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We discuss how the quark masses and their mass splitting affect the baryons in the Skyrme model as well
as the Witten-Sakai-Sugimoto (WSS) model. In both cases, baryons are described by solitonic objects, i.e.,
Skyrmions and instantons, respectively. After the quantization of their zero modes, the nucleons become
quantum states of a rotor. We show how the quark mass affects the moment of inertia and we provide a
semianalytic approach valid in the small-mass limit. Additionally, we show how the two lightest quarks’
mass splitting affects the moments of inertia of the Skyrmion and induces an isospin breaking effect. This
effect turns out not to be enough to split the degeneracy in the neutron-proton multiplet, but it splits some of
the states in the Δ multiplet. Unlike the basic Skyrme model, the WSS model already includes vector
mesons and another mechanism to transfer isospin breaking from quark masses to the solitons is known.
We compute the splitting of the moment of inertia in the small-mass limit in the WSS model and combine
the two effects on the spectrum of baryons, in particular the Δ’s.

DOI: 10.1103/PhysRevD.110.026017

I. INTRODUCTION

The Skyrme model [1,2] provides us with a tool to
probe low-energy QCD and understand baryon phenom-
enology, see the reviews [3,4]. Results can be obtained
from a pure mesonic pseudoscalar theory and baryons are
solitonic objects in this theory. The skyrmion configura-
tion then needs to be quantized to obtain the full spectrum
of possible baryons: This can be done in the moduli space
quantization scheme [5]. However, there is a missing
piece of the bigger picture. One problem, in particular,
which is left unresolved in the pseudoscalar theory alone,
is the isospin breaking effect and how it is transmitted
from the quarks to the nucleons.
It is well known in the literature that the addition of the

quark mass in the Skyrme model induces a pion mass in
the low-energy effective theory [6]. This has already been
extensively studied within the Skyrme model [7–11]. The
first part of this paper is devoted to the case of equal quark

masses and how this affects the moment of inertia of the
skyrmion. We show that there is a way to treat the problem
semianalytically in the limit of small mass, using the linear
tail of the pions, where the pion mass is induced by the
quark mass. In this regime the main correction to the
moment of inertia is linear in the pion mass m. A nontrivial
aspect of this computation is that the first-order approxi-
mation has a divergence, which eventually is resolved by
the nonlinear core of the skyrmion, but we are able to prove
that this term contributes only at order m2 and thus can
be neglected at the linear order in m. This contribution
depends only on the coefficient in front of the linear tail,
which can be computed at m ¼ 0 and is related to the gNNπ

coupling. For the Skyrme model, we also perform the full
computation numerically; we have done it for the spherical
case (quarks with equal masses) and confirmed the validity
of the above semianalytic approximation. The physical
intuition of why the dominant effect on the moment of
inertia from turning on a small pion mass comes from the
tail of the soliton is this. The small pion mass changes the
solution only very little in energy and hence the core of
the solution is almost unchanged. On the other hand, the tail
of the soliton goes from a power law at zero mass to an
exponential falloff at a finite pion mass, and hence the tail is
the most sensitive to a tiny pion mass. The total mass of the
soliton changes only very little, but the moment of inertia is
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roughly weighted with r2 compared with the energy density
and hence is very sensitive to any change in the tail.
Splitting in baryonic masses is hard to obtain by

first-principles computations. The full theory of QCD
should be tackled with nonperturbative techniques, so
the only viable options up to now have been lattice
formulation and chiral effective theories, like the
Skyrme model. In this work, we will introduce isospin
breaking in the quark mass matrix and examine how
this affects the skyrmion (baryon) configuration from
the point of view of its symmetry properties, moduli
space, and quantum states.
Adding an isospin breaking term to the effective

Lagrangian is not difficult, and we want to do it in the
most simple and natural way; that is, by introducing a
splitting in the pion mass term. We know that this is the
right way to do it, as in the standard model the isospin
breaking is transferred from the Yukawa couplings to the
quark mass term and then to the pion mass term through
the Gell-Mann-Oakes-Renner relation. The first problem
we encounter is that, in the SUð2Þ model alone, this term
has no physical effect on the pions. To make the effect
visible, we have to extend the theory to Uð2Þ and thus
consider also the η meson. We then have a measurable
isospin splitting in the pion mass matrix. But this is not the
end of the story; the difficult part then is to transfer this
isospin breaking to the skyrmion sector. If we consider just
the SUð2Þ pions and the quark mass splitting, we do not
see any effect at all, not even in the pion spectrum. In order
to see a splitting in the pion masses and consequently a
deformation of the skyrmion, we need to introduce at least
the η field, the pseudo-Nambu-Goldstone boson of the
axial Uð1ÞA anomalous symmetry. With this minimally
extended model, we can have isospin breaking in the pion
masses and consequently a splitting in the moments of
inertia of the skyrmion.
The mass splitting of the pions affects the skyrmion

already at the classical level, once we relax the assumption
of the hedgehog approximation. The skyrmion remains
axially symmetric, but becomes prolate or oblate (this has
to be determined and may be not obvious a priori). We
devised a semianalytic method to compute the deformation
of the inertia tensor in the small-mass limit. We then tested
this in the Skyrme model where the full numerical
computations can be made. Still the quantization of the
skyrmion moduli space does not provide a mass splitting
between neutron and proton states. It provides a partial
splitting in the Δ particles’ masses.
It has been argued [3,12–17] that an extension of the

Skyrme model with vector mesons can answer many of
the unsolved questions left from the pseudoscalar theory.
Any precise model describing nucleon interactions
should also take into account heavier particles, such as
the lightest vector mesons, whose masses are around
780 MeV; the presence of these new particles certainly

has an impact on the structure and the spectrum of the
skyrmion, see, e.g., Refs. [18,19]. Another reason,
comes from the validity of the large-Nc theory that
views baryons as solitons of an effective theory of both
pseudoscalars and vector mesons that are actually pre-
dicted by the large-Nc theory [20].
The early literature on the proton-neutron mass splitting

in the Skyrme model context started with computations of a
current-current electromagnetic contribution to the splitting
[21]—a formula derived in the bag model of quarks using
the one-particle exchange Feynman diagram [22]. Their
result was both incorrect in sign and numerically inaccu-
rate, as pointed out shortly after in Ref. [23]. The intuition
from the bag model was that the quark mass splitting in the
bag model would give rise to a too large positive mass
splitting between the neutron and the proton of about
1.79 MeV, whereas the subdominant negative current-
current electromagnetic contribution would be around
−0.50 MeV, lowering the result of the mass splitting to
roughly the correct experimental value [23]. As was also
pointed out in Ref. [23], the SUð2Þ Skyrme model with
isospin breaking in terms of a nonderivative potential is not
able to provide the contribution to the neutron-proton mass
splitting. Soon after a new mechanism for introducing a
nonelectromagnetic neutron-proton mass splitting in the
Skyrme model was proposed in Ref. [24], where exper-
imental evidence of nonelectromagnetic isospin breaking in
ρ − ω meson mixing led the authors to introduce a term
λρμω

μ into the Skyrme model. The neutron-proton mass
splitting was not computed by computing the impact on the
skyrmion itself, but rather by performing a current-current
computation of the ρ meson and the ω meson, giving a
formula of the same kind as the electromagnetic contribu-
tion, albeit this time with the necessary positive sign [24].
The only role of the Skyrme model in this computation was
to evaluate the strong interaction form factors in this
Feynman diagram of a vector boson exchange between
nucleons. Using phenomenological input data, this result
gave a splitting of the right order of magnitude within the
usual 30% accuracy.
A result more in the spirit of using the skyrmion as the

nucleon was obtained by Jain et al. [25], where the model
is extended from SUð2Þ to Uð2Þ, by adding the η meson,
and the ρ and ω mesons are added as well. Their paper is
concerned with getting the correct strong sector contri-
bution to the neutron-proton mass splitting and involves
many explicit chiral symmetry breaking terms of four
categories as well as “cranking” corrections, which are
essential in their approach. As for the mechanism of the
neutron-proton mass splitting, their result was nicely
summarized in the review [16], where it was pointed
out that the dominant source of the neutron-proton mass
splitting comes from the mass term that is directly
proportional to the down-up quark mass difference.
Although this term sources the η field, the source is
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proportional to the quark mass splitting ϵ, making the
resulting field η proportional to ϵ and in turn the
contribution to the energy proportional to ϵ2 and both
the neutron and the proton would receive the same
correction. Their mechanism works by including a source
for the η by an approach dubbed a cranking mechanism,
which consists of gauging an anomaly term that contains
the Wess-Zumino term and three other anomalous pieces
[see the term proportional to d1 of Eq. (3.11) in Ref. [15] ].
The coefficient is determined by computing the electro-
magnetic ω → γπ0 decay rate [13]. The contribution of
this “gauging” to the electroweak current acts as a source
for the η that is not proportional to the quark mass
splitting, but requires the ω vector meson to the present.
This turning on of the η field then gives the dominant
contribution to the neutron-proton mass splitting from the
pion mass term, in the mechanism of Ref. [25].
Results for the neutron-proton mass splitting were also

obtained by several groups in chiral bag models, which
are conceptually somewhat different from the Skyrme-
type models in that they include explicit quark fields
that become important in the core of the “skyrmion,”
e.g., [25,26]. An obvious conceptual challenge with this
approach is whether there is any overcounting in the
nucleon of the quark degrees of freedom or not, although
this has been argued not to be a problem since the quarks
are dominantly present in the core of the nucleon and the
pion cloud is dominant outside the core. Wewill not discuss
the neutron-proton mass splitting in those models here, but
refer to the literature [25,26].
It is worth mentioning that another recent model in the

literature [27] achieved the neutron-proton mass splitting
in the Skyrme model by adding an isospin breaking term
as a derivative coupling between the ω meson and the
charged pions. Not including the neutral pion thus
explicitly breaks isospin symmetry. Although this mecha-
nism is simple and provides a neutron-proton mass
splitting, it is not clear to us whether this term can be
derived as an effective Lagrangian term induced from the
quark mass difference or whether it can be embedded into
a holographic model. We want to pursue the more tradi-
tional approach of inducing only the isospin breaking
in the mass term, as this is what we expect from chiral
effective theory and the standard model.
Our result in Sec. II of this paper is that we can

analytically compute the coefficient of the contribution
to the moment of inertia which is linear in the pion mass.
Since it is quadratic in the mass splitting parameter, it is
also quadratic in the isospin quantum number and provides
no contribution to the neutron-proton mass splitting, as
mentioned above, but it provides a splitting between the
masses of the isospin 3

2
and isospin 1

2
Δ’s.

In order to move toward the more realistic picture of the
isospin breaking effects, we thus need to take into account
the following:

(i) the η field [corresponding to extending SUð2Þ to
Uð2Þ] and

(ii) providing a source of the η that does not originate
from the isospin breaking π0η vertex (the mass term
itself).

Reference [25] used the ω meson and cranking to arrive at a
physical neutron-proton mass splitting. We will choose a
slightly different route, which we consider to be somewhat
easier than introducing the vector mesons in the Skyrme
model with the gauged Wess-Zumino-Witten term, other
gauged anomalous terms as well as the η field—we will
consider the Witten-Sakai-Sugimoto (WSS) model, which
contains all the vector mesons, the η as well as the gauged
anomalous term as its five-dimensional Chern-Simons term.
The advantage here will be that we can utilize the Belavin-
Polyakov-Schwartz-Tyupkin (BPST) flat-space instanton
and we thus leave the similar further analysis of our paper
in the Skyrme model to the future.
In the WSS model [28–30], the properties of chiral

symmetry are encoded in the gauge symmetry of the fields
living on the D8-branes. The model shows spontaneous
chiral symmetry breaking through the merging of the
antipodal stacks of D8=D8-branes, hence the symmetry
group is reduced to SUðNfÞV ×Uð1ÞA ×Uð1ÞV . In the
context of this holographic model, the pion matrix can be
obtained as the holonomy of the gauge field in the holo-
graphic direction, and a baryon is realized as an instanton
configuration of the gauge field on the D8-branes, where
the winding number of the instanton has the natural
interpretation as the baryon number. The instanton on
the boundary looks like a skyrmion. In this model, the
vector mesons are automatically included; they come from
the gauge field fluctuations on the D8-branes. A mecha-
nism quite similar in spirit to that of Ref. [25] can
be naturally embedded in the WSS model of holographic
QCD [31] and the neutron-proton mass splitting is in fact
much easier to compute in this setting.
In the second part of this paper, we will look at two

different mass splitting effects: The newly found splitting
of the moments of inertia, which we computed in the
Skyrme model and verified by full numerical computations,
and the η-induced splitting that contributes to the neutron-
proton mass splitting. In particular, we checked from the
Skyrme model that the correction to the moment of inertia
that is linear in the pion mass and analytically calculable is,
in fact, the leading-order correction at small pion masses.
Since the full numerical computation in the WSS model is
much more difficult, we trust the analytic result here due to
the check in the Skyrme model. The lack of the full
numerical computation in the WSS model means, e.g., that
we cannot accurately compute the Δ multiplet masses, but
we can quite accurately compute their splitting. We will
here consider the complete effective Hamiltonian that,
unlike the original scenario [31] produces a less symmetric
mass spectrum for baryons. The two effects of transfer of
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isospin breaking from quarks to the baryon act in different
ways; the first is linear and the second is quadratic in jz.
When they are combined, we have a mass splitting between
all four states of the Δ multiplet as well as differences
among the mass splittings. The splitting between all four
states in the Δ multiplet is an m2 effect, whereas a splitting
between the isospin 3=2 and 1=2 states (with either sign) is
a linear-in-m effect. In the limit of small m, and with our
approximations, the rotor is prolate.
The paper is organized as follows. First, we analyze the

origin of the splittings in the Skyrme model in Sec. II,
followed by a similar analysis for the holographic WSS
model in Sec. III. We conclude with a discussion in Sec. IV.

