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S algebra is an infinite-dimensional Lie algebra, which is known to be the symmetry algebra of some
gauge theories. It is a “colored version” of the w1þ∞. In this paper, we write down all possible S-invariant
(celestial) operator product expansions between two positive-helicity outgoing gluons and also find the
Knizhnik-Zamolodchikov type null states for these theories. Our analysis hints at the existence of an
infinite number of S-invariant gauge theories which include the (tree-level) maximally helicity-violating
sector and the self-dual Yang-Mills theory.
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I. INTRODUCTION

The S matrix is an important observable in any quantum
field theory in asymptotically flat spacetime. In fact, in
quantum theory of gravity the S-matrix is argued to be the
only observable. Therefore, any holographic dual theory
has to compute the S-matrix elements or scattering ampli-
tudes in the bulk. Celestial holography is an attempt in this
direction [1–3]. The realization that the soft theorems of
gauge theories and gravity are the Ward identities for
different asymptotic symmetries [4–33] has led to important
insights into the study of scattering amplitudes rewritten as
correlators of a conformal field theory (CFT) on the two-
dimensional celestial sphere. This CFT is commonly known
as the celestial conformal field theory (CCFT). Themap from
scattering amplitudes to the correlators of CCFT is done via
theMellin transformation. Usually, scattering amplitudes are
written in the momentum basis. The job of the Mellin
transformation is to change the momentum eigenbasis into
the boost eigenbasis [34–37]. The isomorphism between

the global conformal group in two dimensions and the
Lorentz group in four dimensions is at the heart of this basis
change.
The operator product expansion (OPE) in CCFT corre-

sponds to the collinear limit in the bulk and it plays a
very important role in the study of the dual theory
[14,17,19,23,24,38–53]. In a previous paper [38], we have
studied the w1þ∞ invariant OPEs in theories of gravity. Our
analysis showed that there are an infinite number of
theories on the celestial sphere which are w1þ∞ invariant.
By deriving the OPE from graviton scattering amplitudes
we have explicitly shown in [53] that the self dual gravity is
one example of this infinite family.
In this paper, we perform a similar analysis for gluons.

In the case of gluons, the infinite symmetry algebra is know
as the S algebra [17,18]. We write down all possible
S-invariant OPE structures between two positive-helicity
outgoing gluons. We find that there is a (discrete) infinite
number of such structures and, presumably, each one
corresponds to an S-invariant theory of gluons in the bulk.
However, a more explicit Lagrangian description of these
theories is not known to us.
There is an important difference between the analyses of

w1þ∞ and S-invariant theories, which wewant to point out. S
algebra does not contain the Poincaré generators. Therefore,
the consistent OPEs need not be Poincaré invariant.
However, in this paper we make sure that all of the OPEs
are (conformal)Lorentz invariant, and this plays an important
role. This is along the lines of [46–48,54].
We start with a brief review of the soft gluon symmetry

algebra known as the S algebra in Sec. II. In Sec. III, the

*Contact author: banerjeeshamik.phy@gmail.com
†Contact author: rajuphys002@gmail.com
‡Contact author: sagnik.misra@niser.ac.in
§Contact author: panda@niser.ac.in
∥Contact author: pl.partha13@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 110, 026020 (2024)

2470-0010=2024=110(2)=026020(11) 026020-1 Published by the American Physical Society

https://orcid.org/0000-0001-8503-5664
https://orcid.org/0009-0007-4939-0686
https://ror.org/02r2k1c68
https://ror.org/02bv3zr67
https://ror.org/04kf25f32
https://ror.org/04dese585
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.026020&domain=pdf&date_stamp=2024-07-23
https://doi.org/10.1103/PhysRevD.110.026020
https://doi.org/10.1103/PhysRevD.110.026020
https://doi.org/10.1103/PhysRevD.110.026020
https://doi.org/10.1103/PhysRevD.110.026020
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


general structure of the OPE between two positive-helicity
outgoing gluons on the celestial sphere is discussed. We
argue that the null states of the maximally helicity-violating
(MHV) sector can be used to write down the general OPE.
In Sec. IV, we write down the null states that appear at
Oðz0z̄0Þ of the gluon-gluon OPE in the MHV sector. These
are not the complete set of null states that the MHV sector
has at Oðz0z̄0Þ; there are more of them. We talk about
them in Sec. VIII, where we discuss the Knizhnik-
Zamolodchikov (KZ)-type null states. Section V explicitly
shows how to organize the OPE at every order. For
simplicity, we focus on the Oðz0z̄0Þ terms in the OPE.
We also discuss the transformation properties of MHV null
states under the S algebra in this section, which are required
to organize the OPE. Section VI shows the invariance of the
Oðz0z̄0Þ OPE under the S algebra. In Sec. VII, we argue
that an infinite number theories can exist on the celestial
sphere. We conclude with a discussion of the results found
in this paper and some future directions in Sec. X.

II. THE S ALGEBRA

We start by describing the soft symmetry algebra, which
follows from the universal singular terms in the OPE
between two positive-helicity outgoing gluons [17,18].
Let Oa;þ

Δ ðz; z̄Þ denote a positive-helicity outgoing gluon
conformal primary operator of dimension Δ at the point
ðz; z̄Þ on the celestial sphere. The universal singular terms
in the OPE are given by

Oa;þ
Δ1

ðz1; z̄1ÞOb;þ
Δ2

ðz2; z̄2Þ

∼
−ifabc

z12

X∞
n¼0

BðΔ1 − 1þ n;Δ2 − 1Þ

×
z̄n12
n!

