Moreover,
AM and ψ respectively satisfy periodic and antiperiodic
boundary conditions. In the mode expansion above, the zero
modes are related to the distribution of objects and their
interactions in the fundamental regions, and the nonzero
modes are associated with interactions between fundamen-
tal regions [51]. In the decompactification limit L ≫ g1=2eff ,
one should expect the fundamental regions to be far away
from each other. In this case, interactions will be suppressed,
and we should obtain a theory that is approximately
described by the dynamics of the zero modes of the theory.
This can be seen by looking at the mode expansion

SC ¼ −
1

4g2eff
Tr½AMð0Þ; ANð0Þ�2

þ 1

2g2eff

X
na ∈Z6

ð2πLnaÞ2TrðAMð−naÞAMðnaÞÞ

þ 1

2g2eff

X
ra ∈Z6þ1=2

ð2πLraiÞTrðψ̄ðraÞΓaψðraÞÞ þ � � � ;

of the compact IKKT action. In the L ≫ g1=2eff limit, the
nonzero winding modes ωna ¼ 2πLna and ωra ¼ 2πLra

associated with the second and third term become heavy,
and interactions become suppressed in the path integral. As
a result, we expect the compact IKKT action to be
effectively described by the zero modes of the system.
This means we should recover the bosonic IKKT model
action

SC ¼ −
1

4g2eff
Tr½AMð0Þ; ANð0Þ�2 þ � � � ð28Þ

and possible corrections coming from interactions between
the fundamental regions. The fermions, in this case, do not

contribute since their zero modes are projected away by the
antiperiodic boundary conditions. As the radius of com-
pactification L decreases, one should expect that inter-
actions become important, leading to more corrections to
Eq. (28). In the following sections, we will derive the
leading corrections to Eq. (28) by evaluating a Wilsonian
effective action for the zero modes AMð0Þ of the theory. In
the limit where L ≫ g1=2eff , we will see that the effective
action of the zero modes acquires a mass matrix as a
leading-order correction, leading to symmetry breaking in
the theory.

III. WILSONIAN EFFECTIVE ACTION

To compute an effective action for the zero modes of the
theory, which describes the noncompact degrees of free-
dom, we will adopt a Wilsonian approach. This approach
will consist of integrating out the nonzero modes in the path
integral to obtain an action that depends exclusively on the
zero modes of the theory.
To see how this can be done, let us remind ourselves that

a Wilsonian effective action can be used to find an effective
description of the low energy modes of a theory by
integrating out high energy modes above a cutoff Λ. For
example, let us consider the action S½Φ� related to a scalar
field Φ. To obtain the low energy effective action for some
long wavelength modes ΦL, we can split the scalar field
Φ ¼ ΦL þΦS into the contributions from ΦL and the short
wavelength component ΦS. Then, the contribution of the
short wavelength modes ΦS can be integrated out in the
partition function in the following way:

Z ¼
Z

DΦe−S½Φ� ð29Þ

FIG. 1. Left: the diagonal blocks (black) describe the distribution of objects and their interactions in the duplicated regions, and the off-
diagonal blocks (red) describe interactions between the duplicated regions. Right: sketch of the duplicated regions along a compact
direction Aa. The line between the black dots depicts interactions inside (black) and across duplicated regions (red).
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¼
Z

DΦL

�Z
DΦSeS½ΦLþΦS�

�
ð30Þ

¼
Z

DΦLe−Seff ½ΦL� ð31Þ

to obtain a Wilsonian effective action Seff ½ΦL� of the short
wavelength componentΦL. This Wilsonian effective action
can be then computed from the expression

Seff ½ΦL� ¼ − ln

�Z
DΦSeS½ΦLþΦS�

�
: ð32Þ

In the present case, we want to obtain an effective action of
the zero modes AMð0Þ of the theory. This means that, in the
Wilsonian sense, we must integrate out all the nonzero
modes AMðnaÞ for na ≠ 0 and ψðraÞ in the path integral. To
do this, we can split AM ¼ AMð0Þ þP0

na ∈Z6 AMðnaÞeinaσa
into the zero-mode component AMð0Þ and the nonzero-

mode component
P0

na ∈Z6 AMðnaÞeinaσa . Here, P0
means

that we do not sum over the zero modes na ¼ 0. We will
then integrate out the nonzero modes in the partition
function in same way as for our scalar field example.
For the compact IKKT action [Eq. (26)], this gives us

Z ¼
Y

narb ∈Z6

Z
DAMðnaÞDψðrbÞe−SC ð33Þ

¼
Z

DAMð0Þ
 Y

rb ∈Z6þ1=2

Z
DAMðnaÞDψðrbÞe−SC

!

