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We investigate the relaxation of holographic superfluids after quenches, when the end state is either
tuned to be exactly at the critical point, or very close to it. By solving the bulk equations of motion
numerically, we demonstrate that in the former case the system exhibits a power law falloff, as well as an
emergent discrete scale invariance. The latter case is in the regime dominated by critical slowing down, and
we show that there is an intermediate time range before the onset of late-time exponential falloff, where the
system behaves similarly to the critical point with its power law falloff. We further postulate a
phenomenological Gross-Pitaevskii-like equation (corresponding to model F of Hohenberg and Halperin)
that is able to make quantitative predictions for the behavior of the holographic superfluid after near-critical
quenches into the superfluid and normal phase. Intriguingly, all parameters of our phenomenological
equation, which describes the nonlinear time evolution, may be fixed with information from the static
equilibrium solutions and linear response theory.

DOI: 10.1103/PhysRevD.110.026019

I. INTRODUCTION

The (complex) Ginzburg-Landau and Gross-Pitaevskii
equations are among the simplest yet most important
nonlinear phenomenological models in mathematical phys-
ics and can describe the surprisingly rich macroscopic
behavior of various complex systems from nonlinear waves
to nonequilibrium phenomena in superconductors and
superfluids [1,2]. Relaxation of homogeneous superfluids
near the second-order phase transition is usually governed
by the derivative of the free energy. However, exactly at the
critical point, the derivative of the free energy vanishes and
equilibration is totally governed by nonlinearities (inac-
cessible within linear response).
In experiments, it is impossible to engineer the system to

relax exactly to the critical point. Hence, extending the
analysis to nearly critical quenches is necessary. Moreover,
fluctuations of the order parameter are usually neglected in

conventional hydrodynamics since they are captured by
massive modes. However, close to the critical point those
modes become light and have to be taken into account. For
example, order parameter fluctuations were crucial in
recent experiments on strange metals [3,4].
In the past decades, the AdS/CFT correspondence [5–7]

has emerged as a new tool to investigate out-of equilibrium
physics, especially in the strongly coupled regime [8].
Indeed, so-called holographic superconductors have been a
steady target of research since their inception in [9–12].
Despite the established nomenclature, it is commonly
understood that these systems might more correctly be
termed holographic superfluids, as the gauge symmetry in
the bulk should translate into a global symmetry according
to common AdS/CFT wisdom.1 Another interesting per-
spective suggested in [14] is to understand large gauge
transformations in the bulk as giving rise to transformations
that are “background-gauge invariance” transformations in
the boundary theory, affecting the sources imposed there
without being tied to a dynamical photon. This perspective
will be especially influential for our work.
There are many open problems in the use of holographic

methods to model out-of-equilibrium dynamics of super-
fluids, and this is an active research area. For instance, there
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1However, the Maxwell equations on the boundary can be
imposed, leading to a genuine holographic superconductor [13].
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is no qualitative understanding of the emergence of discrete
scale invariance after exactly critical quenches observed in
[15]. More generally, it is not clear whether or to what
degree the dynamics of a holographic superconductor can
be captured by an effective theory formulated in the
boundary language [16,17]. We seek to make progress
in this direction by studying critical and near-critical
quenches in a holographic superconductor both from a
bulk and a boundary perspective. This leads us to postulate
a phenomenological Gross-Pitaevskii-like equation incor-
porating background-gauge invariance that is able to make
quantitative predictions for the dynamics after critical and
near-critical quenches in the cases we study.

II. BULK RESULTS

We consider the model of a holographic superconductor
in AdS4=CFT3 [9–12,18]:

S ¼ Sgrav þ
1

2κ2

Z
M

d4x
ffiffiffiffiffiffi
−g

p

×

�
−

1

4q2
FμνFμν − jDφj2 −m2jφj2

�
þ Snf : ð1Þ

The fields include the metric gμν, a Uð1Þ gauge field Aμ

(F ¼ dA), and a complex scalar field φ of mass m2 ¼ −2
charged under the gauge field with Dμ ≡ ∂μ − iqAμ and
charge q ¼ þ1. Neglecting backreaction, we fix the metric,

ds2 ¼ 1

u2
½−fðuÞdt2 − 2dtduþ dx2 þ dy2�; ð2Þ

with fðuÞ ¼ 1 − u3, setting uh ¼ 1 and L ¼ 1. We measure
all physical quantities in terms of the fixed temperature
T̄ ¼ 4πT=3 where T ¼ jf0ð1Þj=ð4πÞ. To simplify the nota-
tion we assume that all quantities have been divided by the
appropriate power of T̄ and hence are dimensionless.2 Snf is
an external source, which we use to perform a quench in the
charge density. The equations of motion (EOMs) are solved
by a fully pseudospectral code as previously employed
in [19].
The near boundary expansions of the bulk matter fields

read

φ ∼ hOiu2 þ…; At ∼At − ρuþ…; ð3Þ

where we set the source of the scalar field to zero in order to
engineer spontaneous symmetry breaking, and 2κ2hOi≡
ΨðtÞ ¼ ϕðtÞeiψðtÞ is the complex expectation value of the
dual operator [20]. At static equilibrium we identifyAt ¼ μ
where μ is the chemical potential. The subleading compo-
nent ρðtÞ is the charge density. There is a second-order

phase transition to a phase with nonzero condensate at
ρ ¼ ρc ≈ 4.06371. We perform quenches of the system by
giving ρ a step-function-like time dependence. See
Appendix A for more details.
We want to study how holographic superconductors

relax to their equilibrium state after a quench when the
final state is close to the critical point. Unlike in the Kibble-
Zurek mechanism [21–25], we are interested in quenches
with initial state in the ordered phase, i.e., the quenches we
are studying do not cross the critical point at any finite rate.
For a near-critical end state this relaxation will be char-
acterized at late times by an exponential falloff, where the
half-life time diverges as the end state is taken towards the
critical point. This is known as critical slowing down [26],
see [27–30] for holographic works. But what if the end state
is tuned to lie exactly at the critical point? In this case, the
exponential falloff is replaced by a power law falloff
[31–33]. This makes sense, as a power law falls off slower
than any exponential. From the holographic bulk perspec-
tive this may be seen as the system trying to balance the
condensate floating above the horizon exactly, hence the
slow decay. The condensate is affected by electrostatic
forces driving it into the bulk and gravitational forces trying
to pull it into the horizon [34].
Figure 1 shows representative numerical results. We

clearly observe late time power law falloffs in ϕðtÞ, jψ̇ðtÞj
and jAtðtÞ − ρcj that are universal, i.e., independent on the
initial state or other details of the quench. At late times,
where ρðtÞ is constant, the bulk EOMs are not explicitly
dependent on t, and so for any solution yðtÞ, yðtþ δtÞ will
also be a solution for any δt. We hence make the Ansatz,

