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This paper presents the first numerical study of black hole thermodynamics in causal set theory, focusing
on the entropy of a Schwarzschild black hole as embodied in the distribution of proposed horizon
molecules. To simulate causal sets we created a highly parallelized computational framework in C++ which
allowed for the generation of causal sets with over a million points, the largest causal sets in a
nonconformally flat spacetime to date. Our results confirm that the horizon molecules model is consistent
with the Bekenstein-Hawking formula up to a dimensionless constant that can be interpreted as the
fundamental discreteness scale in the order of a Planck length. Furthermore, the molecules are found to
straddle the horizon of the black hole to within a few Planck lengths, indicating that entropy lives on the
surface of the black hole. Finally, possible implications for the information paradox are drawn. In
particular, we show how the horizon molecules model could yield a finite black hole temperature cutoff or
even prevent full black hole evaporation.
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I. INTRODUCTION

Causal set theory (CST) is an approach to the problem of
quantum gravity which assumes that continuous spacetime
emerges merely as a macroscopic approximation to the
fundamental discrete causal structure, a causal set. A causal
set can be imagined as a network, where the events
embedded into spacetime represent the nodes that connect
if and only if they are causally related.
If CST aims to be the approach to quantum gravity, it is

imperative that it gives predictions that agree with our
current understanding of the universe and works in the area
of physics where quantum gravity would be required. A
perfect example of this is black hole thermodynamics,
which arises from the application of quantum field theory
on a curved spacetime background [1]. In this paper, we
numerically investigate the horizon molecules model for
black hole entropy. First developed in Ref. [2], this model
assumes that the microstructure of a black hole that gives
rise to the Bekenstein-Hawking entropy is formed by
molecules of spacetime situated on its horizon.

An algorithm for the simulation of the Schwarzschild
black hole in CSTwas outlined in Ref. [3]. However, due to
the computationally intensive nature of the simulations
required to study the behavior of causal sets in curved
spacetime, no extensive numerical studies of CST in the
area of black hole thermodynamics existed until now. To
our knowledge, this paper is the first numerical application
of causal sets to the area of black hole thermodynamics.
More generally, before this paper, Ref. [3] was the only
numerical study of CST in a nonconformally flat spacetime.
This paper builds on that original work, creating causal set
black holes of cardinality many orders of magnitude larger.
The manuscript is organised as follows. Section II

provides an introduction to the main disciplines involved
in our study, namely black hole thermodynamics and causal
set theory. In Sec. III, we explain how causal sets can be
simulated in Schwarzschild spacetime. Section IV intro-
duces the general theory of horizon molecules, explains
their relation to black hole thermodynamics, and outlines
the specific characteristics of the ones used in our study.
Section V dives into the highly parallelized C++ simulation
framework we created to study Schwarzschild causal sets
extensively for the first time ever and describes how we
tested it to make sure the simulations worked as expected.
Lastly, Sec. VI displays our numerical results, which are
then discussed in Sec. VII.

II. BACKGROUND

A. Black hole thermodynamics

A black hole is a region of spacetime where gravity is so
strong that nothing can escape it. The boundary of the black
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hole is the event horizon: any object crossing the horizon
will inevitably keep falling toward the center, where a
singularity is present. This is a region of zero volume where
curvature and density diverge, and at which any object’s
worldline—the object’s trajectory in space and time—
abruptly interrupts, as if ceasing to exist [4].
Black holes have been shown to be thermal objects

endowed with a temperature and entropy [5,6]. However,
as per the no-hair theorem, established via a series of
contributions [7–12], black holes appear to be the
simplest objects in the universe, fully specified by only
three observables: mass M, charge Q, and angular
momentum J. Black hole entropy, which is usually
associated with complexity, suggests the existence of
hidden degrees of freedom beyond those recognized by
the no-hair theorem.
Entropy is a property of statistical mechanics and is

usually related to the distribution of microstates of
molecules inside the object of interest. It is an ongoing
debate whether the entropy of a black hole counts
microstates of the interior of the black hole or whether
it is associated to the horizon [13]. In this paper we take
the attitude that the entropy of a black hole is a property of
the horizon [14].
Heuristically, this is supported by the well-established

Bekenstein-Hawking formula [1,6,15]

SBH ¼ A
4l2

p
; ð1Þ

which states that the entropy of a black hole scales with the
area A of the event horizon, where lp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
is the

Planck length.
Since the horizon is just a boundary in empty spacetime,

this suggests that black hole entropy resides in the micro-
structure of spacetime itself. As pioneered by Dou and
Sorkin [2], in a discrete spacetime one can connect
“spacetime atoms” across the black hole horizon, under
certain constraints, to form horizon molecules, and then
seek in these molecules the origin of the entropy.
Assuming a large number Nmol of independent mole-

cules making up the horizon, each occupying a microstate n
with probability pn, one can count them and look at their
distribution to measure the Boltzmann entropy of the event
horizon

S ¼ −Nmol

X
n

pn lnpn: ð2Þ

Since the Bekenstein-Hawking formula states that entropy
scales with the area, we demand that the number of horizon
molecules is proportional to the event horizon area, i.e.
Nmol ∝ A. This can be studied by simulating causal sets
embedded into Schwarzschild spacetime.

B. Causal set theory

This section gives an overview of CST, explains how
causal sets can be approximated by a spacetime continuum
and provides the relevant nomenclature.
CST began in earnest by Bombelli et al. in 1987 [16]. A

causal set (causet) is a discrete partially ordered set of
events C with an order relation ≺. If element x precedes y
then y lies in the causal future of x, i.e. x ≺ y. Here, x is said
to be an ancestor (x lies in the past) of y and y is a
descendant (lies in the future) of x. Formally, a set of events
C with an order relation ≺ is defined to be a causal set if
it obeys:
(1) Transitivity: x ≺ y ∧ y ≺ z ⇒ x ≺ z.
(2) Acyclicity: x ≺ y ⇒ y =≺ x.
(3) Local finiteness: jfzjx ≺ z ≺ ygj is finite.

Transitivity and acyclicity together define the structure to
be a partially ordered set. Local finiteness asserts the
discreteness of spacetime. One can display a causal set
using a Hasse diagram, where the causet takes the form of a
networklike structure in which the edges connect the pairs
of events that are directly causally related [see Fig. 1(a)].
They represent links, the irreducible relations between the
parent x and its child y.
CST is motivated by the Hawking-King-McCarthy-

Malament (HKMM) theorem [17,18], which states that
continuous spacetime is fully described by its causal struc-
ture up to a local conformal factor, i.e. the causal structure
specifies (9=10)th of the metric in four-dimensional space-
time, only missing an intrinsic measure of volume. The
central conjecture of CST is that this also holds for a discrete
spacetime. Then, due to local finiteness, a continuum
spacetime volume would correspond to a finite number of

(a) (b)

FIG. 1. (a) Causal sets are depicted as a network of events. They
obey transitivity, acyclicity, and local finiteness. (b) Simplistic
depiction of a Schwarzschild black hole in ð2þ 1ÞD. Light cones
bend as you get closer to the black hole singularity. Once crossing
the event horizon at Schwarzschild radius rS, nothing can escape
from the black hole, not even light.
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causet elements which can be counted to provide themissing
measure of volume. Therefore, causal sets are conjectured to
be equivalent to spacetime.
Causet events need to be uniformly distributed across the

spacetime volume measure to satisfy the number ∼volume
correspondence. This is possible with a Poissonian relation
between the two [19,20]. Then, the probability of having N
elements in a region of volume V at density ρ is given by

PoissðNÞ ¼ ðρVÞNe−ρV
N!

: ð3Þ

This relation preserves Lorentz invariance, which is imper-
ative for quantum gravity, as no observations so far point
toward Lorentz symmetry violation [21–23].
Finally, for an extensive review of CST, we refer the

reader to Ref. [24].

III. CAUSAL SETS IN
SCHWARZSCHILD SPACETIME

This section describes the computational method used
to simulate causal sets in Schwarzschild spacetime. The
process of causet embedding into a chosen ð3þ 1ÞD
spacetime volume region is known as Poisson sprinkling,
and is outlined as follows:
(1) Pick the sprinkling density ρ ¼ l−4, where l is the

discreteness scale, the average distance between
causal set events in 4D spacetime.