∂̄
nOc;þ

Δ1þΔ2−1ðz2; z̄2Þ: ð2:1Þ

The interesting fact about these singular OPE coefficients is
that they allow us to define an infinite tower of conformally
soft [39,55–60] gluons [17,18] by

Rk;aðz; z̄Þ≔ lim
Δ→k

ðΔ−kÞOa;þ
Δ ðz; z̄Þ; k¼ 1;0;−1; � � � : ð2:2Þ

Now it follows from the structure of the OPE (2.1) that
one can introduce the following truncated mode expansion:

Rk;aðz; z̄Þ ¼
X1−k2
n¼k−1

2

Rk;a
n ðzÞ
z̄nþk−1

2

; ð2:3Þ

where the expansion coefficients Rk;a
n ðzÞ are the conserved

holomorphic currents. For fixed values of k and a, there are
(2 − k) such currents and they transform in the (2 − k)-
dimensional representation of the SL2ðRÞ.

The holomorphic currents Rk;a
n ðzÞ can be further mode

expanded as

Rk;a
n ðzÞ ¼

X
α∈Z−kþ1

2

Rk;a
α;n

zαþ
kþ1
2

: ð2:4Þ

The algebra of these modes can be obtained from the
singular terms (2.1) of the RR OPE and is given by [17]

½Rk;a
α;n; Rl;b

α0;n0 � ¼ −ifabc
�
1−k
2
− nþ 1−l

2
− n0

�
!�

1−k
2
− n

�
!
�
1−l
2
− n0

�
!

×

�
1−k
2
þ nþ 1−l

2
þ n0

�
!�

1−k
2
þ n

�
!
�
1−l
2
þ n0

�
!
Rkþl−1;c
αþα0;nþn0 : ð2:5Þ

Now one can define the following generators [18]:

Sq;aα;m ¼ ðq −m − 1Þ!ðqþm − 1Þ!R3−2q;a
α;m ; ð2:6Þ

in terms of which the algebra (2.5) simplifies to

½Sp;aα;m; S
q;b
β;n� ¼ −ifabcSpþq−1;c

αþβ;mþn: ð2:7Þ

This infinite-dimensional algebra of the conformally soft
gluons, known as the S algebra, plays a central role in this
paper.1

In this paper, we want to classify all possible OPEs
between two positive-helicity outgoing gluons that are
invariant under the S algebra. The strategy we adopt here
is similar to that in the gravity case [38] but the details are
very different. For example, in the gravity case, the soft
symmetry algebra, which is isomorphic to the w1þ∞,
contains all four global space-time translations. But this
is not the case for the S algebra, and so there are S-invariant
theories that are not space-time translationally invariant
[46–48,54]. However, we preserve Lorentz invariance
because it translates into conformal invariance on the
celestial sphere and the structure of the S algebra depends
on that.

III. GENERAL STRUCTURE OF THE OPE
BETWEEN TWO POSITIVE-HELICITY

OUTGOING GLUONS

We can write the general structure of the OPE between
two positive-helicity gluons invariant under the S algebra as

1In this paper, we write the OPE in terms of the descendants of
the R algebra (2.5). However, we continue to refer to (2.5) as the
S algebra.
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Oa;þ
Δ1

ðz1; z̄1ÞOb;þ
Δ2

ðz2; z̄2Þ

¼−ifabc

z12

X∞
n¼0

BðΔ1−1þn;Δ2−1Þ z̄
n
12

n!
∂̄
nOc;þ

Δ1þΔ2−1ðz2; z̄2Þ

þ
X∞
p;q¼0

zp12z̄
q
12

X̃np;q
k¼1

C̃k
p;qðΔ1;Δ2ÞÕab

k;p;qðΔ1;Δ2;z2; z̄2Þ;

ð3:1Þ

where in the second line we added the S algebra descend-
ants of a positive-helicity gluon. The sum over k could be
finite or infinite, depending on the theory. Our goal is to
determine the descendants Õab

k;p;q and the OPE coefficients

C̃k
p;q in a general S-invariant theory.
In the gravity case [38], we found that any w-invariant

OPE can be written in terms of the MHV OPE and the
MHV null states. We have also checked by detailed
calculation that this structure holds in the self-dual gravity
theory [53], which is w invariant. The same reasoning also
holds for the S algebra and gluons. We summarize the
argument below.
Since the S algebra is universal, i.e., the same2 algebra

holds in anyS-invariant theory, it is reasonable to assume that
there is a master OPE that holds in all S-invariant theories.
Let us now consider the gluon-gluon OPE in the (tree-level)
MHV sector of the pure Yang-Mills theory. Since the MHV
sector is S invariant, the master OPE, when inserted into an
MHV gluon scattering amplitude, should reproduce the
known MHV sector OPE. Therefore, one can write

Master OPE ¼ MHV-sector OPEþ R; ð3:2Þ

whereR should vanish inside anMHV scattering amplitude.
This is possible only ifR is a linear combination ofMHV null
states. Now, since theMHV-sector OPE already contains the
universal singular terms (2.1) of the gluon-gluon OPE, R
consists only of nonsingular terms. Thus, we can write

Oa;þ
Δ1

ðz1; z̄1ÞOb;þ
Δ2

ðz2; z̄2ÞjAnyTheory
¼ Oa;þ

Δ1
ðz1; z̄1ÞOb;þ

Δ2
ðz2; z̄2ÞjMHV

þ
X∞
p;q¼0

zp12z̄
q
12

X̃np;q
k¼1

C̃k
p;qðΔ1;Δ2ÞMab

k;p;qðΔ1;Δ2; z2; z̄2Þ;

ð3:3Þ

whereMab
k;p;q are theMHV null states. Sowhen “any theory”

is taken to be the MHV sector, Mab
k;p;q vanishes and we get

back the MHV sector OPE by construction.