II. SKYRME MODEL, MASS, AND ISOSPIN
BREAKING

The Skyrme model is an effective Lagrangian whose
degrees of freedom are the pseudo-Goldstone bosons
coming from the breaking of chiral symmetry. The degrees
of freedom are given compactly in the form of the SUðNfÞ-
valued field UðxÞ ¼ eiϕðxÞ=fπ , which in the two-flavor case,
i.e., Nf ¼ 2 reads

UðxÞ ¼ e
iτaπaðxÞ

fπ ; ð2:1Þ
where τa, a ¼ 1, 2, 3, are the Pauli matrices and fπ is
the pion decay constant. Under chiral transformations
SUð2ÞL ⊗ SUð2ÞR the field U behaves as follows:

U→VLUV†
R; VL∈SUð2ÞL; VR∈SUð2ÞR: ð2:2Þ

The left-invariant current is

Lμ ¼ U†
∂μU → VRLμV

†
R; ð2:3Þ

and thus transforms only under right-handed
transformations.1

In addition to the usual quadratic term (L2) of the
nonlinear σ model, the Skyrme model features a quartic
contribution in the derivatives known as the Skyrme term
(L4), which is essential to the stability of the soliton, as well
as a mass term (L0) that explicitly breaks chiral symmetry.
The complete effective theory Lagrangian thus reads

L ¼ L2 þ L4 þ L0

¼ f2π
4
TrðLμLμÞ þ 1

32e2
Trð½Lμ; Lν�½Lμ; Lν�Þ

þ f2πc
2

TrðMðU þU† − 212ÞÞ: ð2:4Þ

Here M ≡ diagðmu;mdÞ is the quark mass matrix which,
in the two-flavored case, only contains the up and down
quark masses

M ¼ mq12 þ ϵmqτ
3;

mq ¼
1

2
ðmu þmdÞ; ϵ ¼ mu −md

mu þmd
: ð2:5Þ

The parameter c is defined such that, in the expansion
of L0, the mass term for the pions is correctly normalized,
that is,

2cmq ¼ cðmu þmdÞ≡m2
π0
≃ ð139 MeVÞ2;

mq ¼ 3.45 MeV; ϵ ¼ −0.34: ð2:6Þ

By inspection of Eq. (2.4) we can tell that no term
proportional to ϵ appears at this stage. This is because
it would be proportional to the Pauli matrix τ3, whose
trace is identically zero and U þ U† ∝ 12 for U∈ SUð2Þ.
(This would not be true for three flavors, see, for
example, [32,33].)

A. The static skyrmion

The hedgehog Ansatz based upon the assumption of
maximal symmetry is

UðxÞ¼eiτ·x̂fðrÞ ¼ cosðfðrÞÞ12þ iðτ · x̂ÞsinðfðrÞÞ; ð2:7Þ

where r≡ jxj, x̂ ¼ x=jxj, and fðrÞ is the profile function
of the field. The spherical symmetry implies that
any spatial rotation can be compensated by a rotation in
isospin space,

UðRxÞ ¼ cosðfðrÞÞ12 þ iðτ · Rx̂Þ sinðfðrÞÞ
¼ cosðfðrÞÞ12 þ iAðτ · x̂ÞA† sinðfðrÞÞ; ð2:8Þ

where R∈ SOð3Þ, A∈ SUð2Þ, and the equality holds when

Rij ¼
1

2
TrðτiAτjA†Þ: ð2:9Þ

When the quark mass is zero, the Skyrme model has two
parameters fπ and e. Correspondingly, the mass and the
radius of the skyrmion MSk ∼

fπ
e , RSk ∼ 1

fπe
, where ∼ here

means “scales like.” Energy and length rescaling can set
these fπ=e and 1=ðfπeÞ to unity and hence only the mass
parameter changes the theory. More precisely, only the
dimensionless mass parameter

mπ0

fπe
(and the corresponding

splitting parameter
ϵm

π0

fπe
) change the theory and hence the

solutions.

1There exists also a right-invariant current Rμ ≡ ∂μUU† →
VLRμV

†
L, which transforms under left-handed transformations.

The Skyrme Lagrangian, however, can be equivalently expressed
in terms of either Lμ or Rμ and we choose the former.
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After substituting the Ansatz (2.7) into Eq. (2.4), we
obtain the following expression for the skyrmion mass:

Mstatic
Sk ¼2πfπ

e

Z
drr2

�
f02þ2sin2f

r2
þsin2f

r2

�
sin2f
r2

þ2f02
�

−2m2ðcosf−1Þ
�
; ð2:10Þ

where we have rescaled the lengths as r → r
fπe

and defined
the dimensionless pion mass parameter

m≡mπ0

fπe
: ð2:11Þ

The baryon number, which is given by the degree of the
map UðxÞ∶S3 ↦ SUð2Þ, is given by

B ¼ −
2

π

Z
dr sin2ðfÞf0: ð2:12Þ

The equation of motion for the skyrmion is found through
the minimization of its mass (2.10) and a straightforward
derivation yields

�
1þ 2sin2f

r2

�
f00 þ 2f0

r
þ sin 2f

r2
f02 −

sin 2f
r2

−
sin2f sin 2f

r4
−m2 sin f ¼ 0: ð2:13Þ

The solution of Eq. (2.13) has to be found within the
functions that satisfy particular boundary conditions. We
already know that, at infinity, the U field must be constant
and equal to the identity matrix 12, which implies
fðr → ∞Þ → 0. On the other hand, in order to provide a
skyrmion with unit charge (i.e., unit baryon number), the
profile function must also satisfy fð0Þ ¼ π. At large
distances f is small and the linearization of the equation
of motion (2.13) is

f00 þ 2f0

r
−
2f
r2

−m2f ¼ 0 ð2:14Þ

and gives the exact asymptotic behavior

fðrÞ ¼ C
mrþ 1

r2
e−mr; r ≫ 1; ð2:15Þ

which in physical units (before rescaling the length scales)
corresponds to r ≫ ðfπeÞ−1. C is a proportionality constant
in front of the linear tail and is related to the nucleon-
nucleon-pion coupling by [5]

gNNπ ¼
8πMSk

fπe2
C: ð2:16Þ

1. Numerical solutions

We present some numerical solutions of Eq. (2.13) for
various values of the dimensionless mass parameter m of
Eq. (2.11). The profile function fðrÞ is given in Fig. 1 for
values of the mass m ¼ 0.01, 0.05, 0.1, 0.2, 0.3, 0.5. We
will see shortly that the solutions need to be known very
precisely up to a very large distance. In particular, up to
distances r ≫ 1=m, which becomes a challenge for numeri-
cal methods in a box. Because of the challenging numerical
problem, we have decided to adopt the following strategy.
We use the shooting method from r ¼ rmin ≪ 1 with the
conditions fðrminÞ ¼ π − fprmin and f0ðrminÞ ¼ fp and a
second shooting from r ¼ rmax ¼ 50 with f and its
derivative given by Eq. (2.15). The choice of r ¼ 50 is
warranted since it is large enough that we can trust the
linearized solution (this will become apparent only a pos-
teriori), but not large enough to be the cutoff of the
integrals, in particular, for the moment of inertia (see
below). Next, we adjust fp and C until the two solutions
and their derivatives match at a point in the middle taken to
be r ¼ rmid ≔ 5 (this point can be chosen arbitrarily).
Knowing the value of C very precisely enables us to
perform integrals analytically from r∈ ½rmax;∞Þ using the
linearized solution (2.15).

FIG. 1. Profile function fðrÞ for different values of the mass parameter m ¼ 0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, corresponding to the
curves from top to bottom.
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Away to understand and estimate the various parameters
is to use Derrick’s scaling argument [34], with which
we can show that the mass as a function of the radius is
given by

MðRÞ ¼ α2Rþ α4
R

þ α0m2R3; ð2:17Þ

where the coefficients α0;2;4 come from the mass term, the
kinetic term, and the Skyrme term, respectively, and can
only be determined numerically from solutions. If we set
m ¼ 0, minimization ofMðRÞ determines the leading-order
Skyrme radius RSkð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
α4=α2

p
. Minimizing, we get the

skyrmion radius

RSkðmÞ2¼RSkð0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8ηm2RSkð0Þ2

p
−1

4ηm2RSkð0Þ2
; η¼3α0

2α2
:

ð2:18Þ

Expanding in small m, we obtain

RSkðmÞ ∼ RSkð0Þð1 − ηm2RSkð0Þ2 þOðm4ÞÞ: ð2:19Þ

We see that the mass term, to the smallest order, acts as a
compressing term shrinking the radius by an order ∼m2.
This is confirmed in Fig. 2 where we defined the skyrmion
radius by

fðRSkÞ ≃ 1: ð2:20Þ

The soliton shrinks as the mass becomes larger.
The mass of the skyrmion is given in Fig. 3. The mass is

increased by a quadratic term for small m and it can be
evaluated semianalytically. It is just the action term propor-
tional to m2 evaluated on the solution obtained at m ¼ 0,
which we denote as f0,

Mstatic
Sk ðmÞ≃Mstatic

Sk ð0Þþ4πm2

Z
drr2½ð1−cosf0Þ�: ð2:21Þ

The validity of this approximation is confirmed by the
results shown in Fig. 3, where the quadratic behavior
characterizes the small-m region of the curve. This type
of first-order correction is quite common and is found in
many examples [35].
The coefficientCðmÞ in front of the linear tail is shown in

Fig. 4(a). A way to estimate CðmÞ is the following. If we
assume that f is dominated by the linear tail and we write
the condition fðRSkÞ ¼ 1, we have

CðmÞ 1þmRSkðmÞ
RSkðmÞ2 e−mRSkðmÞ ≃ 1: ð2:22Þ

Solving for CðmÞ and expanding to linear order, we obtain

CðmÞ ¼ Rð0Þ2 þm2

2
ðRð0Þ4 þ 2Rð0ÞR00ð0ÞÞ þOðm3Þ;

ð2:23Þ

where Rð0Þ ¼ RSkð0Þ, primes denote derivatives with
respect to m, and we have used that R0ð0Þ ¼
dR
dm jm¼0

¼ 0, see Eq. (2.19). Inserting the latter equation
gives us

CðmÞ ¼ Cð0Þ − 2m2Cð0Þ2
�
η −

1

4

�
þOðm3Þ;

Cð0Þ ¼ Rð0Þ2: ð2:24Þ

From the fit shown in Fig. 2 we found that η > 1=4. This
entails that CðmÞ, the coefficient of the linear tail, decreases
quadratically with m and that is exactly what we see in
Fig. 4(a), where the full numerical solution is presented
along with the quadratic fit for small m.
In Fig. 2, the order m2 correction is well predicted

by Eq. (2.24) using the computed value Rð0Þ ¼ RSkð0Þ,
that is the coefficient of m2 shown in the figure is

FIG. 2. Skyrmion radius [defined by fðRSkÞ ¼ 1] as function of
m. The red solid curve is a quadratic fit according to Eq. (2.19).

FIG. 3. Skyrmion mass as function of m. The dots show the
exact computation and the solid red curve is the quadratic
approximation given in Eq. (2.21) computed with the profile
function for m ¼ 0.
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−2Rð0Þ4ðη − 1=4Þ. On the other hand, the prediction of
the constant term Cð0Þ ¼ Rð0Þ2 turns out to be a bit
coarse as Cð0Þ is computed to be Cð0Þ ¼ 2.160, whereas
Rð0Þ2 ¼ 1.796 and hence 17% off. Recall that we used
rescaled lengths in the discussion above. It will prove
convenient to write down the value of the Cð0Þ coefficient
in physical units for later comparison,

Cð0Þ≃ 2.160
ðfπeÞ2

≃9.99×10−6MeV−2≃ð0.624 fmÞ2: ð2:25Þ

In Fig. 4(b) we show for completeness the other “shooting
parameter” for the solution also as a function ofm. With the
boundary conditions fð0Þ ¼ π and the two parameters C
and f0ð0Þ, the solution can be reconstructed fully.
We choose the physical values for the pion decay

constant and the mass of the uncharged pion, i.e.,
fπ ¼ 93 and mπ0 ¼ 139 MeV; the remaining parameter
has been set to e ¼ 5 according to an estimate given in
Ref. [4], which is only slightly different with the older fit,
e ¼ 5.45 of Ref. [5]. Using e ¼ 5 yields m ≃ 0.3 as value
for the dimensionless pion mass parameter.
Using numerical results for the pion profile function, we

obtain the rest mass of the soliton corresponding to both the
massless and massive cases (with m ¼ 0.3), see Table I.
Both results are greater than the average nucleon mass
MN ≃ 938.9 MeV of about 44%–48%. We may ask if
m ≃ 0.3 can be considered small; this depends on the
quantity we want to compute. If we consider the mass of the
skyrmion, the first-order approximation gives 72.92 while

the correct numerical result is 74.78; the approximation
(2.21) gives 75.50, thus only 1.0% from the exact result.