(2) Distribute N ∼ PoissðρVÞ points uniformly, such
that the probability of having N points in a volume
V is described by Eq. (3).

(3) Connect the elements according to the causal struc-
ture of the spacetime region.

A. Schwarzschild spacetime

In this paper, we study Schwarzschild black holes, the
simplest type of black holes. They are spherically sym-
metric, uncharged, and have zero angular momentum. They
are only defined by their mass M. The curvature of the
spacetime increases as you move closer to the singularity,
which causes the light cones to bend toward the center of
the black hole [see Fig. 1(b)]. At distance rS ¼ 2M from
the center, the outer edge of the light cone becomes vertical,
therefore allowing information to flow only in the direction
toward the center of the black hole. This implies that every
event inside the event horizon is causally unrelated to future
events outside of it.
Schwarzschild spacetime in 3þ 1 dimensions is

described by a line element which, in Schwarzschild
coordinates ðtS; r; θ;ϕÞ, takes the form of

ds2¼−
�
1−

2M
r

�
dt2Sþ

�
1−

2M
r

�
−1
dr2þ r2dΩ2; ð4Þ

where dΩ2 ¼ dθ2 þ sin2θdϕ2. However, Schwarzschild
coordinates are problematic as they give a mathematical
singularity at r ¼ rS, hence we use Eddington-Finkelstein
original1 (EFO) coordinates [25,26]

�
t� ¼ tS þ 2M ln

���� r
2M

− 1

����; r; θ;ϕ
�
; ð5Þ

which are well behaved everywhere but at the black hole
singularity. This allows us to rewrite the line element into

ds2 ¼ −
�
1 −

2M
r

�
dt�2 þ 4M

r
dt�drþ

�
1þ 2M

r

�
dr2

þ r2dΩ2: ð6Þ

The volume element is dV ¼ r2 sin θ dt� dr dθ dϕ and has
the symmetry of a ð3þ 1ÞD cylinder.
An important feature of the EFO coordinates is that,

unlike other sets of coordinates, the constant t� hypersur-
face is spacelike everywhere. This allows us to naturally
order events by their time t� coordinates without further
consideration. To prove this statement, let us define the
hypersurface Σ as

ΣðxμÞ ¼ t� ¼ const ð7Þ

and its normal vector nμ as

nμ ¼ ∂
μΣ: ð8Þ

Given the inner product

nμnμ ¼ gμνnνnμ; ð9Þ

the hypersurface Σ is null if Eq. (9) yields 0, is timelike if
larger than 0, and is spacelike if nμnμ < 0. Since the
corresponding covector is nμ ¼ ð1; 0; 0; 0Þ and the inverse
metric in EFO coordinates reads

gμν ¼

0
BBBBBB@

−
�
1þ 2M

r

�
2M
r 0 0

2M
r 1 − 2M

r 0 0

0 0 1
r2 0

0 0 0 1
r2sin2θ

1
CCCCCCA
; ð10Þ

1The term “original” is used to distinguish them from the
better-known ingoing (outgoing) coordinates with the same
name, often denoted as u (v). It is motivated by the fact that
in the original paper, they used coordinates that resemble those in
our paper.
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we thus obtain from Eq. (9) that Σ is indeed spacelike as

nμnμ ¼ −
�
2M
r

þ 1

�
< 0 ∀ r ∈ Rþ: ð11Þ

B. Schwarzschild causal structure

Until now, all extensive CST numerical studies have
been done in flat Minkowski spacetime [24], where it is
rather trivial to obtain the causal relations amongst the
events: to determine whether event E1 ¼ ðt1; x⃗1Þ is causally
related to event E2 ¼ ðt2; x⃗2Þ, one simply demands a null or
positive spacetime interval Δs2 ¼ ðΔtÞ2 − jΔx⃗j2.
On the other hand, things become drastically more

complicated in spacetimes that are not conformally flat,
such as the one of the Schwarzschild black hole. In that
case, integration of infinitesimal invariant distance ds along
all possible paths from E1 to E2 is in principle required to
determine the causality, which is computationally very
expensive.
However, a better algorithm was introduced by He

and Rideout [3]. For a general pair of events E1 ¼
ðt�1; r1; θ1;ϕ1Þ and E2 ¼ ðt�2; r2; θ2;ϕ2Þ, the method deter-
mines their causal relation by checking whether E2 lies
inside the future light cone of E1. Since the boundaries of
light cones are determined by null curves, the method
distils itself into finding the null geodesics emanating from
E1, and comparing t�2 with the times t�γ when null geodesics
reach the spatial position of E2 (see Fig. 2).
However, Ref. [3] assumes that a line of constant spatial

position is a possible trajectory everywhere, which is
wrong. Due to the bending of the light cones, no object
can remain at the same spatial position inside the horizon.

The corrected procedure is derived in the following sub-
sections, first for the simple (1þ 1) dimensional spacetime,
then in dimensions up to (3þ 1).

1. Causality in ð1 + 1ÞD Schwarzschild spacetime

Consider two events E1 ¼ ðt�1; r1Þ and E2 ¼ ðt�2; r2Þ. The
line element from Eq. (6) in 1þ 1 dimensions yields

ds2 ¼ −dt�2 þ dr2 þ 2M
r

ðdt� þ drÞ2; ð12Þ

which can be rewritten into

ds2 ¼ ðdt� þ drÞ
��

2M
r

− 1

�
dt� þ

�
2M
r

þ 1

�
dr

	
: ð13Þ

Setting ds2 ¼ 0 yields the two radial null geodesics (see
Fig. 2). The first one gives

t�2 − t�1 ¼ r1 − r2; ð14Þ

describing an always ingoing null geodesic (left/lower
straight line in Fig. 2) while the second one gives

t�2 − t�1 ¼ ½rþ 4M ln ðr − 2MÞ�r2r1 ; ð15Þ

describing the other geodesic, which is ingoing inside the
horizon and outgoing outside of it (upper curved in Fig. 2).
Therefore, we are left with the following possible

scenarios:

(b)(a)

FIG. 2. Causal relations in Schwarzschild spacetime in ð1þ 1ÞD, outside (a) and inside (b) the event horizon. Specifically, null
geodesics departing from event E1 are shown and used to infer its causal relations with other events. We define t�γ− as the time at which
the earliest null geodesic departing from E1 reaches the spatial position of E2. Similarly, t�γþ is the latest. (a) Outside the event horizon,
only the earliest t�γ exists, and it is sufficient to check whether this occurs before t�2, i.e. if t

�
γ ≤ t�2. (b) Inside the event horizon, one needs

to check whether t�2 ∈ ½t�γ− ; t�γþ �, correcting the method given in Ref. [3].
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(1) If E1 is outside of the event horizon, then the
necessary and sufficient condition is

t�2− t�1≥

(
r1−r2; if r2≤ r1
r2−r1þ4M ln

�r2−2M
r1−2M

�
if r2>r1

: ð16Þ

(2) If E1 is inside the event horizon and r2 > r1, they are
trivially causally unrelated.

(3) If both events are inside the event horizon and
r1 ≥ r2, then the two events are connected if and
only if

r1− r2 ≤ t�2− t�1 ≤ r2− r1þ4M ln

�
2M−r2
2M−r1

�
: ð17Þ

The third point corrects Ref. [3], where it is stated that “for
both events inside the horizon, the necessary and sufficient
condition for their causal relation is still t�2 ≥ t�1 þ r1 − r2,”
which is wrong as it neglects the upper bound from Eq. (15).