ϕðtÞ ¼ Aðtþ δtÞα ð4Þ

FIG. 1. Numerical results for jAtðtÞ − ρcj (solid lines), jhOij≡
ϕðtÞ (dashed lines), and jψ̇ðtÞj (dotted lines) for multiple exactly
critical quenches starting from ρinitial ¼ f4.124; 4.302; 4.951;
6.981; 8.184g (purple, blue, green, orange, red). We find a
universal power-law late time behavior with ϕ ∝ 1=

ffiffi
t

p
and

jAt − ρcj; jψ̇ j ∝ 1=t.

2The dimensionless ratios are μ=T̄; ρ=T̄2; hOi=T̄2; tT̄; C2T̄3;
C3T̄; C4=T̄2; C5T̄3.
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ψ̇ðtÞ − ðAtðtÞ − ρcÞ ¼ Bðtþ δtÞγ; ð5Þ

which we fit to our numerical curves at late times
(t ≥ 5 × 104). We only consider the combination in
Eq. (5) because it is gauge invariant under background-
gauge transformations [14]. With high consistency between
the quenches plotted in Fig. 1, we obtain

A ≈ 4.07 α ≈ −0.50
B ≈ 0.93 γ ≈ −1.00 ð6Þ

with only the value of δt varying significantly from quench
to quench.
The observed behavior jψ̇ j ∝ 1=t indicates ψðtÞ ∝ log t,

i.e., oscillations of the real and imaginary part of jhOij that
are periodic on a logarithmic time axis. This signifies the
presence of a discrete scale invariance, in contrast to the
continuous scale invariance inherent to ordinary power
laws [35]. Such discrete scale invariance has also previ-
ously been observed numerically in the formation of black
holes through the collapse of charged scalar fields [36] and
after critical quenches in a holographic Kondo model in
[15], as well as in other holographic setups [37–42].

III. BOUNDARY MODEL

From a boundary point of view, the phenomenology of
superconductors is described by the (complex) Ginzburg-
Landau equation, while for superfluids with their global
symmetry breaking the Gross-Pitaevskii equation takes a
similar role [1,2]. Consequently, there has been some recent
activity in [16,17] trying to fit parameters of Gross-
Pitaevskii equations in order to model aspects of the
nonequilibrium behavior of holographic superfluids.
Unlike the quenches that we study here, [16,17] inves-

tigated inhomogeneous setups where space derivatives are
nonzero, which increases the complexity of the problem
significantly. In addition, we explicitly study behavior near
or even exactly at the critical point, which means that our
results should be ideally suited for such a phenomenologi-
cal description since, e.g., the Ginzburg-Landau equation is
usually seen as a series expansion around vanishing order
parameter, where higher order terms in the free energy are
dropped.
We now postulate the phenomenological equation,

½∂t − iC1ðAtðtÞ − ρþ C5jΨðtÞj2Þ�ΨðtÞ
≡ −ðC2 þ iC3Þ½jΨðtÞj2 − C4ðρ − ρcÞ�ΨðtÞ; ð7Þ

where again Ψ ¼ ϕeiψ , ρ; ρc;ψ ;At; Ci ∈R, ϕ > 0, and we
neglect any terms including spatial derivatives or higher
orders of Ψ or ρ − ρc. The parameter ρ is assumed to be
constant in time, and C1 is the charge of the complex field,
which in our case is þ1. As we show in Appendix D, this
equation is exactly what is expected from model F in the

classification of Hohenberg and Halperin [26], and the
matching between holographic superconductors and this
model F has indeed been investigated also in a number of
other recent papers [43–45].
The right-hand side of (7) is similar to the variation of the

free energy that would appear in the Ginzburg-Landau
equation, multiplied with a complex prefactor, which is
inspired by the dissipative Gross-Pitaevski equations used
in [1,16,17]. The left-hand side is essentially a gauge-
covariant time derivative plus some extra terms whose
relevance will become clear shortly. The gauge covariance
is necessary in order to respect the background gauge
invariance, which arises as a consequence of large gauge
transformations which do not fall off towards the boundary
and hence change the boundary values of the bulk fields
such as At [14].
Because (7) contains complex factors, we can split it into

a real and imaginary part (after dividing by eiψ on both
sides). Ignoring the trivial case ϕ ¼ 0, the real part of this
equation only depends on ϕðtÞ and has the exact solution

ϕðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C4ðρ − ρcÞ
1 −

�
1 − C4ðρ−ρcÞ

ϕ2
0

�
e−2C2C4tðρ−ρcÞ

vuut ð8Þ

with ϕð0Þ ¼ ϕ0. This can be plugged into the imaginary
part of (7) in order to obtain an algebraic equation for the
gauge-invariant expression ψ̇ − C1At. Obtaining a unique
solution for both ψðtÞ and AtðtÞ requires some kind of
gauge fixing condition.
As a simple consistency check, looking for nontrivial