B. Quantization

To describe baryons, we need to excite the rotational
degrees of freedom of the skyrmion. Following Ref. [5],
we introduce the SUð2Þ time-dependent collective variables
AðtÞ such that

Uðx; tÞ ¼ AðtÞU0ðxÞA†ðtÞ; ð2:26Þ

where U0ðxÞ is a classical static solution. This corresponds
to introducing a rigid isospin rotation, which when quan-
tized corresponds to the isospin quantum number (i.e., the
difference between the number of protons and neutrons in a
nucleus). Because of the spherical symmetry of the hedge-
hog Ansatz, it is also equivalent to rotation in configuration
space by a matrix RðtÞ,

Uðx; tÞ ¼ U0ðRðtÞxÞ; ð2:27Þ

which when quantized instead gives rise to the spin
quantum number. Obviously, for the spherically symmetric
B ¼ 1 skyrmion, the spin and isospin quantum numbers
must be equal in magnitude. Inserting Eq. (2.26) into
Eq. (2.4) we obtain

Erot ¼
Z

d3x

�
−
f2π
4
TrðL0L0Þ −

1

16e2
Trð½L0; Li�½L0; Li�Þ

�

¼ ITrðȦ†ȦÞ ¼ 1

2
IΩ2; ð2:28Þ

where we have defined the angular velocity Ω so that

i
2
τ ·Ω¼−ȦA† or;equivalently; Ωi¼−

1

2
ϵijkðṘRTÞjk:

ð2:29Þ

(a) (b)

FIG. 4. (a) Coefficient of the linear tail C as function of m. The red curve is the approximation (2.24) with Cð0Þ fitted and η from
Fig. 2. (b) The derivative of the profile function at the origin, f0ð0Þ.

TABLE I. Numerical results for the skyrmion mass.

Mstatic
Sk (MeV) Final estimate (MeV)

Massless ≈ fπ
e × 72.92 ≈1356

Massive (m ¼ 0.3) ≈ fπ
e × 74.78 ≈1391
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I in Eq. (2.28) is the moment of inertia of the skyrmion and
it is an integral functional of the profile function,

I¼
Z

d3xI ¼
�

1

fπe3

�
8π

3

Z
drr2sin2f

�
1þf02þsin2f

r2

�
;

ð2:30Þ

where we have first integrated out the angular dependence
using that Z

dθdφ sin θx̂ix̂j ¼
4π

3
δij ð2:31Þ

and rescaled r → r
fπe

as before.
Now we discuss the moment of inertia. The exact

function is (2.30). If we assume that f is essentially given
by the linear tail, we get

I≃
8π

3

Z
∞

RUV

drr2f2; fðrÞ≃CðmÞ1þmr
r2

e−mr: ð2:32Þ

The above is only a lower bound on the moment of inertia
since we are completely discarding the contribution from
the core of the soliton. It is important to put a UV cutoff
RUV ≃ RSk, first because the linear tail is a good approxi-
mation only up to the skyrmion core, and second because
this expression would be divergent otherwise. We can then
perform the integral obtaining

I ≃
8π

3
CðmÞ2e−2mRUV

�
m
2
þ 1

RUV

�
: ð2:33Þ

The UV divergence is the term ∼ 1
RUV

and when we put
RUV ∼ RSkðmÞ we get exactly the order of magnitude of
Ið0Þ. Expanding in powers of m we get

IðmÞ ¼ 8π

3
Cð0Þ2

�
1

RUV
−
3

2
mþOðm2Þ

�
¼ Ið0Þ − 4πCð0Þ2mþOðm2Þ: ð2:34Þ

The coefficient in front of the linear term can be computed
exactly, and it is −4πCð0Þ2. This linear behavior with the
exact coefficient is confirmed in Fig. 5. It is important
to stress the conditions that makes the linear approxi-
mation (2.34) computable. There is an m dependence both
in CðmÞ and in RUV ∼ RSkðmÞ. This dependence is quad-
ratic as we saw before, so it does not affect the linear term in
m. So Eq. (2.34) becomes exactly computable, apart from
Cð0Þ that has to be extracted from the numerical solution
at m ¼ 0.
We compute the integral in Eq. (2.30) for massless and

massive pions; the results are listed in Table II. The first-
order correction linear in m is a tail effect or, more
precisely, due to the “lack of tail.” For 0 ≠ m ≪ 1, we

can consider the solution to be roughly equal to the m ¼ 0

solution, up to the scale rm ∼ 1
m where everything falls off

exponentially. The moment of inertia on them ¼ 0 solution
is then reduced by the fact that beyond rm the field is
practically zero. The lack of tail beyond rm is the reason for
the negative linear contribution in m [Eq. (2.34)]. This is
quite different in nature than the first-order contribution to
the mass [Eq. (2.21)], which is instead due to the unper-
turbed solution evaluated on the perturbed term and thus is
a “core” effect. For a numerical evaluation of the moment
of inertia at small mass, it is very important to have a large
IR cutoff, at least bigger than the scale rm. If we consider
the inertia of the skyrmion, the correct numerical result is
38.28, and the approximation (2.34) gives 35.80, thus only
6.5% from the correct result; this not as close as what
happened for the mass, but we can still considerm small for
the computation of I.
The next step is the quantization of the rotational

energy. The conjugate classical momentum of the angular
velocity Ω is

Ji ¼ ∂Erot

∂Ωi
¼ IΩi;

which means that the rotational energy can be re-
expressed as

Erot ¼
J2

2I
:

FIG. 5. Moment of inertia for the skyrmion as function ofm. The
slope of the red solid line computed analytically as −4πCð0Þ2.

TABLE II. Numerical results for the moment of inertia of the
skyrmion.

I (MeV−1) Final estimate (GeV−1)

Massless ≈ 1
fπe3

× 53.38 ≈4.592
Massive ≈ 1

fπe3
× 38.28 ≈3.293
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Following the quantum mechanical rules for the quantiza-
tion of the angular momentum, we have that the eigenval-
ues of the total energy or skyrmion mass are

MSk¼Mstatic
Sk þ 1

2I
jðjþ1Þ; j¼0;

1

2
;1;

3

2
;…; ð2:35Þ

where we have set ℏ ¼ 1. The rigid rotor quantization is
valid as long as the energy splitting of the rotational states
are much smaller than any vibrational states that deform the
rotor. From a theoretical point of view it is always possible
to achieve this limit by sending ℏ → 0. Here we will always
work in this approximation. Changing to the energy units fπ

e
and length units ðfπeÞ−1, the would-be ℏ ¼ e−2. From a
phenomenological point of view, we have e ≃ 5, so
e−2 ≃ 0.04 which can be considered small.
We can explicitly construct the physical quantities and

quantum operators in terms of the parametrization of the
SUð2Þ-valued AðtÞ matrix as [5]

AðtÞ¼a01þ iakτk; a0;ak∈R; and a20þa2k¼1: ð2:36Þ

The Lagrangian becomes a function of the a’s and its
temporal derivatives, i.e., L ¼ Lða; ȧÞ. Using Eq. (2.29),
the angular velocity Ω in terms of the local parameters is

Ωiða; ȧÞ ¼ 2ðaiȧ0 − a0ȧi þ ϵijkajȧkÞ; ð2:37Þ

where the nonlinear constraint a20 þ a2k ¼ 1 has been
used to make ȦA† and hence τ · Ω suð2Þ valued, and
the conjugate momentum to aμ is

pμ ¼
∂L
∂ȧμ

¼ 4Iȧμ; μ ¼ 0; 1; 2; 3; ð2:38Þ

where p2
μ is the Laplacian on the three-sphere [5]. Notice

that μ is here not a spacetime index, but is an index on the
Euclidean three-sphere and therefore we do not distinguish

lower and upper indices. We have all we need to write down
the Hamiltonian associated with the rotational modes of the
skyrmion, i.e.,

H ¼ pμȧμ − L ¼ Mstatic
Sk þ 1

8I
p2
μ: ð2:39Þ

We finally notice that the rotational Lagrangian in
Eq. (2.28) is manifestly invariant under two types of
SUð2Þ global transformations, “rotations” and “isorota-
tions,” respectively, namely,

AðtÞ → AðtÞB and AðtÞ → BAðtÞ; with B∈ SUð2Þ:

The classical charges associated with these transformations
can easily be found and they represent the skyrmion’s spin
and isospin,

Ji¼ iITrðτiȦA†Þ; Ii¼−iITrðτiA†ȦÞ; A¼AðtÞ; ð2:40Þ

or in their quantum operator forms, after using Eq. (2.38)
and making the replacement pμ → −i ∂

∂aμ
,

Ji ¼ −
i
2

�
a0

∂

∂ai
− ai

∂

∂a0
þ ϵijkaj

∂

∂ak

�
; ð2:41Þ

Ii ¼ −
i
2

�
ai

∂

∂a0
− a0

∂

∂ai
þ ϵijkaj

∂

∂ak

�
: ð2:42Þ

We can now classify the matrix element of AðtÞ in terms of
their spin and isospin eigenvalues so to determine the
neutron and proton states [5], as shown in Table III, see also
Fig. 6. In particular, it can be verified that higher repre-
sentations can be constructed from monomials in elements
of AðtÞ; that is, let AðtÞlij be the lth power of any matrix
element of AðtÞ, then it carries J ¼ I ¼ l=2, see Table IV.
In nature, baryons carrying half-integer spin and isospin

equal to 1=2 and 3=2 are nucleons (n and p) and Δ
resonances, respectively. From Eq. (2.35), we can actually
give an estimate for their mass [5], i.e.,

Mn;p ¼ Mstatic
Sk þ 3

8I
; MΔ ¼ Mstatic

Sk þ 15

8I
;

MΔ −Mn;p ¼ 3

2I
; ð2:43Þ

TABLE III. Matrix elements of AðtÞ corresponding to the
fundamental spinor representation.

A11 A12 A21 A22

J3 1=2 −1=2 1=2 −1=2
I3 −1=2 −1=2 1=2 1=2

jn↑i jn↓i jp↑i jp↓i

TABLE IV. Matrix elements of AðtÞ corresponding to the Δ representation. Only the positive spins are displayed in this table.

A3
11 A2

11A12 A2
11A21 A2

11A22 A11A12A21 A11A2
21 A11A21A22 A12A2

21 A2
21A22 A3

21

J3 3=2 1=2 3=2 1=2 3=2 1=2 1=2 3=2
I3 −3=2 −3=2 −1=2 −1=2 1=2 1=2 3=2 3=2

jΔ−↑↑i jΔ−↑i jΔ0↑↑i jΔ0↑i jΔþ↑↑i jΔþ↑i jΔþþ↑i jΔþþ↑↑i
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with the numerical results summarized in Table V. The
model we have studied does still not account for the mass
difference between the neutron and the proton, nor for the
mass difference between the Δ’s. This is due to the fact that
no isospin breaking term appears in the Hamiltonian (2.35).

C. Adding the η contribution

The first step to modify the old theory is by enlarging the
symmetry group from SUð2Þ to Uð2Þ, that is, also con-
sidering the Uð1Þ generator whose corresponding field we
shall call η,

U ¼ e
iπaτa
fπ → U0 ¼ Ue

iη
fπ ¼ e

iðπaτaþη12Þ
fπ ; ð2:44Þ

where we have set the singlet decay constant equal to fπ ,
since we are working in the large-Nc expansion setup. The
η field corresponds to the generator of the unbroken Uð1ÞA
symmetry group, which produces the axial anomaly. Even
in the chiral limit this particle shows a nonvanishing mass,
which is directly related to the axial anomaly. The insertion
of a phase factor generated by the η field changes the left-
invariant current in the following way:

LμðπÞ → LμðπÞ þ
i
fπ

∂μη12: ð2:45Þ

The Skyrme termL4 is left unchanged and no η dependence
can be present since it only appears as an additional term
proportional to the identity matrix. Although the Skyrme

term does not change, the other two terms L2 and L0 are
modified. The new Lagrangian is written in the same way
as before. We have chosen not to include the anomaly-
related mass of η since, in the limit where Nc → ∞, it
vanishes as it is of order 1=Nc. However, this might not be
the case in the real world whereNc ¼ 3 and a more detailed
and careful analysis may be necessary. We can thus write
down the static Lagrangian as

L ¼ −
1

2
∂μη∂

μηþ f2π
4
TrðLμLμÞ þ 1

32e2
Trð½Lμ; Lν�½Lμ; Lν�Þ

þ f2πm2
π0

�
σ cos

η

fπ
− 1

�
− ϵf2πm2

π0
π3 sin

η

fπ
; ð2:46Þ

where we keep Lμ as the left-invariant current of the SUð2Þ
matrix U and we have conveniently defined

U ¼ e
iπaτa
fπ ¼ σ12 þ iτ · π ¼ ϕ012 þ iτaϕa: ð2:47Þ

Notice that the relation between πa and πa is

πa ¼ πaffiffiffiffiffiffiffiffiffiffi
πbπb

p sin

� ffiffiffiffiffiffiffiffiffi
πcπc

p

fπ

�
: ð2:48Þ

The mass term now shows an ϵ dependence, strictly related
to the “existence” of η. We note that a spherical solution
using the Ansatz (2.7), for which both π and η are just
functions of the radius r, cannot yield the newfound
breaking term proportional to the quark mass splitting ϵ,

ϵf2πm2
π0

Z
d3xπ3 sin

η

fπ

¼ 2πϵf2πm2
π0

Z
drdθ r2 sin θ cos θ sin fðrÞ sin

�
ηðrÞ
fπ

�

∝
Z

π

0

dθ sinð2θÞ ¼ 0: ð2:49Þ

TABLE V. Results for the nucleon and Δ masses. Here the
fπ ¼ 93 MeV, e ¼ 5, and the massive case has m ≃ 0.3.