2. Causality in ð3 + 1ÞD Schwarzschild spacetime

Noting that the method always involves only two events
E1 ¼ ðt�1; r1; θ1;ϕ1Þ and E2 ¼ ðt�2; r2; θ2;ϕ2Þ simultane-
ously, we can simplify our calculations in ð3þ 1ÞD EFO
coordinates by rotating the spatial part of the coordinate
system to an equatorial plane containing both of the events,
such that θ01 ¼ θ02 ¼ π=2 and ϕ0

1 ¼ 0. As the equatorial
plane is totally geodesic, we can effectively neglect θ and
rewrite their coordinates as

E1 ¼ ðt�1; r1; 0Þ; ð18Þ

E2 ¼
�
t�2; r2; arccos ðsin θ1 sin θ2 cosΔϕþ cos θ1 cos θ2Þ

�
;

ð19Þ

reducing the problem to 2þ 1 dimensions. Compared to
the radial ð1þ 1ÞD case, in ð3þ 1ÞD the procedure to
determine the causal relations becomes more involved since
it is impossible to solve for null geodesics analytically.
Given an affine parameter λ, they satisfy�
1 −

2M
r

��
dr
dλ

�
2

−
�
1 −

2M
r

��
dt�

dλ

�
2

þ r2
�
dϕ
dλ

�
2

¼ 0;

ð20Þ

and since the line element in Eq. (6) is independent of t�
and ϕ, the following are conserved quantities:

E ¼
�
1 −

2M
r

�
dt�

dλ
; ð21Þ

L ¼ r2
dϕ
dλ

: ð22Þ

Moreover, we can rewrite the derivatives as

dr
dλ

¼ dr
dϕ

dϕ
dλ

¼ L
r2

dr
dϕ

; ð23Þ

dt�

dλ
¼ dt�

dϕ
dϕ
dλ

¼ L
r2
dt�

dϕ
; ð24Þ

to get rid of λ and reexpress dr=dϕ in terms of u ¼ 1=r,
which is computationally advantageous as it leads to
expressions with lower powers, such that

dr
dϕ

¼ u−2
du
dϕ

: ð25Þ

Furthermore, we can define the ratio

η ¼ E
L
; ð26Þ

which is necessarily finite sinceL¼ 0 describes the ð1þ 1ÞD
case with Δϕ ¼ 0. Finally, inserting previous equations into
Eq. (20), we obtain the two differential equations

dϕ
du

¼ �duðη2 þ 2Mu3 − u2Þ−1=2; ð27Þ

dt�

du
¼ 1

u2ð2Mu−1Þ

"
�duηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2þu2ð2Mu−1Þ
p þ2Mu

#
ð28Þ

where

�du ¼ signðu2 − u1Þ ð29Þ

depends on the order in which the two events were initially
chosen.
Since the initial and final spatial boundary conditions

ðu;ϕÞ are known, we can fit Eq. (27) for η2 to obtain �η
values and then use them to integrate Eq. (28). This gives us
two values t�þ and t�−, corresponding to the times when each
null geodesic reaches the spatial coordinate of E2.
In Appendix A, we prove explicitly the conditions for

causality. We show that in the case that E1 is outside of the
event horizon, only one of the times ft�−; t�þg is physically
meaningful, t�−. Then, t2 > t�− is the sufficient and neces-
sary result to determine that E2 lies in the causal future of
E1, i.e that E1 ≺ E2. On the other hand, if both points lie
inside the horizon such that rS > r1 > r2, E1 ≺ E2 if and
only if t2 ∈ ½t�−; t�þ�. In fact, the bending of light cones (see
Fig. 2), poses an upper time bound. Finally, we also show
that the value of ϕ should be restricted to lie in ½0; 2π�.

3. Sufficient conditions for determining the causality

It is worth noting that a large number of event pairs in
ð3þ 1ÞD does not require the general approach with
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integration and fitting for η2 to determine the causal
structure of the Schwarzschild spacetime.
Instead, there exists a set of simple sufficient but not

necessary conditions that we check, for each pair of events,
before applying the generic method outlined above to
determine whether the points are causally related or not.
This speeds up the procedure significantly since the checks
are computationally very inexpensive compared to the
fitting and integration. To get the full list and the derivations
of the conditions, refer to Sec. 2.3 in Ref. [3].

IV. HORIZON MOLECULES

This section defines horizon molecules, determines the
coefficient for the scaling of number of molecules with the
area of the black hole horizon, and calculates the curvature
corrections in Schwarzschild spacetime.
In this paper, we investigated a new type of horizon

molecule, the Λn molecule, which will be discussed in
detail in the following subsection.
In general, a horizon molecule consists of one point

inside the event horizonH connected to one or more points
outside it via links and lies below some t� ¼ constant
hypersurface Σ. In EFO coordinates, Σ is spacelike every-
where as shown in Eq. (11), which allows us to think of t�
coordinate as time. Since entropy is only defined as a
function of time, Σ signifies the moment when entropy is
“measured.” Therefore, one can count the number of
molecules, study their distribution, and obtain results for
the proportionality factor for Nmol ∝ A in Eq. (2).
On the other hand, scaling can be derived analytically for

certain molecules. Knowing that the probability that a
regionΔR of spacetime with volume V containsN events is
given by the Poisson distribution as in Eq. (3), we can
calculate the expected number of horizon molecules and
compare it with the numerical result.
Analytic studies [2,27] assume that at sufficiently high

sprinkling density, molecules are localised in space and
time. This allows us to work in flat approximation with

Rindler coordinates, where the event horizon and the
constant time hypersurface are given by

H∶ t ¼ x; Σ∶ t ¼ const: ð30Þ

This flat-space representation is used to display Λn and
Link horizon molecules, described in the following sub-
section, in Fig. 3.

A. Λn and Link molecules

The Λn molecule is given by a maximal element k inside
the event horizon that lies in the causal future of nmutually
disconnected elements fpng outside of it (see Fig. 3),
which can only contain k in their causal future below Σ.
Unfortunately, we cannot derive the analytic expression for
the average expected number of Λn molecules.
However, we can derive the analytical expression for Link

molecules, which are closely related to Λn. They are links
crossing the horizon whose past element is maximal but one
with respect to Σ.2 The analytic result for the average
expected number of Links hNLi can then be compared with
the numerical result obtained by weighted counting of Λn
molecules, where each Λn contributes n Links.
The expression for hNLi has been computed by

Barton et al. [27]. Here we sketch the calculation. Given
the discreteness density ρ, the probability that a point p
outside the horizon in the region δRp connects only to one
maximal future point inside the horizon is given by in

PLðδRpÞ ¼ Pð1 in δRpÞ · P
�
1 in IþinðpÞ

� ð31Þ

¼ ρ2δVpV
þ
inðpÞe−ρV

þ
inðpÞ: ð32Þ

VþðpÞ is the volume of the future light cone of p capped by
the Σ hypersurface (colored orange in the Λ1 schematic

FIG. 3. Schematic representation of Λn and Link horizon molecules. They consist of connected points inside and outside the event
horizonH, satisfying certain constraints. The spacelike hypersurface Σ∶ t� ¼ constant defines the time of the entropy measurement. Λn
molecules are defined by having an element k inside the horizon which is maximal with respect to Σ and connects to n elements outside
the horizon that only contain k in their causal future below Σ. A single Λn molecule is equivalent to n Links.