(ϕ ≠ 0) static solutions yields

ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C4ðρ − ρcÞ

p
ð9Þ

At ¼ ρ − C5ϕ
2 ¼ ρ − C4C5ðρ − ρcÞ ð10Þ

when C4ðρ − ρcÞ > 0, i.e., we observe the expected for-
mation of the superfluid phase, and the deviation of the
chemical potential μ ¼ At from its value μ ¼ ρ in the
normal phase.
In the nonequilibrium case, the late-time exponential

falloff of (8) and ψ̇ − C1At depends on whether we are in
the superfluid phase (ρ > ρc) or in the normal phase
(ρ < ρc). The crucial insight is that we can determine
the phenomenological parameters Ci by comparing our
results so far to the properties of the static solution in the
superfluid phase and the late time quasinormal mode like
falloff towards this static solution after a noncritical
quench. As explained in Appendix A, this allows to
numerically fix the parameters (normalized to T̄) of the
model to
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C2 ≈ 0.03018 C3 ≈ 0.09308

C4 ≈ 4.09192 C5 ≈ 0.14967: ð11Þ

With this, the model (7) is now able to make predictions for
the behavior of the system at earlier times after noncritical
quenches [via (8)] as well as the exactly critical quenches
where at late times ρ ¼ ρc. In the latter case, (8) simplifies to

ϕðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2C2tþ 1

ϕ2
0

q ≈
4.07

t1=2
þ � � � ð12Þ

and, additionally, we find

ψ̇ − C1ðAt − ρcÞ ¼
C1C5 þ C3

2C2tþ 1
ϕ2
0

≈
0.94
t

þ � � � : ð13Þ

Although these solutions are small at late times, it is
important to note that they depend on the nonlinear features
of Eq. (7) and could not be obtained through a linearized
Ansatz. Comparing the predictions (12) and (13) with
Eqs. (4)–(6), we find excellent agreement. Equation (12)
matches the scaling solution derived in [31] for an “initial-
slip exponent” θ ¼ 0. This value was recently also observed
for an AdS/QCD model [46].
Let us now return to the issue of near-critical quenches,

starting and ending near the critical point, but not exactly at
it. At very late times, after such a quench the system will be
characterized by an exponential falloff towards the new
equilibrium, however, Eq. (7) describes the behavior of the
system already at much earlier times. A representative
example of a near-critical quench is depicted in Fig. 2 (for a
quench into the normal phase see Appendix C). We can see
that before the equilibrium is reached at very late times,
there is a long intermediate stretch of time in which the
condensate ϕðtÞ appears to fall off in a power lawlike
manner. In particular, after a quench that brings the system
infinitesimally close to the critical point, the system will
initially react as if it was relaxing exactly to the critical
point, and only after what we call “handover-timescale”
tho ∼ 1

jρ−ρcj the system will notice that it is not at the critical
point, and the power-law behavior gives way to an
exponential falloff towards a small but finite condensate.
Of course, tho is identical to the relaxation timescale of the
system close to the critical point. This phenomenological
behavior is encapsulated in Eq. (8), as shown in
Appendix B.
As the parameters Ci are given in (11) and the value ρ is

determined by the choice of quench, the only parameter
that needs to be determined in order to compare our
analytical prediction with the numerical result is ϕ0. As
we can see in Fig. 2, in contrast to ψ̇ −At, ϕðtÞ does not
change significantly during and immediately after the
quench. Neither would a sudden change be predicted
by (8). Hence, as we know the initial state before the

quench exactly, we can simply set ϕ0 ≡ ϕð0Þ, even though
formally Eqs. (7) and (8) only become valid after the
quench, when ρ is constant. As shown in Fig. 2, this trick is
sufficient to obtain a very good match between numerical
data and analytical solution.

IV. DISCUSSION

We studied the relaxation of a holographic supercon-
ductor close or exactly at the critical point. In the bulk, we
used extensive numerical simulations over long ranges of
time. We demonstrated that for critical quenches, in
addition to the expected power law falloff of the modulus
jhOij of the order parameter, its complex phase undergoes
rotations, which are periodic on a logarithmic time axis,
leading to a discrete scale invariance. Furthermore, we
observed that the power law falloff characteristic for the
critical quenches is approximately observable even in the
noncritical quenches for an intermediate time period before

FIG. 2. Numerical (solid blue) and analytical (dashed orange)
results for a near-critical quench, with ρinitial ¼ 4.06626 and
ρfinal ¼ 4.06373. The top frame shows ϕðtÞ, the bottom frame
shows ψ̇ðtÞ − C1AtðtÞ. After the quench (t ≳ 10), numerical and
analytical curves agree very well. The dot signifies the time scale
tho, while the dash-dotted red line shows the critical solution (12).
The dotted purple line shows the approximation ϕðtÞ ≈ ð2C2tþ
1=ϕ2

oÞ−1=2eC4ðρ−ρcÞð2C2tþ1=ϕ2
0
Þ=4 derived in Appendix B.
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the onset of the late-time exponential falloff at a handover-
timescale tho.
On the field theory side, we postulated a phenomeno-

logical Gross-Pitaevskii-like equation for the system cor-
responding to model F of [26]—see Appendix D for details.
This equation can be solved analytically, and its parameters
can be fixed by comparing to the numerical data on the late-
time exponential falloff after noncritical quenches. In
particular, we can fix the parameters of the equation with
information about the static equilibrium states and linear-
ized fluctuations about them [quasinormal modes (QNMs)]
which are much easier to compute than the nonlinear time
evolution. The constants obtained from the QNM data in
the superfluid and normal fluid phase match is a nontrivial
check of our suggested Eq. (7). In our study we also
successfully applied and tested a novel concept about
computing the amplitudes of QNM excitations developed
in [20].
Once the parameters are fixed, the phenomenological

equation predicts with good accuracy the behavior both
after exactly critical quenches, as well as after near-critical
quenches for intermediate timescales. Importantly, both in
the bulk and on the boundary, our results are intimately tied
to the nonlinearities of the respective equations of motion
and could not be studied with a simple linearized Ansatz
(even though methods based on linearized equations have
been shown to be surprisingly accurate in some circum-
stances [47,48]). We hence established a nontrivial check
that holographic superfluids do obey model F of [26] even
at the nonlinear level, see Appendix D for further details.
Interestingly, the papers [49,50] have recently commented
on the limitations of linearized Ansätze in the study of black
hole ringdowns.
Interesting future directions would be to include spacial

dependence (similar to [16,17,22,51]), to study systems
with different symmetry groups (such as [46]), and to turn
on backreaction on the metric in the bulk. Preliminary
results indicate the possibility to generalize (7) to a finite
rate of superflow within the parameter regime of second-
order phase transitions up to the tricritical point. It might
also be interesting to make contact between our results and
the complementary approach of [52].