Mn;p (MeV) MΔ (MeV) MΔ−Mn;p

Mn;p

Massless ≈1438 ≈1765 ≈0.23
Massive ≈1505 ≈1960 ≈0.30
Real ≈939 ≈1232 ≈0.31

FIG. 6. Schematic representations of the four states corresponding to the fundamental representation of SUð2Þ. The proton spins in
both physical and isospin (colors) space in the same direction, whereas the neutron behaves oppositely. The colors are representing the
“direction” of the pions wrapping the SUð2Þ target space, with π̂1 þ iπ̂2 ¼ eiθ and θ ¼ 0; 2π=3; 4π=3 corresponding to red, green, blue,
respectively, where π̂a ¼ πa

πbπb
is the normalized pion field of Eq. (2.1). White and black correspond instead to the π̂3 ¼ �1, respectively.

The “classical” version of the spinning nucleons has been discussed in Ref. [37].
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We now perform the rescaling xμ → xμ
fπe

and η → ηfπ ,
obtaining

L
f4πe2

¼ −
1

2
∂μη∂

μη −
1

2
∂μσ∂

μσ −
1

2
∂μπ · ∂μπ

−
1

4
ð∂μσ∂μσ þ ∂μπ · ∂μπÞ2

þ 1

4
ð∂μσ∂νσ þ ∂μπ · ∂νπÞð∂μσ∂νσ þ ∂

μπ · ∂νπÞ
−m2ð1 − σ cos ηÞ − ϵm2π3 sin η: ð2:50Þ

We note that σ is an auxiliary field due to the nonlinear
constraint σ2 þ π · π ¼ 1. Regarding only π as the physical
field, we have

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − π · π

p
¼ 1 −

1

2
π · πþOðπ4Þ; ð2:51Þ

and therefore we can write down the quadratic
Lagrangian as

Lquad¼−
1

2
∂μη∂

μη−
1

2
∂μπ ·∂μπ−

1

2
m2ðπ ·πþη2þ2ϵπ3ηÞ:

ð2:52Þ
The addition of η has produced an off-diagonal contribution
to the mass term, due to the mixing between η and π3. The
new mass matrix reads

M2 ¼ m2

0
BBB@

1 0 0 0

0 1 0 0

0 0 1 ϵ

0 0 ϵ 1

1
CCCA: ð2:53Þ

Its eigenvalues in units of m2 are 1; 1; 1� ϵ and
the eigenvectors corresponding to the two nonunity
eigenvalues are given by 1ffiffi

2
p ðπ3 � ηÞ. The quadratic

Lagrangian (2.52) can now be rewritten in terms of
π̃ ¼ ðπ1;π2; 1ffiffi

2
p ðπ3 þ ηÞ; 1ffiffi

2
p ðπ3 − ηÞÞ as

Lquad ¼ −
1

2
∂μπ̃ · ∂μπ̃ −

1

2
π̃M̃2π̃T; ð2:54Þ

where M̃2 is the diagonal form of M2,

M̃2 ¼ m2diagð1; 1; 1þ ϵ; 1 − ϵÞ: ð2:55Þ
We want to solve linear equations in a spherical

coordinate system that reflects the behavior at large
distance. We end up with the following expressions:

π1 ¼ C
mrþ 1

r2
e−mrx̂1;

π2 ¼ C
mrþ 1

r2
e−mrx̂2; ð2:56Þ

and we obtain for π3 and η,

π3 ¼ D
2

m
ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
rþ 1

r2
e−m

ffiffiffiffiffiffi
1þϵ

p
rx̂3

þ E
2

m
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
rþ 1

r2
e−m

ffiffiffiffiffiffi
1−ϵ

p
rx̂3;

η ¼ D
2

m
ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
rþ 1

r2
e−m

ffiffiffiffiffiffi
1þϵ

p
rx̂3

−
E
2

m
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
rþ 1

r2
e−m

ffiffiffiffiffiffi
1−ϵ

p
rx̂3; ð2:57Þ

where C,D, and E are coefficients to be determined and we
have used that

∂
2
i ðfðrÞx̂aÞ −m2fðrÞx̂a

¼
�
f00ðrÞ þ 2

r
f0ðrÞ − 2

r2
fðrÞ −m2fðrÞ

�
x̂a; ð2:58Þ

and hence fðrÞ of Eq. (2.15) is a solution to the above
equation for any a ¼ 1, 2, 3. Now since we want to cover
the three-sphere target space, we point each of the pions in
the three respective Cartesian directions. In order to let π3

be a small perturbation around the expected solution, we
choose the fourth tail, i.e., that of π̃4 to be pointed also in
the x̂3 direction. This way, π3 points purely in the x̂3

direction and is only deformed radially by the presence of
nonvanishing ϵ.
For a vanishing quark mass difference, i.e., ϵ ¼ 0, and/or

vanishing mass quarkmq,C ¼ D ¼ E and this corresponds
to the asymptotic linear tail of the spherically symmetric
skyrmion.
The moment of inertia tensor is given by

I ij¼
Z

d3xϵilmϵjnpxlxn½∂mη∂pηþ∂mπ ·∂pπ

þ∂mσ∂pσþð∂mσ∂pσþ∂mπ ·∂pπÞð∂kσ∂kσþ∂kπ ·∂kπÞ
−ð∂mσ∂kσþ∂mπ ·∂kπÞð∂pσ∂kσþ∂pπ ·∂kπÞ�; ð2:59Þ

with the kinetic energy

Erot ¼
1

2
ΩiI ijΩj; ð2:60Þ

where Ωi is given in Eq. (2.29) and we have used the fact
that under a time-dependent rotation x → RðtÞx, we have

∂0ηðRxÞ ¼
∂η

∂ðRxÞk ϵijkðRxÞ
jΩi; Ωi ¼ −

1

2
ϵijkðṘRTÞjk:

ð2:61Þ

Writing the coordinates as Rx → x to avoid unnecessary
clutter, we arrive at the expression (2.59).
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We now proceed with the computation of the moment of
inertia of the skyrmion using the linear tail. The strategy is
the same we used in Eqs. (2.32)–(2.34) for the spherical
skyrmion. The linear tails of the fields are given in
Eqs. (2.56) and (2.57). As we are considering only the
linear tail, we use only the part of the inertia tensor that
comes from the quadratic Lagrangian L2 [the first line of
Eq. (2.59)]. We compute first the contribution from π3 that
has the form π3 ¼ π3ðr; θÞ since it only depends on r
and x̂3, obtaining

Iπ3 ¼
Z

drdθdφ r2 sin θ

�
∂π3

∂θ

�
2

0
B@

sin2φ 0 0

0 cos2φ 0

0 0 0

1
CA:

ð2:62Þ

Integrating over φ and summing the two similar contribu-
tions from π3 and η we have

Iπ3 þ Iη ¼ π

Z
drdθ r2 sin θ

��
∂π3

∂θ

�
2

þ
�
∂η

∂θ

�
2
�0B@

1 0 0

0 1 0

0 0 0

1
CA: ð2:63Þ

Using the asymptotic linear solutions found in Eqs. (2.56)
and (2.57) we get

Iπ3 þ Iη ¼
8π

3

Z
drr2

��
D
2

m
ffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
rþ 1

r2
e−m

ffiffiffiffiffiffi
1þϵ

p
r

�
2

þ
�
E
2

m
ffiffiffiffiffiffiffiffiffiffi
1− ϵ

p
rþ 1

r2
e−m

ffiffiffiffiffiffi
1−ϵ

p
r

�
2
�0B@

1 0 0

0 1 0

0 0 0

1
CA:

ð2:64Þ

Using the asymptotic linear solutions found in Eqs. (2.56)
and (2.57), the contributions from π1 and π2 are

Iπ1 þ Iπ2 ¼
4π

3

Z
dr r2

�
C
mrþ 1

r2
e−mr

�
2

0
B@

1 0 0

0 1 0

0 0 2

1
CA:

ð2:65Þ

Summing over all contributions, we finally obtain the total
inertia tensor

I ¼ Iπ1 þ Iπ2 þ Iπ3 þ Iη: ð2:66Þ

The inertia tensor can be split into an identity part and a
deformation,

I ¼ I13 þ δ

0
B@

1 0 0

0 1 0

0 0 −2

1
CA: ð2:67Þ

The moment of inertia of the resulting skyrmion may
be more oblate like a pancake or more prolate like an
American football, depending on the sign of δ. For ϵ ¼ 0
and C ¼ D ¼ E, we obtain δ ¼ 0 and

I ¼ 8π

3

Z
dr r2C2

�
mrþ 1

r2
e−mr

�
2

; ð2:68Þ

which is the result of Eq. (2.32) for the spherical case.
These integrals, as in the spherical case, are UV

divergent. As before, these solutions are valid up to a
UV cutoff RUV where the solution becomes nonlinear; RUV
is essentially the size of the skyrmion RSk. Integrating over
r from the UV cutoff, we obtain

I ¼ 4π

3
CðmÞ2e−2mRUV

�
m
2
þ 1

RUV

�0B@
1 0 0

0 1 0

0 0 2

1
CAþ 2π

3

�
DðmÞ2e−2m

ffiffiffiffiffiffi
1þϵ

p
RUV

�
m

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p

2
þ 1

RUV

�

þ EðmÞ2e−2m
ffiffiffiffiffiffi
1−ϵ

p
RUV

�
m

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p

2
þ 1

RUV

��0B@
1 0 0

0 1 0

0 0 0

1
CA: ð2:69Þ

Expanding in m yields a UV divergent term ∝ 1=RUV ∼ 1=RSk,
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I ¼ 4π

3

Cð0Þ2
RUV

0
B@

1 0 0

0 1 0

0 0 2

1
CAþ 2π

3

ðDð0Þ2 þ Eð0Þ2Þ
RUV

0
B@

1 0 0

0 1 0

0 0 0

1
CA

− 2πCð0Þ2m

0
B@

1 0 0

0 1 0

0 0 2

1
CA − π

� ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
Dð0Þ2 þ

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
Eð0Þ2

�
m

0
B@

1 0 0

0 1 0

0 0 0

1
CAþOðm2; m2ϵÞ; ð2:70Þ

where we have assumed that C0ð0Þ ¼ D0ð0Þ ¼ E0ð0Þ ¼ 0. Composing the tensor into the diagonal and the eighth Gell-
Mann generator according to Eq. (2.67), we get

I ¼ 4π

9

D2 þ E2 þ 4C2

RUV
−
2π

3

� ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
D2 þ

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
E2 þ 4C2

�
mþOðm2; m2ϵÞ; ð2:71Þ

δ ¼ 2π

9

D2 þ E2 − 2C2

RUV
−
π

3

� ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
D2 þ

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
E2 − 2C2

�
mþOðm2; m2ϵÞ; ð2:72Þ

where in the above expressions C ¼ Cð0Þ, D ¼ Dð0Þ, and E ¼ Eð0Þ and RUV can be approximated by RSk.

If we set Dð0Þ ¼ Eð0Þ ¼ Cð0Þ, the tensor simplifies as

I ¼ 8π

3

Cð0Þ2
RUV

−
2π

3
Cð0Þ2

�
4þ ffiffiffiffiffiffiffiffiffiffiffi

1þ ϵ
p þ

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p �
m

þOðm2; m2ϵÞ; ð2:73Þ

δ¼π

3
Cð0Þ2

�
2−

ffiffiffiffiffiffiffiffiffiffi
1þϵ

p
−

ffiffiffiffiffiffiffiffiffi
1−ϵ

p �
mþOðm2;m2ϵ;mϵ4Þ;

ð2:74Þ

which is difficult to establish without knowledge of the
full nonlinear solutions. Expanding the square roots in the
linear term of I, we obtain

IðmÞ ¼ Ið0Þ − 4πCð0Þ2
�
1 −

ϵ2

24

�
mþOðm2; m2ϵ; mϵ4Þ;

ð2:75Þ

δ ¼ π

12
Cð0Þ2ϵ2mþOðm2; m2ϵ; mϵ4Þ: ð2:76Þ

One could make the assumption that jπ1jr¼RUV
≃

jπ2jr¼RUV
≃ jπ3jr¼RUV

and jηjr¼RUV
≪ jπ3jr¼RUV

; the latter
assumption is equivalent with assuming D ∼ E. Equating
the magnitudes of the tails

CðmÞmRSk þ 1

R2
Sk

e−mRSk

≃DðmÞm
ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
RSk þ 1

R2
Sk

e−m
ffiffiffiffiffiffi
1þϵ

p
RSk

≃ EðmÞm
ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p
RSk þ 1

R2
Sk

e−m
ffiffiffiffiffiffi
1−ϵ

p
RSk ; ð2:77Þ

which when expanding to second order in m yields

D−C≃
1

2
m2ϵR2

SkC; E−C≃−
1

2
m2ϵR2

SkC: ð2:78Þ

Plugging this approximation into Eqs. (2.71) and (2.72), we
obtain exactly the results (2.75) and (2.76), with the order
m0-terms generatingm4ϵ corrections and the orderm-terms
generating m3ϵ corrections, all of which we neglect to
leading order. This shows that the results (2.75) and (2.76)
are quite robust.
Note that the order m correction to I is insensitive to the

cutoff RSk unlike the leading-order term; we can therefore
trust the coefficient in front of this linear-in-m term. Notice
also that we need to take ϵ2 into account, but we have
expanded only to the first order in m. This is consistent in
the limit

m ≪ jϵj: ð2:79Þ

In reality, the physical parameters are m ≃ 0.3 and
ϵ ¼ −0.34, so for I one should also take the higher-order
correction terms of order m2 and m2ϵ into account, which,
however, are more complicated expressions and will depend
also on the double derivatives C00ð0Þ, D00ð0Þ, and E00ð0Þ.
The form of the inertia tensor is that of Eq. (2.67). This is

an axially symmetric rotor; it may be oblate or prolate
according to whether δ is negative or positive. The related
quantum Hamiltonian becomes then

