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Monte Carlo algorithms are barely considered in spin foam quantum gravity. Due to the quantum nature
of spin foam amplitudes one cannot readily apply them and the present sign problem is a threat to
convergence, and thus efficiency. Yet, ultimately the severity of the sign problem in spin foams is not
known. In this article we propose a new probability distribution for coherent (boundary) intertwiners, which
we use to define a Markov chain Monte Carlo algorithm. We apply this algorithm to the SU(2) coherent
vertex amplitude for various Regge-type boundary data and find convergent, accurate results at far lower
costs than the explicit calculation. The resources are instead used to increase the size of boundary spins,
bridging the gap to the asymptotic formulas. While the sign problem is not solved, it is under control in the
vast majority of cases. We close by discussing how this algorithm can be extended to larger triangulations
with boundary and 4d Lorentzian spin foam models. More speculatively, we discuss how this algorithm can
be used to sample (Regge-geometric) bulk intertwiners.
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I. INTRODUCTION

Spin foam quantum gravity [1,2] is a nonperturbative,
background independent path integral approach of quan-
tum gravity, which is often referred to as a covariant
formulation of loop quantum gravity [3,4]. It constructs
quantum space-time by gluing and superimposing quantum
geometric building blocks [5]. These building blocks and
their associated amplitudes are derived from general
relativity written as a constrained topological quantum
field theory [6,7]. To regularize the path integral, the theory
is discretrized on a 2-complex, which is typically chosen to
be dual to a triangulation, and then colored with group
theoretic data encoding the quantum geometry. Eventually,
the dynamics is implemented by summing over these data
weighted by quantum amplitudes.
Beyond the theoretical elevator pitch, we face the chal-

lenge of turning spin foam models into a computational
formalism; we need to be able to efficiently and reliably
extract results from the theory, e.g. expectation values of
observables describing a semiclassical geometry. Part of this
question is to understand the impact of the discretization and
how to remove it in a suitable continuum limit [8–10]. Thus,
we must perform explicit nonperturbative calculations on
large triangulationswithmany degrees of freedom forwhich
efficient numerical techniques are vital.
However, the before mentioned quantum, i.e. non-Wick-

rotated, amplitudes pose a challenge: they are not positive
(semi)definite and can be complex, e.g. after introducing

coherent states [11], and are typically highly oscillatory.
Many methods in spin foams developed and used so far are
adapted to this. The derivations of asymptotic formulas of
spin foam vertex amplitudes [12–17], which oscillate with
the Regge action [18], exploit this oscillatory nature by
employing stationary phase analysis. In recent years, this
was generalized to larger triangulations using so-called
complex critical points [19–22]. In this context complex
refers to relevant configuration in addition to the dominat-
ing real critical points, where the former include curved
configurations. Thus, this method suggests a route to avoid
the so-called flatness problem [23–25].
However, asymptotic methods are valid approximations

only for large representations; they are not accurate for small
representations where geometry exhibits a more quantum
behavior. The gap to the small representation regime has
been bridged numerically in recent years [22,26–28], with
explicit calculations tackling triangulations with multiple
simplices [29–31]. These works rely on an explicit numerical
implementation of the representation theoretic calculations
utilizing suitable analytical identities and efficient recoup-
ling symbol libraries (mostly) avoiding truncations. The
outstanding achievement is the creation of the library
sl2cfoam-next1 [32] with which amplitudes of the
Lorentzian Engle-Pereira-Rovelli-Livine (EPRL)-FK model
[33,34] can be computed. These have been applied to a
variety of physical systems [35–37]. Nevertheless, these
calculations are costly, and what is more that these costs
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grow rapidly with the size of (boundary) representations as
well as the size of triangulation, i.e. more degrees of freedom
to explicitly sum over.
In an attempt to forego these costly computations and

focus on the explicit path integral evaluation for larger
triangulations, effective spin foams [38–42] were devel-
oped; instead of using the full amplitude, one assigns the
exponentiated Regge action to each vertex restricting each
vertex individually to a geometric 4-simplex. Such ampli-
tudes are rapid to compute and the free resources can
instead be used to explicitly sum over geometries. This sum
is defined as a sum over all areas using the area Regge
action [43–45]. To return to length Regge calculus second
class simplicity constraints are modeled as Gaussian-
shaped gluing constraints peaked on shape matching
tetrahedra,2 such that two glued 4-simplices agree on the
lengths assigned to the shared tetrahedron. This particular
realization also suggests a reason (and how to avoid) the
flatness problem [39]. One goal of this approach is then to
investigate the emergence of semiclassical physics from the
dynamics of the quantum theory, e.g. cosmology from
Regge calculus [46–48]. One promising numerical method
has been recently rediscovered [49], so-called acceleration
operators [50,51], that are efficient for computing sums of
highly oscillating functions as they appear in spin foams.
Related to effective spin foams are also so-called restricted
spin foams [52–54], which restrict the spin foam path
integral to particular configurations, e.g. cuboids, and
utilizes the asymptotic formula to accelerate numerical
calculations. This strategy was e.g. successful to investigate
coarse graining flows [55–57], observables like the spectral
dimension [58,59] and matter coupling [60].
However, summing/integrating over a large numbers of

variables explicitly becomes inefficient as the number of
configurations in general grows exponentially. Monte Carlo
methods instead attempt to find an approximation by
considering a finite number of samples of configurations,
hence the costs do not scale with the number of variables.
These samples are generated (semi)randomly from a
probability distribution, which for statistical systems is
often derived from the partition function; this is then used
to approximate expectation values. If this approximation is
accurate for small sample sizes, the algorithm is often more
efficient than explicit summation. Unfortunately, there is
justified doubt that Monte Carlo methods are suitable for
spin foams. The root of this doubt is that spin foams are
quantum theories, i.e. they assign complex quantum
amplitudes to each configuration. There is no obvious
way how to analytically continue spin foams to purely
statistical weights.3 This is in contrast to causal dynamical

triangulations [63] and causal set theory [64], where the
theory can be continued to a purely statistical one, which
can then be investigated by Markov chain Monte Carlo
techniques. While this is a disadvantage for spin foams at
the practical level, there are reasons not to Wick-rotate,
since Euclidean quantum gravity models suffer from the
conformal mode problem, where the Euclidean Einstein
Hilbert action is not bounded from below.4 Indeed, quan-
tum amplitudes might be beneficial as they can lead to
destructive interference, e.g. there are indications in causal
set theory that quantum amplitudes suppress nonmanifold-
like causal sets [65].
However, if we aim to implement importance sampling

Monte Carlo techniques in spin foams we face a technical
and a fundamental problem. On the technical side we
require a probability distribution, which is at best directly
derived from the dynamics. Due to complex amplitudes, the
spin foam partition function cannot be used directly to
define such a distribution. Still, it is possible to “guess” a
distribution, which can then be used to sample configura-
tions. The simplest choice is the constant one, leading to
random sampling, which is however not at all informed by
the dynamics. It is the goal of this article to propose a new
distribution for coherent intertwiners and apply this to the
coherent spin foam vertex amplitude. Choosing a proba-
bility distribution however does not address the fundamen-
tal problem: the sign problem. If the functions we are
investigating are alternating in sign/oscillating, contribu-
tions from different configurations will interfere destruc-
tively and cancel. However when sampling configurations
we are likely to miss these cancellations. This might lead to
slow convergence (if at all) and thus require a larger number
of samples, which renders the algorithm less efficient. In
our opinion, it is important to distinguish these two issues
clearly: even for complex amplitudes we can define and
apply Monte Carlo techniques by introducing a new
probability distribution. This however does not address
the sign problem, thus it does not guarantee that these
methods efficiently produce reliable results.
Still, the sign problem does not rule out the usefulness of

Monte Carlo methods for spin foams. Particular probability
distributions, e.g. one derived from a Lefshetz thimble,
do not suffer from the sign problem and can be used to
investigate expectation values of observables [66]. A
Lefshetz thimble is defined by deforming an integration
contour such that the imaginary part of the integrand is
constant on that contour, making the expression nonoscilla-
tory. Also, in particular situations, e.g. symmetry restrictions,
the spin foam partition function can be positive semi-definite
and be used for importance sampling [36,52,55,56,60].
Furthermore, a Monte Carlo algorithm can still provide

2The Gaussians are peaked on matching 3d dihedral angles,
more precisely two nonopposite ones. The four triangle areas
agree by definition.

3See [61,62] for analytical continuations that relate Lorentzian
and Euclidean signature models.

4Note that causal dynamical triangulations do not suffer from
this by realizing that the space of (Wick-rotated) Lorentzian
configurations is different from the set of Euclidean configurations.
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acceptable results even if the sign problem is present. Indeed,
there exist examples in the spin foam literature; in [31] a
constant probability distribution, i.e. random sampling, is
used to sample bulk representations and intertwiners. The
results are convergent and the algorithm more efficient than
simply summingover all possiblevalues,which suggests that
the sign problem may not be severe. We will confirm this
impression in this article for the coherent SU(2) vertex
amplitude [26,67], at least in most cases. However, note that
the total number of variables sampled over is still fairly low;
whether the sign problem remains tame for larger triangu-
lations is not clear, but the indications is encouraging.
For completeness, a method that can be applied to

systems suffering from the sign problem is tensor network
renormalization [68–70]. Its approach to studying the
dynamics is opposite to Monte Carlo; instead of consid-
ering the entire system through (probable) samples, one
considers local amplitudes, the tensors, which are locally
manipulated and coarse grained into effective amplitudes of
composite degrees of freedom. Built into the coarse
graining process is a truncation method to avoid exponen-
tially growing numbers of degrees of freedom, where the
truncations are done with respect to the relevance of the
degrees of freedom derived from a singular value decom-
position. Since the sums over degrees of freedom are
performed without approximations, the sign problem does
not manifest itself. However, challenges remain, e.g.
algorithms for higher-dimensional systems are intricate
and are typically computationally costly. Moreover, one
must work with tensors that have a finite index range;
systems with continuous variables must be appropriately
transformed, see [71] as an example of 2d lattice field
theory. Quantum gravitational applications exist, e.g. in
Lorentzian quantum Regge calculus [72], 2d analog spin
foam models [73–77] and 3d lattice gauge theories [78,79].
The most recent work for 3d lattice gauge theories [80]
utilizes the so-called fusion basis [81,82], which is stable
under coarse graining and well-suited for studying expect-
ation values of coarse (grained) observables.
The goal of this article is to propose an importance