Note added. Recently, explicit comparisons between the
holographic superfluid and model F also appeared in
[43–45]. Specifically, in [43] a matching of the holographic
superfluid to model F was put forward to linear order and
explicit expression for the parameters of model F were
found in terms of horizon data. This is somewhat comple-
mentary to our approach; firstly, we tried to model the
holographic superconductor (and fix the parameters Ci of
our model) from a purely boundary perspective, as if the
numerical data on the time dependence of boundary
observables, which we calculated from holography, were
experimental data given to us. Secondly, we numerically
solve the full nonlinear bulk equations (which can describe

dynamics far from equilibrium) and not small linearized
perturbations about an equilibrium solution.
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APPENDIX A: NUMERICAL METHODS

In this section, we give a brief overview of the numerical
methods used to solve the partial differential equations
numerically.
Within numerical holography, pseudospectral methods

are widely applied to find highly accurate solutions to
boundary value problems in terms of elliptic partial differ-
ential equations or ordinary differential equations.
However, for initial value problems of hyperbolic partial
differential equations space and time are typically treated
differently. The spatial dependence is usually discretized by
means of a (pseudo)spectral method, which is combined
with an explicit fourth-order Runge-Kutta scheme or
Adams-Bashforth method to evolve the solution in time
[53]. Within a fully spectral scheme, we discretize time and
space with (pseudo)spectral methods yielding a highly
implicit and accurate time evolver.
The basic idea of (pseudo)spectral methods [54] is that

the unknown functions uðxÞ, which is the solution to the
differential equation

LxuðxÞ ¼ gðxÞ; ðA1Þ

whereLx is a differential operator, may be approximated by
a finite number N of basis polynomials ϕiðxÞ,

uðxÞ ≈ uNðxÞ ¼
XN−1

i¼0

ciϕiðxÞ: ðA2Þ

To find the solution, we require that the residuum R ¼
LxuN − g vanishes exactly on the chosen set of discrete grid
points. Note that for the exact solution, the residuum
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vanishes identically. For a given choice of grid points and
basis polynomials, the derivatives are replaced by discrete
matrices acting on the whole domain.
Fully spectral algorithms have been employed within

(asymptotically flat) numerical relativity in [55–59] and in
the context of holography in [19,60]. Let us outline the
recipe for our numerical algorithm (see also the Appendix
of [60]).

1. Numerical algorithm

We are looking for a solution at time t ¼ tfinal to the
initial value problem at t ¼ tinitial.
(1) At t ¼ tinitial, we may obtain the initial configuration

by solving the static set of ordinary differential
equations subject to the boundary conditions
φ0ðtinitial; 0Þ ¼ 0 and φ00ðtinitial; 0Þ ¼ jhOinitialij and
Atðtinitial; 1Þ ¼ 0. As discretization of the radial direc-
tion u∈ ½0; 1�, we chose Gauss-Lobatto grid points
uj ¼ 1

2
ð1þ cosðπj=NuÞÞ, where j∈ ½0; Nu − 1�.

(2) To evolve in time, we decompose the time interval
ðtinitial; tfinal� ¼ ðtinitial; t1� ∪ ðt1; t2� ∪ … ∪ ðtp; tfinal�
in pþ 1 subintervals in the spirit of multidomain
decomposition. Note that the different time intervals
may have different sizes, which we set by an
adaptive step control depending on how much the
solution changes on the interval.

(3) For a given initial solution, we introduce auxiliary
functions hðt; uÞ ¼ hinðt ¼ ti; uÞ þ ðt − tiÞhauxðt; uÞ
on each subinterval ðti; tj�; tj > ti.

(4) The radial coordinate is discretized by the Cheby-
shev-Lobatto (CL) grid, and to discretize the time
coordinate, we chose a right-sided Chebyshev-
Radau (rCR) grid (for some generic time interval
t∈ ðti; tj�),

uj ¼
1

2

�
1þ cos

�
πj
Nu

��
; ðA3Þ

tk ¼
1

2

�
ðtj − tiÞ þ ðtj − tiÞ cos

�
2πk

2Nt þ 1

��
; ðA4Þ

where j ¼ 0;…; Nu − 1, and k ¼ 0;…; Nt. Note
that the right-sided Chebychev-Radau grid does
not include the initial slice of the interval where
we already know the solution.

(5) Replace all derivatives by their discrete versions
given by the derivative matrices D: ∂u → DCL; ∂t →
DrCR and discretize the equations of motion on the
square spanned by the discrete spectral coordinates
and impose the desired boundary.

(6) Solve the corresponding nonlinear system with a
Newton-Raphson method.

(7) Use the solution on the final slice tj as the new initial
solution in the next step.

Typically, we useNu ¼ 40 orNu ¼ 50 in combination with
Nt ¼ 14. We monitored that the constraint equation is
satisfied better than 10−15 during the time evolution. Note
that we additionally fix Atðt; 1Þ ¼ 0. The numerical algo-
rithm is implemented in Mathematica.
The numerical methods used to compute the initial

configurations, background solutions, and QNMs are the
same codes as used in [61].