2Uppercase Link denotes the horizon molecule, whereas lower-
case link the nearest-neighbor relation between causet events.
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in Fig. 3) made of Vþ
inðpÞ and Vþ

outðpÞ partial volumes,
inside and outside the horizon respectively, and represents
IþðpÞ, the causal future of p. We denote J as the
intersection of the event horizon H and hypersurface Σ,
which represents the event horizon at time tΣ, and is just a
point in 1þ 1 dimensions.
Integrating over all spacetime regions δRp in the past of

the horizon and hypersurface intersection I−ðJ Þ, yields the
expected number of Links

hNLi ¼ ρ2
Z
I−ðJ Þ

dVpV
þ
inðpÞe−ρV

þ
inðpÞ: ð33Þ

Noting that because we are working with Rindler horizon in
ð3þ 1ÞD flat spacetime, analytic expressions for the
volumes can be found. The average expected number of
Links for the horizon area A in the flat approximation is
then given by

hNflat
L i ¼

ffiffiffi
3

p

10

ffiffiffi
ρ

p
A: ð34Þ

In terms of the discreteness scale l ¼ ρ−1=4, this reads

hNflat
L i ¼ að0ÞL

A
l2

¼
ffiffiffi
3

p

10

A
l2

: ð35Þ

B. Curvature corrections
in Schwarzschild spacetime

In general, the average number of molecules, for any
horizon H, is given by an infinite series

hNi¼ a
A
l2

¼
�
að0Þ það1ÞðH;ΣÞ lffiffiffiffi

A
p þO

�
l2

A

�	
A
l2

: ð36Þ

To go beyond the flat spacetime approximation að0Þ and
estimate the 1st order curvature correction að1Þ, which
depends on the structure of H and Σ, we follow the
procedure described by Sec. V in Barton et al. [27].
The general expression for the first order correction of

Links in terms of the trace K of the extrinsic curvature of Σ,
its component Km tangential to Σ and orthogonal to J , and
the null expansion ϑ of the horizon, all evaluated on J in
3þ 1 dimensions, is given by

að1ÞLffiffiffiffi
A

p ≈ −ð0.036K þ 0.088Km þ 0.021ϑÞ: ð37Þ

In Appendix B, we compute að1ÞL for the specific case of the
Schwarzschild spacetime. This gives

að1ÞL ≈ −0.0558: ð38Þ

Therefore, the average expected number of Links in
Schwarzschild spacetime is

hNBH
L i¼ aL

A
l2

¼ að0ÞL
A
l2

�
1−0.322

lffiffiffiffi
A

p þO
�
l2

A

��
: ð39Þ

The correction becomes negligible when A increases to the
size of ordinary black holes, since l ∼ lp.

FIG. 4. The C++ simulation framework available on GitHub [29]. It allows for an efficient generation of causal sets in Minkowski and
Schwarzschild spacetimes.
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V. SIMULATION FRAMEWORK

This section describes the simulation framework we
constructed to efficiently simulate causal sets embedded
into Schwarzschild spacetime and the tests we implemented
to ensure it works as intended.
It is important to note that other than the work done in

Ref. [3], which laid out the foundations, there exist no
extensive studies of Schwarzschild causal sets. Particularly
this is because the procedure used to determine the causal
structure of Schwarzschild spacetime, as described in
Sec. III, is extremely computationally expensive since
for a generic pair of events minimization and integration
need to be performed. Based on our experience, generating
Schwarzschild causets is approximately 200 times slower
compared to flat spacetime, which explains why other
causet numerical studies did not attempt it.
While we initially used the causal set package written by

Minz [28], we realized that Python is too slow and decided to
create our simulation framework in C++, due to its speed. The
package is schematically described in Fig. 4 and publicly

available on GitHub [29] and allows the user to simulate
causal sets in regions of different shapes in both Minkowski
and Schwarzschild spacetime for the dimensions D ¼ 2, 3,
4. It furthermore contains functions to analyze horizon
molecules, estimate dimensions of causal sets, plot them,
and more. It is the most efficient causet package publicly
available to our knowledge.
In general, during the causet generation, our program

only saves events’ coordinates and the causal matrix C,
where Cij ¼ 1 if i ≺ j and Cij ¼ 0 otherwise. The frame-
work also allows for storing the sets of points in the past
and/or future sets and corresponding sets of past/future
links for each element as they could be preferable for
certain applications. This drastically speeds up the process
while simultaneously reducing memory usage. The latter in
the end turned out to be an important bottleneck of the
simulation, since the realization of a causet with N ¼ 106

required up to 4 TB of RAM.
Our code uses CPU parallelization as much as possible to

speed up the simulations. Importantly, we used dynamical

(a)

(d)(c)(b)

FIG. 5. Main tests for causet generation in Schwarzschild spacetime. (a) Test of the Poisson distribution of events by sampling the
number of points in regions of equal volume over 100 causet realizations with the cardinality of 10 000 each. The first row refers to
sprinkling into a filled cylinder, whereas the second to a hollow cylinder. The columns refer to cutting regions of spacetime limited in
t�, r, θ, and ϕ, respectively. Points are indeed distributed following a Poissonian distribution. (b) 2D projection of a very thin slice
(0.25°) of a 3D black hole causet. (c) and (d) highlight some details of (b), showing that even when events are extremely close to the null
geodesics, they are only connected if and only if inside the light cone, as it should be.
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(unordered) parallelization by OpenMP, which allows for
threads that have already completed their tasks to take on
new ones, not requiring to wait for the slowest thread to
finish. In our simulations, we achieved maximum causet
cardinality N ¼ 1; 011; 423, by far the largest recorded
causal set in curved space, which allowed us to obtain
sufficient statistics. Overall, the estimated speed-up of the
causal set generation in the parallelized C++ framework on
256 cores using Imperial College’s HPC cluster compared
to the nonparallelized Python setup on a personal laptop,
using the same generation algorithms, comes out to be
approximately a factor of 15000.

A. Testing the simulation framework

It is crucial to ensure that the simulation framework
works as intended. Therefore, we implemented various
checks to test the validity of our simulations. This section
describes the checks relevant to the purposes of this article,
whereas other testing of the framework is described in
Appendix D.
As per Sec. III, the embedding of a causet in spacetime

relies on two ingredients: a Poissonian correspondence
between the number of events and spacetime volume, and a
correct derivation of causal relations. To assess whether
events were correctly distributed, we divided the simulated

(b)(a)

(d)(c)

FIG. 6. Numerical results of our simulations. (a) Averages of the maximal separation of elements forming horizon molecules from the
relevant hypersurfaces, with 1σ and 3σ deviations highlighted. Above, the maximum temporal separation Δtmax from Σ∶ t� ¼ 0. Below,
the maximal spatial separation Δrmax between the horizon and the furthest elements in Λn molecules, both from the inside and outside.
(b) Number of Λn molecules hNΛn

i scaling linearly with the horizon area A. The largest molecule’s size we found was 11. (c) Average
number of Links hNLi (black) as a function of the horizon area A, and relative standard deviation (blue crosses). The azure and green
dashed lines represent two analytical models: the analytical flat spacetime approximation from Eq. (35), and the scaling with curvature
correction from Eq. (39), respectively, both with a0L ¼ ffiffiffi

3
p

=10. The red line is our best fit of the curvature-corrected expansion, specified
in Eq. (40). Note, Al ¼ A=l2. The first two models lie within the uncertainties but are consistently lower, as evident in the inset. The red
line is a perfect fit. (d) The distribution of Λn is well described by a falling exponential function pn ∝ e−χn, where χ ¼ 1.53� 0.03. The
yellow cloud around the fit shows the 1σ deviation. Likely due to the finiteness of our simulations, the number of molecules of size larger
than 7, for which poor statistics was found, is slightly lower than the fit.
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embedding into regions of equal spacetime volumes and
counted the number of events in each region. The distri-
bution of regions with a specific number of events indeed
reproduced a Poisson distribution, both for a full and
hollow cylinder of spacetime [see Fig. 5(a)].
Due to the novelty of our simulations, we lacked

numerical results to benchmark our code with. In particular,
to test the correctness of the causal relation. However, we
could visually assess the correctness of ð1þ 1ÞD simu-
lations by checking that causal relation only occur within
light cones, for which analytic solutions are given by
Eqs. (16) and (17). In the same way, we could test
ð2þ 1ÞD simulations in the two-dimensional limit.
This was done by sprinkling causets in a very thin slice
of a cylinder and projecting the results on a plane [see
Fig. 5(b)]. Moreover, the number density scales with r, as
expected for ð2þ 1ÞD spacetime. Note that this also
assesses the correctness of the 4D simulations, as the
methods used to simulate black hole causets in four
and three dimensions are exactly the same, due to the
symmetry about θ ¼ π=2.