sampling algorithm for coherent intertwiners and use it to
approximately compute spin foam amplitudes, here con-
cretely the coherent SU(2) BF theory vertex amplitude. To
do so, we define a probability distribution from the absolute
value of the coefficients of coherent intertwiners expressed
in the orthonormal spin network basis. For coherent
tetrahedra peaked on classical shapes, i.e. the coherent
data satisfy the closure condition, these coefficients are
sharply peaked and almost Gaussian. Sampling from such a
distribution is straightforward. Since each intertwiner has
its own independent distribution, generalizing this algo-
rithm to the vertex amplitude (or larger triangulations with
boundary) is immediate. We apply the algorithm the
coherent BF vertex amplitude for different boundary data,
e.g. the equilateral 4-simplex, and compare the results to

the full calculation and the asymptotic formula. Overall, we
find a good agreement of the results for a moderate number
of samples. We see that the sign problem is present in
determining the phase, but it is tame for most boundary
data. Only when the amplitude is actually small, i.e. close
to a root of the oscillations of the Regge action, we do
observe convergence issues. In terms of computational
times, the full calculation is superior only at small repre-
sentations, where actually only few configurations need to
be summed over. Yet due to growing costs, the Monte Carlo
method becomes efficient above spin j ∼ 10 and provides a
good approximation. The thus freed computational resour-
ces are invested into larger boundary spins.
This article is organized as follows. Section II provides a

brief introduction of spin foam models with a particular
focus on the computation of the coherent vertex amplitude.
Section III discusses the sign problem and describes the
derivation of the probability distribution for coherent
intertwiners and how intertwiner values are sampled. In
Sec. IV we present the results for various boundary data,
provide a brief comparison to random sampling and show
measurements of computational time. Lastly, we summa-
rize the results in Sec. Vand discuss how the algorithm can
be generalized to larger 2-complexes, the Lorentzian EPRL
model and bulk intertwiners.

II. SPIN FOAM NUMERICS
AND COHERANT AMPLITUDES

Since the main focus of this article is to introduce and
discuss a newmethod to compute/approximate coherent spin
foam vertex amplitudes, we will provide the necessary
context to explain the calculation. For more detailed intro-
ductions and presentations of already existing numerical
methods, we recommend several insightful reviews [10,22].
As it is frequently the case, the definition of a path

integral requires regularization; in spin foams this is
done via the introduction of a discretization, a so-called
2-complex, which in most cases is chosen to be dual to a
triangulation. Such a 2-complex is a collection of vertices
v, edges e and faces f, to which we assign algebraic data. In
4d, a vertex is dual to a 4-simplex, an edge dual to a
tetrahedron and a face dual to a triangle. Irreducible
representations ρf are attached to the faces and describe
their area, while intertwiners ιe, invariant tensors in the
tensor product of representations of faces sharing said edge,
are assigned to the edges. The latter (partially) encode the
shape of polyhedra, e.g. tetrahedra in a 4d triangulation [5].
One assignment of data to the 2-complex is a spin foam
state, which prescribes the quantum geometry of this
configuration. The path integral is implemented via the
sum over all possible assignments of these data.
The dynamics are encoded in local amplitudes; we

associate such amplitudes to vertices, edges and faces,
where they only depend on the data assigned to this object.
Generically, the spin foam partition function reads:
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Z ¼
X
ρf

X
ιe

Y
f

Af

Y
e

Ae

Y
v

Av; ð2:1Þ

where the sum is performed over all possible assignments
of representations ρf and intertwiners ιe. Af, Ae and Av

denote face, edge and vertex amplitudes, respectively.
While there are differences between the various spin foam
models, similarities across the models exist, e.g. the face
amplitude is usually given by the dimension of the
representation and the edge amplitude is the inverse of
the intertwiner norm. The most important amplitude is the
vertex amplitude as it is associated with the (dual of) the
fundamental building blocks of quantum space-time, e.g.
4-simplices in 4d. It is at the center of attention of this
article and we will discuss it in more detail now.
For concreteness, we will from now one specify our

discussion to SU(2) BF theory in 4d; while it is not a theory
of quantum gravity its structure and coherent states are
similar and relevant to the 4d (Lorentzian and Euclidean)
EPRLmodel [33], such that the tools developed here for BF
theory should be applicable and transferable to this more
relevant model. The vertex amplitude is usually defined as
follows; each edge in a spin foam encodes a projector onto
the invariant subspace [1]. These projectors are written in

terms of an orthonormal intertwiner basis, where one
intertwiner is associated to each vertex of the edge. Each
intertwiner has as many indices as the polyhedron has
faces, so four in case of a tetrahedron. Then, we contract all
intertwiners of a vertex with each other, i.e. we identify
their indices when two intertwiners share a face and sum
over them. This gives a number, the so-called vertex
amplitude, which depends on spins and intertwiner basis
elements. For a 4-simplex, we have five 4-valent inter-
twiners, where each intertwiner has one index contracted
with any of the other four intertwiners. 4-valent SU(2)
intertwiners are not unique and can be labeled with one
representation label using recoupling theory. The associ-
ated vertex amplitude is called the SU(2) BF f15jg-
symbol; it depends on ten SU(2) representations (called
spins ji) and five intertwiner labels.
Contracting intertwiners to compute the vertex amplitude

is intuitive as it matches how we would combinatorially
4-simplex from tetrahedra. However, this explicit contrac-
tion is computationally costly, as we have to sum over ten
magnetic indices. Moreover, this range of indices grows
with the size of the spins, too, increasing the costs further.
Instead, the f15jg-symbol can be concisely expressed in
terms of SU(2) f6jg-symbols [29]:

ð2:2Þ

This expression is highly efficient for numerical imple-
mentations: highly optimized libraries for computing the
f6jg-symbol exist, e.g. WignerSymbols5 in Julia, and the
sum over one auxiliary label x is bounded by the spins.
So far, we only concerned ourselves with a single f15jg-

symbol. When studying the large spin behavior of spin
foams, which is often referred to as the semiclassical limit
(at least for a single 4-simplex), we are rather interested in
states peaked on Regge geometries, i.e. classical simplices,
as these play a dominant role in this limit [67]. Such Regge
geometries are encoded via coherent intertwiners [11], a

group averaged tensor product of SU(2) Perelomov coher-
ent states [83]. These coherent states form an overcomplete
basis and the group integration can be written as a sum over
orthonormal intertwiners. This generalizes straightfor-
wardly to the coherent vertex amplitude, which can be
written as a superposition of f15jg-symbols. We briefly
review this in the next section.

A. Coherent SU(2) vertex amplitude

SU(2) coherent states play a crucial role in the asymp-
totic analysis. They are defined as maximum or minimum
weight states, where the states jj; ji or jj;−ji, respectively,
are used as reference states. As these states are eigenstates5https://github.com/Jutho/WignerSymbols.jl.
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of Jz for maximum/minimum weight, they are associated
with the direction e⃗z. We will use the maximum weight
eigenstate through the entirety of this paper.
We can peak this state on a different direction by acting on

it with a group element, via the associated Wigner matrix.

ð2:3Þ

gn⃗ is a group element in SUð2Þ=Uð1Þ, which encodes
the rotation from e⃗z (the reference state) to n⃗; the
coherent states are only defined up to a phase.
Combining several of these coherent states with a group
integration defines a coherent Livine-Speziale inter-
twiner [11]. For concreteness, we consider a 4-valent
one to describe tetrahedra:

ð2:4Þ

where we represent the group integration by a box over all strands.
The coherent vertex amplitude is typically defined as the contraction of five such intertwiners:

ð2:5Þ

where we have used the fact that the coherent states are
maximum weight states in the second line. This explicit
representation in terms of group integrations is ideally
suited for applying a stationary phase approximation as
the inner products are highly oscillatory, from which
spin foam asymptotics were derived in a plethora of
contexts [13–17,67]. On the other hand, the oscillatory
nature is challenging for explicit numerical calculations.
One attempt would be to perform four SU(2) integrations

(one can be dropped due to gauge invariance) numerically,
using e.g. the CUBA package [84], which would be a
12-dimensional integration of a highly oscillatory function.
However, high-dimensional integrations suffer from poor
convergence, in particular if the functions are oscillatory.
This is only exacerbated for larger spins, where the
functions become even more oscillatory. Instead, we can
compute each intertwiner explicitly by performing one
SU(2) integration for each component of the intertwiner.
Since the integrations are lower dimensional, convergence

of the integrations is improved, yet there are far more
calculations to perform. As we increase the spins uniformly
the number of components grows exponentially. Addi-
tionally, the contraction of these intertwiners is costly as
well. For reference, this method was used in [85] for higher
valent spin foam vertices.
Another way to avoid explicit integrations is to expand

the projector in terms of orthonormal intertwiners and thus
express the amplitude as a sum over SU(2) f15jg-symbols,

ð2:6Þ

The sum runs over a basis of intertwiners, which are labeled
with a single representation ι in case of 4-valent SU(2)
intertwiners. The diagram to the left is the coefficient
cιðfjig; fn⃗igÞ of the coherent intertwiner expressed in
terms of the basis:

ð2:7Þ
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where the object in brackets denotes Wigner’s 4jm-symbol. This coefficient, more precisely its absolute value, plays a
central role in the Monte Carlo algorithm we will introduce below.
Applying this expansion to each coherent intertwiner in the vertex amplitude yields:

ð2:8Þ

Now the coherent amplitude is rewritten as a sum over
(many) f15jg-symbols. This method is far more efficient
than any of those sketched above and it is a major reason for
many numerical advancements in recent years [26,27,32].
The calculation can now also bewritten as a contraction of a
tensor network, where the 5-valent tensor of all f15jg-
symbols is contracted with five vectors of coefficients cιi of
coherent intertwiners [32,41]. However, as the allowed
intertwiner range grows when uniformly scaling the boun-
dary spins, also this method suffers from exponentially
growing numerical costs. Let us briefly explain this.
For simplicity we consider the case where all spins j are

the same. For a 4-valent intertwiner, there are 2jþ 1 basis
vectors. To compute the coherent amplitude numerically,
we need to compute the value of the f15jg-symbol for all
possible orthonormal intertwiner labels, i.e. ð2jþ 1Þ5
possibilities. To compute each f15jg-symbol we have to
sum over an auxiliary label with range proportional to j.
Thus, overall computing and saving the array of all variants
of the f15jg-symbol scales proportional to j6. The follow-
ing contractions of this array with five vectors of coherent
intertwiner components is subleading in comparison; the
first contraction scales with ð2jþ 1Þ5 since we are sum-
ming over one label while keeping four ones fixed. The
following contractions scale more favorably. In summary,
the full calculation scales exponentially when homo-
geneously scaling up all spins for general boundary data.
To illustrate the scope, for all spins j ¼ 50, the array storing
the f15jg-symbols for all intertwiner labels contains
∼3 × 108 entries, which requires a significant computa-
tional time to compute and a large amount of memory to
store.6 This poses a challenge to computing the amplitude
for larger 2-complexes.
Hence the question arises, whether we can optimize

these calculations further or find suitable approximations.
In this article we pursue the question whether we can
truncate the sum over intertwiners, therefore reducing the

numerical costs. Indeed, for sufficiently large spins and
coherent states peaked on geometric tetrahedra, the abso-
lute value of the coherent intertwiner coefficients cι are
typically sharply peaked, such that labels far away from the
peak should be safe to ignore. This idea was first formu-
lated in [27], where labels were truncated if they are less
relevant than a chosen cutoff relative to the peak. Choosing
this cutoff then controls the quality of the approximation
versus the costs of the calculation. Yet, explicit testing of
different cutoffs is necessary to see whether the approxi-
mation can be trusted.
In this article, we build upon this idea is and use the

absolute value of cι to define a probability distribution for
the intertwiner labels for a Markov chain Monte Carlo
algorithm. From this distribution, we sample intertwiner
labels according to their relevance inferred from the
coherent states and approximate the coherent vertex ampli-
tude without introducing a cutoff by hand. The approxi-
mation should then improve by increasing the number of
samples and eventually converge to the actual result. If the
algorithm is converging quickly, it should provide a good
approximation utilizing a fraction of configurations com-
pared to the full calculation. Therefore, a convergent
Monte Carlo algorithm promises to free computational
resources, which can instead be used to investigate spin
foams defined on larger 2-complexes. However, the main
obstacle for convergence is the so-called sign problem. In
the next section, we briefly review Monte Carlo methods
and the sign problem, explain why it is present in spin
foams and briefly discuss the sampling procedure for
coherent intertwiner labels.

III. MONTE CARLO
AND THE SIGN PROBLEM

In physics Monte Carlo methods are an efficient and
useful tool to study statistical systems with a large number
of degrees of freedom. These systems are described by
high-dimensional integrals or sums over all possible
configurations of its variables, which typically cannot be
evaluated analytically or calculated numerically by brute
force. Instead, Markov chain Monte Carlo methods sample

6Writing the contraction as for loops reduces the memory
costs, but is typically far slower. Tensor network contractions
make use of highly optimized linear algebra operations. Further
speed up can be achieved by utilizing GPUs [32].
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typical configurations from the probability distribution
defining the statistical theory. With sufficiently many such
samples one may well approximate expectation values of
observables of the system and extract physical information.
The key advantage is that this algorithm scales with the
number of samples rather than exponentially with the
number of variables.
These samples are generated in a random process, take

e.g. the Metropolis-Hastings algorithm [86,87]. Starting
from a random configuration, a new configuration is
proposed by randomly deviating from the previous one
by a given set of moves. Then the probabilities of these two
configurations are compared; if the new configuration is
more probable it is always accepted. If it is not, then it is
accepted only with a certain probability. This method must
be implemented with care to obtain correct and reliable
results, e.g. one must implement detailed balance to ensure
that one is indeed sampling with respect to the probability
distribution of the system. Moreover, the proposal of new
configurations must be ergodic, i.e. it must be possible to
reach any configuration of the system (given enough time).
Finally, one must ensure that the algorithm explores a
sufficiently large part of the configuration space. This is
often gauged by the acceptance rate of new configurations.

A. Complex amplitudes and the sign problem

Not all physical theories are statistical theories. While
many theories, e.g. lattice field theories (at zero temper-
ature and without fermions) and causal dynamical trian-
gulations [63], can be analytically continued from a
quantum to a statistical theory, this is not the case for
many quantum theories including spin foam models
(unless some particular symmetry restrictions are consid-
ered [88]). The consequences are twofold; first, the
partition function does not define a probability distribution
and thus cannot be used to sample configurations. The
second and more severe consequence is the so-called sign
problem; alternating/oscillating amplitudes can lead to
contributions cancelling each other. If the sign problem
is severe, we must take a lot of samples to capture this
effect and hopefully obtain a convergent result. Of course,
more samples come with larger numerical costs, such that
the algorithm is less efficient.
It is important to distinguish these two aspects: for

complex amplitudes we have no probability distribution
readily available and the sign problem is present. Still,
Monte Carlo methods might be useful for exploring the
dynamics of the model if the sign problem is tame. To do
so, one must propose a new probability distribution. A
simple possibility is the constant distribution, which
assigns the same weight to all configurations, but usually
it is beneficial to use a distribution fitting the dynamics of
the system, which again can be challenging for oscillating
functions. Note however, that defining a new distribution
does not solve the sign problem.

To illustrate this consider the so-called reweighting
procedure [89,90]. Consider a physical system with com-
plex amplitude A for variables ϕi. For concreteness, we
consider the ϕi to have a discrete spectrum; then the
partition function and expectation values of observables
are (formally) defined by

Z¼
X
fϕig

AðfϕigÞ; hOiA¼ 1

Z

X
fϕig

OðfϕigÞAðfϕigÞ: ð3:1Þ

From A, we can define a probability distribution by taking
its absolute value with normalization 1

Z0. With this proba-
bility distribution, we compute hOiA as follows:

hOiA ¼ 1

Z
Z0

Z0
X
fϕig

OðfϕigÞeiφA jAðfϕigÞj¼
heiφAOijAj
heiφAijAj

;

ð3:2Þ

where φA denotes the phase of A (for a specific configu-
ration fϕig), and we denote by hOijAj the expectation
value of O computed in the distribution defined by jAj.
Essentially, we absorb the phase φA into the observable and
compute it in the distribution given by jAj. Since this is not
the original expression, we must correct this by dividing by
the expectation value of the phase. Both expectation values
are now in principle computable using importance sam-
pling Monte Carlo techniques, but the sign problem enters
here; if the sign problem is severe, the expectation value of
the phase is small or zero. Then, the expectation value
computed in this way will not converge and the result
cannot be trusted.
Eventually, we do not know how severe the sign problem

in spin foams is. In the following we propose a probability
distribution for coherent (boundary) intertwiners, with
which we approximate the coherent vertex amplitude.
The results suggest that the sign problem for this amplitude
is not severe (in most cases).

B. Probability distribution
from coherent intertwiners

In Eq. (2.8), the coherent vertex amplitude is written as
the contraction of the f15jg-symbol with the components
of coherent intertwiners cι, see Eq. (2.7). The goal is to
approximate the sum over intertwiners using Monte Carlo
methods by a number of samples, which hopefully con-
verges for significantly fewer samples than the total number
of configurations. Towards defining a probability distribu-
tion suitable for this amplitude, we consider the coherent
intertwiner expanded in othonormal intertwiners more
closely.
The intertwiner components are in general complex, as

can be expected from an overcomplete basis. Their absolute
value on the other hand, see Fig. 1, has a pronounced peak,
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which becomes sharper (relative to the total range of
intertwiner labels) as the spins are uniformly increased.
Thus, for large spins, this is an excellent choice to define a
probability distribution, yet it also reveals a weakness. For
small spins, the peak is so broad that it covers the entire
range of all intertwiner labels. Hence, all intertwiners labels
are similarly relevant (roughly same order of magnitude)
and the potential to save computational time by sampling is
low. Fortunately, the range of intertwiner labels is then still
low such that explicit summation is viable. Therefore, we
should rather consider the Monte Carlo methods to comple-
ment the full calculations at large spins. The final step to
obtain the probability distribution is to fix the normaliza-
tion, which is simply given by the inverse of the sum of all
jcιj. In the next section we briefly discuss the sampling
procedure.

1. Brief introduction to importance sampling

Let us give here a brief introduction to importance
sampling and adapt it to sampling coherent intertwiners.
The general idea is to perform a random walk through
configuration space guided by the probability distribution,
such that we more frequently accept probable configura-
tions and reject improbable ones. Typically we start with a
random configuration, then propose a new one and com-
pare its probability to the old one; if it is more probable it is
always accepted. If it is less probable, a random number
r∈ ½0; 1� is drawn; if r is smaller than the relative
probability, the new configuration is accepted and rejected
otherwise. Thus, if the relative probability is low, i.e. the
new configuration is far less probable than the previous
one, it is highly unlikely that this move will be accepted.
A priori, the proposal method for new configurations

only has to ensure that it is ergodic, i.e. any configuration of
the system can be reached in principle. So, e.g. one could
always propose a new random configuration, yet in
particular in high-dimensional systems, this might be an
inefficient way of identifying the relevant configurations.
Instead one frequently opts for small deviations away from
the previous configuration, such that one randomly “walks”

through configuration space. Several subtleties must be
considered here; first, before collecting samples, we must
ensure that we are close to the probable configurations.
Thus, starting from a random configuration, one lets the
system “thermalize” and checks whether it thermalizes to
the same region of configurations in multiple runs from
different random starting locations. Second, we must
ensure that the samples taken are independent of one
another, i.e. they are not correlated. By only making small
deviations, a newly proposed configuration is obviously
correlated with the one it was generated from. Thus, it is
best to do several Monte Carlo steps before taking another,
uncorrelated sample. Third, we must ensure that a suffi-
ciently large part of configuration space is explored and
improbable configurations are proposed. This helps to
avoid getting stuck in local maxima of the probability;
this could e.g. be noted during thermalization runs. In high-
dimensional systems, this is gauged by considering the
acceptance rate, which is supposed to be well above 10%
but below 50%; indeed, if it is too low, we propose highly
improbable configurations and do not explore configura-
tion space. Vice versa, if it is too high, e.g. 90%, we may
just explore configurations around a local maximum.
These considerations are crucial when investigating

systems with a large number of degrees of freedom, where
one has to rely on coarse grained observables and con-
sistency checks to ensure a proper exploration of the
system. Here we are considering the comparatively simple
case where we sample one variable for an almost Gaussian
probability distribution, thus it is very easy to check and
verify whether the sampling is satisfactory. We give an
example of the possible issues one might encounter below.