We now describe the MHV null states, which are of
interest to us. In this paper, we apply this general procedure
to write down the OPE at Oðz012z̄012Þ.

IV. NULL STATES IN THE MHV SECTOR

The general null state at order z012z̄
0
12 is given by3

Ψab
j ðΔÞ ¼ R−j;a

j−1
2
;jþ1
2

Ob;þ
Δþj −

ð−1Þjj
Γðjþ 2Þ

ΓðΔþ j − 1Þ
ΓðΔ − 2Þ R1;a

−1;0O
b;þ
Δ−1

−
ð−1Þj

Γðjþ 1Þ
ΓðΔþ j − 1Þ
ΓðΔ − 1Þ R0;a

−1
2
;1
2

Ob;þ
Δ : ð4:1Þ

Here we have ignored the ðp; qÞ index and have simply
writtenMab

k instead ofMab
k;0;0 for the order z

0
12z̄

0
12 MHV null

states.
Now it turns out that the basis of null states

Mab
k ðΔÞ ¼

Xk
i¼1

1

Γðk − iþ 1Þ
ΓðΔþ k − 1Þ
ΓðΔþ i − 1Þ Ψ

ab
i ðΔÞ ð4:2Þ

is more convenient because they transform nicely under the
S algebra. We will discuss their transformation law in the
next section.
We conclude this section by defining the antisymmetric

part of the null states Mab
k ðΔÞ as

Ma
kðΔÞ ¼ fabcMbc

k : ð4:3Þ

V. ORGANIZING THE OPE AT EVERY ORDER

Since the MHV sector is S invariant, the MHV null states
must form a representation of the S algebra. In other words,
every generator of the S algebra must map any MHV null
state to another MHV null state. Our analysis shows that
this representation is reducible and different S-invariant
theories correspond to different irreducible components of
this representation. So our first job is to study the action of
the S algebra generators on the MHV null states. This is
facilitated by the following observation.
In Sec. II, we discussed that the S algebra is generated by

an infinite number of holomorphic soft currents fRk;a
p ðzÞg,4

where k ¼ 1; 0;−1;−2;… is the dimension Δ of the soft
operator and k−1

2
≤ p ≤ 1−k

2
. For a fixed k, the soft currents

Rk;a
1−k
2

;…; Rk;a
k−1
2

transform in a (2 − k)-dimensional represen-

tation of the sl2ðRÞ.5 This can be seen from the following
commutation relations:

2For example, this is not true in the conventional 2 −D CFTs
because different CFTs have different Virasoro central charges
and thus different conformal symmetry algebras.

3These null states can be obtained by taking soft limits of the
gluon-gluon MHV OPE [15]. The relevant terms in the gluon-
gluon OPE in the MHV sector, which gives rise to these null
states, are given in (6.2).

4Here, −p is the antiholomorphic weight of the current.
5Note that we are assuming the theory to be (conformal)

Lorentz invariant.
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½H0
0;−1; R

k;a
m;p� ¼ 1

2
ð2pþ k − 3ÞRk;a

m;p−1 for p >
k − 1

2
;

½H0
0;−1; R

k;a
m;k−1

2

� ¼ 0;

½H0
0;0; R

k;a
m;p� ¼ −2pRk;a

m;p;

½H0
0;1; R

k;a
m;p� ¼ 1

2
ð2p − kþ 3ÞRk;a

m;pþ1 for p < −
k − 1

2
;

½H0
0;1; R

k;a
m;−k−1

2

� ¼ 0: ð5:1Þ

Now let us consider the currents R1;a
0 ; R0;a

1
2

; R−1;a
1 ; � � �

with the lowest sl2ðRÞweights. Starting fromR1;a
0 , all of the

currents in this family can be obtained by applying the
global subleading soft gluon operator R0;b

1
2
;1
2

(Fig. 1). This can

be seen from the following commutation relations:

½R0;a
1
2
;1
2

; Rk;b
m;1−k

2

� ¼ −ifabcð2 − kÞRk−1;c
mþ1

2
;2−k
2

: ð5:2Þ

Equations (5.1) and (5.2) show that we can write any
generator of the S algebra as a sum of products of the
generators ðR1;a

n;0; R
0;a
1
2
;1
2

; H0
0;0; H

0
0;�1Þ. Therefore, in order to

study the action of the S algebra generators on the MHV
null states, we just need to focus on this finite number of
generators.

A. Transformation properties of the null
states under sl2ðRÞ algebra

Using the action of different generators of sl2ðRÞ algebra
on the gluon primary operators and the commutation
relations (5.1), it is easy to show that

H0
0;1Ψab

k ðΔÞ ¼ 0: ð5:3Þ
Thus, (4.2) implies that

H0
0;1M

ab
k ðΔÞ ¼ 0: ð5:4Þ

Therefore, the null states Mab
k are sl2ðRÞ primaries.

B. Transformation properties of the null states
under the leading soft gluon current algebra

One can easily check that under the leading soft gluon
current algebra, the null states (4.2) transform as6

R1;a
0;0M

bc
k ðΔÞ ¼ −ifabdMdc

k ðΔÞ − ifacdMbd
k ðΔÞ

R1;a
n;0M

bc
k ðΔÞ ¼ 0; n > 0: ð5:5Þ

Therefore, the null states Mab
k are the leading soft gluon

current algebra primaries.