VI. RESULTS

This section describes the results we obtained on the
entropy and the properties of the horizon molecules.
We simulated causets in Schwarzschild spacetime with

density ρ ¼ l−4 ¼ 5000 and cardinality up to ∼106 events
to count the number of Λn molecules and study their
distribution. Each data point in the following plots is
averaged over 200 realizations.
The Σ hypersurface was set at t� ¼ 0. We sprinkled into a

ð3þ 1ÞD hollow cylinder with points lying in t� ∈ ½−4; 0�
and r ∈ ½rS − 3; rS þ 3� in terms of discreteness units l.
These bounds were chosen close enough to the Σ and H
hypersurfaces to allow for an efficient simulation of large
black holes, but far enough to avoid affecting the behavior of
the molecules. All points that are part of Λn molecules
consistently lie far from the chosenboundaries [seeFig. 6(b)].
The number of Λn shows clear proportionality with the

horizon area [see Fig. 6(b)], giving the Pearson correlation
coefficients r ≈ 1 for n < 8, at which point we lack enough
statistics. The number of Link molecules, which is a
weighted sum of Λn, also scales linearly with A [see
Fig. 6(c)]. Therefore, the proportionality constants we
obtain are the following:
(1) Neglecting curvature corrections, the proportionality

coefficient is estimated as

að0ÞL½1� ¼ 0.1757� 0.0004:

(2) Setting the curvature correction að1ÞL to the theoreti-

cal value að1ÞL½th� ¼ −0.0558, að0Þ is estimated as

að0ÞL½2� ¼ 0.1761� 0.0004:

(3) Fitting both að0Þ and að1Þ gives

að0ÞL½3� ¼ 0.173�0.001; að1ÞL½3� ¼ 0.4�0.2: ð40Þ

Recall that the analytic result from Barton et al. [27] is

að0ÞL½th� ¼
ffiffiffi
3

p
=10 ≈ 0.1732. This perfectly agrees with the

numerical fit when accounting for the first order curvature
correction. Oppositely, we note our best numerical estimate

for að1ÞL differs from the analytic estimate both in order of
magnitude and sign. This will be discussed later. Finally,
nontrivially, Fig. 6(c) also shows that the relative uncer-
tainty in the number of Links σL=hNLi is small and further
decreases with the size of the black hole.
We also studied the distribution of Λn molecules [see

Fig. 6(d)]. Disregarding data for n ≥ 8 which has insuffi-
cient statistics due to the limited size of our simulations, we
discover that we can model the distribution very well by a
falling exponential

pn ¼ðeχ −1Þe−nχ ; χ¼ 1.53�0.03: ð41Þ

Using the relation between the number of Links and Λn
molecules and the aforementioned probability distribution,
it is easy to infer that

hNΛi ¼ ð1 − e−χÞhNLi: ð42Þ

Inserting the numerical scaling factor að0ÞL½3� ¼ 0.173�
0.001 into Eq. (39) and using the probability distribution
of Λn molecules, the Boltzmann entropy given by Eq. (2)
yields

SΛ ¼ ð0.091� 0.002Þ A
l2

: ð43Þ

Equating Eq. (43) with the black hole entropy SBH
from Eq. (1) we can give a physical meaning to the
discreteness scale l. In terms of Plank length lp, we
obtain

l ¼ ð0.603� 0.003Þlp: ð44Þ

Inverting, Gℏ ¼ ð2.75� 0.03Þc3l2.

VII. DISCUSSION

This section discusses the obtained results and situates
the paper into the landscape of black hole thermodynamics
in quantum gravity.

A. Numerical results

Weconfirmed that the entropy of the Schwarzschild black
holemodeled by the horizonmolecules unequivocally scales
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linearly with the horizon area forA ≫ l2, in agreement with
the well-established Bekenstein-Hawking formula. This is a
very important result for two reasons. It numerically
demonstrates for the first time that CST can yield correct
predictions in curved (nonconformally flat) spacetime and
that it can be used to study black hole thermodynamics.
The analytic estimate by Barton et al. [27] for a0L

perfectly matches our numerical fit. However, the analytic
and numerical estimates for the first order curvature
correction disagree. The analytic model lies within our
uncertainties but is systematically lower than our averages.
We note that a discrepancy was also found by Ref. [30]
with the first order correction due to horizon expansion in
their study of a dynamical black hole in flat spacetime.
Moreover, we were able to “count” the Planck length. If

causal sets were the underlying structure from which the
spacetime continuum emerges, and if correspondingly CST
was the fundamental theory, then it would have no free
parameters. This would imply that Planck length lp is
some multiple of the discreteness length l, which is the
fundamental length of size 1 in the fundamental units. As
generally anticipated, we found that l ∼ lp, which is where
a lot of general physics breaks down.
It is interesting to note the sizes of the black holes we

simulated. The largest ones had an area of A ¼ 42000l2

and since l ∼ lp this corresponds to mass M ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
A=16π

p
∼ 30 in Planck units, i.e. ∼10−7 kg. For com-

parison, the masses of the observed black holes usually
range from 1030 to 1038 kg, yet, our tiny black holes
yielded such good results.
Furthermore, we were intrigued by the fact that the

falling exponential distribution for Λn molecules had
an exponent χ ¼ 1.53� 0.03, very close to 3=2 [see
Fig. 6(d)]. If we treat Λn molecules as thermal molecules
that exist in n different microstates, we can write their
thermal energy distribution as pn ∝ e−En=kBT . Comparing
this with Eq. (41), we find that

En ≈
3n
2
kBT; ð45Þ

which is the energy of n-atomic molecules in 3D space.
Since Λn molecules exist in 3D space at a given moment of
time, we hoped to be able to generalize this expression, such
that Eq. (45) would have been just a specific case for f ¼ 3
degrees of freedom. However, simulations of causets in
ð2þ 1ÞD spacetime showed that χ ∼ 1.5 in ð2þ 1ÞDaswell
(see Appendix E). Therefore, it is false that χ ∼ f=2 in all
dimensions, and Λn molecules cannot be interpreted as
thermal molecules.

B. Holographic principle and information paradox

Hawking argued that black hole radiation only depends
on its external degrees of freedom [17]: mass, charge, and

angular momentum. By emitting radiation, black holes can
evaporate away. In this case, all that is left, the radiation,
thus retains only information about those three features. All
other information about previously absorbed objects is lost.
This breaks the fundamental law of conservation of
quantum information [17,31], and constitutes the black
hole information paradox.
There are two possible solutions: either black hole

evaporation stops at the Planck scale, at which Hawking’s
derivation breaks down, or radiation contains more
information than assumed. Recently, different sugge-
stions [32–35] have been made in support of the latter.
These follow, albeit in different ways, from the holographic
principle, which states that a complete description of a
volume of space is given by the degrees of freedom of its
surface [36,37]. Horizon molecules are distributed over the
horizon’s surface, within an infinitesimal shell of thickness
∼4l. They form the horizon. As they encode the entropy of
the black hole, they might provide a relation to the
holographic principle and the information paradox. This
consideration requires further studies.

C. Planckian black holes

Black holes form from the gravitational collapse of
massive stars. They form with a mass of at least the order
of the mass of the Sun [38], hence at most a Hawking
temperature of order ∼10−8 K. This is 100 million times
colder than the cosmic microwave background (CMB) [39].
Therefore, the energy black holes absorbed from CMB
surpasses the losses from their own radiation, making it
impossible for current black holes to evaporate into
smaller masses.
However, the CMBwill drop. Therefore, black holes will

eventually be allowed to evaporate. Furthermore, it was
suggested that primordial black holes of Planckian size
could have formed in the initial stages of the universe via
different processes [40]. Hawking’s work breaks down at
Planckian scales, begging the question of how a black hole
of Planckian size behaves. In this section, we provide an
answer within the theory of horizon molecules. Given that
the molecular model might break down at such small
scales, especially given the current lack of quantum effects
in the picture, the results of this subsection need to be taken
cum grano salis. Nevertheless, we believe they might offer
interesting insights for further research.
To answer in the context of our molecular approach to

black hole entropy, consider that, in general, the average
number of horizon molecules is a sum of the form

hNi ¼
X∞
i¼0

aðiÞ
� ffiffiffiffi

A
p

l

�2−i
; ð46Þ

where (i) labels the order of the curvature correction—with
i ¼ 0 being the flat spacetime approximation and aðiÞ a real
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constant for all i. This implies an entropy