Hrot ¼
1

2
I−1
ij JiJj ¼

1

2

J2

I þ δ
þ 1

2
J23

�
1

I − 2δ
−

1

I þ δ

�

¼ 1

2

1

I þ δ
jðjþ 1Þ þ 3

2

δ

ðI þ δÞðI − 2δÞ j
2
3; ð2:80Þ
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where jðjþ 1Þ and j3 are the eigenvalues of the J2 and J3
operators, respectively. Equation (2.80) distinguishes
between different values of j3 ∈ ½−j;…; j� but not their
sign, so the states that correspond to the fundamental
representation with j ¼ 1=2 are left degenerate, i.e., the
proton and the neutron have the same mass. The j ¼ 3=2
ones instead get split into two pairs (i.e., Δþþ and Δ− with
jj3j ¼ 3=2, whereas Δþ and Δ0 with jj3j ¼ 1=2),

MΔþþ;Δ− −MΔþ;Δ0 ¼ 1

2
ðMΔþþ −MΔþ −MΔ0 þMΔ−Þ;

ð2:81Þ

where for the spin Hamiltonian (2.80) we have

MΔþþ;Δ− ¼MΔþþ ¼MΔ− ¼Mstatic
Sk þHrotjj¼3

2
;jj3j¼3

2
; ð2:82Þ

MΔþ;Δ0 ¼ MΔþ ¼ MΔ0 ¼ Mstatic
Sk þHrotjj¼3

2
;jj3j¼1

2
; ð2:83Þ

since Hrot of Eq. (2.80) does not distinguish between j3
positive and negative, whereas Mstatic

Sk is the static soliton
mass. In particular,

1

2
ðMΔþþ −MΔþ −MΔ0 þMΔ−Þ ¼ 3δ

ðI þ δÞðI − 2δÞ ≃
3δ

I2
:

ð2:84Þ

Assuming the previous results are valid, we get

1

2
ðMΔþþ −MΔþ −MΔ0 þMΔ−Þ

≃
πCð0Þ2m

I2

�
2 −

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
−

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p �
: ð2:85Þ

For the numerical values m ≃ 0.3 and ϵ ≃ −0.34, we obtain

1

2
ðMΔþþ −MΔþ −MΔ0 þMΔ−Þ
≃ fπe34.6 × 10−5 ≃ 0.54 MeV: ð2:86Þ

Note that, in the small-m limit, the linear deviation (2.74)
(positive δ) makes the rotor prolate, thus Δþþ and Δ− have
a higher mass. At a finite but not small m, this may change
and only a numerical computation can tell if it is oblate or
prolate; in fact, see below. We saw that the small-m
condition is very good for the quantity I. For δ we have
to be more careful, because also the condition (2.79) has to
be respected. So the core contribution to the splitting may
be important for the phenomenological values of m and ϵ.
We will now turn to the numerical computation of the

Skyrme model with the η taken into account. We use the
numerical method developed for the ω-Skyrme model in
Ref. [36], where we solve the equation of motion for the
scalar η using the conjugate gradients method at every step

and solve the nonlinear equation of motion for the pions
and the σ using arrested Newton flow. The simplicity of the
η equation and the fact that η is not normalized, unlike
the fact that σ2 þ π2 ¼ 1 (coming from detU ¼ 1), makes
the conjugate gradients method very efficient. The arrested
Newton flow is implemented with a second-order real-time
evolution of the field equations (ignoring the time depend-
ence in the Skyrme term), monitoring the (static) potential
energy at every step and setting all time derivatives to zero
when the potential energy increases with respect to the
previous step. This method implies that the fields are
accelerating down toward the minimal energy solution,
but are “gradient flowing” up to the minimum. The specific
implementation of the method was done in CUDA C for
NVIDIA GPUs and the lattice was chosen as a 1603 cubic
lattice with step size 0.088 and a five-point fourth-order
finite difference stencil for the derivatives.
The small-m limit makes the numerics very hard

compared to the usual physical case of a finite pion mass
parameter, often taken to be of order one, ensuring a fast
exponential decay and allowing numerical computations
with finite differences to be put on a finite box without
loss of precision. Instead, we consider the numerics for m
in the range between typical physical values and all the
way down to zero, calling for a modification of the usual
methods. We implement Dirichlet boundary conditions
on a sufficiently large box, dictated by the linearized
exact solutions (2.56) and (2.57) and using as an initial
guess the values C ¼ D ¼ E with C from the spherically
symmetric case of the previous section. By trial and error,
we observe that only after a long simulation time do the
derivatives converge to their expected values dictated by
Eqs. (2.56) and (2.57); hence, we simply read off the
coefficients C, D, and E from the derivatives at the end of
the simulation and start it again with the updated values
of the coefficients of the tails of the fields. Iterating
about 5 times gives a reasonably good precision on the
coefficients and the result is shown in Fig. 7. First, we
observe that the behavior of the coefficients is quadratic
in m for small m, as expected from the spherically
symmetric case. Second, we confirm that Cð0Þ ¼ Dð0Þ ¼
Eð0Þ as it should be (since m ¼ 0 turns off any splitting,
viz. there are no factors of ϵ without at least one power
of m). Third, we can confirm that the predicted splitting
of the coefficients follow Eq. (2.78), i.e., that E > C > D
for m > 0 (recall that ϵ < 0). The magnitude of the
splitting is, however, not accurate (see the yellow and
red dashed lines in Fig. 7).
Since we cannot perform the numerical computations of

sufficiently large lattices in order to capture the accurate
moment of inertia tensor in the limit of small m, we
compute the moment of inertia tensor on the largest sphere
fitting into the lattice and calculate the contribution from
the outside by using the tails (2.56) and (2.57) and the
coefficients of Fig. 7—the latter part is semianalytic,
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although we have to compute the r − θ integral numeri-
cally too.
We confirm that the linear prediction of both the trace

part as well as the splitting part (δ) of the moment of
inertia tensor is in accord with Eqs. (2.73) and (2.74), at
least up to numerical accuracy and order m2 corrections,
see Fig. 8. From the result that δ is everywhere positive,
we can conclude for the range of m studied here that the
nucleon is always prolate.
We plot the total energy density of the numerical

computation with the spin contribution to the energy
corresponding to the nucleon, in Fig. 9, where the total
energy density in dimensionless units is defined as

Etot¼−
e
fπ

Lþe4

2

�
jðjþ1ÞI11

I211
þj23I33

I233
−
j23I11

I211

�
; ð2:87Þ

with−L of Eq. (2.50), I ij of Eq. (2.59), Iij ¼
R
d3xI ij, and

for the nucleon j ¼ jj3j ¼ 1
2
. This energy density is con-

structed such that its integral gives the energy of the
quantized Hamiltonian (2.80) plus the classical skyrmion
mass. From this figure, the nucleon appears to be prolate,
but this is the shape of the energy density near the core of
the skyrmion/nucleon. We find the same shape for the Δ’s.
In Fig. 10, we plot the three diagonal components of the
inertia tensor density of the skyrmion, which are all tori
about their corresponding axis; e.g., the I11 component
takes the shape of a torus with the main axis in the x1

direction and so on. In the right panel of the figure, we
show the ðy; zÞ plane of the I11 component with the ðx; yÞ
plane of the I33 component of the inertia tensor density
subtracted off. This latter panel illustrates that, far from the
core, the tail effect of the I11 (and I22 is similar) gives a
larger positive relative contribution (in yellow) than the I33

gives a negative relative contribution (in blue). The
combined effect is that the tail of the skyrmion makes it
prolate. This effect dominates the oblate property of
the core.
The presence of the new η particle has affected the

skyrmion quite a bit, but we still cannot obtain the mass
splitting between the neutron and the proton.
By making the spin-isospin association, as in the hedge-

hog example, we can infer that the residual neutron-proton
symmetry we just found is strictly related to how the
skyrmion rotates. Equation (2.80) reveals that any left or
right rotating skyrmion has the same energy, which
instantly translates into the proton and the neutron being
the same soliton solution rotating in opposite directions.
The shape of the resulting skyrmion is obviously

dependent upon who wins, but besides that nothing

(a) (b)

FIG. 8. (a) The trace part and (b) the traceless part [proportional to the Gell-Mann λ8 generator, see Eq. (2.67)] of the moment of inertia
tensor as a function ofm computed by a full three-dimensional computation on the lattice with the contribution from outside the lattice to
infinity computed from the linearized tail solutions. The red straight lines are the predictions of Eqs. (2.73) and (2.74), respectively, for
(a) and (b).

FIG. 7. The coefficients (2.56) and (2.57) of the exponential
tails of the pion and η fields as functions of m. The black dashed
curve is the result of the spherically symmetric skyrmion (for
which there is only one coefficient C of all the three pions),
whereas the yellow (upper) and red (lower) dashed curves are the
prediction (2.78), which is correct in sign, but not quite in
magnitude. In this figure ϵ ¼ −0.34, i.e., its physical value.
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changes the fact that the neutron and the proton do not get
different masses, as they are the same state rotating in
different SUð2ÞI directions, as illustrated in Fig. 11. We
shall later come back to these terms along with all the
others, which give an extra contribution to the moment
of inertia; however, for now we should finally address
the latter approach, where the splitting is coming from
vector mesons.
The persistence of the degeneracy of the neutron-proton

multiplet, or, in general, of all the states with the same jI3j,
can also be understood by a more general symmetry
argument. The Lagrangian with the pions η and the
mass splitting breaks the continuous isospin but leaves
invariant a discrete isospin parity, for example, as the
reflection Riso;13∶ U → UT which acts as ðπ1; π2; π3Þ →
ðπ1;−π2; π3Þ. To pass from the proton to the neutron
with both spin-up (see the first line of Fig. 11) we can

use two symmetry transformations, a space parity
Pspc∶ ðx1; x2; x3Þ → ð−x1;−x2;−x3Þ combined with the
isospin parity Riso;13. These discrete symmetries protect
the degeneracy. This symmetry argument works indepen-
dent of the various approximations made above, for
example, the rigid rotor and the semiclassical quantization.

III. ISOSPIN SPLITTING IN THE
WITTEN-SAKAI-SUGIMOTO MODEL

Isospin multiplets turn out to be completely degenerate if
we include only pions in such effective theory withNf ¼ 2,
while it is possible to have a partial mass splitting between
the Δ’s if we add the η meson. To completely remove
the degeneracy, obtaining also a splitting in mass between
the nucleon states, i.e., the proton and the neutron, the
inclusion of vector mesons is decisive. The Sakai-Sugimoto

FIG. 9. Left: the energy density Etotðx; 0; zÞ of the nucleon, i.e., the energy with spin contribution corresponding to j ¼ j3 ¼ 1=2.
Right: Etotðx; 0; zÞ–Eðx; y; 0Þ. In this figure, m ¼ 0.3 and ϵ ¼ −0.34.