C. Transformation properties of the null states
under subleading soft gluon operator R0;a

1
2;
1
2

This is perhaps the most important transformation
property because it mixes the null statesMab

k with different
k values. The action of R0;a

1
2
;1
2

on Mbc
k ðΔÞ is given by

R0;a
1
2
;1
2

Mbc
k ðΔÞ¼−ðkþ2ÞifabxMxc

kþ1ðΔ−1ÞþðΔþk−2Þ
× ½ifacxMbx

k ðΔ−1ÞþifabxMxc
k ðΔ−1Þ�: ð5:6Þ

Now let us consider the set of null states

Mbc
k ðΔÞ; k ¼ 1; 2;…; n: ð5:7Þ

From (5.6), we can see that if we set

Mab
kþ1ðΔÞ ¼ 0; k ≥ n ≥ 0; ð5:8Þ

then the set (5.7) is closed under the action of R0;a
1
2
;1
2

.

Moreover, it follows from (5.6) that the infinite set of
FIG. 1. Soft gluon currents arranged in representations of
sl2ðRÞ. The sl2ðRÞ generators move the currents horizontally in
both directions, whereas the global subleading soft gluon sym-
metry generator R0;a

1
2
;1
2

moves the currents vertically downward.

6We have used the action of S-algebra generators on the
primary operators and on the Ψ-null states which are given in
Appendices A and B.
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equations (5.8) is also invariant under the action of R0;a
1
2
;1
2

because the index k mixes only with k0 ≥ k. Therefore, the
truncation (5.8) is S-algebra invariant and we can get an
S-invariant OPE if we keep only the finite set (5.7). Let us
emphasize that the integer n is in no way restricted by the S
invariance.

VI. Oðz012z̄012Þ OPE AND ITS INVARIANCE
UNDER THE S ALGEBRA

Let us now consider theOð1Þ terms in the OPE when we
keep only the finite set of MHV null states (5.7). In
particular, we show that the Oð1Þ terms in the OPE with
the following coefficients are S invariant:

Oa;þ
Δ1

ðz; z̄ÞOb;þ
Δ2

ð0; 0ÞjOð1Þ

¼ Oa;þ
Δ1

ðz; z̄ÞOb;þ
Δ2

ð0; 0ÞjMHVOPE atOð1Þ

þ
Xn
k¼1

BðΔ1 þ k;Δ2 − 1ÞMab
k ðΔ1 þ Δ2Þ ð6:1Þ

whereOa;þ
Δ1

ðz; z̄ÞOb;þ
Δ2

ð0; 0ÞjMHVOPE atOð1Þ is givenby [15,42]

Oa;þ
Δ1

ðz; z̄ÞOb;þ
Δ2

ð0; 0ÞjMHVOPEatOð1Þ

¼ BðΔ1 − 1;Δ2 − 1Þ
h
Δ1R

1;a
−1;0O

b;þ
Δ1þΔ2−1ð0; 0Þ

þ Δ1 − 1

Δ1 þ Δ2 − 2
R0;a
−1
2
;1
2

Ob;þ
Δ1þΔ2

ð0; 0Þ
i
: ð6:2Þ

Let us first apply R0;a
1
2
;1
2

to the OPE (6.1). After some

straightforward algebra, we get

R0;x
1
2
;1
2

ðOa;þ
Δ1

ðz;z̄ÞOb;þ
Δ2

ð0;0ÞjOð1ÞÞ

−R0;x
1
2
;1
2

h
Oa;þ

Δ1
ðz;z̄ÞOb;þ

Δ2
ð0;0ÞjMHVOPEatOð1Þ

þ
Xn
k¼1

BðΔ1þk;Δ2−1ÞMab
k ðΔ1þΔ2Þ

i
¼ ifxayðnþ2ÞBðΔ1þn;Δ2−1ÞMyb

nþ1ðΔ1þΔ2−1Þ: ð6:3Þ

Now, we have argued in the previous section that if the
Oð1Þ OPE of an S-invariant theory truncates at k ¼ n, then
Mab

nþ1ðΔÞwill be a null state of that theory. Thus, we can set
the rhs of (6.3) to 0, and hence (6.1) is invariant under the
action of R0;a

1
2
;1
2

. Using (5.5), one can also verify that (6.1) is

invariant under the actions of R1;a
n;0.

In [15], it was shown that the OPE in the MHV sector is
invariant under the action of H0

0;1. We can also see from
(5.3) that the null states Mab

k ðΔÞ are annihilated by H0
0;1.

Thus, the OPE (6.1) is also invariant underH0
0;1. Hence, we

conclude that the truncated OPE (6.1) is invariant under the
S algebra.

VII. INFINITE FAMILY OF S-INVARIANT
THEORIES

In Sec. V C, we showed that the set of equations

Mab
kþ1 ¼ 0; k ≥ n ≥ 0 ð7:1Þ

is S invariant. Thus, at Oðz0z̄0Þ we can truncate the OPE
(3.3) at an arbitrary n in an S-invariant way, that is, S
invariance does not fix the value of the integer n. Hence, we
can get a discrete infinite family of S-invariant OPEs for
different choices of the integer n. Each of these consistent
OPEs corresponds to an S-invariant theory of gluons. But,
at present, we do not know the Lagrangian description of
these theories except perhaps the self-dual Yang-Mills
theory.