2. Quench profiles

For spontaneous Uð1Þ symmetry breaking, charge con-
servation imposes ρ̇ðtÞ ¼ 0 in the absence of external
sources. However, our goal is to study quenches from
the superfluid phase with ρ ¼ ρinitial to the critical point
ρ ¼ ρcrit (or close to it for some ρ ¼ ρfinal). Since we work
in the probe limit, we have to introduce an external source
in order to change ρ to our desired final value. We could
achieve this by breaking the Uð1Þ explicitly with a scalar
source as done in [23], or we consider some generic
external source that changes ρ directly by considering
the null fluid (nf) current [62],

2κ2JuðnfÞ ¼
ρ̇ffiffiffiffiffiffi−gp ; ðA5Þ

which may be achieved by coupling

Snf ¼
1

2κ2

Z
M

d4x
ffiffiffiffiffiffi
−g

p
AμJ

μ
ext ðA6Þ

to the action. This leads to a covariantly conserved external
current,

Jμext ¼
ρ̇

u2
δμu; ðA7Þ

which allows us to change the electric charge at will.
Technically, the external source also drives the Ttt compo-
nent of the energy-momentum tensor. However, in the large
q expansion of the probe limit this contribution is sub-
leading, and we can neglect it similarly to the backreaction
of the matter fields onto the geometry.
To quench our system, we chose to manipulate ρwith the

external source and quench it to its final value. Note that in
the late time behavior, the external source is switched off,
and we verified that the late time behavior is independent of
the quench profile. Concretely, we performed quenches
with

ρðtÞ¼ ρinitialþ
1

2
ðρfinal−ρinitialÞð1þ tanh½Ωðt− tsÞ�Þ; ðA8Þ

where Ω ¼ 10 is the rapidity, and ts ¼ 1.5 is the center of
the quench.
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3. Determination of parameters

The parameters C4, C5 of Eq. (7) can be determined by
fitting Eqs. (9) and (10) to the behavior of the static
holographic superconductor close to the critical point. One
way to determine C2, C3 is to compare the predicted late
time behavior after a noncritical quench into the superfluid
phase to numerical data of the nonlinear time evolution.

With the parameters fixed in this way, (7) then allows to
make genuine predictions for both exactly critical quenches
and for the behavior of noncritical quenches at early and
intermediate times.
We find that for t ≫ 1, quenches in the superfluid phase

will relax as

ϕðtÞ ¼
ffiffiffiffiffiffi
C4

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − ρc

p þ
ffiffiffiffiffiffi
C4

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ − ρc

p �
1 −

C4ðρ − ρcÞ
ϕ2
0

�
e−2C2C4tðρ−ρcÞ þ � � � ðA9Þ

ψ̇ðtÞ − C1AtðtÞ ¼ −C1ρþ C1C4C5ðρ − ρcÞ −
C4ðC1C5 − C3Þ

ϕ2
0

ðC4ðρ − ρcÞ − ϕ2
0Þðρ − ρcÞe−2C2C4tðρ−ρcÞ þ � � � ðA10Þ

while in the normal phase we would find

ϕðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C4ðρc − ρÞ
1 − C4ðρ−ρcÞ

ϕ2
0

vuut e−C2C4tðρc−ρÞ þ � � � ðA11Þ

ψ̇ðtÞ − C1AtðtÞ ¼ −C1ρþ C3C4ðρ − ρcÞ þ
C4ϕ

2
0ðρ − ρcÞðC1C5 − C3Þ
C4ðρ − ρcÞ − ϕ2

0

e−2C2C4tðρc−ρÞ þ � � � : ðA12Þ

Clearly, C2 can be determined by fitting the half-life time
of the predicted late-time exponential falloff in the super-
fluid phase to the numerical data of the nonlinear time
evolution. The amplitude of this exponential falloff itself is,
of course, dependent on ϕ0 for each of these functions,
however, the ratio between the amplitudes,

Amplitudeϕ
Amplitudeψ̇ðtÞ−C1AtðtÞ

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C4ðρ−ρcÞ

p 1

C1C5−C3

; ðA13Þ

is independent of ϕ0 and can be used to obtain a unique
value of C3.
However, it is not necessary to perform the nonlinear

time evolution to fit the constants (11). In the following, we
explain how all of them may be obtained within linear
response theory and from the static solutions in the context
of holography. The two constants C4 and C5 may simply be
obtained by constructing the static solutions near the phase
transition and fit the condensate and chemical potential,
respectively, to the deviation of ρ from its critical value ρc
according to Eqs. (9) and (10). The constant C2 may be
obtained from the QNMs at zero wave vector in the
superfluid phase (A9) or in the normal phase (A11). To
probe the QNMs we consider linearized fluctuations of a
complex scalar δΨ̄ ¼ δΨe−iωt and the gauge field
δāt ¼ δate−iωt. Note that we may decompose the scalar
fluctuations about a state with zero background phase

according to ðhOeqi þ hδOiÞeiδψ ¼ ðhOeqi þ hδOiÞð1þ
iδψÞ ¼ ðhOeqi þ ReðδΨÞ þ iImðδΨ̄Þ, withReðδΨÞ¼hδOiÞ
and ImðδΨ̄Þ ¼ hOeqiδψ .
Let us focus on the normal phase first and consider

linearized solutions about the static normal phase solution
with hOi ¼ 0; ρ < ρc. The corresponding QNM respon-
sible for the relaxation to equilibrium is the pair of massive
scalar modes. Close to the phase transition the QNMs in the
normal phase behave (to lowest order in ρ − ρc) like