FIG. 10. Left: the three diagonal components of the moment of inertia tensor density I ii with i ¼ 1, 2, 3 (not summed over) shown in
red, green, and blue, respectively. Right: I11ðx; 0; zÞ–I33ðx; y; 0Þ. In this figure m ¼ 0.3 and ϵ ¼ −0.34.
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model [29,30] has the advantage of automatically including
all vector fields and their excitations in a consistent way.
Thus, it can account for the presence of the neutron-proton
mass splitting incorporating the effect previously consid-
ered in Refs. [23–25,27]. Our aim is to incorporate both
effects on the Δ’s—the one studied in Ref. [31] that also
produced the proton-neutron mass splitting, and the one
developed in Sec. II due to the splitting of the moments of
inertia—and see the complete splitting of the spectrum
of Δ’s.
We briefly present the baryons in the Sakai-Sugimoto

holographic model. We focus on the low-energy flavor
dynamics on the fixed metric background in five dimen-
sions, as presented in Refs. [38,39]. The gauge fields on the
D8-branes are expanded on the Uð2Þ basis as

A ¼ Â
12
2
þ Aa τ

a

2
; F ¼ F̂

12
2
þ Fa τ

a

2
: ð3:1Þ

The 5D reduced metric and the effective action are given by

ds2 ¼ 1

hðzÞ2 dx
μdxμ þ hðzÞ2dz2; ð3:2Þ

SD8¼−κTr
Z

d4xdz

�
kðzÞF μzF μzþ1

2
hðzÞF μνF μν

�
þSCS;

ð3:3Þ

with hðzÞ, kðzÞ being two functions who play the role of
warp factors amounting to

kðzÞ ¼ 1þ z2; hðzÞ ¼ 1

ð1þ z2Þ1=3 : ð3:4Þ

We can see that on the D8-brane’s world volume lives a
five-dimensional Yang-Mills gauge theory with nontrivial
warp factors. It will sometimes be useful to see the explicit
Nc dependence of the overall constant of the action, hence
we define

κ ¼ aλNc; a ¼ 1

216π3
: ð3:5Þ

The Chern-Simons action has the explicit expression

SCS ¼
Nc

384π2
ϵα1α2α3α4α5

×
Z

d4xdz Âα1

�
3Fa

α2α3F
a
α4α5 þ F̂α2α3F̂α4α5

�
: ð3:6Þ

Everything is in the dimensional units of the Kaluza-Klein
compactification scale MKK, so the model has two dimen-
sionless couplings: Nc and λ (or κ) and a mass scale MKK.
The holonomy of the Az field can be interpreted as the

pseudoscalar matrix in a chiral theory [29], so that we will
adopt the following definitions:

P exp

�
i
2

Z
dzÂz

�
≡ eiφðxÞ;

P exp

�
i
Z

dzAz

�
≡ UðxÞ: ð3:7Þ

FIG. 11. Schematic representations of the different states corresponding to the fundamental and Δ representation of SUð2Þ, all with
maximal spin-up, with the modification of shape due to cylindrical symmetry of the solutions. The colors are the same as in Fig. 6.
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Finally, the model can be supplemented with quark masses
via the inclusion of the Aharony-Kutasov action [40],

SAK ¼ c
Z

d4xTrP
h
Mei

R
dzAz − 12 þ H:c:

i
: ð3:8Þ

Note that action (3.8) exhibits nonlocality in the holo-
graphic direction. M is the quark mass matrix and c is a
constant (related to the chiral condensate) that we can fix
to reproduce the expected chiral perturbation theory
Lagrangian: This parameter is determined using the pion
mass as an input by the Gell-Mann-Oakes-Renner relation

cðmu þmdÞ ¼
1

2
f2πm2; ð3:9Þ

with fπ being the pion decay constant and m the pion mass
in units of MKK. Employing definitions (3.7) we can cast
the quark mass action into the form

SAK ¼ c
Z

d4xTr½MeiφU − 12 þ H:c:�: ð3:10Þ

This is exactly the same as we had for the Skyrme model. In
fact, from the point of view of the quark mass and mass
splittings, the Skyrme model and the WSS model are
exactly the same, with the caveat that in the WSS model
vector mesons and the η are automatically included, and the
couplings are fixed by the two free parameters λ, MKK. In
the Skyrme truncation of the model, we have [29]

κ

π
¼ f2π

4
;

κcS
2

¼ 1

32e2
; cS ≃ 0.156: ð3:11Þ

One popular way to calibrate the parameters with mesons is

MKK ¼ 949 MeV; κ ¼ 0.00745;

Nc ¼ 3; λ ¼ 16.63: ð3:12Þ

This calibration is done by fitting the ρ-meson mass Mρ ¼
776 MeV and the pion decay constant fπ ¼ 92.4 MeV.
This mesonic fit is, however, not the only possibility, and in
particular, it overestimates masses in the baryon sector.
In the context of this holographic model, a baryon is

realized as an instantonic configuration of the gauge field
A. The BPST instanton is given by

AM ¼ −ifðξÞg∂Mg−1; ð3:13Þ

where we have introduced the following functions:

fðξÞ ¼ ξ2

ξ2 þ ρ2
; gðx; zÞ ¼ ðz − ZÞ − iðx −XÞ · τ

ξ
;

ð3:14Þ

the radial coordinate in three space including the holo-
graphic direction, i.e., the ðx; zÞ space,

ξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx −XÞ2 þ ðz − ZÞ2

q
; ð3:15Þ

and the parameters ðX; Z; ρÞ describing the center and the
size of the instanton in the ðx; zÞ space. The field strengths
associated with the fields are

Fa
ij ¼

4ρ2

ðξ2 þ ρ2Þ2 ϵija; Fa
zj ¼

4ρ2

ðξ2 þ ρ2Þ2 δaj: ð3:16Þ

The Chern-Simons action includes a term of the form

ϵMNPQ

Z
d4xdz Â0Fa

MNF
a
PQ; ð3:17Þ

and the generated electric field is

Â0 ¼
1

8π2a
1

ξ

�
1 −

ρ4

ðξ2 þ ρ2Þ4
�
þ μ; ð3:18Þ

where μ is an integration constant dual to the baryonic
chemical potential, which we set to zero. We expand the
mass equation up to order λ−1 thus including the effects of
the curved background in the Yang-Mills action and of the
Chern-Simons term: The new mass formula reads [38]

M ¼ Mflat
YM þ δMYM þMCS

¼ 8π2κ

�
1þ λ−1

�
ρ2

6
þ 1

320π4a2
1

ρ2
þ Z2

3

��
: ð3:19Þ

Minimizing this quantity leads us to the values of the size ρ,

ρ2 ¼ 1

8π2aλ

ffiffiffi
6

5

r
; ð3:20Þ

and the position Z ¼ 0 of the classical configuration [38].
The scaling with an inverse power of λ of the instanton size
justifies our expansion around flat space, since the instan-
ton will be localized in a small region around Z ¼ 0 in the
large-λ limit. By plugging this result back into the mass
equation, we find the classical value of the mass

M ¼ 8π2κ þ Nc

ffiffiffiffiffi
2

15

r
: ð3:21Þ

The near BPST limit works because at large λ the instanton
is very small and thus is concentrated in a region much
smaller than the radius of spacetime curvature [38,41,42].
With the calibration (3.12), the mass of the classical baryon
is found to be

M ≃MKK × 1.684 ≃ 1598 GeV: ð3:22Þ
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There are other 1=λ corrections and also quantum 1=Nc
corrections to be taken into account: By quantization of the
moduli space, we take into account the leading quantum
corrections.
Translations and rotations in flat three-dimensional space

(in the directions xi) are exact symmetries. Translations of
the solution are realized by changing the parameter X,
hence they are exact moduli. Rotations are described by an
SOð3Þ matrix Rij that acts on the coordinates as

xi → Ri
jxj; ð3:23Þ

or, alternatively, by an SUð2Þ matrix B related to Rij by

Rij ¼
1

2
TrðτiBτjB†Þ: ð3:24Þ

Rotations in flavor SUð2Þ space are also an exact symmetry
and are described by the rotations of Pauli matrices τi with
matrices a as

τi → aτia†: ð3:25Þ

Because of the particular structure of the soliton, however,
the two kinds of rotations, those in coordinate space and
those in flavor space, are related (the same that happens for
skyrmions), so that only one set of rotational moduli are
necessary to describe all possible configurations. This will
no longer be true when we turn on the mass splitting, since
the isospin symmetry will be explicitly broken, so here we
will use only the spatial rotations as the true moduli.
The full solution is provided in Ref. [39], and since we

will only care about angular velocity terms, we will neglect
the time derivatives of other moduli,

AM ¼ −ifðξÞVðg∂Mg−1ÞV−1 − iV∂MV−1;

A0 ¼ 0;

Âi ¼ −
Nc

16π2κ

ρ2

ðξ2 þ ρ2Þ2 ϵiabχ
axb;

Âz ¼ −
Nc

16π2κ

ρ2

ðξ2 þ ρ2Þ2 χ · x;

Â0 ¼
Nc

8π2κ

1

ξ2

�
1 −

ρ4

ðξ2 þ ρ2Þ2
�
: ð3:26Þ

Inserting these fields in the action will give the moments
of inertia of the soliton. We note that the angular velocity is
denoted by χa here, as is standard in the Sakai-Sugimoto
model [38] and the SUð2Þ-rotation matrix is here a,
whereas in Sec. II we used the notation Ωi [see Eq. (2.29)]
for the angular velocity and A† for the corresponding
rotation matrix. In particular, we have

χa ¼ −iTrða†ȧτaÞ: ð3:27Þ

The Lagrangian of the collective modes is, at the highest
order in λ, given by the instanton moduli space dynamics
lifted by the mass for the z translation and size ρ,

L ¼ −M0 þ
M0

2
Ẋ2 þM0

2
Ż2 −

M0ω
2
Z

2
Z2

þM0ðρ̇2 þ ρ2ȧ2I Þ −M0ω
2
ρρ

2 −
Q
ρ2

; ð3:28Þ

with

M0¼8π2κ; ω2
Z¼

2

3
; ω2

ρ¼
1

6
; Q¼ Nc

40π2a
: ð3:29Þ

This is equivalent to a skyrmion with massM0 and diagonal
moment of inertia equal to

I0 ¼
1

2
M0ρ

2 ¼ 1

2
Nc

ffiffiffi
6

5

r
; ð3:30Þ

with the calibration (3.12) yielding

I0 ≃
1.64
MKK

≃ 1.73 GeV−1: ð3:31Þ

Thus, including only the classical soliton energy and the
rotational energy, we have

Mp;n ¼ M0 þ
3

8I0
¼ 0.775 GeV;

MΔ ¼ M0 þ
15

8I0
¼ 1.64 GeV;

MΔ −Mn;p ¼ 3

2I0
¼ 0.87 GeV: ð3:32Þ

This is just an estimate of the values, in fact, the BPST
solution is modified at large distances, larger than 1=MKK.
This computation can be done since at those distances we
are in the linear regime, so taking the curvature effect into
account becomes simpler. The coefficient of the linear
tail can be computed with the Green’s function in curved
space [39]. The Az field in the singular gauge (neglecting
the a moduli for the moment) reads

AðSÞ
z ¼

�
1

ξ2
−

1

ξ2 þ ρ2

�
x · τ; ð3:33Þ

which at distances larger than the soliton radius (ξ ≪ ρ),
but smaller than the curvature scale ðhðzÞ ≃ kðzÞ ≃ 1Þ, is
approximated by

AðSÞ
z ≃

ρ2

ξ4
x · τ ¼ −

ρ2

2
∇
�
1

ξ2

�
· τ: ð3:34Þ
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Note that − 1
4π2ξ2

is the Green’s function in flat four-

dimensional space. To generalize to the large distance
region, we substitute it with the Green’s function in curved
space [39]

Hðr; 0; z; 0Þ ¼ −κ
X∞
k¼0

ϕkðzÞϕkð0Þ
e−

ffiffiffi
λk

p
r

4πr
; ð3:35Þ

where we already set the semiclassical value Z ¼ 0; we
chose X ¼ 0 without loss of generality and inserted the
mesonic eigenmodes and eigenvalues defined as solutions
of the Sturm-Liouville equation,

−hðzÞ−1∂zðkðzÞ∂zψnðzÞÞ ¼ λnψnðzÞ: ð3:36Þ

The n ¼ 0 solution corresponds to a non-normalizable
mode with zero mass (before taking into account the
Aharony-Kutasov action), dual to the pion wave function,
while the other n > 0 modes correspond to massive
vector mesons,

ϕ0ðzÞ ¼
1ffiffiffiffiffi
κπ

p 1

kðzÞ ; ð3:37Þ

ϕnðzÞ ¼
1ffiffiffiffiffi
λn

p ∂zψnðzÞ: ð3:38Þ

These modes (except the n ¼ 0 one) can be normalized
with the relations

κ

Z
dz hðzÞψnðzÞψmðzÞ ¼ δnm;

κ

Z
dz kðzÞϕnðzÞϕmðzÞ ¼ δnm: ð3:39Þ

The Skyrme truncation amounts to including only the pion

(and the η that shares the same mode), so that the AðSÞ
z field

is expanded as

AðSÞ
z ≃ −

π

2
κρ2ϕ0ðzÞϕ0ð0Þ∇

�
1

r

�
· τ þ

X∞
n¼1

� � � : ð3:40Þ

In order to read off the coefficient of the three-dimensional
linear tail, we need to isolate the r dependence, while
integrating the pion profile in the holographic direction.
Using Eq. (3.37) we obtain

Z þ∞

−∞
dzAðSÞ

z ≃−πκρ2
1

2κπ

Z þ∞

−∞
dz

1

kðzÞ∇
�
1

r

�
·τ: ð3:41Þ

The integral gives a factor of π and we can use the

semiclassical size ρ2 ¼ Nc
8π2κ

ffiffi
6
5

q
to obtain

Z þ∞

−∞
dz AðSÞ

z ≃ −
Nc

16πκ

ffiffiffi
6

5

r
∇
�
1

r

�
· τ: ð3:42Þ

Defining the coefficients of the tail of the nonrotating
soliton (in the standard orientation of the hedgehog) as

1

2

Z
dz Aa¼1;2

z ¼ −C∂1;2
�
1

r

�
; ð3:43Þ

1

2

Z
dz Aa¼3

z ¼ −
1

2
ðDþ EÞ∂3

�
1

r

�
; ð3:44Þ

1

2

Z
dz Âz ¼ −

1

2
ðD − EÞ∂3

�
1

r

�
; ð3:45Þ

the final result is then read off of Eq. (3.42) as

C ¼ D ¼ E ¼ Nc

16πκ

ffiffiffi
6

5

r
¼ c0

1

λ
; ð3:46Þ

using that Âz ¼ 0 for the nonrotating soliton. The coef-
ficient c0 is thus

c0 ¼
1

16πa

ffiffiffi
6

5

r
¼ 27π2

2

ffiffiffi
6

5

r
: ð3:47Þ

This is exact in the large-λ limit. To compare it with the
coefficient found for the skyrmion, we need to recall that
we are using different units in the two computations; here
we adopted dimensionless units, meaning that dimension-
ful quantities need to have factors of MKK restored.
The integral of the gauge field is dimensionless, so the
coefficient C must have the dimension of M−2