2. Sampling coherent intertwiners
and minor issues

The almost Gaussian distribution of the probability
measure is ideal for sampling. Since we are implementing
a fairly standard Metropolis-Hastings algorithm [86,87] for
sampling, detailed in the mock Algorithms 1 and 2, we
keep the discussion brief and focus on the proposal method

FIG. 1. Coherent intertwiner coefficients for equilateral tetrahedra. Left: spins j ¼ 5, 10, 20. Right: spins j ¼ 40, 60, 80, 100.
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for new configurations and which issues we encountered
during sampling.
When proposing a new intertwiner configuration, we

essentially shift the previous intertwiner label by a random
integer. The simplest variant is to shift it by �1, but larger
(random) shifts are possible. Either variant clearly leads to
an ergodic algorithm, yet they will differ in the acceptance
rate of new proposals. If the range of possible shifts is
larger, there will be more proposals that shift the intertwiner
labels to a value far away from the peak. These are
improbable, therefore they will be rejected in most cases.
In particular in systems with a large number of degrees of
freedom, the acceptance rate is a good gauge to see whether
one is exploring a sufficiently large part of the configura-
tion space and choose the proposal of new configurations
appropriately. This is important, as one does not want to get
stuck in a local maximum.
For the one-dimensional almost Gaussian probability

distribution proposed here, these considerations appear
to be far less relevant. In Fig. 2 we plot histograms of
sampled intertwiner labels for the distribution given by an

equilateral tetrahedron for all spins j ¼ 50. The two
sampling methods differ in the proposed shift size, for
one it is �1, for the other it is a random number between 1
and 1

3
of the total intertwiner range. Qualitatively the

histograms look similar and are able to sample labels of
the whole peak and the beginning of the tails. A larger step
size, with a lower acceptance rate, should be more suitable
at sampling the tails of the distribution. However, due to the
low probability of these values, we expect this to become
noticeable only for a larger number of samples.
For small spins, the proposal scheme for a larger step size

requires more scrutiny. Then, the peak of the coherent
intertwiner essentially covers the whole intertwiner range
and each intertwiner value has a relevant probability. As
a result, the potential to save on computational time by
using Monte Carlo methods is reduced. Moreover, care is
necessary at the boundary of the permitted intertwiner
range: If we now choose a maximal step size that is e.g. half
or a third of the total intertwiner range, we will pro-
pose values outside the permitted range. We remedy that
by simply setting the value by hand to the value at the

ALGORITHM 2 Monte Carlo step intertwiner.

Input:
Range of ι: rι
Probability distribution: Pι derived from cι
Current intertwiner label: ι∈ rι

Output: New label ι̃

1: Propose ι̃ ¼ ιþ a, where a random integer with 0 < jaj < z. ▹ E.g. choose jaj ¼ rι
n ; n∈N

2: Check whether ι̃∈ rι: ▹ Alternatively implement periodic boundary conditions
3: if ι̃ > maxðrιÞ then ι̃ ¼ maxðrιÞ
4: if ι̃ < minðrιÞ then ι̃ ¼ minðrιÞ
5: Draw random number x∈ ½0; 1�
6: if x < min ð1; Pιðι̃Þ

PιðιÞÞ then ι ¼ ι̃
7: return ι

ALGORITHM 1 Sampling coherent tetrahedral intertwiners.

Input:
Spins: a 4-tuple of spin assignments j1, j2, j3, j4
Normals: set of normal vectors n⃗1; n⃗2; n⃗3; n⃗4 associated to the triangles
Number of thermalization steps: number of MC iterations nt before sampling starts
Number of steps between samples: number of MC iterations ms between taking samples
Number of samples: number of samples N

Output: List of sampled intertwiner values fιð1Þ; ιð2Þ;…; ιðNÞg
1: Compute rιðfjigÞ (range of ι), coefficients cιðfjig; fn⃗igÞ, their absolute values and the probability distribution Pι.
2: Randomly pick an ι∈ rι.
3: for n in 1∶nt do Monte Carlo steps

▹ Thermalization
4: for i in 1∶N do
5: for m in 1∶ms do Monte Carlo steps

Store sample ιðiÞ
▹ Collecting samples

6: return Vector of samples fιð1Þ; ιð2Þ;…; ιðNÞg
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boundary. However, this choice leads to an overemphasis of
those boundary values, which is shown in the histogram in
Fig. 3. This is due to the fact that the proposal method
violates detailed balance; we unintentionally propose
intertwiner values at the boundary more frequently com-
pared to the others without changing the acceptance
conditions.7 Here we cure this simply by setting the step
size for new proposals to �1.
The important take away message is that the algorithm is

capable of sampling values of the coherent state peak
including the tails, where the sampling is only determined
by the probability of the intertwiner labels; no cutoff is
introduced by hand. Therefore, this is a different imple-
mentation of the idea introduced in [27] to approximate the
coherent states by truncating the intertwiner degrees of
freedom. However, it is also clear that this sampling
algorithm becomes efficient compared to the full calculation
at large spins when the coherent states are strongly peaked.

3. Parameters for Monte Carlo algorithm

Beyond the discussion on how to deal with sampling
close to the boundary of the intertwiner range, the algo-
rithm is fairly standard. We start from a random configu-
ration. To ensure that we are within the region of probable
configurations and independent of the starting point, we let
the system “thermalize” with respect to the probability
distribution and run 104 Monte Carlo steps. When plotting
the intertwiner label as a function of thermalization steps,
one will see that it fluctuates around the peak of the
distribution as desired. Then, during the sampling process,
we perform ∼2 × 103 Monte Carlo runs to ensure that the
samples are independent of one another as in each step we
only perform small changes. Finally, we take N samples,
where larger N should lead to better approximations of the
final result.

4. Sampling multiple coherent intertwiners

So far we have discussed the sampling process for a
single intertwiner label governed by a probability distri-
bution derived from a coherent intertwiner state. Since
Monte Carlo methods are tailored towards many variables,

FIG. 2. Normalized histogram sampling equilateral tetrahedra for j ¼ 50. 104 thermalization steps, 500 steps between taking samples.
Left: step size 1 when proposing new configuration. Right: maximal step size ∼50 when proposing new configuration.

FIG. 3. Normalized histogram sampling equilateral tetrahedra for j ¼ 5. 104 thermalization steps, 500 steps between taking samples.
Left: step size 1 when proposing new configuration. Right: maximal step size ∼50 when proposing new configuration. The
overemphasis of values on the boundary is visible.

7We can fix this flaw by using “periodic boundary conditions”
on the intertwiner values. Instead of ending at the minimal/
maximal intertwiner range, we continue at the other end of the
distribution.
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let us briefly discuss how this idea can be generalized to
many coherent intertwiners, e.g. for a spin foam calcu-
lation where the boundary consists of several tetrahedra
described by coherent states. Since each of these inter-
twiners possesses their own boundary state, we can derive
an independent probability distribution for each of them.
Thus, we can sample each intertwiner independently for
the same (or similar) values for thermalization steps and
steps between taking samples. This is significantly simpler
than sampling all variables at the same time, in particular
it takes longer for the full system to thermalize or to
become uncorrelated. Hence, we expect numerical costs to
scale only linearly with the number of boundary inter-
twiners; additionally we can parallelize the sampling of
these intertwiners. However, despite sampling a collection
of one-dimensional systems, we will have to increase the
number N of samples for all intertwiners to capture
sufficiently many configurations of the system. Indeed,
under increasing the number of coherent intertwiners
the total number of configurations grows with the product
of the ranges. If the system converges quickly under
increasing N, N should still be much smaller than the
number of all possible configurations. Thus, we expect
this algorithm to be substantially more efficient in terms of
computational and memory costs for a large number of
boundary intertwinters and large intertwiner space dimen-
sions and offer the possibility to explore larger spin foam
2-complexes more efficiently.
In the next section we discuss how to apply this sampling

algorithm to the coherent SU(2) vertex amplitude as a first
test and proof of principle and present results for different
sets of boundary data. We compare these results to the full
calculation, the asymptotic formula and results found by
random sampling.

IV. APPROXIMATING COHERENT
VERTEX AMPLITUDES

So far, we have discussed how to define a probability
distribution for a single coherent tetrahedron and how to
sample from it. The coherent vertex amplitude is defined as
the contraction of five such tetrahedra against the SU(2)
f15jg-symbol. We will approximate the coherent ampli-
tude by sampling each intertwiner label individually.
Similarly, we can straightforwardly generalize this method
to arbitrarily large 2-complexes with boundary for coherent
state boundary data.
The key point we must address is that the probability

distribution we intend to use is not part of the coherent
vertex amplitude. To explain how we overcome this,
consider a simple example, a 1d integral

R
1
0 dxfðxÞ over

the finite interval [0, 1]. We can approximate the integral by
sampling a probability distribution P with

R
1
0 dxPðxÞ ¼ 1

as follows:

Z
1

0

dx fðxÞ ¼
Z

1

0

fðxÞ
PðxÞPðxÞ ≈

1

N

XN
i¼1

fðxiÞ
PðxiÞ

: ð4:1Þ

In the final step, we approximate the expression by
summing over N samples fxig generated from P. Note
that sampling from P modifies the original expression; we
sample points xi more frequently which are more probable
according to P, while we sample points less frequently
which are less probable. Since this is not present in the
original expression, we compensate for this by evaluating f

P
for these samples, i.e. samples which are less probable in P
contribute more to the approximation. So far we have not
specified the distribution P and a priori it is not clear
whether P is suitable for efficiently approximating the
desired expression. The ideal P would be such that the
fraction f

P is constant ∀ x∈ ½0; 1�, resulting in an exact
result for any number of samples. Yet this would imply that
we have already solved the integral defeating the purpose of
studying it with Monte Carlo methods in the first place.
Numerical integration algorithms attempt to find such
optimal distributions [84]. For rapidly oscillating functions,
for which Monte Carlo methods suffer from the sign
problem, probability distributions adapted to the functions
are challenging to define and yet it is not clear whether this
leads to a good convergence. Instead one can guess a
simpler to define distribution, but convergence remains an
open question. A concrete example for a simple distribution
is the constant one, which leads to random sampling.

A. Random sampling of intertwiners

One of the simplest probability distributions we can
propose is the constant probability for all intertwiner labels.
For discrete variables such as the orthonormal intertwiner
labels, the probability distribution is simply given by the
inverse of the number of possible intertwiner labels. For a
single intertwiner label, this reads:

X
ι

fðιÞ ¼
X
ι

fðιÞ
PðιÞPðιÞ ¼

X
ι

nιfðιÞ 1
nι
≈
nι

N

XN
i¼1

fðiÞ;

ð4:2Þ

where nι denotes the total number of possible intertwiner
labels. N is the number of samples; the larger N, the better
the approximation will become, however convergence
might be slow. From such a constant distribution, we
can simply generate samples by randomly selecting one
among all the possibilities, hence the name random
sampling.
At first sight, random sampling appears paradoxical; it is

geared towards approximating the sum/integral of a con-
stant function, for which Monte Carlo methods are not
necessary in the first place. From a practical point of view, a
few advantages emerge common for Monte Carlo methods.
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It is straightforward to implement in most situations8 and the
numerical costs scale with the number of samples rather than
the number of variables in the system. In particular for
systemswithmanyvariables, random sampling can provide a
reasonable approximation at less costs than brute force
summation. However, it is a priori not clear how many
samples will be necessary for a convergent result. The
expectation is that less samples are necessary to obtain a
convergent result if one instead uses importance sampling of
a distribution adapted to the problem at hand. In the next
paragraph, we expand on the numerical challenge of com-
puting the coherent vertex amplitude and how we choose a
probability distribution to more efficiently approximate it.