S ¼
X∞
i¼0

σðiÞ
� ffiffiffiffi

A
p

l

�2−i
; ð47Þ

where, if the molecules have distribution fpng, it yields
that σðiÞ ¼ −aðiÞ

P
n pn lnpn. The fundamental units are

used in what follows, thus all dimensional quantities are
interpreted as multiples of the relevant Planck unit. The
leading term gives the standard black hole entropy, hence
l2 ¼ 4σð0Þ and

S ¼ A
4
þ
X∞
i¼1

σðiÞ
� ffiffiffiffi

A
p

l

�2−i
: ð48Þ

Thus, for a Schwarzschild black hole A ¼ 16πM2 we can
write

S ¼ 4πM2 þ
X∞
i¼1

ςðiÞ
�
M
l

�
2−i

; ð49Þ

where ςðiÞ ¼ ð4 ffiffiffi
π

p Þ2−iσðiÞ. Applying the mass-energy
equivalence U ¼ M, the first law of thermodynamics gives

1

T
¼ ∂S

∂M
: ð50Þ

Hence, by rearranging we obtain

1

T
¼ 8πM þ ςð1Þ

l
−
1

l

X∞
i¼3

ði − 2ÞςðiÞ
�
l
M

�
i−1

: ð51Þ

The first term dominates for largeM ≫ l, in which case
this results in the Hawking temperature. The second
represents a correction of order unity. In the limit
M → 0, the second term alone could give a cutoff at
approximately the Planck temperature Tp ∼ 1032K. A
similar cutoff is predicted by loop quantum gravity too,
albeit due to different mechanisms [41].
Before investigating the effects of the third contribution,

let us outline the constraints on the real constants ςðiÞ.
Define μ ¼ l=M ∈ ð0; μd�, where μd could be infinite as
M vanishes. We require ∀ μ ∈ ð0; μd�:

(i) Entropy positiveness. From Eq. (49), relabeling the
summation index with j ¼ i − 2 and taking out the
first two elements,

S ¼ 4πl2

μ2
þ ςð1Þ

μ
þ ςð2Þ þ

X∞
j¼1

ςðjþ2Þμj ≥ 0: ð52Þ

(ii) Entropy finiteness. From Eq. (52),

X∞
j¼1

ςðjþ2Þμj is finite: ð53Þ

(iii) Temperature positiveness. From Eq. (51),

1

T
¼ 8πl

μ
þ ςð1Þ

l
−
μ

l

X∞
j¼1

jςðjþ2Þμj ≥ 0: ð54Þ

A type of molecule could perhaps be envisaged such that
black holes are not allowed to fully evaporate. This would
be possible if the following condition is also satisfied:
(iv) Temperature loss. From Eq. (54), T → 0þ for a

nonzero mass if there exists a finite μd such that

X∞
j¼1

jςðjþ2Þμjd → −∞: ð55Þ

Horizon molecules with real constants ςðiÞ satisfying
conditions (i–iv) would give an always positive finite
entropy and a temperature which is always positive and
finite but for μ ¼ μd, at which it vanishes. Physically, the
black hole would radiate less and less, asymptotically
approaching a minimum mass Mmin ¼ l=μd, thus pre-
venting full evaporation. The black hole would reach an
equilibrium, at a finite temperature, when the emission
matches the ingoing radiation from the CMB: the black
hole would be a tiny dark fragment wandering in the
universe.
This could resolve the information paradox. The infor-

mation related to the absorbed material could be stored
inside the horizon, forever. Furthermore, as black holes can
form where none was previously present, a mechanism
preventing their complete evaporation could break charge-
parity-time-reversal (CPT) symmetry [17].
Can such a set of real constants ςðiÞ exist? It can. As an

example, consider the Riemann zeta function

ζðxÞ ¼
X∞
i¼1

i−x: ð56Þ

Assume that ςðiþ2Þ ¼ ai−x ∀ i ∈ N, where a and x are
real constants. This leaves ςð1Þ and ςð2Þ momentarily
undefined.
Then, the sums in (ii) and (iv) are aLixðμÞ and

aLix−1ðμdÞ respectively, where

LixðμÞ ¼
X∞
j¼1

j−xμj ð57Þ

is the polylogarithm [42]. LixðμÞ, for real x and μ,
converges for μ < 1, or for μ ¼ 1 ∧ x > 1. Then
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(ii) converges for μd < 1 ∀ x or for μd ¼ 1 ∧ x > 1.
(iv) diverges for μd > 1 ∀ x or for μd ¼ 1 ∧ x ≤ 2. For
it to be negative, a < 0 is needed. Therefore, (ii) and (iv)
are both satisfied for μd ¼ 1; x ∈ ð1; 2� and a < 0.
These satisfy (i) and (iii) as well. Taking ςð1Þ and ςð2Þ to

be positive, the only negative contribution in (i) comes from
the series, which converges since (ii) is satisfied. With jaj
small enough, this negative term is smaller than others,
hence (i) is satisfied. Finally, as a < 0 and μ > 0, the series
in (iii) is necessarily positive, hence (iii) is satisfied.
Therefore, it is possible to find real constants ςðiÞ

satisfying conditions (i–iv). Whether a molecule with such
constants exists remains an open question. It must also be
noted that, at Planckian scales, the average number of
molecules is small, thus, the validity of Eq. (47) in this limit
is questionable in the first place. Moreover, as noted at the
beginning of the subsection, the molecular model itself is
vague at such small scales. Nevertheless, this result hints at
the potential of CST to express new physics and provides
insights for further research. As computing curvature
corrections of arbitrary order seems an overwhelmingly
hard task, numerical studies on the behavior of ∂S=∂M in
the small M limit are suggested.

VIII. CONCLUSION

This paper shows for the first time a numerical study of
the entropy of a Schwarzschild black hole in the framework
of causal set theory, an approach to quantum gravity which
only adopts the assumptions of

(I) spacetime discreteness,
(II) transitive and acyclic causal relations,
(III) Poissonian correspondence between discrete and

continuum.
We simulated causal sets in Schwarzschild spacetime

following the procedure outlined in Sec. III B 2, which
corrects the algorithms provided by the original paper [3].
In order to efficiently simulate causal sets we created a
highly parallelized computational framework in C++,
described in Sec. V, which allowed us to generate causets
in nonconformally flat Schwarzschild spacetime orders of
magnitude larger than any previous simulation.
We showed for the first time that the minimal assump-

tions of causal set theory are enough to provide a molecular
model of black hole entropy where the horizon molecules

(i) are localized close to the horizon within 2l distance,
(ii) give a black hole entropy proportional to the horizon

area in the A ≫ l2 limit which agrees with the
Bekenstein-Hawking formula,

(iii) imply a discreteness length l of Planckian or-
der lp ∼ 10−35 m.

Furthermore, we showed that the numerical scaling of
Link molecules agrees perfectly with the analytical result
obtained by Barton et al. [27] in the flat spacetime
approximation. Oppositely, the first order curvature

corrections, which we analytically computed in Sec. IV,
were found to disagree with our numerical estimate.
Specifically, the analytical result lies within the uncertain-
ties of data points, but it is systematically lower. However,
we note this discrepancy does not impact the aforemen-
tioned conclusions of our study, especially for black holes
of physically relevant sizes, where the curvature correction
is negligible.
Lastly, we argued that the horizon molecule approach

may yield a finite temperature cutoff, and even prevent full
black hole evaporation for black holes of Planckian size.
Whether a horizon molecule can be envisaged with these
properties remains an open challenge. Moreover, we warn
that these results need to be taken with caution, as the
validity of the considered molecular model is likely to break
down at sizes close to the Planck scale, especially since
quantum effects are yet to be introduced. Nevertheless, these
conclusions are intriguing and may offer valuable insights.
There still lies a myriad of exciting unanswered ques-

tions about black hole thermodynamics and causal sets in
nonconformally flat spacetimes. Given the simulation
framework now publicly available on GitHub [29], we
hope to have opened the door for future causal set studies in
curved spacetime, possibly discretizing more complex
black holes, such as Riessner-Nordstrom and Kerr, inves-
tigating other entropy models [43,44], and exploring other
curvature features [45,46].
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APPENDIX A: CONSIDERATIONS
ON CAUSALITY IN ð3 + 1ÞD