KK to cancel
that of ∇ 1

r,

Cdim ¼ CM−2
KK ¼ 27π2

2M2
KKλ

ffiffiffi
6

5

r

¼ 9.75 × 10−6 MeV−2 ¼ ð0.61 fmÞ2: ð3:48Þ

The introduction of explicit breaking of isospin sym-
metry within the holographic model of Sakai-Sugimoto is
realized by changing the mass matrix in Eq. (3.8) to
something not proportional to the identity matrix, resulting
in the moment of inertia being modified, taking the form
of Eq. (2.67).
Let us consider the baryon masses at ϵ ¼ 0 and how they

are affected by the quark mass. Various effects have been
considered in the past, e.g., the leading-order effect for
ϵ ¼ 0 and a finite quark mass is a shift in the meson and
baryon spectra in both the two-flavor [43] and three-flavor
[44] cases. Here, we will add also the modification to the
inertia which, in turn, affects the nucleon-Δ splitting. The
formula (2.67) unfortunately cannot yet be used reliably at
this stage to compute the mass correction to the inertia I.
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The point is that we know I0 from the self-dual instanton
approximation, and we know that it receives, even at
m ¼ 0, order 1=λ corrections from the curvature effects.
The mass corrections are of the same order κC2 ∝ 1=λ. So
to make use of Eq. (2.67), we should first find a technique
to compute also I up to order 1=λ.
However, the splitting term δ can be computed within

the approximation of small m: This is possible because the
dominant contribution to δ in this limit comes from the
soliton tails, which can be computed exactly. The linearized
tail is a reliable approximation from a certain cutoff
r ¼ RUV up to r → ∞: From the WSS model we know
that the cutoff should be roughly the order of the soliton
size RUV ∼ ρ. As we will see, and as has happened in the
skyrmion case, employing the tail to compute the moment
of inertia will lead to a divergent result, a hint that the
correct configuration for r < RUV is not given by the
linearized tail, but by some perturbation of the BPST
instanton. However, the divergent term is independent ofm,
while the leading order in m is linear: This linear term does
not depend on RUV, allowing us to compute the splitting
explicitly. Performing the full numerical solution is more
challenging as compared to the Skyrme model, due to the
presence of the additional holographic coordinate. On the
other hand in the WSS model we have an analytic
approximation in the BPST instanton for the core configu-
ration and a semianalytical expression as an expansion over
mesonic modes for the linearized tail: We now move to
compute the deformation of the tail induced by the presence
of SAK.
As a first step, we write the linearized equations of

motion: Only the fields Âz and Aa¼3
z will take part in the

splitting, hence we have

κkðzÞ
�
∂
2
i Âz − ∂i∂zÂi

�
¼ mqc

�Z þ∞

−∞
dz Âz þ ϵ

Z þ∞

−∞
dz Aa¼3

z

�
; ð3:49Þ

κkðzÞ
�
∂
2
i A

a¼3
z − ∂i∂zAa¼3

i

�
¼ mqc

�Z þ∞

−∞
dz Aa¼3

z þ ϵ

Z þ∞

−∞
dz Âz

�
: ð3:50Þ

We immediately see that the equations are coupled: This is
a consequence of the mass matrix of the pions (and η)
becoming nondiagonal. It is simple to diagonalize the mass
matrix or, analogously, to diagonalize these two equations.
To do so we introduce the mass eigenstates

Aη ¼
1ffiffiffi
2

p ðAa¼3
z þ ÂzÞ; Aπ ¼

1ffiffiffi
2

p ðAa¼3
z − ÂzÞ: ð3:51Þ

We can, in principle, perform the change of basis for the
fields also for the spatial components Ai, but it is not

necessary: The Aharony-Kutasov action, in fact, introduces
effective mass terms only for the pseudoscalar degrees of
freedom, as can be easily understood once we expand the
field Az in mesonic modes. Then the holonomy of the field
Az can be written as

Z þ∞

−∞
dzAz¼

X∞
n¼0

φnðxÞ
Z þ∞

−∞
dzϕnðzÞ

¼ϕ0ðxÞπþ
X∞
n¼1

φnðxÞ
Z þ∞

−∞
dz∂zψnðzÞ; ð3:52Þ

and since the functionsψnðzÞ vanish at theUVboundary, only
the first term in the sum survives, generating a mass term
for the pseudoscalars. Because of this, we will restrict our
analysis to the z component of the fields: After diagonaliza-
tion, it is easy to read the mass eigenvalues as being

m2
� ¼ m2ð1� ϵÞ; ð3:53Þ

so we can make an educated guess for the shape of the
solution: The asymptotic configuration in the massless
scenario is given by

Âz ≃
ρ2Nc

8κ
χj∂XjHðx;X; z; ZÞ; ð3:54Þ

Aa¼3
z ≃ −2π2ρ2Trðaτka†τ3Þ∂XkHðx;X; z; ZÞ; ð3:55Þ

with

Hðx;X; z; ZÞ ¼ κ
X∞
n¼0

ϕnðzÞϕnðZÞYnðrÞ;

YnðrÞ ¼ −
1

4π

e−
ffiffiffiffi
λn

p
r

r
; ð3:56Þ

and we can easily think of keeping this general shape, while
providing a nonvanishing λ0 to account for the pion mass.
However, we have a mass splitting here, so we need to
introduce two values λ� ¼ m2ð1� ϵÞ. Moreover, the mass
eigenstates are combinations of the fields (3.54) and (3.55), so
we build an Ansatz for Aη, Aπ given by

Aη ¼ bχj∂XjHþ − b̃Trðaτja†τ3Þ∂XjHþ; ð3:57Þ

Aπ ¼ dχj∂XjH− − d̃Trðaτja†τ3Þ∂XjH−: ð3:58Þ

The constants should be determined by the boundary con-
ditions (the matching with the core configuration in an
intermediate region), while the functions H� are given by

H�≡−κ
X
n¼0

ϕnðzÞϕnðZÞ
1

4π

e−
ffiffiffiffi
λn

p
r

r
; λ0¼m2

�: ð3:59Þ
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With this choice, the equations ofmotion are satisfied, andwe
only need to fix the constants: We then require that in the
massless limit the fields revert to

lim
m→0

Aη ¼ Âz; lim
m→0

Aπ ¼ Aa¼3
z ; ð3:60Þ

and we obtain

b ¼ −d; b̃ ¼ d̃: ð3:61Þ

To conclude, we also require matching with the core of the
baryon solution, which is equivalent to requiring that the
coefficients of Eqs. (3.54) and (3.55) are reproduced. This
fixes all the constants as

b ¼ ρ2Ncffiffiffi
2

p
8κ

; b̃ ¼
ffiffiffi
2

p
π2ρ2 ¼ C ¼ D ¼ E: ð3:62Þ

Now that the solution is fixed, we note that since only the
neutral pion and η masses are modified, we can neglect the
vector mesons in the computation of the splitting: They will
contribute to the total moment of inertia, but with a term
proportional to the identity matrix. To isolate the pseudosca-
lars, we remove them from the sum in the functions H� and
define new Yukawa potentials Y�ðrÞ,

H� ¼ κϕ0ðzÞϕ0ðZÞY�ðrÞ þ κ
X∞
n¼1

ϕnðzÞϕnðZÞYnðrÞ;

Y�ðrÞ ¼ −
1

4π

e−m�r

r
: ð3:63Þ

We can read off the inertia tensor from the terms in the
Lagrangian that are quadratic in the angular velocity χ: Such
contributions can arise from all terms of the action, the Yang-
Mills, Chern-Simons, and Aharony-Kutasov parts. The
leading contribution to the inertia splitting is given in the
small-m limit by a linear term, hence we discard corrections
coming from the Aharony-Kutasov term, whose prefactor is
of order mqc ∼m2f2π. Moreover, the leading contribution
comes from the linearized soliton tail, hence we neglect the
Chern-Simons term, being at least cubic in the fields. We are
then left with the Yang-Mills action to be computed on the
solution of the equations of motion just obtained. The action
terms we are looking for are the ones involving theAz and at
most quadratic in the fields

SYMjAz
¼ −κTr

Z
d4xdz kðzÞ½ð∂iAzÞ2 − ð∂0AzÞ2�; ð3:64Þ

which receives contributions both from theAa¼1;2
z and theAη,

Aπ fields, which we split into two terms, defining the kinetic
energy parts as

Tð1;2Þ ¼ κ

2

X2
a¼1

Z
dzd3x kðzÞ

h
ð∂iAa

z Þ2 − ð∂0Aa
z Þ2
i
;

Tð3Þ ¼ κ

2

Z
dzd3x kðzÞ

h
ð∂iA3

zÞ2 − ð∂0A3
zÞ2 þ ð∂iÂzÞ2 − ð∂0ÂzÞ2

i

¼ κ

2

Z
dzd3x kðzÞ

h
ð∂iAηÞ2 − ð∂0AηÞ2 þ ð∂iAπÞ2 − ð∂0AπÞ2

i
; ð3:65Þ

where we have used Eq. (3.1) and the total kinetic energy is
T ¼ Tð1;2Þ þ Tð3Þ. Starting from the latter, which gives rise
to the following terms at order χ2,

Tr
Z

dzd3xkðzÞ
h
ð∂iAηÞ2þð∂iAπÞ2

i

¼b2χjχk
Z

d3xdzkðzÞð∂i∂jHþ∂i∂kHþþ∂i∂jH−∂i∂kH−Þ;

ð3:66Þ

−Tr
Z

dzd3xkðzÞ
h
ð∂0AηÞ2þð∂0AπÞ2

i

¼−4b̃2Ṙa3Ṙk3

Z
d3xdzkðzÞð∂aHþ∂kHþþ∂aH−∂kH−Þ:

ð3:67Þ

We see immediately that the terms in Eq. (3.66) produce
kinetic energy contributions proportional to the identity
matrix, since after integrating over the angular coordinates
of R3 we are left with something proportional to χ · χ. On
the other hand, the terms in Eq. (3.67) do break spherical
symmetry, since they select the direction in coordinate
space that corresponds to the rotation performed by Ra3,
that is, the direction that we obtain for the orientation of π3

after the moduli a are applied to the soliton configuration.
With the standard hedgehog orientation, this direction
would simply be given by x̂3. We then introduce the
body-fixed axis and give the components of the angular
velocity in terms of this coordinate system: We label them
ðχξ; χη; χζÞ, where χζ identifies the projection along the
axis of residual symmetry (again, in the case of standard
orientation, χζ ¼ χ3). This leads us to consider only the
terms in Eq. (3.67), which can then be computed by using
the relations
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Ṙab ¼ ϵamnχmRnb; ð3:68Þ

Z
d3x ∂ifðrÞ∂jfðrÞ ¼

4π

3
δij

Z
dr r2f0ðrÞ2; ð3:69Þ

ϵakbϵacdχkχcRb3Rd3 ¼ χ2Rb3Rb3 − ðχaRa3χ
bRb3Þ

¼ χ2 − χ2ζ ; ð3:70Þ
Z

∞

R
dr

ðm�rþ 1Þ2
r2

e−2m�r ¼
�
m�
2

þ 1

R

�
e−2m�R

≃
1

R
−
3

2
m� þOðm2Þ: ð3:71Þ

After keeping only the n ¼ 0 term in the mesonic modes’
expansion of the fields (higher n does not contribute to the
splitting, while cross terms vanish because of orthogonality
relations), we can write the following kinetic energy term
Tð3Þ for the fields Aη, Aπ:

2

Tð3Þ ¼ 1

3
π2κρ4ðχ2 − χ2ζÞ

�
2

R
−
3

2
ðmþ þm−Þ

�
þOðm2Þ:

ð3:72Þ

This formula presents a UV divergent term proportional to
R−1, with R being a cutoff to the integral over r, which
arises from the extrapolation of the linear tail to the core
region. Realistically, the cutoff R is not to be sent to zero,
but rather to some value of the order of the soliton size ρ. In
this way, we can provide an estimate on the order of this
term, however, it is not necessary since we can argue that
it cannot contribute to the splitting: In fact, this term is
independent of the parameters m, ϵ, so we cannot regard it
as a correction to the inertia due to the presence of the
Aharony-Kutasov term. It is instead to be interpreted as the
correction to the inertia due to the deviation of the tail of
the soliton from the BPST instanton configuration, ulti-
mately due to the curved background.
The last part we need to compute is the contribution to the

inertia of the fields Aa¼1;2
z : The computation is analogous

to the one performed above, with the only exception being
that every instance of m� is substituted with m, and
formula (3.70) has to be modified in favor of the components
χξ, χη. The resulting contribution is then given by

Tð1;2Þ ¼ 2

3
π2κρ4ðχ2 þ χ2ζÞ

�
1

R
−
3

2
m
�
þOðm2Þ: ð3:73Þ

The sum of the two terms finally gives the complete
rotational kinetic energy T ¼ Tð1;2Þ þ Tð3Þ,

T ¼ π2ρ4κ

2
m

��
8

3mR
−
�
2þ ffiffiffiffiffiffiffiffiffiffiffi

1þ ϵ
p þ

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p ��
χ2

−
�
2 −

ffiffiffiffiffiffiffiffiffiffiffi
1þ ϵ

p
−

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p �
χ2ζ

�
: ð3:74Þ

We thus confirm that the UV divergent term does not enter in
the splitting, and we can see by expanding the square roots
that the splitting term δ appears at order mϵ2. We can then
compute the splitting δ of Eq. (2.67),

