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Let a physical event constitute a simple loop in spacetime. This in turn calls for a generalized loop line
element (¼ distance2 between two neighboring loops) capable of restoring, at the shrinking loop limit, the
special relativistic line element (¼ distance2 between the two neighboring centers-of-mass, respectively).
Sticking at first stage to a flat Euclidean/Minkowski background, one is led to such a preliminary loop line
element, where the role of coordinates is played by the oriented cross sections projected by the loop event.
Such cross sections are generically center-of-mass independent, unless (owing to a topological term) the
loop events are intrinsically wrapped around a Kaluza-Klein–like compact fifth dimension. Serendip-
itously, it is the Kaluza-Klein ingredient which, on top of its traditional assignments, is shown to govern the
extension of the Pythagoras theorem to loop space. Associated with M4 ⊗ S1 is then a ten-dimensional
loop spacetime metric, whose four-dimensional center-of-mass core term is supplemented by a six-
dimensional Maxwell-style fine structure. The imperative inclusion of a positive (say Nambu-Goto) string
tension within the framework of loop special relativity is fingerprinted by a low periodicity breathing
mode. Nash global isometric embedding is conjectured to play a major role in the construction of loop
general relativity.
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I. RATIONALE, SETTING, AND PLAN

A mathematical event is by definition a point in
spacetime. It marks, for example, the location xμ of a
classical pointlike particle at some given instant. The
square of the distance between two such infinitesimally
separated pointlike events xμ and xμ þ dxμ, namely

ds2 ¼ gμνdxμdxν; ð1Þ

constitutes the special/general relativistic line element,
where gμνðxÞ is defined as the metric tensor of the under-
lying flat/curved spacetime manifold. The line element
Eq. (1) has long been recognized as the most fundamental
geometrical tool in the service of theoretical physics.
There is no compelling reason, however, why a classical

physical event must be inherently pointlike, stripped from
any nontrivial (say stringy) microstructure. With this idea in
mind, let xμðσÞ define the so-called simple, that is, devoid
of self-intersections or crossings, loop event (a refined
definition of simplicity will be given later). As the
σ-parameter varies from 0 to 2π, it traces the path of a
classical closed string at some given instant. The closed
structure of the loop event, formulated by

xμðσ þ 2πÞ ¼ xμðσÞ ð2Þ

gets manifested by means of the Fourier series expansion

xμðσÞ ¼ xμcm þ lξμðσÞ ¼ xμcm þ l
X
n≠0

ξμn einσ ð3Þ

with ξμ−n ¼ ξμ⋆n . The coefficient l sets the loop length scale,
leaving the various ξμn dimensionless (see Fig. 1).
The immediate question now is the following: Can one

consistently construct, using a covariant geometric formal-
ism, a tenable loop line element δS to measure the
generalized distance between two such neighboring loop
configurations xμðσÞ and xμðσÞ þ δxμðσÞ? The theoretical
obstacle is threefold: conceptual, technical, and further-
more dynamical.

(i) On the conceptual level: While obviously dealing
with nonlocal (stringy) configurations, the loop line
element must nonetheless be local in loop spacetime.
To make geometrical sense out of such a require-
ment, let each individual loop configuration be
mapped into a certain point in loop spacetime.
And the more so, two neighboring (infinitesimally
deformed) loops residing in spacetime must be
mapped into two infinitesimally separated points
in loop spacetime. This evidently calls for a tenable
loop spacetime metric. The precise identifications of
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the entities, which serve as loop spacetime coor-
dinates, the exact nature of the loop-to-point map-
ping, and eventually the loop spacetime metric, are
to be presented and discussed (see Chapter 2).

(ii) On the technical level: There is a crucial condition
which, on self consistency grounds, must be met at
the shrinking loop size limit. As l → 0, the loop line
element δS must reproduce the special/general
relativistic line element Eq. (1), which will then
measure the distance between the two associated
infinitesimally closed centers-of-mass, respectively,
that is,

lim
l→0

δS2 → gμνdx
μ
cmdxνcm: ð4Þ

Fulfilling this limit is a nontrivial technical task. For
example, the class of so-called area metrics [1], with
which our preliminary loop line element shares some
common ingredients, fails to deliver in this respect.
The missing ingredient called to the rescue is well
known, albeit in a totally different area of physics.
We refer to a compact fifth dimension à la Kaluza-
Klein [2], which plays a novel role in our discussion
(see Chapter 3).