ð34Þ

¼
Z

DAMð0Þe−S0eff ; ð35Þ

where

S0eff ¼ − ln

 Y 0

na ∈Z6

Y
rb ∈Z6þ1=2

Z
DAMðnaÞDψðrbÞe−SC

!

ð36Þ

can be identified as the zero-mode effective action. Here
again, we remind the reader that

Q0 means we integrate over
all the modes na ∈Z6 except the zero modes na ¼ 0 of
the theory. This means that S0eff will depend exclusively on
the zero modes AMð0Þ that have not been integrated

over. The goal of the next sections will be to compute
the quantity above. This will be done using standard
perturbative methods.

A. Choice of γ matrix representation and gauge fixing

As a first step toward computing Eq. (36), we will choose
a convenient representation for the γ matrices that reflects
the fact that SOð10Þ symmetry is broken to SOð4Þ × SOð6Þ
by our choice of compactification. We will do this in a way
to preserves the Majorana and Weyl conditions

Γ11ψ ¼ ψ ; ψ̄ ¼ ψTC10 ð37Þ

which the fermions must satisfy for the theory to be
supersymmetric. Here, Γ11 and C10 are respectively the
chirality operator and the charge conjugation operator in 10
dimensions. In the present case, we will use the represen-
tation introduced in [52] and consider Γ matrices of the
form

Γa ¼ Γ̃a ⊗ 1; Γμ ¼ Γ̃7 ⊗ γμ; ð38Þ

where Γ̃a are SO(6) γ matrices, Γ̃7 is the chirality operator
for these matrices, and γμ are SO(4) γ matrices (see [53] for
other convenient representations). We will further require
that the SO(4) γ matrices are in the Weyl representation

γμ ¼
�

0 σμ

σ̄μ 0

�
; ð39Þ

where σμ and σ̄μ are Pauli 4-vectors which satisfy

σ̄0 ¼ σ0 ¼ 1; σ̄i ¼ −σi; fσi; σjg ¼ −2δij: ð40Þ

In this representation, the chirality and charge conjugation
operator for the ten-dimensional Γ matrices take the form

Γ11 ¼ Γ̃7 ⊗
�
1 0

0 −1

�
; C10 ¼ C6 ⊗

�
iσ2 0

0 −iσ2

�
:

ð41Þ

Therefore, the Majorana and Weyl conditions reduce to

ψ ¼
 
ψAþ
ψA
−

!
; Γ̃7ψ

A
� ¼ �ψA

�; ψA
� ¼ �ϵABC6ðψ̄A

�ÞT;

ð42Þ

where A ¼ 1, 2. Given our choice of γ matrices, the
compact IKKT action takes the form
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SC ¼ L6

2g2eff

Z
dσ6Tr

�
1

2
FabFab þDaAμDaAμ −

1

2
½Aμ; Aν�2 þ 1

2
ψ̄AþΓ̃a

∂aψ
Aþ þ 1

2
ψ̄A
−Γ̃a

∂aψ
A
− ð43Þ

−
i
2
ψ̄AþΓ̃a½Aa;ψAþ� −

i
2
ψ̄A
−Γ̃a½Aa;ψA

−� þ
i
2
ψ̄AþðσμÞAB½Aμ;ψB

−� −
i
2
ψ̄A
−ðσ̄μÞAB½Aμ;ψBþ�

�
: ð44Þ

In addition to our choice of γ matrices, we will choose to work in the Lorenz gauge ∂aAa ¼ 0. This choice can be imposed
by adding the ghost term

Sgh ¼
L6

g2eff

Z
dσ6Trð∂ac̄DacÞ ð45Þ

to the compact IKKT action.