B. Importance sampling
coherent intertwiners

As we describe in detail in Sec. III, our aim is to
sample intertwiner degrees of freedom with respect to the
absolute value of coherent intertwiners jcιðji; n⃗iÞj, pre-
cisely the coefficient of coherent intertwiners expressed in
the orthonormal intertwiner basis. In general, we could
choose any coherent state to define such a probability
distribution,9 but this would not be adapted to the
calculation at hand. Instead we pick the states encoded
in the boundary data and rewrite the vertex amplitude as
follows:

ð4:3Þ

In the second line, we insert the probability distribution and
its inverse. Then, in the third line, we approximate the full
expression by sampling with respect to the distribution with
N samples in total. The final expression we evaluate for the
samples of intertwiners depends then on the phase of the
coefficients cι and the overall normalizations.
Before presenting results of this sampling method,

let us briefly revisit the properties of the coherent vertex

amplitude and its sign problem, which is not solved by this
sampling method.

C. Sign problem in the
coherent vertex amplitude

While the SU(2) f15jg-symbol is defined to be real, the
coherent vertex amplitude is generically complex. This is
due to the introduction of the complex overcomplete basis
of Perelomov coherent states, which are however essential
to define coherent tetrahedra states that are peaked on the
shape of classical polyhedra. Unfortunately, it is also the

8Determining the total number of possibilities can be intricate,
e.g. when implementing coupling rules of representations in spin
foams, see also [31]. Alternatively, we can simply allow all
possible values of variables and set forbidden configurations to
give vanishing contributions. Yet, this leads to slower conver-
gence.

9Using coherent states which describe tetrahedra with non-
closing normals are likely not suitable, as their intertwiner norm
is exponentially suppressed as one uniformly scales up its spins.
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reason that we cannot simply use spin foam amplitudes
itself to define a probability distribution.10 On the other
hand, coherent SU(2) states are only defined up to a phase.
Similarly the coherent vertex amplitude is defined up to a
global phase [26], and we choose it such that the coherent
amplitude is purely real. In the numerical setting, this can
be done as follows; we compute the full amplitude for a
spin configuration and choice of coherent states and
compute its phase. Under uniform scaling of spins (keeping
the n⃗i fixed), this phase changes linearly, such that we use it
to turn amplitude real for all spins. Thus, we numerically
obtain a real amplitude for all spins with a tiny imaginary
part limited by numerical precision. Moreover, for Regge-
geometry boundary data, the real part oscillates with the
Regge action [18] of the described 4-simplex (under
uniform scaling of boundary areas).
The goal of our Monte Carlo algorithm is to approximate

the full amplitude, i.e. reproduce the significant real part
and a vanishing imaginary part. As we will see below, this
reveals the strengths and weaknesses of our algorithm.
While the real part (for almost all cases) shows a good
convergence and accuracy compared to the full calculation
and the asymptotic approximation (for large spins), repro-
ducing the oscillating behavior for Regge-geometric boun-
dary data, the imaginary part is more subtle. While it is in
most cases significantly smaller than the real part, typically
up to three orders of magnitude, it is not as small as in the
full calculation. This suggests that the convergence of the
imaginary part is slower than the real part and more
samples are necessary to approximate it better. We expect
this behavior; the individual summands of the coherent
vertex amplitude are generically complex. While the real
parts sum up to a nonvanishing number, their imaginary
parts exactly cancel due to the choice of global phase.
This is the literal definition of the sign problem, and
Monte Carlo methods suffer from slow convergence due
to sampling of configurations. Still, for the coherent vertex
amplitude the convergence of the imaginary part is accept-
able. If we would only consider the absolute value of the
amplitude, this convergence issue would remain unnoticed.
However, we will also see that for some boundary data

that the real part suffers from the sing problem. These are
precisely the boundary spins where the entire amplitude
almost vanishes, i.e. close to the roots of the cosine of the
Regge action. The same argument as for the imaginary part
holds here as well, as (most of) the summands in the vertex
amplitude cancel each other.
In the following we will introduce the boundary data to a

few geometric Euclidean 4-simplices, e.g. the equilateral
4-simplex and an isosceles 4-simplex, and compute the
amplitude using importance sampling Monte Carlo. Since
Monte Carlo methods are inherently random, we need to

provide an error estimate. To do so, we take 105 samples
and repeat this process 30 times. We compute the mean and
variance of these estimates, thus using 3 × 106 samples in
total for each set of boundary data. Additionally, for the
equilateral 4-simplex, we will also show results for random
sampling to give an impression of convergence. Moreover,
we will compare these results to the full calculation where it
is computationally feasible and the asymptotic amplitude to
leading order.

D. Results

The main results are shown in plots of the rescaled vertex
amplitude, where we account for the asymptotic scaling
behavior of the vertex amplitude (λ−6 for all j → λj). These
plots nicely show the oscillatory nature of the vertex
amplitude, and, at a glance, we get a good impression of
the accuracy of the Monte Carlo results in most cases
including an error estimate. However, from these plots, it is
difficult to see deviations if the real part of the amplitude is
small, and how small the imaginary part of the amplitude is.
Therefore, we add a logarithmic plot of the absolute value.
Finally, we also add a plot of the relative error ϵ defined as

ϵ ¼
����A

MC
v −Av

Av

����: ð4:4Þ

The relative error is computed for the full amplitude as well
as its asymptotic approximation.
For all the plots, we use the same colors. The full

calculation is in orange, its asymptotic approximation in
yellow; the same colors apply to the relative errors.
Monte Carlo results are shown as crosses with error bars
(exception the logarithmic plots), where blue crosses show
the real part and purple crosses the imaginary part.

1. Equilateral 4-simplex

The equilateral 4-simplex is one of the simplest exam-
ples of the coherent vertex amplitude. In Regge calculus it
is prescribed by having the same edge lengths for all its ten
edges. All of its 4d dihedral angles are equal and also all of
its subsimplices are equilateral as well. In spin foams, it is
described by choosing all ten spins, related to its areas, to
be the same. We prescribe the normal vectors for the
triangles in each tetrahedron as follows:

n⃗12 ¼ ð0; 0; 1Þ; n⃗13 ¼
�
0; 0.94280;−

1

3

�
;

n⃗14 ¼
�
0.816497;−0.47140;−

1

3

�
;

n⃗15 ¼
�
−0.816497;−0.47140;−

1

3

�
: ð4:5Þ

Here we choose the same normal vectors for each tetra-
hedron. Instead one could also use the twisted spike

10Technically this already applies to the f15jg-symbol, as it
can be negative.
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configuration [26], where the normal vectors are chosen to
be pairwise antiparallel, i.e. n⃗ab ¼ −n⃗ba. Both choices
differ by a global phase, which we are free to choose.
Before presenting the results of our importance sampling

algorithm, we briefly show results for random sampling to
provide a comparison of accuracy and convergence of the
results.

2. Random sampling

For random sampling we present the results of two runs;
both have 30 repetitions in total with 105 and 106 samples
each, respectively. From the results of these runs we
compute the mean and the variance of the amplitude to
estimate an error; the mean is thus computed from 3 × 106

and 3 × 107 samples in total, respectively. In Fig. 4 we plot
the rescaled results from both runs and compare to the full
numerical calculation and the semiclassical amplitude.
Since the plots are busy in particular due to error bars,
we split them into two intervals; from j ¼ 0 to j ¼ 30 to
compare to the full amplitude and from j ¼ 30.5 to j ¼ 50
to compare to the asymptotic formula. For the simulations
with 105 samples per run, the real part agrees well with
the full calculation up to spins j ∼ 15, yet for larger
spins deviations are visible and the variance is large.
The same holds in comparison to the asymptotic formula.

As expected, convergence for the imaginary part is worse
and for spins j > 20 the imaginary part is frequently of the
same order of magnitude as the real part. Thus, more
samples are clearly necessary. Indeed, the runs with 106

samples significantly improve the results and the agreement
with full and semiclassical formula is decent. However, the
variance of the real part becomes large for j > 40. The
imaginary part is improved as well, but shows nonvanish-
ing values already early on. Nevertheless, while we observe
inaccuracies, in most cases random sampling reproduces
the correct order of magnitude (recall that the result are
rescaled by j6), and for j > 20 the results are obtained at
lower computational costs than the full calculation.
These results are also confirmed in the logarithmic plots

and relative error, see Fig. 5. The logarithmic plots nicely
show that random sampling adequately reproduces the real
part, unless it almost vanishes compared to boundary spins
of similar size; this indicates that the sign problem is more
severe for these cases. The agreement gets worse as we
increase the spins j, which must be compensated by
increasing the number of samples. Convergence of the
imaginary part is worse; in particular for large spins it is
often of the same order of magnitude as the real part. We
also see that the relative error for the real part grows for
larger spins. For small spins, it is fairly low, but quickly
increases for growing spins. Still in many cases it is at or

FIG. 4. Random sampling results for equilateral coherent vertex amplitude for 30 runs, top plots show 105 samples per run, bottom
plots 106 samples per run. j labels the spins. Left: comparison for spins up to j ¼ 30with full numerical calculation. Right: comparison
from j ¼ 30.5 up to j ¼ 50 to asymptotic formula.
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below 10%, which could be improved by more samples. To
improve on both the real and imaginary part, we must
increase the number of samples further, in particular for
large spins.
To summarize, we can draw two conclusions for random

sampling. First, it is able to decently approximate the
coherent vertex amplitude even for relatively small number
of samples. While the variance is high and increases with
larger spins, the relative error remains under control. This is
already a achievement since these results are obtained at
significantly lower costs compared to the full calculation.
The second insight is that the sign problem does not appear
to be too severe, at least for the real part of the amplitude.
In the following, we will improve on these results with

our importance sampling algorithm using the boundary
coherent states, in particular in terms of accuracy for the
same number of samples. Furthermore, we also increase the
boundary spins further.

3. Results of multiple runs and error estimate

Similar to random sampling, we present the data for 30
runs, each with 105 samples; hence 3 × 106 samples in
total. The results range from j ¼ 0 to j ¼ 250 and are
presented in Fig. 6. We have split the plots around j ¼ 35
between the results for the full and the asymptotic ampli-
tude. Let us discuss the top plots first, which show the
rescaled amplitude. Let us start with the real part.