In this appendix, we give a mathematical proof of the
final statements of Sec. III B 2. There we concluded that we
can fit

dϕ
du

¼ �duðη2 þ 2Mu3 − u2Þ−1=2 ðA1Þ

against the spatial coordinates of the events to obtain �η,
and then use

dt�

du
¼ 1

u2ð2Mu−1Þ

"
�duηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2þu2ð2Mu−1Þ
p þ2Mu

#
ðA2Þ

to find time bounds on causality, where
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�du ¼ signðu2 − u1Þ: ðA3Þ

Making the signs of η and dr explicit, and reconverting the
above equations in terms of r ¼ 1=u, we have

dϕ ¼ �dr

r2

�
η2 −

�
1 −

2M
r

�
r−2

	
−1=2

dr; ðA4Þ

and

dt� ¼ jdrj
2M
r −1

·

8>><
>>:

jηjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þð2Mr −1Þr−2

p −
��dr

2M
r

�
; η> 0

−jηjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þð2Mr −1Þr−2

p −
��dr

2M
r

�
; η< 0

: ðA5Þ

Next, we show which bounds are to be considered based
on where the events lie with respect to the horizon, and
show that when fitting Eq. (A1) we require ϕ ∈ ½0; 2πÞ.

1. Both points inside the horizon

When both points are inside the horizon, 2M > r. As
expected, our equations force any object inside the horizon
to always keep falling toward the singularity. In fact,
consider a movement opposite the fall, with r2 > r1, hence
dr > 0. We impose dt� > 0, as t�2 > t�1. From Eq. (A5), as
2M > r, this requires

ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ð2M=r − 1Þr−2

p >
2M
r

: ðA6Þ

Trivially, this has no solution for η < 0. For positive
η ¼ jηj, substituting 2M=r ¼ 1þ δ, with δ > 0, and
rearranging, this yields

jηj > ð1þ δÞjηj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ

η2r2

s
; ðA7Þ

which also has no solution: objects inside the horizon keep
falling in.
Therefore,wemust havedr < 0, hence signðr2 − r1Þ < 0.

Then, Eq. (A5) shows that the negative and positive values
of η give, respectively, the smallest and largest times t�− and
t�þ of intersection with the spatial coordinates of E2.
Therefore, the events are related if t�− ≤ t�2 ≤ t�þ, similarly
to the 2D case. He and Rideout [3] do not mention that
both signs have to be considered, again neglecting the
upper bound.

2. One or both points outside the horizon

If both points are outside the horizon, substituting
2M=r ¼ ϵ < 1 in Eq. (A5)

dt� ¼ jdrj
1−ϵ

·

8>><
>>:

−jηjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2−ð1−ϵÞr−2

p þsignðr2−r1Þϵ if η>0

þjηjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2−ð1−ϵÞr−2

p þsignðr2−r1Þϵ if η<0
: ðA8Þ

As ϵ < 1, we see that

jηjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 − ð1 − ϵÞr−2

p > 1 > ϵ: ðA9Þ

Then, η > 0 gives a negative dt� for both values of
signðr2 − r1Þ. This is useless for us, as we impose t�2 > t�1
i.e. dt� > 0. Therefore, we use the negative η. This yields
the earliest geodesic reaching E2’s spatial coordinates.
Thus, E1 and E2 are connected if t�2 > t�, where t� is
the solution to the differential equation.
As in 2D, this result also applies to the case when only E1

is outside the horizon, because outside the horizon an
object can remain at rest for an arbitrarily long period of
time, hence no upper bound applies.

3. The optimal ϕ

Null geodesics might travel an angular distance
ϕ2 þ 2kπ, matching the spatial coordinates of the events
by wrapping around the singularity k times. Fitting
Eq. (A4), a set fη2kg of suitable parameters exists, one
for each number k of wrappings. We show that the best η2

corresponds to the 0 wrappings case, i.e. fitting Eq. (A4)
to ϕ2.
First note that with increasing k, as jΔrj stays the same

whereas jΔϕj increases, a larger jdϕ=drj is required. This
implies, from Eq. (A4), jηkj decreases with k. Then, let us
write Eq. (A5) as

dt� ¼ ½a−1ðrÞsignðηÞfðjηj; rÞ − bðrÞ�jdrj; ðA10Þ

where aðrÞ ¼ ð2M=r − 1Þ, bðrÞ ¼ signðdrÞ2M=r, and

fðjηj; rÞ ¼ jηjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ r−2aðrÞ

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r−2aðrÞ=η2

p : ðA11Þ

For both events inside the horizon, aðrÞ > 0, hence f
monotonically increases with jηj, and so does aðrÞf. Then
the largest jηj yields the earliest (η < 0) and latest (η > 0)
null geodesics, thus setting the boundaries of the light cone.
This is given by k ¼ 0 wrappings.
For both events outside the horizon, aðrÞ < 0, hence f

monotonically decreases with jηj, hence aðrÞf monotoni-
cally increases. Thus, the largest jηj possible -corresponding
to 0 wrappings, again sets the earliest geodesic. Recall,
outside the horizon η < 0 is the only relevant solution.
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APPENDIX B: CURVATURE CORRECTIONS
IN SCHWARZSCHILD SPACETIME

In Sec. IVA, we derived the analytic scaling for the
number of Link molecules with horizon area in the flat
spacetime approximation. In this appendix, we derive the
first order curvature correction. Therefore, Eq. (35) is the
zeroth order approximation to the full expression in
Schwarzschild spacetime given by

hNBH
L i¼ aL

A
l2

¼
�
að0ÞL það1ÞL

lffiffiffiffi
A

p þO
�
l2

A

��
A
l2

: ðB1Þ

Barton et al. [27] outlined a general procedure to derive the

first order curvature correction term að1ÞL for arbitrary
horizon. Here we derive it for the Schwarzschild spacetime.
The final result of this derivation was shown in Eq. (39).

1. Preliminaries

The horizon H of the Schwarzschild black hole and the
spacelike hypersurface Σ are in Eddington-Finkelstein-
original coordinates defined as

HðxμÞ∶ r¼ rS ¼ 2M; ΣðxμÞ∶ t� ¼ 0: ðB2Þ

We denote the intersection of the two hypersurfaces as J
and it represents the event horizon at time t� ¼ 0. Hence,
evaluating tensors at J implies setting r ¼ rS ¼ 2M and
t� ¼ 0. Moreover, for completeness the metric gμν and its
inverse gμν in EFO coordinates are

gμν¼

0
BBBBB@
−
�
1− 2M

r

�
2M
r 0 0

2M
r

�
1þ 2M

r

�
0 0

0 0 r2 0

0 0 0 r2sin2θ

1
CCCCCA; ðB3Þ

and

gμν¼

0
BBBBB@

−
�
1þ 2M

r

�
2M
r 0 0

2M
r

�
1− 2M

r

�
0 0

0 0 1
r2 0

0 0 0 1
r2sin2θ

1
CCCCCA: ðB4Þ

The first order corrections must depend on mutually
independent invariant scalars of dimension l−1, evaluated
at J and depend on the geometry of the problem at hand.
The only such quantities are K, the trace of the extrinsic
curvature of Σ, its component Km tangential to Σ and
orthogonal to J , and the null expansion ϑ of the horizon. It
can be shown that the first order correction for links in
3þ 1 dimensions is [27]

að1ÞLffiffiffiffi
A

p ≈ −ð0.036K þ 0.088Km þ 0.021ϑÞ: ðB5Þ

2. Determining the required geometrical objects

To determine the invariant scalars we first require finding
the basic geometrical objects from which they are con-
structed. The first one is the metric, given by Eq. (B3).
Then we also need nμ and kμ, normal vectors to the

hypersurfaces Σ and H, respectively. Vector nμ is future-
pointing (n0 > 0), normalized as nμnμ ¼ −1 and is given by

nμ ¼ a ∂μΣ ¼ að1; 0; 0; 0Þ: ðB6Þ
Correspondingly, we have

nμ ¼ gμνnν ¼ a

�
−1 −

2M
r

;
2M
r

; 0; 0

�
: ðB7Þ

The previous conditions yield

a ¼ −1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2M
r þ 1

q : ðB8Þ

Similarly, kμ is also future-pointing and is given by

kμ ¼ b ∂μH ¼ bð0; 1; 0; 0Þ: ðB9Þ

Since it is normalized such that ½nμkμ�J ¼ −1=
ffiffiffi
2

p
, where

½·�J denotes that the quantity is evaluated at J , this
immediately sets b ¼ 1.
Lastly, we require the vector mμ ¼ ffiffiffi

2
p

kμ − nμ, which is
tangent to Σ and orthogonal to J .