B. Mode expansion

Next, we will decompose the compact IKKT action into its different Fourier modes and separate the zero mode and the
nonzero mode of the action. To do this, we will first separate the compact IKKT action Sc ¼ Skin þ Sint in a kinetic part

Skin ¼ L6

Z
dσ6Tr

�
1

2
∂aAN∂

aAN þ 1

2
ψ̄AþΓ̃a

∂aψ
Aþ þ 1

2
ψ̄A
−Γ̃a

∂aψ
A
− þ ∂ac̄∂ac

�
ð46Þ

and an interaction part

Sint ¼ L6

Z
dσ6Tr

�
−i∂aAN ½Aa; AN � − 1

4
½AM; AN �2 − i

2
ψ̄AþΓ̃a½Aa;ψAþ� ð47Þ

−
i
2
ψ̄A
−Γ̃a½Aa;ψA

−� þ
i
2
ψ̄AþðσμÞAB½Aμ;ψB

−� −
i
2
ψ̄A
−ðσ̄μÞAB½Aμ;ψBþ� − i∂ac̄½Aa; c�

�
: ð48Þ

Then, we will rescale the gauge fields, the fermions, and the ghosts to make them dimensionless using the change of
variable

AM → λLAM; ψþ → λL3=2ψþ; ψ− → λL3=2ψ−; c → λLc: ð49Þ

Here, λ is a dimensionless parameter defined by λ2 ≡ g2eff=L
4, which will play a role later in the perturbative expansion of

Eq. (36). Finally, we will substitute the mode expansion

AM ¼
X

na ∈Z6

AMðnaÞei2πLnaσa ; ψ ¼
X

ra ∈Z6þ1=2

ψðraÞei2πLraσa ; c ¼
X

na ∈Z6

cðnaÞei2πLnaσa ; ð50Þ

in SC ¼ Skin þ Sint. After this substitution, the compact IKKT action can be written in the form SC ¼ S0 þ S0kin þ S0int,
where

S0 ¼ −
λ2

4
Tr½AMð0Þ; ANð0Þ�2 ð51Þ

is the zero-mode part of the action, and

S0kin ¼
1

2

X0

na ∈Z6

ð2πnaÞ2TrðAMðnaÞAMð−naÞÞ þ 1

2

X
ra ∈Z6þ1=2

ð2πraiÞψ̄AþðraÞΓ̃aψAþðraÞ ð52Þ

þ 1

2

X
ra ∈Z6þ1=2

ð2πraiÞψ̄A
−ðraÞΓ̃aψA

−ðraÞ þ
X0

na ∈Z6

ð2πnaÞ2Trðc̄ðnaÞcðnaÞÞ ð53Þ
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is the kinetic part where the zero modes, which do not contribute, are not summed over. The final term, corresponding to the
interaction part where the zero modes have been removed, takes the form

S0int ¼
X5
i¼1

Vi; ð54Þ

where the Vi’s are given by

V1 ¼ −
λ2

4

X0

namala ∈Z6

Trð½AMð−na −ma − laÞ; ANðnaÞ�½AMðmaÞ; ANðlaÞ�Þ; ð55Þ

V2 ¼ −λ
X0

nama ∈Z6

2πðna þmaÞTrðAMð−na −maÞ½AaðnaÞ; AMðmaÞ�Þ; ð56Þ

V3 ¼ −
i
2
λ

X0

ra ∈Z6þ1=2;na ∈Z6

Trðψ̄Aþðra þ naÞΓ̃b½AbðnaÞ;ψAþðraÞ�Þ; ð57Þ

V4 ¼ −
i
2
λ

X0

ra ∈Z6þ1=2;na ∈Z6

Trðψ̄A
−ðra þ naÞΓ̃b½AbðnaÞ;ψA

−ðraÞ�Þ; ð58Þ

V5 ¼
i
2
λ

X0

ra ∈Z6þ1=2;na ∈Z6

Trðψ̄Aþðra þ naÞðσμÞAB½AμðnaÞ;ψB
−ðraÞ�Þ; ð59Þ

V6 ¼ −
i
2
λ

X0

ra ∈Z6þ1=2;na ∈Z6

Trðψ̄A
−ðra þ naÞðσ̄μÞAB½AμðnaÞ;ψBþðraÞ�Þ; ð60Þ

V7 ¼ −λ
X0

na ∈Z6þ1=2;ma ∈Z6

2πðna þmbÞTrðc̄ðna þmaÞ½AaðnaÞ; cðmaÞ�Þ: ð61Þ

C. Zero mode effective action

We are now in a position to evaluate the Wilsonian
effective action for the zero modes of the theory. Before
taking on the task of evaluating Eq. (36), let us pause and
notice that the only free parameter in Eqs. (51)–(61) is the
dimensionless quantity λ. In the computation that follows, λ
will play the role of expansion parameter. Since S0 is an
Oðλ2Þ quantity, we will only be concerned with corrections
to S0 that contribute at Oðλ2Þ order, neglecting the higher-
order corrections. This approximation is valid when λ ≪ 1