Overall, the Monte Carlo results are barely distinguish-
able from the full calculation, and also when compared to
the asymptotic formula the results agree well besides a few
deviations. In particular for spin around j ∼ 40we see a few
deviations, probably because the asymptotic formula is not
yet accurate enough. Excellent agreement can also be seen
in the logarithmic plots, with a few exceptions. These are
again the cases for which the amplitude itself almost
vanishes and where the sign problem is more severe.
Another remarkable feature are the relatively small var-
iances, in particular for small spins. For larger spins, we
irregularly see slightly larger variances; this is a first
indication that more samples/more runs might be necessary
to improve the results. We discuss the convergence of the
Monte Carlo estimates for different sample sizes for the
equilateral coherent vertex amplitude in the Appendix,
where we show several positive and negative examples.
The behavior of the imaginary part is more intricate. In

the rescaled plots it appears to be small, typically much
smaller than the real part with rather small variances. This
continues for large spins, yet we observe that it deviates
further from zero and also that the variances grow, while
typically being much smaller than the real part. To quantify
this we consider the logarithmic plots; here we observe
that the (absolute value of the) imaginary part is typically a
few orders of magnitude smaller than the real part. This
continues also to large spins. The only exceptions are the

FIG. 5. Random sampling of equilateral vertex amplitude, top shows results from 30 runs with 105 samples, top results for 30 runs
with 106 samples. Left: logarithmic plot of absolute value of vertex amplitude Av. Right: relative error ϵ of real part of Av.
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amplitudes which almost vanish, where the Monte Carlo
method suffers from the sign problem. Here the real and
imaginary part are of a similar magnitude and it is likely
that neither has converged for the given samples. Thus, in
most cases, we reproduce a significantly smaller imagi-
nary part, but far away from the limits of numerical
accuracy. It is clear that more samples are necessary to
further improve the imaginary part, yet we suspect it might
give diminishing returns due to the sign problem. At least
for the coherent vertex amplitude, this level of accuracy
appears acceptable.
As the final plot for the equilateral 4-simplex, we show

the relative error of the real part in Fig. 7. For small spins,
the relative error from importance sampling is comparable
to the random sampling results for ten times the samples,
and the relative error is below 1% in most cases. For large
spins compared to the asymptotic formula, we see again
more randomness, but most errors are below 10%.
Considering the size of the boundary spins this is an
impressively accurate result, but it also shows that more
samples are necessary to obtain a more precise result.

4. Isosceles 4-simplex

An isosceles 4-simplex possesses only two different
edge lengths, four of its edges have one lengths, the
remaining six the other. The latter six edges form an

equilateral tetrahedron. All remaining tetrahedra are isos-
celes, i.e. they have an equilateral triangle as their base
and the three remaining edges have equal lengths different
from the base triangle. Here, we consider an isosceles
tetrahedron, whose equilateral triangles have twice the
area of the isosceles ones. To do so, we assign the
following boundary data; first, we label the equilateral
tetrahedron as 5, whereas i∈ f1; 2; 3; 4g denote isosceles
tetrahedra. Thus, the spins are

FIG. 7. Relative error ϵ of real part of amplitude with respect to
the full vertex amplitude calculation (orange) and its asymptotic
approximation (yellow) for spins j ¼ 0.5 to 250.

FIG. 6. Equilateral vertex amplitude approximated via coherent state importance sampling. Top plots show the rescaled amplitude,
bottom plots show logarithmic plots of absolute value. Left: spins j from 0 to 35. Right: spins j from 35.5 to 250.
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jab ¼ j ∀a;b< 5;a≠ b; ja5¼ 2j ∀a≠ 5: ð4:6Þ

The smallest nonvanishing spin we can start from is j ¼ 1.
Noninteger spins are violating the SU(2) coupling rules in
the isosceles tetrahedra. We assign the following normal
vectors. For the equilateral 4-simplex, we again assign the
data for equilateral tetrahedra, see Eq. (4.5). The new data
is for the isosceles tetrahedra:

n⃗12 ¼ ð0; 0; 1Þ; n⃗13 ¼
�
0; 0.9860;

1

6

�
;

n⃗14 ¼
�
0.9759; 0.14086;

1

6

�
;

n⃗15 ¼
�
−0.48795;−0.5635;−

2

3

�
: ð4:7Þ

The last vector is the one assigned to the equilateral
triangle with twice the area compared to the isosceles one.
Again, we are not using a twisted spike configuration.

5. Results

As for the equilateral case, we consider 30 runs with 105

samples. The results including comparison to the full and

asymptotic amplitude can be found in Fig. 8, where we plot
the results over the scaling parameter λ, ðj; 2jÞ → ðλj; 2λjÞ,
up to λ ¼ 125. Since the results are qualitatively similar to
the equilateral 4-simplex case, we keep the discussion brief.
Let us begin with the plots of the rescaled amplitude,

where we observe a good agreement to the full amplitude,
small variances and small imaginary part close to zero. For
λ > 35 we compare to the asymptotic approximation,
which is closely but not fully matched for λ < 60. This
might be because the asymptotic approximation is not
good enough yet, and the matching improves for larger λ.
In the logarithmic plot, we can barely see any deviations.
For the isosceles 4-simplex, we observe only few boun-
dary data for which the coherent amplitude almost
vanishes, thus we encounter less cases suffering from a
severe sign problem leading to convergence issues.
Additionally, the logarithmic plots show similar to the
equilateral case that the imaginary part is a few orders of
magnitude smaller than the real one, but not vanishing
completely (or to numerical precision). The precision of
the real part is confirmed by the relative error of the (real
part of the) amplitude. Compared to the full calculation,
the error is below 1%, except for one case where the
amplitude is small. For the asymptotic formula, the
relative error drops quickly and appears to asymptote to

FIG. 8. Importance sampling results for the isosceles case. Top left: rescaled amplitude compared to full calculation up to λ ¼ 35. Top left:
rescaled amplitude compared to asymptotic formula up to λ ¼ 125. Bottom left: logarithmic plot of absolute value of real and imaginary part
and comparison to full and asymptotic vertex amplitude. Bottom right: relative error with respect to full and asymptotic amplitude.

MONTE CARLO ALGORITHM FOR SPIN FOAM INTERTWINERS PHYS. REV. D 110, 026022 (2024)

026022-17



below 10% for large λ, which shows the convergence of
the asymptotic formula to the full one. Due to the
randomness of Monte Carlo method, we see fluctuations
of this error.

6. Nonregular 4-simplex

The next example is an irregular 4-simplex, which
possesses two different triangle areas, namely j and 2j,
but these are not assigned to form an isosceles 4-simplex,
but a nonregular configuration. For j ¼ 1, this 4-simplex is
prescribed by three different edge lengths; l1 ≈ 1.58, l2 ≈
2.74 and l3 ≈ 1.52. One of its five tetrahedra is equilateral
with edge length l3, one is isosceles with base length l3 and
l2 as the other length. The three remaining tetrahedra have
one equilateral, one isosceles and two nonregular triangles,
where the remaining edge has length l1. In the following we
specify the five tetrahedra in terms of their spin foam
boundary data (not in a twisted spike configuration) and
add the edge lengths as further information. To keep the
notation consistent with the numbering of tetrahedra, we
label the edge lengths by the set of three tetrahedra sharing
it in the 4-simplex.

7. Tetrahedron 1—nonregular

l134 ¼ l1; l123 ¼ l124 ¼ l2; l125 ¼ l135 ¼ l145 ¼ l3;

j12¼ 2j; n⃗12¼ð0;0;1Þ;
j13¼ j; n⃗13¼ð0;0.83099;−0.55629Þ;
j14¼ j n⃗14¼ð0.44287;−0.70315;−0.55629Þ;
j15¼ j; n⃗15¼ð−0.44287;−0.12784;−0.88743Þ: ð4:8Þ

8. Tetrahedron 2—isosceles

l123 ¼ l124 ¼ l234 ¼ l2; l125¼ l235 ¼ l245 ¼ l3;

j12¼ 2j; n⃗21¼ð0;0;1Þ;
j23¼ 2j; n⃗23¼ð0;0.88878;−0.458333Þ;
j24¼ 2j n⃗24¼ð0.473665;−0.75204;−0.458333Þ;
j25¼ j; n⃗25¼ð−0.94733;−0.27347;−0.16667Þ: ð4:9Þ

9. Tetrahedron 3—nonregular

l134 ¼ l1; l123 ¼ l234 ¼ l2; l135 ¼ l235 ¼ l345 ¼ l3;

j13¼ j; n⃗31¼ð0;0;1Þ;
j23¼ 2j; n⃗32¼ð0;0.83099;−0.55629Þ;
j34¼ j n⃗34¼ð0.44287;−0.85342;−0.27485Þ;
j35¼ j; n⃗35¼ð−0.44287;−0.80856;0.38743Þ: ð4:10Þ

10. Tetrahedron 4—nonregular

l134 ¼ l1; l124 ¼ l234¼ l2; l145 ¼ l245 ¼ l345¼ l3;

j14¼ j; n⃗41¼ð0;0;1Þ;
j24¼ 2j; n⃗42¼ð0;0.83099;−0.55629Þ;
j34¼ j n⃗43¼ð0.44287;−0.85342;−0.27485Þ;
j45¼ j; n⃗45¼ð−0.44287;−0.80856;0.38743Þ: ð4:11Þ

11. Tetrahedron 5—equilateral

l125 ¼ l135 ¼ l235 ¼ l145 ¼ l245 ¼ l345 ¼ l3;

j15 ¼ j; n⃗51 ¼ ð0; 0; 1Þ;

j25 ¼ j; n⃗52 ¼
�
0; 0.94281;−

1

3

�
;

j35 ¼ j n⃗53 ¼
�
0.8165;−0.47141;−

1

3

�
;

j45 ¼ j; n⃗54 ¼
�
−0.8165;−0.47141;−

1

3

�
: ð4:12Þ

12. Results

The results for the nonregular 4-simplex are summarized
in Fig. 9. All plots are over λ, which scales all spins
according to ðj; 2jÞ → ðλj; λ2jÞ. Beginning with the plots
of the rescaled amplitude, we observe again a very good
agreement of the (real part of the) Monte Carlo simulations
with the full coherent vertex amplitude up to λ ¼ 30. For
λ > 30 we compare to the asymptotic formula, where the
results initially deviate slightly from the asymptotic for-
mula and the agreement improves under increasing λ.
Again, this signifies convergence of the asymptotic formula
to the full result. For all values of λ tested, namely up to
λ ¼ 120, the margins indicating the variance of the runs
remain small. More importantly, the imaginary part, which
is supposed to vanish, is small also with small error
estimates. These findings are confirmed in the logarithmic
plots, where we essentially see no deviations for the real
part; it seems for the boundary data considered we do not
encounter a severe sign problem and observe convergence
for the used number of samples. Moreover, the imaginary
part is again a few orders of magnitude smaller than the real
part. Lastly, the relative error is also fairly low: for the full
computation it is below 1% in most cases (λ < 30), while
the relative error for the asymptotic formula asymptotes to a
level fairly below 10%.