ω� ¼ −ð�0.38087 − 0.12348iÞðρ − ρcÞ: ðA14Þ

According to Eq. (A11), we can read of the constant C2

(since we already know C4 from the static solution) from
the imaginary part of the QNM (A14) leading to the value
indicated in (11). Similarly, the real part determines the
constant C3 ¼ −ReðωþÞ=C4 as may be seen from
Eq. (A12). Since the QNM comes as a pair, the sign is
seemingly not determined. However, it is possible to
reconstruct which sign belongs to fluctuations of δΨ and
δΨ̄. In order to determine the QNMs we solve the
fluctuation equations as a generalized eigenvalue problem
of the form ðAω − BÞx ¼ 0, where A and B are differential
operators of a non-Hermitian Sturm-Liouville problem (see
Ref. [20] for more details). Usually, only the eigenvalues ω
are of interest since they correspond to the QNM frequen-
cies. However, it is also possible to examine the eigenvector
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x corresponding to the eigenvalue ω. In our case, we
observe that fluctuations with ω ¼ ωþ are carried by
x ¼ fδΨ; 0g, while ω ¼ ω− is carried by x ¼ f0; δΨ̄g.
As an independent nontrivial check of our proposed

equation, we now compute the constants C2 and C3 from
the QNMs in the superfluid phase. To compute C3, we need
information about the relative amplitudes of the fluctua-
tions supporting the QNM responsible for equilibration.
Only recently, the authors of [20] suggested a method to
compute the relative contributions of boundary operators to
a certain QNM excitation from the aforementioned eigen-
vectors. Here, we want to dissect the so called “amplitude”
or Higgs mode. At zero wave vector, this pseudodiffusive
mode is driving the system to equilibrium in the superfluid
phase [63,64]. More recently, the dynamics of this mode
were discussed in terms of a linearized bulk analysis in
[65]. Close to equilibrium, we find for the QNM frequency
to lowest order in ρ − ρc (and at zero wave vector),

ωAmpl ¼ −0.2469iðρ − ρcÞ: ðA15Þ
According to Eq. (A9), we may extract C2 from this
information leading to the same numerical value as
computed in the normal phase. Employing the techniques
developed in [20], we can extract the expectation values of
the operators carrying this QNM excitation from the corre-
sponding eigenvector. Intriguingly, we find that the gauge
fluctuations have expectation value zero, and the mode is
solely carried by the scalar fluctuations. Close to the critical
point we thus find to lowest order in ρ − ρc (and at zerowave
vector) that

AmplitudehδOi
Amplitudehδψ̇i−hδati

¼ 17.67

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C4ðρ − ρcÞ

p : ðA16Þ

Once C5 is fixed from the background data, Eqs. (A13) and
(A16) determine the value ofC3 in accordance with our data
from the normal phase. Note that this is a nontrivial and
independent check of the numerical values we obtained for
C2 and C3 thus confirming the prediction of our sug-
gested model.

APPENDIX B: ANALYSIS OF INTERMEDIATE
TIME BEHAVIOR

We will now give an analysis of the behavior at
intermediate time scales predicted by the solution (8) as
well as the corresponding solution,

ψ̇ − C1At ¼ −C1ρ − C3C4ðρ − ρcÞ

þ C4ðC3 þ C1C5Þðρ − ρcÞ
1 − e−2C2C4tðρ−ρcÞ

�
1 − C4ðρ−ρcÞ

ϕ2
0

� : ðB1Þ

First of all, we notice that if the final state is in the
condensed phase,then C4ðρ−ρcÞ

ϕ2
0

¼ ϕðt→∞Þ2
ϕð0Þ2 . As we have been

interested exclusively in quenches that lead to a decay of

the condensate, we will assume C4ðρ−ρcÞ
ϕ2
0

< 1. Hence the

bracket depending on ϕ0 in (8) and (B1) is positive and can
be absorbed in the exponent as a shift t → tþ t0 in the time
coordinate. As we would like to ignore such shifts, we will
from now on take the limit ϕ0 → ∞. This limit is
technically unphysical, as Eq. (7) is only expected to be
reliable for small values of ϕ, however, it simplifies Eqs. (8)
and (B1) and their analysis considerably. The results of this
analysis should then also hold for realistic settings up to
shifts on the time axis.
We already discussed the very late time behavior in

Eqs. (A9) and (A10), seeing an exponential falloff towards
equilibrium at t ≫ 1. Now, we turn our attention to earlier

times. For this, we define a mapMðyðtÞÞ≡ ẏðtÞ×t
yðtÞ . This has

the benefit that it easily allows us to analyze and distinguish
the qualitative behavior of functions as, e.g.,

FIG. 3. The top frame shows ϕðtÞ [using (8)] and the bottom
frame shows jψ̇ − C1ðAt − ρcÞj [using (B1)] for ϕ0 → ∞ and
ρ ¼ ρc þ 2a with a varying from a ¼ −20 (purple) to a ¼ 0 (red)
in steps of 4. The black lines represent the exactly critical
solutions ρ ¼ ρc. The dots placed on each curve signify the
handover timescale tho, which clearly describes well in an order
of magnitude manner until what timescale the solutions are well
approximated by the critical solutions (12) and (13).
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MðAtaÞ ¼ a; ðB2Þ

MðAeatÞ ¼ at; ðB3Þ

MðAtbeatÞ ¼ bþ at: ðB4Þ

For our solutions (8) and (B1), we find

MðϕðtÞÞ ¼ −
1

2
þ 1

2
C2C4ðρ − ρcÞtþ � � � ; ðB5Þ

Mðψ̇ −C1ðAt − ρcÞÞ

¼ −1þC2ð−C3C4 þC1ð−2þC4C5ÞÞ
C3 þC1C5

ðρ− ρcÞtþ � � � :

ðB6Þ

Assuming all coefficients Ci to be roughly of order 1,
this demonstrates that the solutions for noncritical quenches
exhibit the same kind of power-law behavior as the critical
quenches until ðρ − ρcÞt is of order 1, which establishes the
handover timescale tho. See Fig. 3 for an illustration. More
precisely, we could have said, based on (B5), that for early
times ϕðtÞ can be approximated as

ϕðtÞ ∝ t−1=2e
1
2
C2C4ðρ−ρcÞt; ðB7Þ

however, for t ≪ tho the exponential function will deviate
from 1 only slightly.

APPENDIX C: NEAR-CRITICAL QUENCHES
IN NORMAL PHASE

Here, we briefly demonstrate that the phenomenological
equation (7) can also describe near-critical quenches into
the normal phase. In Fig. 4, we show the normal phase
analogue of the quench shown in Fig. 2 of the main text,
i.e., we pick a ρfinal near the critical point but in the normal
phase. As evident from Fig. 4, the intermediate and late
time behavior are in perfect agreement with the numerical
solution from holography.