or, in other words, when L ≫ g1=2eff . In the IKKT model, g2

is related to the string scale ls via g2 ∼ l4s . Hence, our
approximation will be valid when the compactification
radius L is much larger than the string length ls.
To evaluate (36), we will first substitute SE ¼

S0 þ S0kin þ S0int in our definition for the zero-mode

effective action of the theory [Eq. (36)]. We obtain

S0eff ¼ − ln

 Y0

na ∈Z6

Y
rb ∈Z6þ1=2

Z
DAMðnaÞDψðrbÞe−SC

!

¼ − ln

�
e−S0

Y0

na ∈Z6

Y
rb ∈Z6þ1=2

×
Z

DAMðnaÞDψðrbÞe−S0kin−S0int
�

¼ S0 − lnZkin − lnhe−S0inti;

where we have defined
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Zkin ¼
Y0

na ∈Z6

Y
rb ∈Z6þ1=2

DAMðnaÞDψðrbÞe−S0kin ;

h:i ¼ 1

Zkin

Y0

na ∈Z6

Y
rb ∈Z6þ1=2

Z
DAMðnaÞDψðrbÞ:e−S0kin :

ð62Þ

As expected, the first term lets us recover the bosonic part
of the IKKT action. The second term, on its side, does not
depend on AMð0Þ and is nondynamical. For this reason, we
will simply ignore it. Finally, we have the term − lnhe−Sinti
which is dynamical and will bring correction to the bosonic
IKKT action. This term can be evaluated perturbatively by
expanding it in the form

− lnhe−Sinti ¼
�
Sint −

1

2
S2int þ � � �

�
c

¼ hV1ic −
1

2
hV2

2ic −
1

2
hV2

3ic −
1

2
hV2

4ic

− hV5V6ic −
1

2
hV2

7ic þ � � � ;

where h:ic denotes the fact that only connected diagrams
contribute to the expectation value. In the expression above,
we have only kept the terms that contribute to leading order
[Oðλ2Þ]. All other contributions from the vertex terms
[Eqs. (55)–(61)] either vanish or contribute at next to
leading [Oðλ4Þ] order or at a higher order in the expansion
parameter λ. To evaluate the quantities above, it is useful to
write down the two-point functions

hAMðnaÞANðmaÞi ¼ δMNδnaþma;0

ð2πnaÞ2 ; ð63Þ

hψ̄AþαðraÞψB
þβðsaÞi ¼ −i

2πraΓ̃a
αβδABδra;sa

ð2πraÞ2 ; ð64Þ

hψ̄A
−αðraÞψB

−βðsaÞi ¼ −i
2πraΓ̃a

αβδABδra;sa

ð2πraÞ2 ; ð65Þ

hc̄ðnaÞcðmaÞi ¼ δna;mb

ð2πnaÞ2 ; ð66Þ

for the gauge fields, the fermions, and the ghosts.3 Using
the two-point functions above, we find

hV1ic ¼ 9λ2MSB1
TrðANð0ÞÞ2;

hV2
2ic ¼ 2λ2Mðð17SB2

þ SB1
ÞTrðAa

0Þ2 þ SB1
TrðAμð0ÞÞ2Þ;

hV2
3ic ¼ −8λ2Mð2SF2

− SF1
ÞTrðAað0ÞÞ2;

hV2
4ic ¼ −8λ2Mð2SF2

− SF1
ÞTrðAað0ÞÞ2;

hV5V6ic ¼ 8λ2MSF1
TrðAμð0ÞÞ2;

hV2
7ic ¼ −2λ2MSB2

TrðAað0ÞÞ2;

where SB1
, SB2

, SF1
, and SF2

are defined as follows:

SB1
¼
X0

na∈Z6

1

ð2πnaÞ2 ; SF1
¼

X
ra∈Z6þ1=2

1

ð2πraÞ2 ; ð67Þ

SB2
¼
X0

na∈Z6

ð2πn1Þ2
ð2πnaÞ4 ; SF2

¼
X

ra∈Z6þ1=2

ð2πr1Þ2
ð2πraÞ4 : ð68Þ

Adding each term in the expansion, we find

− lnheiSinti ¼ −8ðSF1
− SB1

Þλ2MTrðAμð0ÞÞ2
− 8ðSF1

− SB1
− 2ðSF2

− SB2
ÞÞλ2MTrðAað0ÞÞ2

þOðλ4Þ: ð69Þ

The expression above can be simplified by noting that
SB1

¼ 6SB2
and SF1

¼ 6SF2
. Adding the correction terms to

S0, the zero-mode effective action at Oðλ2Þ takes the form

S0eff ¼
�
−
1

4
Tr½AMð0Þ;ANð0Þ�2 − 8ðSF1

− SB1
ÞMTrðAμð0ÞÞ2

−
16

3
ðSF1

− SB1
ÞTrðAað0ÞÞ2

�
λ2 þOðλ4Þ: ð70Þ

Hence, we find that, at leading order, the corrections to S0
take the form of two mass terms: one associated with the
noncompact directions Aμ and one associated with the
compact directions Aa. As expected, these corrections
break the SOð10Þ symmetry of the target space to
SOð3Þ × SOð6Þ. This is to be expected since by choosing
to compactify six spatial dimensions, we are picking six
special directions in space. The zero-mode effective action
at leading order in perturbation theory reflects this fact.
The expression above can be more neatly written after

undoing our previous change of variable via AM →
λ−1L−1AM. In passing, we will also go back to
Lorentzian signature by imposing A0 → −iA0. In this case,
the effective action takes the form

S0eff ¼ −
1

4g2eff
Tr½AMð0Þ; ANð0Þ�2

þ 1

2
M2

MNTrðAMð0ÞANð0ÞÞ2 þ � � � ; ð71Þ

3In Eqs. (63)–(66), we did not write down the matrix indices
to avoid cluttering the notation. Here, the two-point functions
of any two matrices Aab and Bcd should take the form
hAabBcdi ∼ δadδbc, where a, b, c, and d are matrix indices.
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where we have defined a mass matrix

M2
MN ¼

�
ημνM2

4 0

0 ηabM2
6

�
; ð72Þ

which includes two mass terms

M2
4 ¼ 16ðSF1

− SB1
ÞNM
L2

; ð73Þ

M2
6 ¼

32

3
ðSF1

− SB1
ÞNM
L2

: ð74Þ

In the expression above, the sums SB1 and SF1 individually
diverge in the limit where N is large. However, it is
possible to isolate the divergence in these sums by
rewriting them as an integral and using Poisson resum-
mation. What we find is rather interesting. It turns out that
SB1 and SF1

have the same divergent piece which is
canceled by the difference SF1

− SB1
. It is then possible

to evaluate the difference numerically, which gives
SF1

− SB1
≈ 0.0397887. A detailed derivation of this result

can be found in the Appendix.
Notice that the breaking of supersymmetry plays a crucial

role in obtaining nonvanishing masses M2
4 and M2

6. If
supersymmetry is restored by imposing that fermions have
periodic boundary conditions, then ra becomes summed
over Z6 instead of Z6 þ 1=2, and the masses vanish since
SB1

¼ SB2
. Moreover, the fermions are indeed projected

away by the antiperiodic boundary conditions, as expected.
When supersymmetry is restored, the fermions have zero-
mode terms that will appear at leading order in perturbation
theory, and we recover the noncompact IKKT model action
[Eq. (1)] with an effective gauge coupling geff .
This quenching of the fermions in the decompactifica-