E. Computational time

Besides the accuracy of the algorithm, we must discuss
the computational costs and compare them to existing
algorithms, in particular the full calculation utilizing tensor
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network techniques. Already, we can infer that the
Monte Carlo simulations are more efficient due to the fact
that we could perform simulations for significantly larger
values of boundary spins. Indeed, there are two limiting
factors for the full calculation, memory and computational
time. In an effort to reduce the computational time, tensor
network methods, e.g. implemented in Julia in the package
TensorOperations,11 utilize linear algebra techniques that are
highly optimized, fast and can additionally utilize graphics
processors (GPUs) for further acceleration. However, this
comes with higher memory costs, e.g. for the coherent
vertex amplitude we must store a five-dimensional array
storing all possible values of the f15jg-symbol, and can
quickly go beyond the capabilities of consumer hardware.12

Here instead, our main focus is on the computational time
and wewill try to compare the Monte Carlo simulations to a
fast current algorithm.

We measure all computational times on a desktop
computer equipped with an Intel® Core™ i5-10400 and
32 GB of memory. To measure the computational time and
avoid other influences like compilation time, we have used
BenchmarkTools in Julia. To have a better comparison
between the algorithms that specifically compute the
vertex amplitude, we have precomputed (and benchmarked
the computation of) the coherent states as well. For the

FIG. 10. Computational time in seconds plotted over the spin j.
Measurements for equilateral coherent amplitude/coherent state,
respectively.

FIG. 9. Importance sampling results for the nonregular case. Top left: rescaled amplitude compared to full calculation up to λ ¼ 30.
Top left: rescaled amplitude compared to asymptotic formula up to λ ¼ 120. Bottom left: logarithmic plot of absolute value of real and
imaginary part and comparison to full and asymptotic vertex amplitude. Bottom right: relative error with respect to full and asymptotic
amplitude.

11https://jutho.github.io/TensorOperations.jl/stable/.
12In particular memory costs can be optimized by rewriting a

problem in terms of tensors with less indices. In general this also
improves computational time and helps in adapting code to
GPUs, which typically have more limited memory. Such an
optimization for coherent vertex amplitudes is promising.
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Monte Carlo algorithm, we show the result for a single run
with 105 and 106 samples (each with 104 thermalization
steps and 103 steps between taking samples). The data
shown in Fig. 10 are for an equilateral 4-simplex.
As already suspected in Sec. II, the full calculation

clearly outperforms the Monte Carlo algorithms at small
spins (j ≤ 10). Recall that the number of intertwiners to
sum over is ð2jþ 1Þ5 in this case, which is lower than or of
a similar size as the number of samples used in the
Monte Carlo algorithm. We could have lowered the number
of samples to make the Monte Carlo algorithm more
efficient, yet since the full calculation is fast and accurate
in this regime, there is not reason to use Monte Carlo
methods. The situation rapidly changes for j > 10, as the
numerical costs for the full calculation grow exponentially
and the Monte Carlo algorithm becomes more efficient.
From the double-logarithmic plot we also see that the
numerical costs of the Monte Carlo algorithm grow linearly
with the number of samples, indicated by the linear shift.
Note also that changing the number of thermalization steps
and number of steps between samples will have an impact
on the numerical costs. Moreover, the numerical costs
of the Monte Carlo algorithms grow with growing spins.
This is because the evaluation of f15jg-symbols becomes
more costly as the range of the sum over internal auxiliary
spins in Eq. (2.2) grows linearly under uniformly scaling
the spins.
Despite this level of efficiency, we cannot use the

Monte Carlo algorithm to go to arbitrarily high boundary
spins. First, the computational costs grow with growing
boundary spins. Second, with higher intertwiner ranges, we
expect that we must increase the number of samples further,
too. Lastly, increasing the boundary spins has revealed
another source of computational complexity, the coherent
states. As we can see from Fig. 10, the time to calculate a
coherent states grows rapidly with growing boundary spins.
It is defined as a sum over three magnetic indices, the fourth
being fixed as a function of the remaining three, of four
Wigner matrices and a 4jm-symbol, see Eq. (2.7). Since the
range of magnetic indices grows with the size of the spin,
the costs scale rapidly, but dwarf compared to the costs of
the full calculation. Eventually, analytical methods such as
asymptotic expansions should be accurate enough and
more efficient to compute in such large spin regimes. As
we have seen, Monte Carlo methods can bridge this gap
between the full calculation and asymptotic formulas for a
single vertex, and the gained efficiency can be used to
explore larger 2-complexes.

V. DISCUSSION AND CONCLUSION

Markov chain Monte Carlo methods are a powerful tool
to explore the dynamics of high-dimensional statistical
theories. To do so, one uses the partition function to sample
probable configurations and approximate expectation val-
ues of observables. The same strategy cannot be applied to

spin foams, as the amplitudes are typically complex. Thus,
we cannot directly use the partition function to define a
probability distrubition for sampling, and we must propose
a new one. Yet, even if we do so, due to the oscillatory
nature of the amplitudes, the results might not converge,
which is known as the sign problem. However, we do not
know yet how severe this sign problem is.
In this article we propose a probability distribution for

sampling intertwiners derived from coherent states, con-
cretely coherent (spacelike) tetrahedra, which can be
straightforwardly applied to coherent boundary data of
spin foams. The idea is to sample with respect to the
absolute value of the coefficient of the coherent states
expressed in the orthonormal spin network basis. For large
spins and coherent tetrahedra, this is a function of one
intertwiner label and sharply peaked. The distribution is
defined independently for each tetrahedron, and hence
can be directly generalized to boundaries with arbitrarily
many boundary tetrahedra. We then use this distribution to
approximate the so-called coherent vertex amplitude for a
4-simplex, where we sample the data from its five boundary
tetrahedra.
We perform this study in SU(2) BF theory for three

different sets of Regge-type boundary data, an equilateral,
an isosceles and a nonregular Euclidean 4-simplex and
compare the approximation to the full numerical calcu-
lation and the asymptotic formula. It is best to separately
discuss the real and imaginary part of the amplitude. For the
real part, we observe for almost all cases an excellent
agreement to the full calculation and at sufficiently large
spins to the asymptotic formula already at a moderate
sample size. These results are very encouraging for two
reasons; first, the results are obtained at substantially lower
numerical costs compared to the full numerical calculation,
which allows us to instead increase the size of the boundary
spins by almost an order of magnitude. Second, the fact that
the results have converged to the known results at a
moderate number of samples suggests that the sign problem
is not severe in these cases, at least for the real part in most
cases. However, as the coherent amplitude oscillates with
the Regge action under uniform scaling of the boundary
spins, some amplitudes almost vanish. In these cases, the
sign problem is more severe; the various terms summed
over cancel almost completely, which is difficult to capture
using Monte Carlo sampling methods.
In contrast to the real part, the sign problem is present in

the imaginary part for all boundary data. This is the case for
our choice of global phase, which renders the full ampli-
tude purely real.13 Therefore, the imaginary part always
vanishes by definition, i.e. the various imaginary parts of

13This phase choice is convenient for demonstrating the sign
problem. For other choices the sign problem manifests itself by
the difficulty of determining the phase. Recall that we have used
the phase from the full calculation and scaled it with the spins.
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summands exactly cancel. Again, this sign problem is
challenging for Monte Carlo algorithms, yet for the cases
studied the imaginary part is usually a few orders of
magnitude smaller than the real part. An exception are
the cases where the entire amplitude is small (compared to
boundary data of similar size). Moreover, we observe that
convergence of the imaginary part is worse for larger
boundary spins, but still under control. We expect that this
can be improved by increasing the number of samples, yet
it is not clear how efficient this is.
In terms of computational costs, the full calculation is

only more efficient for small spins. Above spins of the
order 10 the costs grow so rapidly that the Monte Carlo
method quickly becomes more efficient and provides an
accurate approximation. Hence, it should be possible to use
the freed resources for simulations of larger boundary spins
and bridge the gap to the asymptotic approximations. The
good accuracy is also an advantage of the importance
sampling algorithm compared to randomly sampling coher-
ent intertwiners. Random sampling provides decent and
convergent results for real and imaginary parts, but requires
more samples to do so. Additionally, the number of samples
required to obtain a convergent results grow with growing
boundary spins. Still random sampling is useful for
sampling bulk spins and intertwiners [31].
To sum up, sampling coherent intertwiners using

Monte Carlo techniques is efficient and accurate at simulat-
ing the coherent SU(2) BF vertex amplitude. This is an
important proof of principle and opens the door for more
efficient studies of spin foams defined on larger 2-complexes
and for larger boundary spins, such that we can better bridge
the gap between the full calculation and asymptotic approx-
imations, the latter e.g. via the complex critical points
method [19,20].

A. Generalizing the algorithm

In the following, we discuss several directions in which
the algorithm can be generalized, namely to larger
2-complexes, to the Lorentzian EPRL model and sampling
bulk intertwiners.

1. Larger 2-complexes with boundary

If the boundary states for spin foams defined on larger
2-complexes are given by coherent states, the algorithm
presented in this article can be straightforwardly general-
ized to this setting. The probability distribution is defined
individually for each intertwiner, i.e. they are explicitly
independent from one another. Hence, this method can be
extended to almost arbitrarily many coherent boundary
tetrahedra. Of course, more boundary intertwiners readily
imply increased numerical costs alone for computing
coherent states (and the normalization to define the
probability distribution). More importantly, more degrees
of freedom generically require larger numbers of samples
to obtain convergent results. Obviously, the same is true

for the full calculation and, as is typical for Monte Carlo
methods, we expect our algorithm to more beneficially
scale with the size of the system and the size of boun-
dary spins.
So far we have left bulk variables, i.e. representations

and bulk intertwiners, unaddressed. The most direct option
is to sum over these variables, yet this becomes inefficient
quickly: if we have N samples for all boundary data
combined, we must sum over all bulk variables N times.
This is probably still more efficient than summing over all
data exactly, but loses the beneficial scaling of Monte Carlo
algorithms. Instead, one can use random sampling for the
bulk variables as in [31].