VIII. KNIZHNIK-ZAMOLODCHIKOV
TYPE NULL STATES

KZ-type null states contain descendants of the holomor-
phic translation generator L−1 on the celestial sphere. They
can be obtained algebraically by determining the relevant
primary descendant, but in our case we can bypass this
tedious procedure if we use the OPE commutativity,

Oa;þ
Δ1

ðz1; z̄1ÞOb;þ
Δ2

ðz2; z̄2Þ¼Ob;þ
Δ2

ðz2; z̄2ÞOa;þ
Δ1

ðz1; z̄1Þ: ð8:1Þ

The reason behind this is that the Oðz012z̄012Þ terms of the
OPE, as written in (6.1), are not manifestly symmetric
under the exchange (8.1). Therefore, OPE commutativity
imposes nontrivial constraints on the OPE coefficients and
one such constraint is essentially the KZ equation. The
process can be further simplified if we make the operator
Ob;þ

Δ2
ðz2; z̄2Þ leading soft. The leading soft operator is

defined using equation (2.2) with k ¼ 1. Now a straightfor-
ward calculation gives the KZ-type null state

KaðΔÞ ¼ ξaðΔÞ − i
Xn
k¼1

Ma
kðΔþ 1Þ ¼ 0 ð8:2Þ

where

ξaðΔÞ ¼ CAL−1O
a;þ
Δ − ðΔþ 1ÞR1;b

−1;0R
1;b
0;0O

a;þ
Δ

− R0;b
−1
2
;1
2

R1;b
0;0O

a;þ
Δþ1 ð8:3Þ

is the KZ-type null state in the MHV sector [15] andMa
kðΔÞ

is the antisymmetric part of the null stateMab
k ðΔÞ defined in

(4.3). We have also used the identity fabxfaby ¼ CAδ
xy in

deriving the KZ-type null-state equation (8.2).
Another null-state equation involving the descendant

L−1O
a;þ
Δ can be obtained from (8.1) in a similar way by

taking the subleading conformal soft limit Δ2 → 0. It is
given by
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ðΔ − 1ÞξaðΔÞ −
Xn
k¼1

ðΔþ kÞMa
kðΔþ 1Þ ¼ 0: ð8:4Þ

Now, by multiplying Eq. (8.2) by ðΔ − 1Þ and then
subtracting it from (8.4), we get the following (current
algebra) null state:

χ1;an ðΔÞ ¼
Xn
k¼1

ðkþ 1ÞMa
kðΔÞ ¼ 0: ð8:5Þ

One can continue this procedure and get other current algebra
null states by taking conformal soft limits Δ2 → k; k ≤ −1.
We can denote them by fχ1nðΔÞ; χ2nðΔÞ; � � �g. However, it can
be shown that after a finite number of iterations this
procedure stops due to the truncation (5.8).

A. S invariance of the KZ-type null state

In this section, we show that the KZ-type null state (8.2)
is S invariant.
First of all, the states Mab

k ðΔÞ and, as a result, Ma
kðΔÞ ¼

fabcMbc
k ðΔÞ are annihilated by H0

0;1. Therefore, the state

KaðΔÞ is a primary of sl2ðRÞ because the KZ-type null state
(8.3) in the MHV sector is annihilated [15] by H0

0;1.
Similarly, one can show after some algebra that the

following relation holds:

R0;c
1
2
;1
2

KaðΔÞ ¼ ðΔ − 2ÞifcaxKxðΔ − 1Þ
− ðnþ 2ÞfcbxfabyMxy

nþ1ðΔÞ þ fcaxχ1;xn ðΔÞ

þ fcbyfbax
�Xn
k¼1

ðkþ 1ÞMyx
k ðΔÞ þ 2EyxðΔÞ

�

þ fcabfbyxEyxðΔÞ; ð8:6Þ

where

EyxðΔÞ ¼ ðΔ − 2ÞR1;y
−1;0O

x;þ
Δ−1 þ R0;y

−1
2
;1
2

Ox;þ
Δ : ð8:7Þ

Now we know that, in a theory in which the Oðz012z̄012Þ
OPE truncates at k ¼ n, i.e., (5.8) holds, bothMbc

nþ1ðΔÞ and
χ1;an ðΔÞ are null states. Thus, we can set them to 0 and get

R0;c
1
2
;1
2

KaðΔÞ ¼ ðΔ − 2ÞifcaxKxðΔ − 1Þ

þ fcbyfbax
�Xn
k¼1

ðkþ 1ÞMyx
k ðΔÞ þ 2EyxðΔÞ

�

þ fcabfbyxEyxðΔÞ: ð8:8Þ

In Appendix C we show that the second and the third terms
on the rhs of (8.8) are actually zero. Taking this into
account, we get

R0;c
1
2
;1
2

KaðΔÞ ¼ ðΔ − 2ÞifcaxKxðΔ − 1Þ: ð8:9Þ

Thus, we see that R0;c
1
2
;1
2

maps the KZ-type null stateKaðΔÞ to
a linear combination of other null states in the theory.
Hence, the null state equation

KaðΔÞ ¼ 0 ð8:10Þ

is S invariant.

IX. EXAMPLE: CELESTIAL OPE
IN SELF-DUAL YANG-MILLS THEORY

We now consider the example of self-dual Yang-Mills
(SDYM) theory, which is known to be S invariant. In
particular, we write theOð1Þ terms explicitly and show that
it can be written completely in terms of MHV OPE and
MHV null states. The color-dressed SDYM amplitude is
given by [61,62]

Að1Þ
nSDYM¼

X
σ∈Sn−1=R

caσð1Þaσð2Þ���aσðnÞAð1Þ
nSDYMðσð1Þσð2Þ���σðnÞÞ;

ð9:1Þ

where the sum is over noncyclic permutations, modulo
reflection of the list σ. The cyclic n-gluon color factors are
given by

ca1a2���an ¼ fb1a1b2fb2a2b3 � � � fbnanb1 ; ð9:2Þ

and Að1Þ
SDYMðσð1Þσð2Þ � � � σðnÞÞ are the color ordered ampli-

tudes, given by [61,62]