tion limit is something we fully expect from this system
given the field theory interpretation of the compact matrix
models. In the literature, compact matrix theory actions of
the form (26) are often defined as a Yang-Mills theory
compactified on a dual torus of radius L0 ¼ 1=ð2πLÞ [43].
This is why, in action (26), the parameter σ takes values in
the interval ½0; L−1� instead of ½0; 2πL� as one would expect.
From the field theory point of view, the fermions become
quenched when the radius L0 of the dual torus goes to zero,
as one would expect for fermions with antiperiodic boun-
dary conditions. In the matrix model, this compactification
limit is in fact a decompactification limit. Hence, we obtain
a quenching of the fermions in the large volume limit
instead.
The mass term correction, on its side, arises at leading

order when integrating out the nonzero modes of the
theory. This means that, in the decompactification limit,
one cannot ignore residual interactions between duplicated
regions. This potentially implies that interactions between
regions are long ranged and cannot be ignored even at large

distances. A consequence of this phenomenon seems to be
the breaking of gauge invariance in the fundamental
regions. Since interactions between regions cannot be
ignored, the theory develops an effective potential that
takes the form of a mass term. This mass term, which
impacts the distribution of objects and their interactions in
the fundamental regions, also breaks the gauge invariance
of the theory.4 One may view this as being problematic
since, naively, it should be expected that gauge invariance
is preserved in the decompactification limit. This intuition
comes from the fact that, in the decompactification limit,
we should recover the same theory we started with, along
with the same symmetries. However, we should remind
ourselves that this is not the case when compactifying
matrix theories. Instead of recovering the initial system, we
recover a large N number of copies of the initial system, as
reflected by the overall factor of N in the equation which is
absorbed in the effective coupling g2eff ¼ g2=N. These
copies come from the fact that we have duplicated a
fundamental region N times along the compact directions.
Since we do not recover the same system we started with, it
is possible that some symmetries of the original system are
not preserved. In the present case, we find that gauge
symmetry in the fundamental regions is dependent on the
structure of the interaction between them. If supersym-
metry is preserved, interactions vanish and gauge sym-
metry is preserved. If supersymmetry is broken, the gauge
symmetry is broken.
It is worth noting that compactifying a matrix theory on a

higher-dimensional torus can lead to some issues. For
example, in the BFSS matrix model, decoupling breaks
down when the theory is compactified on Tk where k > 5
(see [54] for more detail). However, this problem only
arises when the compactification radius L is taken to be
small and the system starts behaving like a dual quantum
field theory. In the present case, the compactification radius
is taken to be large, and the obtained system is closer to the
IKKT model than a dual quantum field theory. Hence, we
do not expect this issue to arise here.5

IV. CONCLUSION AND DISCUSSION

In this paper, we compactified the IKKT matrix model
on a six-dimensional torus where the space-time fermions
acquire antiperiodic boundary conditions, and we found
that the Wilsonian effective action for the noncompact
degrees of freedom in the theory acquires an effective
mass term which breaks the SO(1,9) symmetry of the
IKKT model to SOð1; 3Þ × SOð6Þ. This mass matrix arises
as a result of broken supersymmetry. If supersymmetry is

4The IKKT model action is invariant under the gauge varia-
tions δAM ¼ i½AM; α� and δψ ¼ i½ψ ; α�, where α is an arbitrary
matrix. Including a mass term in the theory breaks this symmetry.

5We thank Savdeep Sethi for bringing this point to our
attention.
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restored, the conventional IKKT action [Eq. (1)] is
recovered.
It would be interesting to see if the equations of motion of

the effective action we have found have interesting cosmo-
logical solutions. Given that the SO(1,9) space-time sym-
metry of the IKKT model is broken to SOð1; 3Þ × SOð6Þ,
one may expect there exist solutions where three space
dimensions expand, and the six others stay small. In this
case, it might be possible that a supersymmetry-breaking
compactification is responsible for the emergence of three
large space dimensions in recent numerical simulations of
the IKKT model.
Assuming interesting cosmological solutions exist, it

might be possible to use them to test recent predictions in
matrix cosmology, one of them being the scale invariance
of cosmological perturbations [49,55] (see for [56] a
summary of progress and challenges in these scenarios).
Another avenue of research would be to test a recent space-
time metric proposal in the IKKT matrix model [57] using
these solutions or to repeat our analysis in the BFSS matrix
model. In this case, one may find a possible connection
with cosmological scenarios found in nonsupersymmetric
string theories [58].
Another exciting perspective is that higher-order correc-