δ ¼ π2ρ4κ

12
mϵ2 þOðm2; ϵ4Þ: ð3:75Þ

A. New quantization for ϵ ≠ 0 and Δ splitting

In this section, we derive a quantum mechanical
Hamiltonian for the baryon spectrum up to order ϵ2. To do
so, we take into account two main effects: One is the
perturbation of the moment of inertia due to the presence
of the quark mass term, which we already analyzed in the
small-m limit,while the second is thepresence of a term linear
in the angular velocity in the action, arising from theAharony-
Kutasov action evaluated on the unperturbed baryon con-
figuration. [It arises, in general, on the full configuration, and
we can see the presence of linear terms already in the previous
section, arising from cross terms proportional to bb̃ or dd̃
[see Eq. (3.61) and the Ansätze (3.57) and (3.58)], but they
are subleading contributions in m when compared to the
ones arising from the unperturbed baryon core.]
We have already computed the new moments of inertia

of the soliton, so the kinetic part of the Lagrangian coming
from the Yang-Mills action, neglecting the motion of the
center of mass, reads

LYM ¼ 1

2
IAðχ2ξ þ χ2ηÞ þ

1

2
ICχ2ζ −M; ð3:76Þ

where

IA ¼ I þ δ; IC ¼ I − 2δ: ð3:77Þ
Again, we have relaxed the choice of a frame in which
the axis of the cylindrical symmetry is oriented along x̂3:
We decomposed the angular velocity in components along
principal axes of inertia of this “rigid top,” while the spatial
orientation of these axes is completely free.
If this was the complete Lagrangian, it would be

straightforward to get the Hamiltonian: We simply need
to trade angular velocities for their conjugate momenta
Jj ¼ I jkχk to obtain the Hamiltonian of a rigid symmet-
rical top as in Eq. (2.80),

Etop ¼
1

2IA
jðjþ 1Þ þ 1

2

�
1

IC
−

1

IA

�
j23 þM: ð3:78Þ

However, it would be naive to extract the Hamiltonian
by simply identifying Jj ¼ I jkχk: The Aharony-Kutasov

2The mass shift induced on the configuration by including the
quark mass for ϵ ¼ 0 [43,44] is an order m2 effect and alters only
the potential energy.
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action provides a Lagrangian term linear in the angular
velocity. This term arises at the first order in perturbation
theory, hence it is obtained by feeding the unperturbed
baryon configuration to the perturbation Lagrangian, in this
case provided by the Aharony-Kutasov term (3.8). As noted
before, at the static order (χ ¼ 0) the terms proportional to
ϵ vanish due to the trace: The first nonvanishing OðϵÞ term
arises at linear order in χ, hence it is an N−1

c correction to
the baryon mass. To show the mechanism as presented in
Ref. [31], we start with the Aharony-Kutasov Lagrangian
written in terms of U, φ as defined in Eq. (3.7),

LAK ¼ cTr
Z

d3x½MeiφaUa† þ e−iφaU†a†M − 212�:

ð3:79Þ

We then write the matrix U using the BPST instanton
approximation,

U ¼ − cos αþ i sin αx̂ · τ; α ¼ πffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

r2

q ; ð3:80Þ

where the function αðrÞ is defined by the integral over z of
the field Az in the unperturbed baryon configuration. We
can then keep the terms proportional to ϵ and expand the
exponential to linear order in φ,

Lϵ
AK ¼ 2mqcϵ

Z
d3xφ sin α

xi

r
Tr½τ3aτia†�

¼ mqcϵNc

16πκ

Z
d3x sin α

1

ρ
�
1þ r2

ρ2

�3
2

xixj

r
R3iχ

j

¼ mqcϵNc

12κ
ρ3J 2χ

iR3i; ð3:81Þ

where we made use of the Âz field as in Eq. (3.26) and we
defined the integral

J 2 ≡
Z

∞

0

dy
y3

ð1þ y2Þ32 sin
 

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y−2

p
!

≃ 1.054: ð3:82Þ

The term Lϵ
AK modifies the canonical relation between

angular velocity and the angular momentum, which is now
given by

Ji ¼ I ijχj þ
ϵmqcNc

12κ
ρ3R3iJ 2

¼ I ijχj þ
ϵm2Nc

12π
ρ3R3iJ 2

≡ I ijχj − Ki: ð3:83Þ

Notice that in the definition of Ki there appears the rotation
matrix R3i. This means that the vector Ki always points in

the direction labeled by ζ (that is, the direction that in the
body-fixed frame becomes x̂3). This implies that only the
relation between Jζ and χζ is modified, and the full
Hamiltonian is thus given by

Hfull ¼
1

2IA
ðJ2ξ þ J2ηÞ þ

1

2IC
ðJ2ζ þK2

ζ þ 2JζKζÞ þM0

¼ 1

2IA
J2 þ 1

2

�
1

IC
−

1

IA

�
J2ζ þ

1

IC
JζKζ þ

1

2IC
K2

ζ þM;

ð3:84Þ

where we have definedKζ ≡ − ϵmqcNc

12κ ρ3J 2. We see that the
Hamiltonian is still diagonal and the energies are simply
obtained as

Efull ¼
1

2IA
jðjþ 1Þ þ 1

2

�
1

IC
−

1

IA

�
j23 þ

1

IC
Kζj3

þ 1

2IC
K2

ζ þM: ð3:85Þ

We may then use the relation JiRki ¼ −Ik to identify
Jζ ≡ −I3 so that the quantum number j3 can be replaced by
−i3. We also note that the corrections ΔI are of order ϵ2,
while Kζ is of order ϵ: If we stop our analysis at order ϵ2 we
can safely replace IC with the unperturbed I0 in the terms
proportional to Kζ, leading to

Efull ¼
1

2IA
jðjþ 1Þ þ 1

2

�
1

IC
−

1

IA

�
i23

−
1

I0
Kζi3 þ

1

2I0
K2

ζ þM: ð3:86Þ

We observe two new terms in the energy formula with
respect to Eq. (3.78). 1

2I0
K2

ζ is simply a mass shift due to the
quark mass difference: We see that it is always positive and
of order ϵ2m. − 1

I0
Kζi3 is the isospin breaking term that is

responsible for the splitting of states with the same absolute
value of i3, i.e., the term computed in Ref. [31] that
accounts for the proton-neutron mass difference. It also
removes half of the degeneracy in the Δ multiplet. It is of
order ϵm2.
We immediately see that there are two contributions to

the splitting of the Δ multiplet: Terms of order ϵ (giving
higher mass to lower values of i3) and terms of order ϵ2 (not
depending on the sign of isospin, but on the absolute value).
This is exactly what is suggested by the separation
geometry model (see Ref. [45]). The estimate we obtained
for the splitting of the moment of inertia is consistent only
in the m ≪ jϵj limit: We need to keep this in mind, as we
have to sum terms of order mϵ2 (from δ) and terms of order
m2ϵ (from Kζ). Then we consider the leading-order term in
the splitting to be of order mϵ2, which gives
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1

2
ðMΔþþ −MΔþ −MΔ0 þMΔ−Þ¼3

2

δ

ðIþδÞðI−2δÞ2≃
3δ

I20
:

ð3:87Þ

Assuming the previous results we get

1

2
ðMΔþþ −MΔþ −MΔ0 þMΔ−Þ ≃ π2ρ4κ

4I20
mϵ2 ≃

27π

8

mϵ2

Ncλ
:

ð3:88Þ

For the numerical values we obtain

1

2
ðMΔþþ −MΔþ −MΔ0 þMΔ−Þ ≃ 3.41 MeV: ð3:89Þ

The splitting of order ϵm2, which splits even proton and
neutron masses, is instead given by

Mp −Mn ¼
ϵm2Nc

48π3κ
ρJ 2 ≃ −4.74 MeV: ð3:90Þ

A dimensionless quantity we can compute is the ratio of the
splitting with the semiclassical nucleon mass [46]

Mp −Mn

MN
¼ −1.78 × 10−3;�

Mp −Mn

MN

�
exp

¼ −1.38 × 10−3; ð3:91Þ

where we have used the quantum-corrected approximate
mass [38],

MðlÞ ¼ 8π2κ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1Þ2

6
þ 2N2

c

15

r
þ 2ffiffiffi

6
p ; ð3:92Þ

with the nucleon mass MN ¼ Mð1Þ. The full pattern of
splittings in the Δ multiplet is then obtained by combining
these two contributions,

MΔþþ −MΔþ ¼3δ

I20
þϵm2Nc

48π3κ
ρJ 2¼−1.25MeV;

MΔþ −MΔ0 ¼ ϵm2Nc

48π3κ
ρJ 2¼−4.67MeV;

MΔ0 −MΔ− ¼−
3δ

I20
þϵm2Nc

48π3κ
ρJ 2¼−8.08MeV: ð3:93Þ

The ratio of the splitting with the semiclassical Δ mass is

MΔþþ −MΔþ

MΔ
¼ −3.92 × 10−4;

MΔþ −MΔ0

MΔ
¼ −1.46 × 10−3;

MΔ0 −MΔ−

MΔ
¼ −2.53 × 10−3; ð3:94Þ

with the Δ mass MΔ ¼ Mð3Þ of Eq. (3.92). The mass
splitting is illustrated in Fig. 12, where we show the two
consecutive splittings with different colors. The first split-
ting shown with blue dashed lines is due to the splitting that

FIG. 12. The mass spectrum of the Δ multiplet, measured with respect to the semiclassical mass. The first splitting (from left) shown
with blue dashed lines is due to the splitting that is linear in the isospin quantum number j3, but quadratic in the pion mass m,
corresponding to the result of Ref. [31]. The orange dashed correction shown subsequently is our result that is quadratic in j3, but linear
in m.
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is linear in the isospin quantum number j3, but quadratic in
the pion mass m, corresponding to the result of Ref. [31].
The orange dashed correction shown to the right is our
result of the splitting that is quadratic in j3, but linear in m.
Notice that our splitting contribution does not distinguish
the sign of the isospin quantum number, but only the
magnitude. It therefore only shifts the neutron-proton
masses upward without contributing to the neutron-proton
mass difference. The sum of the first two splittings in
Eq. (3.94) is measured experimentally [47–50] and com-
pared with our result in Fig. 13.

IV. CONCLUSION AND DISCUSSION

We summarize the main novel aspects presented in
this paper:

(i) We have developed a technique to study the first-
order contribution to the moments of inertia due to
the mass term. This term is due to the linear tail
effect and is linear in the pion mass.

(ii) We used this technique to compute the deviation
of the inertia tensor of the skyrmion, also in the
presence of isospin breaking due to the quark mass
difference. In this case, we could also perform the
numerical computation for all values of the mass,
and we confirmed that the technique works well
when the mass is small. This allows us to compute a
partial splitting in the baryon states, for example, in
the Δ spectrum, but it is not able to split the neutron-
proton masses.

(iii) We then performed the computation of the splitting
of the moments of inertia in the WSS model of
holographic QCD. Here we cannot perform the

numerical computation due to the complexity of
the problem, but we can apply our technique in the
small-mass limit.

(iv) In the WSS model, there is also another source of
splitting of baryon masses due to the presence of
vector mesons and the Chern-Simons term [31] (this
mass splitting mechanism is similar to that of
Ref. [25] in the context of the Skyrme model with
η, ω, and ρ mesons). Here we can thus see the
combination of these effects, with the one we
derived splitting the moments of inertia. This al-
lowed us to complete the spectrum of theΔmultiplet
with no unwanted degeneracy and no equidistant
splitting between the states.

We computed the mass splitting of the Δ’s in the Skyrme
and WSS models, in the case of two quark flavors and in
the large-Nc limit, hence it is safe to neglect the η mass
coming from the axial anomaly. We are aware that for a
more realistic prediction we would need to include the
anomaly term and also add the strange quark with its
corresponding mass. Such an extension to a more physi-
cally relevant analysis is left for future work.
It would be interesting to use our result in more complex

cases, for example, for multiskyrmion states, but we leave
such a study for the future.
In the case of the Skyrmemodel, it was possible to perform

a full numerical computationof themoments of inertia for any
value of the pion/quark mass. This enabled us to confirm the
leading-order results in the pion mass for both the moment of
inertia and for the splitting of theΔ’s. The corresponding full
numerical computation in the WSS model would be much
harder to carry out and thus we limit our analysis to the first-
order approximation linear in the pion mass.

FIG. 13. The mass splitting between the Δþþ state and the Δ0 state, which is measured experimentally by different groups: Pedroni
[47], Abaev and Kruglov [48], Bernicha et al. [49], and Gridnev et al. [50]. Our result is shown with the purple horizontal line.
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The final result in the WSS model is a hierarchy of
masses for the Δ multiplet MΔþþ < MΔþ < MΔ0 < MΔ−

and a hierarchy of splittings MΔþ −MΔþþ <MΔ0 −MΔþ <
MΔ− −MΔ0 . Clearly this is valid only in the limits consid-
ered, i.e., large-Nc, large-λ, and smallm, extrapolated to the
calibrated parameters. We want to point out that the final
result is very sensitive to details. The very fact that the
skyrmion is prolate and not oblate may change once the η
mass coming from the axial anomaly is considered or when
the full numerical computation is done. Moreover, the
precise hierarchy of masses is also very dependent on the
precise relation between the splittings (3.90) and (3.87),
which happen to be very similar in magnitude.
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