Að1Þ
nSDYMð123���nÞ¼Mn

X
1≤i1<i2<i3<i4≤n

hi1i2i½i2i3�hi3i4i½i4i1�
h12ih23i���hn1i ;

ð9:3Þ

where Mn is a numerical normalization constant. Here we
are working in the split signature ð−;þ;−;þÞ and in this
signature the null momentum of a massless particle is
parametrized as

pi ¼ ϵiωið1þ ziz̄i; zi þ z̄i; zi − z̄i; 1 − ziz̄iÞ; ð9:4Þ

with ϵi ¼ þ1ð−1Þ for outgoing (incoming) particles.
ðzi; z̄iÞ are the coordinates on the celestial torus. In our
notation, the angle and square brackets are given by

hiji ¼ −2ϵiϵj
ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
zij; ½ij� ¼ 2

ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
gzij: ð9:5Þ

Here we are interested in the five-point color dressed
amplitudes only. For n ¼ 5, the sum in (9.3) will give 20
terms. Let us start with the following term [63]:
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Að1Þ
5 SDYMð12345Þ ¼

s12s23 þ s45s51 þ s25s45 þ s25s14 þ h24i½14�h15i½52�
h12ih23ih34ih45ih51i ; ð9:6Þ

where sij ¼ ðpi þ pjÞ2. The Mellin transformation for five-point color-ordered amplitudes is given by

M5SDYMð1þΔ1
; 2þΔ2

; � � � 5þΔ5
Þ ¼

�Y5
k¼1

Z
∞

0

dωkω
Δk−1
k

�
Að1Þ
5SDYMð12345Þδð4Þ

�X5
k¼1

pk

�
: ð9:7Þ

We are interested in the OPE limit 4 → 5. For our purpose, the following parametrization of the five-point momentum-
conserving delta function will be convenient [14]:

δð4Þ
�X5

i¼1

ϵiωiqi

�
¼ 1

4ωp
δðω1 − ω�

1Þδðω2 − ω�
2Þδðω3 − ω�

3Þ

× δ

�
x − x̄ − tz45

�
x
z35

−
x̄
z25

�
− tz̄45

�
x
z̄25

−
x̄
z̄35

�
þ tz45z̄45

�
x

z35z̄25
−

x̄
z25z̄35

��
; ð9:8Þ

where we have used the parametrization

ω4 ¼ tωp; ω5 ¼ ð1 − tÞωp; ð9:9Þ

and for i ¼ f1; 2; 3g we have

ω�
i ¼ ϵiωpðσi;1 þ tz45σi;2 þ tz̄45σi;3 þ tz45z̄45σi;4Þ: ð9:10Þ

The σi;1; x; x̄ are given by

σ1;1 ¼ −
z25z̄35
z12z̄13

; ð9:11Þ

σ2;1 ¼
z15z̄35
z12z̄23

; ð9:12Þ

σ3;1 ¼ −
z25z̄15
z23z̄13

; ð9:13Þ

x ¼ z12z35z̄13z̄25; x̄ ¼ z13z25z̄12z̄35: ð9:14Þ

Since, we are only interested in theOð1Þ term, we do not
need the other σi;j’s. However, one can find their expres-
sions in [53].
Now we perform the OPE decomposition of the five-

point amplitude (9.7). We apply the strategy of [53]. First,
we write Að1Þ

5SDYMð12345Þ, given by (9.6), in terms of
fωi; zi; z̄ig and substitute it into (9.7). Next, using (9.8),
we can easily perform the ωi; fi ¼ 1; 2; 3g integrals. After
expanding around z45 ¼ z̄45 ¼ 0, one can then perform the
ωp and t integrals. The leading term is already known in
the literature. Here we concentrate on the Oð1Þ terms. The
Oð1Þ terms are given by

M5SDYMð1þΔ1
; 2þΔ2

;…; 5þΔ5
ÞjOð1Þ

¼ δ

�X5
i¼1

Δi − 5

�X2
k¼0

BðΔ4 − 1þ k;Δ5 − 1Þ

× F kðfzi≠4; z̄i≠4;Δi≠4;5gÞ; ð9:15Þ

where the explicit forms of the functions
F kðfzi≠4; z̄i≠4;Δi≠4;5gÞ are not required for our purpose.
For the other 19 terms, one can check that the structure of
the B function is the same. Hence, including all of those
terms, we write our final color-dressed five-point celestial
amplitude as

M5SDYMð1a1;þΔ1
; 2a2;þΔ2

; � � � 5a5;þΔ5
ÞjOð1Þ

¼ δ

�X5
i¼1

Δi − 5

�X2
k¼0

BðΔ4 − 1þ k;Δ5 − 1Þ

× GðfaigÞ
k ðfzi≠4; z̄i≠4;Δi≠4;5gÞ: ð9:16Þ

Now, to factorize the above five-point SDYM amplitude into
a four-point amplitude, we adopt the same strategy as in the
case of the self-dual gravity in [53]. We do this by taking
different conformally soft limits of the fourth gluon primary

and replace the functions GðfaigÞ
k ðfzi≠4; z̄i≠4;Δi≠4;5gÞ by

correlation functions of the S-algebra descendants of the
fifth gluon7 and the first, second, and third gluons. For
example, we can make the fourth gluon leading conformally
soft (Δ4 → 1) and use the leading soft factorization theorem

to replace the function GðfaigÞ
0 ðfzi; z̄i;ΔigÞ, which gives

7Note that we are taking the 4 → 5 OPE.
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M5SDYMð1a1;þΔ1
; 2a2;þΔ2