tion to the Wilsonian effective action allows for fuzzy de
Sitter space solutions [59–62]. For example, fuzzy dS4 is
described by four “Pauli-Lubanski” vectors that act as
Casimir operators of the SO(1,4) group. Since these
operators are built out of Lorentz generators of the SO
(1,4) group, they satisfy well-known commutation rela-
tions. It would be interesting to see if these commutation
relations are solutions of the IKKT model under compac-
tification when higher-order corrections are considered.
Finally, it is worthwhile to mention that effective mass

terms have been found in matrix models before, notably in
the following work [63,64]. However, in this case, the
analysis was done for bosonic (1þ D)- and (2þ D)-
dimensional Yang-Mills theories where all but one or
two of the space-time matrices are integrated out. (1þ D)-
and (2þ D)-dimensional Yang-Mills theories can be
viewed as a (1þ D)- and (2þ D)-dimensional IKKT
model where one or two dimensions are compactified
on a torus. Hence, our analysis can be viewed as a special
case of this work in which we consider a (6þ 4)-dimen-
sional Yang-Mills theory where fermions are included,
supersymmetry is broken, and all bosonic matrices remain
in the effective action. Contrary to [63,64], we have
restrained ourselves to the limit where the compactification
radius L is large but finite. It would be interesting to see if
phase transitions appear as we decrease the compactifica-
tion radius.
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APPENDIX: EPSTEIN SERIES
REGULARIZATION

When deriving the zero-mode effective action of the
IKKT model, we encountered the sums SB1 and SF1. These
sums involve Epstein and Epstein-Hurwitz series that are
divergent in the limit where N → ∞. In the present section,
we show that the divergent part of these sums can be
isolated by introducing a regulator in the sums. When this is
done, we find that SB1 and SF1 have the same divergent part,
which is canceled in the difference SF1 − SB1. Evaluating
the difference numerically, we find SF1 − SB1 ≈ 0.0397887.

1. Bosonic sum

We will first start by treating the divergence of the
bosonic sum

SB1
¼
X0

n⃗∈Z6

1

j2πn⃗j2 : ðA1Þ

Here, we will use the vector notation na ¼ n⃗ for simplicity.
This sum involves the Epstein series

EB ¼
X0

n⃗∈Zd

1

jn⃗j2 ; ðA2Þ

which diverges when d=2 > 1. To treat the divergence, we
will modify the sum to include a UV regulator. Let us
consider the expression

X0

n⃗∈Zd

e−α
2jn⃗j2

jn⃗j2 : ðA3Þ

Here, α2 plays the role of cutoff which truncates the modes
above N ∼ α−1 out of the sum, hence taming the diver-
gence. In the limit where α2 → 0, all modes contribute to
the sum and the expression above reduces to EB.
Equation (A3) can rewritten in integral form using the
property
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1

jn⃗j2 ¼
Z

∞

0

dte−tjn⃗j2 : ðA4Þ

We obtain

X0

n⃗∈Zd

e−α
2jn⃗j2

jn⃗j2 ¼
Z

∞

0

dt
X0

n⃗∈Zd

e−ðtþα2Þjn⃗j2 ðA5Þ

¼ π

Z
∞

α2=π
dtðθdðtÞ − 1Þ; ðA6Þ

where we made use of the function

θðtÞ ¼
X∞
n¼−∞

e−πtn
2

: ðA7Þ

Since θðtÞ ∼ t−1=2 when t → 0, the integrand in Eq. (A6)
diverges in the limit when the regulator α2 goes to zero. To
deal with the divergent part of the integral, we will rewrite
the part of the integral in the interval t∈ ½α2=π; 1� by
making use of the property

θðtÞ ¼ 1

t1=2
θð1=tÞ; ðA8Þ

which can be derived using Poisson’s resummation for-
mula. Substituting the expression above in (A6), we obtain

Z
1

α2=π
dtðθdðtÞ−1Þ¼

Z
π=α2

1

dttd=2−1ðθdðtÞ−1Þ

−
d

d−2
þα2þ 2

d−2

�
π

α2

�
d=2−1

: ðA9Þ

In the expression above, the integral is finite for all values
of d. Hence, for d=2 > 1, the only divergent piece when
α2 → 0 comes from the last term which is inversely
proportional to α2. Piecing everything together and letting
α2 go to zero, we obtain