3. Local geometric invariants

Next, we introduce the “projector” tensors

hαβ ¼ δαβ þ nαnβ ðB10Þ

and

σαβ ¼ hαβ −mαmβ: ðB11Þ
Noting that extrinsic curvature is defined as

Kμν ¼ ð∇βnαÞhαμhβν; ðB12Þ
we can therefore determine the mutually independent
invariant scalars evaluated on J that are required to obtain
the curvature correction. The relevant Christoffel symbols
needed for the computation are given in Appendix C. The
trace K of the extrinsic curvature is given by

KðJ Þ ¼ ½gμνKμν�J ; ðB13Þ
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its component along the m direction by

KmðJ Þ ¼ ½Kμνmμmν�J ; ðB14Þ

and the null expansion of the horizon as

ϑ ¼ ½ð∇βkαÞσαβ�J : ðB15Þ

After determining the required Christoffel symbols in EFO
coordinates and other required calculations, we obtain that
ϑ ¼ 0, as expected since the Schwarzschild black hole is
static. The extrinsic curvature is found to be

½Kμν�J ¼ 1

32

0
BBBBB@

3
ffiffi
2

p
M

6
ffiffi
2

p
M 0 0

6
ffiffi
2

p
M

12
ffiffi
2

p
M 0 0

0 0 −32
ffiffiffi
2

p
M 0

0 0 0 −32
ffiffiffi
2

p
Msin2θ

1
CCCCCA;

ðB16Þ

its trace is given by

K ¼ −
5

ffiffiffi
2

p

16

1

M
≈ −

0.4419
M

; ðB17Þ

and the component along mμ is

Km ¼ 3
ffiffiffi
2

p

16

1

M
≈
0.2651
M

: ðB18Þ

Inserting the obtained K, Km, and ϑ into Eq. (37) and
noting that

ffiffiffiffi
A

p ¼ 4
ffiffiffi
π

p
M yields the first order curvature

correction term

að1ÞL ≈ −0.0558: ðB19Þ

Then, the average expected number of Links in
Schwarzschild spacetime, as a function of the horizon area
A in terms of the discreteness scale l, is given by

hNBH
L i¼ aL

A
l2

¼ að0ÞL
A
l2

�
1−0.322

lffiffiffiffi
A

p þO
�
l2

A

��
;

ðB20Þ

where að0ÞL ¼ ffiffiffi
3

p
=10 is the zeroth order flat spacetime term.

The correction term becomes negligible when A increases
to the size of ordinary black holes since l ∼ lp is
infinitesimally smaller.

APPENDIX C: CHRISTOFFEL SYMBOLS
IN THE EDDINGTON-FINKELSTEIN

ORIGINAL COORDINATES

We computed the Christoffel symbols of the EFO
coordinates introduced in Sec. III A using SymPy and
EinsteinPy libraries [47,48]. The nonzero ones are

Γt�
t�t� ¼

2M2

r3
;

Γt�
t�r ¼ Γt�

rt� ¼
Mð2M þ rÞ

r3
;

Γt�
rr ¼

2MðM þ rÞ
r3

;

Γt�
θθ ¼ −2M;

Γt�
ϕϕ ¼ −2M sin2θ;

Γr
t�t� ¼

−Mð2M − rÞ
r3

;

Γr
t�r ¼ Γr

rt� ¼ −
2M2

r3
;

Γr
rr ¼

−Mð2M þ rÞ
r3

;

Γr
θθ ¼ 2M − r;

Γr
ϕϕ ¼ ð2M − rÞsin2θ;

Γθ
rθ ¼ Γθ

θr ¼
1

r
;

Γθ
ϕϕ ¼ − sin θ cos θ;

Γϕ
rϕ ¼ Γϕ

ϕr ¼
1

r
;

Γϕ
θϕ ¼ Γϕ

ϕθ ¼
1

tan θ
:

APPENDIX D: OTHER TESTS OF THE CAUSAL
SET SIMULATION FRAMEWORK

This appendix describes othermore basic and less relevant
tests we performed, besides the ones from Sec. V, to ensure
our simulation framework works as intended for studying
Schwarzschild causets.
Plotting the sprinkling region as a shaded shape, we

confirmed that sprinkling into different shapes works as
intended and that causets only lie within the required
boundaries (see Fig. 7).
To further check that the causal structure in Minkowski

spacetime works correctly, we implemented a Myrheim-
Mayer dimension estimator [49,50], which converges to the
dimension of the spacetime that the causet is embedded in,
as the size N increases. Simulating causal sets up to
N ¼ 32768, sprinkling into bicones in the dimensions
D ¼ 2, 3, 4, we see that the dimension estimate agrees
with the true value within the uncertainty, giving substantial
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evidence that our simulation framework works as intended
(see Fig. 8).

APPENDIX E: OTHER NUMERICAL RESULTS

In this appendix, we provide additional numerical results
to the ones in Sec. VI.
In the first place, we simulated causets in ð3þ 1ÞD

Schwarzschild spacetime in a region with bounds
t� ∈ ½−6; 0�, r ∈ ½rS − 6; rS þ 6� in terms of discreteness
units l, looser than the ones used for Sec. VI.
The obtained results [see Fig. 9(a)] are equivalent to

those in Sec. VI. Firstly, the analytical model lies within
uncertainty, but is consistently lower than data points.
Secondly, the best fit is

að0ÞL½3� ¼ 0.173�0.005; að1ÞL½3� ¼ 0.4�0.4; ðE1Þ

FIG. 7. Sprinkled causet elements in ð2þ 1ÞD Minkowski spacetime lie within the shaded spacetime regions. The simulation
framework allows for sprinkling into ball, bicone, and cylinder shapes (left to right) in D ∈ f2; 3; 4g spacetime.

FIG. 8. Myrheim-Mayer dimension estimates converge to the
dimensions of the Minkowski spacetime for D ¼ 2, 3, 4. Each
data point is averaged over 200 causets.

(b)(a)

FIG. 9. (a) Counting of Link molecules from the simulations of causets in ð3þ 1ÞD Schwarzschild spacetime, with simulations
boundaries at distance 6l from relevant hypersurfaces Σ and H. Each data point corresponds to 100 simulations. The red line, with
values from Eq. (E1), is our best fit. The azure and green lines are the analytical models: respectively, the flat-spacetime approximation
and the first-order curvature expansion. (b) Λn molecules distribution in ð2þ 1ÞD spacetime, from the simulation of 50 causets for each
of nine different area values in the range A ∈ ½500; 4500�l2.
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i.e. the same as in Eq. (40), but with larger uncertainties.
This provides an additional confirmation of the validity of
the simulations in the main text.
Furthermore, we performed simulations in (2þ 1)

dimensions, to investigate how the probability distribution
pn of the horizon molecules varies in other dimensions. The
sprinkled region was bounded as the ð3þ 1ÞD one in the
main text: t� ∈ ½−4; 0�, r ∈ ½rS − 3; rS þ 3� in terms of
discreteness units l. We simulated 50 causets for each

of 9 different equally spaced horizon areas in the range
A ∈ ½500; 4500�l2, with average cardinalities ranging
roughly from 50,000 to 450,000. We found that the
molecules obey the same distribution as in ð3þ 1ÞD,
pn ¼ ðeχ − 1Þe−nχ , with approximately the same coeffi-
cient χ ¼ 1.50� 0.03 [see Fig. 9(b)]. Therefore, the
hypothesis outlined in Sec. VII A that horizon molecules
could satisfy some thermodynamic distribution is to be
discarded.
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