; � � � 5a5;þΔ5
ÞjOð1Þ ¼ BðΔ4 − 1;Δ5 − 1ÞR1;a4

−1;0M4 SDYMð1a1;þΔ1
; 2a2;þΔ2

; 3a3;þΔ3
; 5a5;þΔ4þΔ5−1Þ

þ δ

�X5
i¼1

Δi − 5

�X2
k¼1

BðΔ4 − 1þ k;Δ5 − 1ÞGðfaigÞ
k ðfzi; z̄i;ΔigÞ: ð9:17Þ

We can repeat this procedure to find other two functions G1 and G2 by taking subleading (Δ4 → 0) and sub-subleading
(Δ4 → −1) conformally soft limits of the fourth gluon primary, respectively, in (9.17). Finally, we can write the five-point
SDYM amplitude in the following factorized form:

M5SDYMð1a1;þΔ1
;2a2;þΔ2

; � � �5a5;þΔ5
ÞjOð1Þ ¼

1

2

ΓðΔ4þ2Þ
ΓðΔ4Þ

BðΔ4−1;Δ5−1ÞR1;a4
−1;0M4SDYMð1a1;þΔ1

;2a2;þΔ2
;3a3;þΔ3

;5a5;þΔ4þΔ5−1Þ

þΓðΔ4þ2Þ
ΓðΔ4þ1ÞBðΔ4;Δ5−1ÞR0;a4

−1
2
;1
2

M4SDYMð1a1;þΔ1
;2a2;þΔ2

;3a3;þΔ3
;5a5;þΔ4þΔ5

Þ

þΓðΔ4þ2Þ
ΓðΔ4þ2ÞBðΔ4þ1;Δ5−1ÞR−1;a4

0;1 M4SDYMð1a1;þΔ1
;2a2;þΔ2

;3a3;þΔ3
;5a5;þΔ4þΔ5þ1Þ: ð9:18Þ

At the OPE level, it can be written as

Oa4;þ
Δ4

ðz4; z̄4ÞOa5;þ
Δ5

ðz5; z̄5ÞjSDYMOð1Þ ¼ BðΔ4 − 1;Δ5 − 1Þ
�
Δ4R

1;a4
−1;0O

a5;þ
Δ4þΔ5−1 þ

Δ4 − 1

Δ4 þ Δ5 − 2
R0;a4
−1
2
;1
2

Oa5;þ
Δ4þΔ5

�
ðz5; z̄5Þ

þ BðΔ4 þ 1;Δ5 − 1ÞMa4a5
1 ðΔ4 þ Δ5Þðz5; z̄5Þ

¼ Oa4;þ
Δ4

ðz4; z̄4ÞOa5;þ
Δ5

ðz5; z̄5ÞjMHV
Oð1Þ þ BðΔ4 þ 1;Δ5 − 1ÞMa4a5

1 ðΔ4 þ Δ5Þðz5; z̄5Þ; ð9:19Þ

whereMab
1 is theMHV null state defined in (4.2). Hence, we

see that the OPE of two positive-helicity gluon primaries at
Oð1Þ in SDYM theory can be written as the MHV OPE at
Oð1Þ plus an MHV null state.
This precisely matches with our result (6.1) when it is

truncated at n ¼ 1.

X. DISCUSSION

In celestial CFT, the sector with no negative-helicity
soft gluon is governed by the infinite-dimensional S
algebra. In this paper, we found the most general form
of the S-invariant OPE of two positive-helicity gluons at
Oðz012z̄012Þ. It is given by

Oa;þ
Δ1

ðz; z̄ÞOb;þ
Δ2

ð0; 0ÞjOð1Þ

¼ Oa;þ
Δ1

ðz; z̄ÞOb;þ
Δ2

ð0; 0ÞjMHVOPE atOð1Þ

þ
Xn
k¼1

BðΔ1 þ k;Δ2 − 1ÞMab
k ðΔ1 þ Δ2Þ: ð10:1Þ

In this equation, Mab
k ðΔÞ is an MHV null state, which

transforms in a simple manner under the S algebra. We have
also shown that for n ¼ 1, (10.1) gives the correct
Oðz012z̄012Þ term in the gluon-gluon OPE in the self-dual

Yang-Mills theory. This is an important consistency check
for the OPE formula.
Although the OPE coefficients and the descendants

Mab
k ðΔÞ that can appear at Oðz012z̄012Þ are fixed by the S

invariance, the integer n is not fixed by the symmetry. We
saw that for n ¼ 1 we get the OPE of the self -dual Yang-
Mills theory, but the underlying theories for n ¼ 2 and
higher are not known. Presumably, they are exactly
solvable theories of gluons, which generalize the self-dual
Yang-Mills theory. An interesting question for future
research is to determine these theories. We also found
the KZ-type null states for these (unknown) theories. They
may be of some help in the search for these theories.
A celestial dual for the MHV gluon scattering amplitudes

was recently found in [64]. The theories that underlie the
OPE (10.1) can be thought of as deformations of those in
[64], which preserve the S invariance. Our results suggest
that there is a discrete infinite number of such deforma-
tions. It will be interesting to see if this picture is correct.
Another point we would like to emphasize is that for

every “theory” there are only a finite number of descend-
ants that contribute to the subleading OPE. This is some-
what unexpected because the spectrum of operator
dimensions in celestial CFT is not bounded from below.8