2. Lorentzian (and Riemannian)
EPRL coherent vertex amplitude

BF theory written in the spin foam representation is
computationally nontrivial, simpler than modern 4d spin
foam models, yet similar enough to those models for
methods to be transferable. Indeed, both the Riemannian
and Lorentzian EPRL models use coherent states derived
from the same SU(2) boundary states. More precisely, the
same coefficents cιðfjig; fn⃗igÞ appear in the coherent
amplitudes, see e.g. the derivation for the Lorentzian model
in the seminal paper by Speziale [91]. Hence, the sampling
algorithm should be straightforwardly applicable, where
one has to replace the SU(2) f15jg-symbol by the
appropriate Spinð4Þ=SLð2;CÞ vertex amplitude with ortho-
normal boundary spin network data. Computing said
amplitude is computationally nontrivial, in particular for
the Lorentzian model [27,32]. Therefore, the here presented
algorithm might be highly beneficial for the Lorentzian
case, if it helps approximate coherent amplitudes with
fewer samples.

3. Sampling bulk intertwiners

Given the good convergence of the algorithm presented
here, the question arises whether this method can also be
applied to bulk variables. The following considerations are
more speculative, but we believe this method to have
potential there as well.
Without the boundary, we clearly cannot rely on external

data to choose a probability distribution. Instead we have to
guess one and at best it should be one adapted to the
dynamics of the system we are considering. Already for
the boundary, the coherent states work best as the spins are
larger and one approaches the asymptotic regime of the
vertex amplitude [12–14,67]. For a single vertex amplitude,
asymptotic analysis informs us for which boundary data the
amplitude possesses critical points and thus which ampli-
tudes dominate in the large spin limit. Hence, it might be
possible to use the information of critical points in turn to
guess a probability distribution for bulk intertwiners.
However this is easier said than done. Typically, there

exist two types of solutions to the critical point equations
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for a single 4-simplex, Regge geometries and so-called
vector geometries [12–16,67]. The former have two inequi-
valent critical points, giving rise to the characteristic oscil-
lations of the amplitude with the Regge action, while the
latter only have one. For our considerations more relevant is
the fact that Regge geometries span a 10-dimensional space
in the boundary Hilbert space of a 4-simplex, while vector
geometries span a 15-dimensional space [26]. Indeed, for
fixed spins a Regge geometry corresponds to an isolated
point in that space, whereas vector geometries span an
intricate five-dimensional space of configurations and are
not isolated, i.e. one can continuously vary the parameters
and obtain another vector geometry. Hence, it is unrealistic to
guess a probability distribution for bulk intertwiners taking
all critical configurations into account.
Instead, one can entertain the thought to devise a

probability distribution defined only from Regge geom-
etries of the vertices. For fixed spins, we determine the
Regge critical points by looking for length configurations
of flat simplices compatible with the assigned areas [45,92].
There can be multiple configurations fulfilling these
requirements. For these Regge geometries, we can compute
the spin foam boundary data for each of the tetrahedra and
derive a probability distribution from their coherent states.
In case there are multiple Regge critical points, we can
choose one, e.g. as it best fits prescribed boundary data;
most general would be to consider a superposition of the
critical coherent states. However, so far we have only
considered the information from one vertex, yet each bulk
edge is shared by two vertices. Therefore we propose to use
a (suitably normalized) product of distributions, which is
informed by both vertices. This could lead to situations,
where the critical points associated to the two vertices do
not agree and the coherent states describe nonmatching
tetrahedra. Hence, the algorithm would mostly sample
intertwiners where the distributions overlap, which how-
ever do not fit well with neither critical point(s) and would
lead to an exponential suppression. Such scenarios strongly
resonate with the ideas of gluing constraints introduced in
effective spin foams [38,93] and computed for spin foams
models in the context of a hybrid algorithm [41].
This idea has a few drawbacks. For the numerical

implementation, there are two challenges. The first one
is to compute the Regge geometries for various spin
assignments, the spin foam boundary data and the coherent
states. Indeed, we have seen that the latter can become
costly for large spins as well. Second, even though we
would then sample over intertwiners, the sum over bulk
spins is unaddressed. Thus, one has to repeat this procedure
and then sample for each spin assignment in the bulk.
Besides these practical considerations, this choice repre-
sents also a substantial truncation of the spin foam partition
function as we are excluding many bulk intertwiner degrees
of freedom. We expect that some of these will play a role in
the asymptotic regime as vector geometries. Conversely,

this setup allows us to investigate the relevance of vector
geometries in the partition function, e.g. whether they are
suppressed for geometric boundary data in larger com-
plexes. Moreover, in the Lorentzian theory we can choose
to only sample Regge boundary data for critical points
corresponding to Lorentzian 4-simplices, i.e. exclude
vector geometries including those Euclidean Regge geo-
metric boundary data [14,27]. In a way, its underlying idea
is similar to effective spin foams [38,93], but implemented
in the full theory. Thus, a comparison to this method as well
as complex critical points [19,20] would be interesting.

4. Closing remarks

To conclude, we have presented an algorithm that
samples boundary intertwiners according to their associ-
ated coherent boundary data. For the example of the SU(2)
coherent vertex amplitde considered here it offers a good
approximation at much lower numerical costs compared to
the full numerical calculation and is able to bridge the gap
to the regime where the asymptotic formula is valid. It is
straightforward to generalize this to larger 2-complexes/
triangulations with boundary. While the sign problem is
present, it is under control in the vast majority of cases and
most results show a good convergence. Therefore, we argue
that our algorithm is ideal in identifying the relevant
boundary intertwiners, allowing us to well approximate
the full amplitude at lower costs in computational time and
memory. We expect this advantage to grow even more for
calculations with more boundary intertwiners and larger
boundary spins, allowing us to tackle previously unfeasible
computations. Furthermore, we are optimistic that the
algorithm can be generalized to and will perform well
for the Lorentzian EPRL model. We also suggest an
application to bulk intertwiners, which however corre-
sponds to a big truncation excluding vector geometries
and must be justified. What is still missing is a dynamics
informed method to sample bulk representations. We leave
these specific questions and developments to further
optimize spin foam numerics for future research.
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APPENDIX: CONVERGENCE OF ALGORITHM
FOR COHERENT VERTEX AMPLITUDE

In this appendix, we want to briefly show and highlight
the convergence properties of the algorithm for the SU(2)
BF coherent vertex amplitude, more precisely for equi-
lateral boundary data and different boundary spins j. In
fact, as discussed in the main text, the convergence
behavior for real and imaginary part of the amplitude is
starkly different, where the imaginary part always suffers
from the sign problem. Moreover, for some boundary spins
this also applies to the real part. We will demonstrate these
different behaviors by showing 30 Monte Carlo estimates
for different numbers of samples for different boundary
spins j. The number of samples range from 104 to 106. To
keep the results comparable for different boundary spins,
we rescale the amplitude by j6.

1. Examples of good convergence

Asexamples forgoodconvergence,wepresent the real part
of the amplitude for three choices of boundary spins, j ¼ 26,
j ¼ 102.5 and j ¼ 105. The first two examples, see Figs. 11
and 12, respectively, are close to the minimum/maximum of

the oscillations of the vertex amplitude, respectively, and
show differences in convergence due to the size of spins. The
latter example, j ¼ 105 in Fig. 13, is closer to a root of the
oscillation, and roughly one order of magnitude smaller than
the value for j ¼ 102.5 (after rescaling).
Because their behavior is very similar, we discuss the

cases j ¼ 26 and j ¼ 102.5 at the same time. Clearly, we
can see a good convergence of results to the exact value as
we increase the number of samples, i.e. the estimates land
closer to the exact value. Already for small numbers of
samples the agreement is fairly good, as the estimates have
the same order of magnitude and the correct sign. Actually,
the rescaled amplitude has a similar value in both cases,
such that we can compare the convergence in both cases.
We note that the case for j ¼ 102.5 in Fig. 12 shows larger
absolute deviations. This is to be expected, as the configu-
ration space grows exponentially in dimension as the
boundary spins are increased. To compute this amplitude
by brute force, we would have to sum over ð2 × 102.5þ
1Þ5 ∼ 3.7 × 1011 configurations. We achieve an excellent
approximation for a much smaller number of samples.
The third example for good convergence is for j ¼ 105,

which compared to j ¼ 102.5, is closer to the root of

FIG. 11. Plots of 30 Monte Carlo estimates of the real part of the rescaled equilateral vertex amplitude for j ¼ 26. Left: real part. Right:
absolute value of the real part in logarithmic scale.

FIG. 12. Plots of 30 Monte Carlo estimates of the real part of the rescaled equilateral vertex amplitude for j ¼ 102.5. Left: real part.
Right: absolute value of the real part in logarithmic scale.
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oscicalltions; the real part of rescaled amplitude is roughly
one order of magnitude smaller than for j ¼ 102.5. In
Fig. 13 we still observe a good convergence for a
sufficiently large sample size. Indeed, for 104 samples,
the results can be quite off and may rarely even produce
the wrong sign. However, when increasing the sample
size the convergence drastically improves albeit later than
for optimal example.

2. Examples of bad convergence

Bad convergence can be observed for the imaginary part
of the amplitude for all choices of boundary spins and for
the real part of the amplitude if it almost vanishes, i.e. it is
close to a root of the (rescaled) amplitude. The example for
the real part is j ¼ 23.5 and for the imaginary part we take
j ¼ 102.5 (to contrast it with the good convergence of its
real part). Indeed, as the imaginary part is supposed to
vanish for all boundary spins, the convergence plots for the
imaginary part essentially look the same.
j ¼ 23.5 in Fig. 14 is an example for slow convergence

of the real part of the amplitude. Again, the rescaled
amplitude allows us to compare results for different spins.

Compared to the case j ¼ 105, which already showed
slightly worse convergence, the result is one order of
magnitude smaller and we suspect destructive interference
between different summands. This is reflected in the
convergence under increasing number of samples. For
small number of samples the estimates fluctuate around
zero, and while we see a convergence of the estimates to the
exact value, the order of magnitude and sign can still be
wrong at the maximal number of samples considered here.
Lastly, we consider the imaginary amplitude for j ¼

102.5 in Fig. 15, an example for which the real parts
converges well. For all possible values of boundary spins,
the imaginary part of the amplitude always vanishes by our
choice of phase of coherent states. Thus, all summands
contributing to this result must exactly cancel (at least to
numerical accuracy), which is the very definition of the sign
problem. So, while we see the estimates decreasing in size
when increasing the number of samples, we need roughly
100× more samples to lower the estimates by an order of
magnitude. This is costly indeed and we suspect to be
inefficient to reach a vanishing imaginary part (up to
numerical accuracy).

FIG. 14. Plots of 30 Monte Carlo estimates of the real part of the rescaled equilateral vertex amplitude for j ¼ 23.5. Left: real part,
Right: absolute value of the real part in logarithmic scale.

FIG. 13. Plots of 30 Monte Carlo estimates of the real part of the rescaled equilateral vertex amplitude for j ¼ 102.5. Left: real part.
Right: absolute value of the real part in logarithmic scale.
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