EB ¼ π

�Z
∞

1

dtð1þ td=2−1ÞðθdðtÞ − 1Þ

−
d

d − 2
þ 2

d − 2

�
π

α2

�
d=2−1

�
: ðA10Þ

When d ¼ 6, which is the case we are interested in,
substituting the value of the EB in SB1

gives us

SB1
¼ 1

4π

�Z
∞

1

dtð1þ t2Þðθ6ðtÞ − 1Þ − 3

2
þ 1

2

�
π

α2

�
2
�
:

ðA11Þ

2. Fermionic sum

Finally, we will evaluate the fermionic sum

SF1
¼

X
n⃗∈Z6þ1=2

1

j2πn⃗j2 ; ðA12Þ

where the vector notation na ¼ n⃗ is used for simplicity. In
this case, we will be interested in the Epstein-Hurwitz series

EF ¼
X
n⃗∈Zd

1

jn⃗þ aj2 ; ðA13Þ

when a ≠ 0. Here again, we will modify the sum to include
a regulator α2, which truncates the modes above N ∼ α−1

out of the sum. In the present case, the expression of
interest will be

X
n⃗∈Zd

e−α
2jn⃗þaj2

jn⃗þ aj2 ; ðA14Þ

which reduces to EF when α2 goes to zero. Making use of
Eq. (A4), the sum above can be rewritten as an integral. We
obtain

X
n⃗∈Zd

e−α
2jn⃗þaj2

jn⃗þ aj2 ¼
Z

∞

0

dt
X
n⃗∈Zd

e−ðtþα2Þjn⃗þaj2 ðA15Þ

¼ π

Z
∞

α2=π
dtθdðtjaÞ; ðA16Þ

where we defined the function

θðtjaÞ ¼
X∞
n¼−∞

e−πtðnþaÞ2 : ðA17Þ

Just like θðtÞ, the function above can be approximated as
θðtjaÞ ∼ t−1=2 when t → 0, so the integrand in Eq. (A16)
diverges in the limit when the regulator α2 goes to zero. To
treat this divergence, we will rewrite the divergent part of
the integral by making use of the property

θðtjaÞ ¼ e−πa
2t

t1=2
θð1=tjiatÞ; ðA18Þ

which can be derived using Poisson’s resummation for-
mula. In this case, the divergent part of the integral can be
written as

Z
1

α2=π
dtθdðtjaÞ ¼

Z
π=α2

1

dttd=2−1ðe−πda2=tθdðtjia=tÞ − 1Þ

−
2

d − 2
þ 2

d − 2

�
π

α2

�
d=2−1

: ðA19Þ
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The integral on the right-hand side of the expression above is convergent for all values of d. Hence, when d=2 > 1, the only
divergent piece comes from the last term which is inversely proportional to α2. Piecing everything together and letting α2 go
to zero, we obtain

EF ¼ π

�Z
∞

1

dtθdðtjaÞ þ
Z

∞

1

dttd=2−1ðe−πda2=tθdðtjia=tÞ − 1Þ − 2

d − 2
þ 2

d − 2

�
π

α2

�
d=2−1

�
: ðA20Þ

Letting d ¼ 6 and a ¼ 1=2, we can finally evaluate SF1
by substituting EF in Eq. (A12). We obtain

SF1
¼ 1

4π

�Z
∞

1

dtθ6ðtj1=2Þ þ
Z

∞

1

dtt2ðe−3π
2tθ6ðtjið2tÞ−1Þ − 1Þ − 1

2
þ 1

2

�
π

α2

�
2
�
: ðA21Þ

As we can see, the divergent piece in SF1 is the same one
that we obtained for SB1. This is because in the t → 0 limit,
the θ function in the integrand (A16) behaves as θðtjaÞ ∼
t−1=2 independent of a. Consequently, integrating θðtjaÞd
in the vicinity of t → 0 yields the same divergent piece
regardless of if a takes the value zero (in the bosonic case)
or 1=2 (in the fermionic case). This means that subtracting

SB1
from SF1

should give a finite value, which can be
obtained by carrying out each integral in SB1

and SF1
.

Carrying out the integrals numerically, we obtain

SF1 − SB1
¼ 0.0397887: ðA22Þ
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