APPENDIX D: COMPARING TO MODEL F

In the absence of external fields or noise terms, model F
as defined in [26] is given by

∂tΨ ¼ −2Γ0

δF0

δΨ� − ig0Ψ
δF0

δm
; ðD1Þ

∂tm ¼ λ0∇2
∂F0

∂m
þ 2g0Im

�
Ψ� δF0

δΨ�

�
; ðD2Þ

where Ψ ¼ ϕeiψ is the complex valued order parameter,
and m is the conserved charge density. The model allows
for Γ0 ∈C, while g0; λ0 ∈R. The functional F0 is defined
through [26]:

F0 ¼
Z

ddx

�
1

2
r̃0jΨj2 þ

1

2
j∇Ψj2 þ ũ0jΨj4

þ 1

2C0

m2 þ γ0mjΨj2
�
: ðD3Þ

In the homogeneous case, Eq. (D1) reduces to

�
∂t − i

g0
C0

ð−m − γ0C0jΨj2Þ
�
Ψ

¼ −4 eu0Γ0

�
jΨj2 þ r̃0 þ 2γ0m

4ũ0

�
Ψ: ðD4Þ

To make contact with our model (7), we identify the
complex order parameters (Ψ in both formulations) and the
conserved quantity

m ¼ ρ: ðD5Þ

FIG. 4. Comparison between numerical (solid blue) and ana-
lytical (dashed orange) results for a near-critical quench, with
ρinitial ¼ 4.06626 and ρfinal ¼ 4.06370. The top frame shows ϕðtÞ,
while the bottom frame shows ψ̇ðtÞ − C1AtðtÞ. For the times after
the quench (t ≳ 10), numerical and analytical curves agree very
well. The dot signifies the handover-time scale tho, while the
dash-dotted red line shows the critical solution (12). The
dotted purple line shows the approximation ϕðtÞ ≈ ð2C2tþ
1=ϕ2

oÞ−1=2eC4ðρ−ρcÞð2C2tþ1=ϕ2
0
Þ=4 derived in (B7) (where we had

assumed ϕ0 → ∞).
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Moreover, for the matching we adopt the gauge choice

At ¼ 0: ðD6Þ

This gauge choice corresponds to the Josephson relation
used in [26]. Comparing the parameters in the models (D1)
and (7) results in the following relations:

C1 ¼
g0
C0

ðD7Þ

C2 þ iC3 ¼ 4ũ0Γ0 ðD8Þ

C4 ¼ −
γ0
2ũ0

ðD9Þ

C5 ¼ −C0γ0 ðD10Þ

ρc ¼ −
r̃0
2γ0

: ðD11Þ

Note that in the homogeneous case, where all spatial
derivatives vanish, Eq. (D2) trivially simplifies to ∂tm ¼ 0
as the right-hand side is the imaginary part of a manifestly
real expression. Our model (7) (where we had implicitly
assumed charge conservation, ∂tρ ¼ 0, from immediately
after the quench onwards, see Appendix A 2) is hence
equivalent to the predictions of model F.

[1] I. S. Aranson and L. Kramer, The world of the complex
Ginzburg-Landau equation, Rev. Mod. Phys. 74, 99
(2002).

[2] T. Tsuneto, Superconductivity and Superfluidity (Cambridge
University Press, Cambridge, England, 1998).

[3] G. Seibold, R. Arpaia, Y. Y. Peng, R. Fumagalli, L.
Braicovich, C. D. Castro, M. Grilli, G. C. Ghiringhelli, and
S. Caprara, Strange metal behaviour from charge density
fluctuations in cuprates, Commun. Phys. 4, 7 (2021).

[4] R. Arpaia and G. Ghiringhelli, Charge order at high
temperature in cuprate superconductors, J. Phys. Soc.
Jpn. 90, 111005 (2021).

[5] J. M. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231
(1998).

[6] S. S. Gubser, I. R. Klebanov, and A.M. Polyakov, Gauge
theory correlators from noncritical string theory, Phys. Lett.
B 428, 105 (1998).

[7] E. Witten, Anti-de Sitter space and holography, Adv. Theor.
Math. Phys. 2, 253 (1998).

[8] J. Zaanen, Y.-W. Sun, Y. Liu, and K. Schalm, Holographic
Duality in Condensed Matter Physics (Cambridge Univer-
sity Press, Cambridge, England, 2015).

[9] S. S. Gubser, Breaking an Abelian gauge symmetry near a
black hole horizon, Phys. Rev. D 78, 065034 (2008).

[10] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Building a
holographic superconductor, Phys. Rev. Lett. 101, 031601
(2008).

[11] S. A.Hartnoll, C. P. Herzog, andG. T.Horowitz,Holographic
superconductors, J. High Energy Phys. 12 (2008) 015.

[12] C. P. Herzog, P. K. Kovtun, and D. T. Son, Holographic
model of superfluidity, Phys. Rev. D 79, 066002 (2009).

[13] O. Domenech, M. Montull, A. Pomarol, A. Salvio, and P. J.
Silva, Emergent gauge fields in holographic superconduc-
tors, J. High Energy Phys. 08 (2010) 033.

[14] K. Maeda, M. Natsuume, and T. Okamura, On two pieces of
folklore in the AdS/CFT duality, Phys. Rev. D 82, 046002
(2010).

[15] J. Erdmenger, M. Flory, M.-N. Newrzella, M. Strydom, and
J. M. S. Wu, Quantum quenches in a holographic Kondo
model, J. High Energy Phys. 04 (2017) 045.

[16] P. Wittmer, C.-M. Schmied, T. Gasenzer, and C. Ewerz,
Vortex motion quantifies strong dissipation in a holographic
superfluid, Phys. Rev. Lett. 127, 101601 (2021).

[17] Y.-K. Yan, S. Lan, Y. Tian, P. Yang, S. Yao, and H. Zhang,
Towards an effective description of holographic vortex
dynamics, Phys. Rev. D 107, L121901 (2023).