8See, for example, the recent work [65].
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This might point to a reformulation of celestial CFT where
operator dimensions are discrete and bounded from below.
Proposals along this line have been made in [66,67]. It will
be interesting to determine the relation between [66,67] and
our observation in this paper.
Let us now discuss some interesting questions whose

study we leave to the future.9

If there are S-invariant field theories on the celestial
sphere that lack bulk Lorentz invariance, can we provide a
physical interpretation for these theories? Additionally, can
we find reasons, such as mathematical consistency, to rule
out S-invariant field theories on the celestial sphere that
lack bulk Lorentz invariance? In this paper, we assumed
bulk Lorentz invariance from the beginning. However,
space-time translational invariance was not assumed.
Could S-invariant non-Lorentz-invariant theories on the

celestial sphere emerge from a spontaneous breakdown of
Lorentz-invariant theories? Could the Goldstone modes
associated with the breakdown of Lorentz invariance be
analogous to the soft modes responsible for the breakdown
of Bondi-Metzner-Sachs symmetry, as suggested in [68] in
the context of the black hole information paradox?
Are there constraints on the Lagrangian formulation of

these S-invariant theories? Alternatively, from the perspec-
tive of axiomatic CFT, is it conceivable that there is no
Lagrangian formulation of a CFT and, instead, the focus
should be on verifying whether either w1þ∞ or S-invariant
celestial CFTs adhere to axioms such as the Osterwalder-
Schrader axioms? The null states found in this paper
and [38] place tight constraints on the Lagrangian formu-
lation of the celestial dual theories. One way to see this is
that in celestial CFT the spectrum of operator dimensions is
the same for every theory, at least in its current formulation.
Therefore, different theories are not distinguished by
their operator spectrum but by their null states. So any
Lagrangian formulation has to produce all of the correct
null states, and this may be useful in constraining the form
of the Lagrangian. We leave these very interesting ques-
tions for future study.
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APPENDIX A: S ALGEBRA PRIMARIES

In this appendix, we write down the conditions on the
primary operators that follow from the OPE between two
positive-helicity outgoing gluon primaries (2.1). They are
obtained by taking different soft limits in (2.1) and
comparing both the sides of the OPE:

Rk;a
p−kþ1

2
;−q−k−1

2

Ob;þ
Δ ð0; 0Þ ¼ 0; p ≥ 2

Rk;a
1−k
2
;−q−k−1

2

Ob;þ
Δ ð0; 0Þ ¼ −ifabc

ð−1Þkþqþ1

Γð−k − qþ 2Þ

×
ΓðΔ − 1Þ

ΓðΔþ qþ k − 2Þ

×
∂̄
q

q!
Oc;þ

Δþk−1ð0; 0Þ; ðA1Þ

where 0 ≤ q ≤ 1 − k; k ¼ 1; 0;−1;…. These conditions
are used to write down the transformation properties of
the MHV null states. For more details on how to obtain
these conditions, one can check Appendix F of [53]. The
analyses there were done for w1þ∞ primaries, but the
methodology is the same for S algebra.

APPENDIX B: TRANSFORMATION PROPERTIES
OF THE Ψbc

j NULL STATES UNDER THE
LEADING SOFT GLUON OPERATOR R1;a

0;0
AND THE SUBLEADING SOFT GLUON

OPERATOR R0;a
1
2;
1
2

Using (2.5), (4.1), and (A1), one can show that

R1;a
0;0Ψbc

j ðΔÞ ¼ −ifabxΨxc
j ðΔÞ− ifacxΨbx

j ðΔÞ
R0;a

1
2
;1
2

Ψbc
j ðΔÞ ¼ −ðjþ 2ÞifabxΨxc

jþ1ðΔ− 1Þ
þ ðΔþ j− 2ÞifacxΨbx

j ðΔ− 1Þ

þ 2
ð−1Þj

Γðjþ 1Þ
ΓðΔþ j− 1Þ
ΓðΔ− 1Þ ifabxΨxc

1 ðΔ− 1Þ:

ðB1Þ

These equations are used in Secs. V B and V C.

APPENDIX C: PROOF THAT THE KZ-TYPE
NULL STATES ARE CLOSED UNDER

THE ACTION OF R0;a
1
2;
1
2

We write the second and third terms in (8.8) as

ΣcaðΔÞ ¼ fcbyfbax
�Xn
k¼1

ðkþ 1ÞMyx
k ðΔÞ þ 2EyxðΔÞ

�

þ fcabfbyxEyxðΔÞ: ðC1Þ9We are thankful to the anonymous referee for raising these
interesting questions.
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The above equation can be decomposed into symmetric
and antisymmetric parts in the following way:

ΣcaðΔÞ ¼ Σca
A ðΔÞ þ Σca

S ðΔÞ; ðC2Þ

where

Σca
A ðΔÞ ¼ 1

2
½ΣcaðΔÞ − ΣacðΔÞ�;

Σca
S ðΔÞ ¼ 1

2
½ΣcaðΔÞ þ ΣacðΔÞ�: ðC3Þ

Now, using the Jacobi identity

facbfbxy þ fxabfbcy þ fxcbfaby ¼ 0; ðC4Þ

one can show that

Σca
A ðΔÞ ¼ −

1

2
fcabχ1;bn ðΔÞ ¼ 0: ðC5Þ

We now simplify the symmetric part (C3) and get

Σca
S ðΔÞ ¼ 1

2
fcbyfbax

�Xn
k¼1

ðkþ 1ÞðMxy
k ðΔÞ þMyx

k ðΔÞÞ

þ 2ðExyðΔÞ þ EyxðΔÞÞ
�
: ðC6Þ

The leading and subleading soft limits of (8.1) and some
straightforward algebra then give

Xn
k¼1

ðkþ1ÞðMxy
k ðΔÞþMyx

k ðΔÞÞþ2ðExyðΔÞþEyxðΔÞÞ¼ 0:

ðC7Þ

Hence, we conclude that

ΣcaðΔÞ ¼ 0: ðC8Þ
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