[18] C. P. Herzog, Lectures on holographic superfluidity and
superconductivity, J. Phys. A 42, 343001 (2009).

[19] M. Ammon, S. Grieninger, A. Jimenez-Alba, R. P. Macedo,
and L. Melgar, Holographic quenches and anomalous
transport, J. High Energy Phys. 09 (2016) 131.

[20] D. Arean, M. Baggioli, S. Grieninger, and K. Landsteiner, A
holographic superfluid symphony, J. High Energy Phys. 11
(2021) 206.

[21] P. M. Chesler, A. M. Garcia-Garcia, and H. Liu, Defect
formation beyond Kibble-Zurek mechanism and hologra-
phy, Phys. Rev. X 5, 021015 (2015).

[22] J. Sonner, A. del Campo, and W. H. Zurek, Universal far-
from-equilibrium dynamics of a holographic superconduc-
tor, Nat. Commun. 6, 7406 (2015).

[23] M. J. Bhaseen, J. P. Gauntlett, B. D. Simons, J. Sonner, and
T. Wiseman, Holographic superfluids and the dynamics of
symmetry breaking, Phys. Rev. Lett. 110, 015301 (2013).

[24] A. del Campo, F. J. Gómez-Ruiz, Z.-H. Li, C.-Y. Xia, H.-B.
Zeng, and H.-Q. Zhang, Universal statistics of vortices in a
newborn holographic superconductor: Beyond the Kibble-
Zurek mechanism, J. High Energy Phys. 06 (2021) 061.

[25] Z.-H. Li, H.-Q. Shi, and H.-Q. Zhang, Holographic topo-
logical defects in a ring: Role of diverse boundary con-
ditions, J. High Energy Phys. 05 (2022) 056.

[26] P. C. Hohenberg and B. I. Halperin, Theory of dynamic
critical phenomena, Rev. Mod. Phys. 49, 435 (1977).

[27] K. Maeda, M. Natsuume, and T. Okamura, Dynamic critical
phenomena in the AdS/CFT duality, Phys. Rev. D 78,
106007 (2008).

FLORY, GRIENINGER, and MORALES-TEJERA PHYS. REV. D 110, 026019 (2024)

026019-10

https://doi.org/10.1103/RevModPhys.74.99
https://doi.org/10.1103/RevModPhys.74.99
https://doi.org/10.1038/s42005-020-00505-z
https://doi.org/10.7566/JPSJ.90.111005
https://doi.org/10.7566/JPSJ.90.111005
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1103/PhysRevD.78.065034
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1103/PhysRevLett.101.031601
https://doi.org/10.1088/1126-6708/2008/12/015
https://doi.org/10.1103/PhysRevD.79.066002
https://doi.org/10.1007/JHEP08(2010)033
https://doi.org/10.1103/PhysRevD.82.046002
https://doi.org/10.1103/PhysRevD.82.046002
https://doi.org/10.1007/JHEP04(2017)045
https://doi.org/10.1103/PhysRevLett.127.101601
https://doi.org/10.1103/PhysRevD.107.L121901
https://doi.org/10.1088/1751-8113/42/34/343001
https://doi.org/10.1007/JHEP09(2016)131
https://doi.org/10.1007/JHEP11(2021)206
https://doi.org/10.1007/JHEP11(2021)206
https://doi.org/10.1103/PhysRevX.5.021015
https://doi.org/10.1038/ncomms8406
https://doi.org/10.1103/PhysRevLett.110.015301
https://doi.org/10.1007/JHEP06(2021)061
https://doi.org/10.1007/JHEP05(2022)056
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/PhysRevD.78.106007
https://doi.org/10.1103/PhysRevD.78.106007


[28] K. Maeda, M. Natsuume, and T. Okamura, Universality
class of holographic superconductors, Phys. Rev. D 79,
126004 (2009).

[29] M. Natsuume, Critical phenomena in the AdS/CFT duality,
Prog. Theor. Phys. Suppl. 186, 491 (2010).

[30] C. Ewerz, T. Gasenzer, M. Karl, and A. Samberg, Non-
thermal fixed point in a holographic superfluid, J. High
Energy Phys. 05 (2015) 070.

[31] H. Janssen, B. Schaub, and B. Schmittmann, New universal
short-time scaling behaviour of critical relaxation processes,
Z. Phys. B 73, 539 (1989).

[32] Z. Cai, C. Hubig, and U. Schollwöck, Universal long-time
behavior of aperiodically driven interacting quantum sys-
tems, Phys. Rev. B 96, 054303 (2017).

[33] C. De Grandi, V. Gritsev, and A. Polkovnikov, Quench
dynamics near a quantum critical point, Phys. Rev. B 81,
012303 (2010).

[34] S. S. Gubser and S. S. Pufu, The gravity dual of a p-wave
superconductor, J. High Energy Phys. 11 (2008) 033.

[35] D. Sornette, Discrete-scale invariance and complex dimen-
sions, Phys. Rep. 297, 239 (1998).

[36] E.W. Hirschmann and D.M. Eardley, Universal scaling and
echoing in the gravitational collapse of a complex scalar
field, Phys. Rev. D 51, 4198 (1995).

[37] H. Liu, J. McGreevy, and D. Vegh, Non-Fermi liquids from
holography, Phys. Rev. D 83, 065029 (2011).

[38] T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, Emergent
quantum criticality, Fermi surfaces, and AdS2, Phys. Rev. D
83, 125002 (2011).

[39] S. A. Hartnoll, D. M. Ramirez, and J. E. Santos, Thermal
conductivity at a disordered quantum critical point, J. High
Energy Phys. 04 (2016) 022.

[40] K. Balasubramanian, Gravity duals of cyclic RG flows, with
strings attached, arXiv:1301.6653.

[41] M. Flory, Discrete scale invariance in holography revisited,
Fortschr. Phys. 66, 1700093 (2018).

[42] M. Ammon, M. Baggioli, A. Jiménez-Alba, and S.
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