(iii) On the dynamical level: The rationale for replacing
pointlike events by loop events would not make any
sense if the length scale l can grow arbitrarily large.
A dynamical physical mechanism, loop shape sen-
sitive, which would account for the natural shrink-
age of loop events, seems to be in order. Such a
mathematical service can be provided by incorpo-
rating positive loop event tension à la Nambu-Goto
string theory [3]. Once loop dynamics is introduced,

one may expect the length scale l to eventually
acquire the Planck scale. There is also room, and
eventually a necessity, as mentioned earlier, for a
nontrivial spacetime topology to enter the game. In
this case, relevant for our discussion (see Chapter 3),
loop events get wrapped around a Kaluza-Klein–like
cylinder.

A local realization of the loop line element idea is
expected to pave the way for a corresponding loop special
relativity (LSR) theory. With this in mind, we first consider
the case of a flat spacetime which admits a Cartesian or
pseudo-Cartesian metric ηij, where xi itself, rather than just
the differential dxi, transforms as a vector. Unfortunately,
one immediately notices that the desired special relativity
limit Eq. (4) is generically not reachable. Technically, it has
to do with the geometrical fact that the loop area is
generically center-of-mass independent. The remedy we
offer requires a nontrivial topological touch and counter-
intuitively invokes the introduction of an extra dimension.
To be specific, the loop event must be wrapped around a
spatial compact Kaluza-Klein–like cylinder in order to
activate the explicit entrance of the otherwise hidden
center-of-mass coordinate into the loop metric. Put differ-
ently, the only loops we are able to handle via our approach
are the ones wrapped around the fifth dimension. The
physical role, if any, played by unwrapped loop events is
not discussed in this paper. While our approach does not
seem to have a direct connection with the standard assign-
ments [2] of the Kaluza-Klein idea, it resembles some
familiar features. For example, starting from an underlying
M4 ⊗ S1 spacetime, the emerging loop line element appears
to be ten-dimensional, spanned by four essential center-
of-mass coordinates, accompanied by a six-dimensional
Maxwell style microstructure.
In Chapter 4 we pose the question whether string

dynamics is imperative. In other words, is it necessary
to accompany kinematical LSR by (say) dynamical
Nambu-Goto? We give a few examples to support our
positive answer in a Euclidean background. It turns out,
however (see Chapter 5), that the inclusion of Nambu-Goto
action within the framework of LSR has a unique finger-
print in the Lorentzian background, namely a low perio-
dicity breathing mode.
The LSR to loop general relativity (LGR) generalization

is still at large. One idea in this direction would be to invoke
the Nash embedding formalism [4], later adopted by
Regge-Teitelboim [5] in its local isometric version within
the framework of geodesic brane gravity. For example,
given the constraint x2 þ y2 þ z2 ¼ 1, curved ds22 ¼ dθ2 þ
sin2 θdϕ2 can be trivially embedded within flat ds23 ¼
dx2 þ dy2 þ dz2, so that the distance between two loops
residing on the S2 sphere gets translated (subject to the
constraint) into the distance between the two loops in the
flat E3 host. A simple example is provided toward the end
of Chapter 3. While every arbitrary curved space metric is

FIG. 1. Two neighboring loops in spacetime are mapped into
two infinitely closed points in loop spacetime. A tenable loop line
element δS must then reproduce, at the shrinking loop limit
l → 0, the special/general relativistic line element measuring the
distance between the two infinitely separated centers-of-mass,
respectively.
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Nash embeddable, the embedding procedure itself has
several drawbacks: The troubles are that (i) the minimal
embeddings are in general local, not global, (ii) the
embedding is not necessarily unique, and (iii) the number
of embedding dimensions is very much case dependent.
Another idea toward constructing LGR calls for geometric
gauge invariance of the second type [6]. Regretfully, this
line of research lies beyond the scope of the present paper.
The same holds for Rosen’s bimetric approach [7].
LSR does not seem to show, at least at this stage,

any compelling connection with loop quantum gravity
(LQG) [8]. Still, encouraged by the four-dimensional
center-of-mass resurrection in the loop area formalism,
hereby considered as the fingerprint of a compact fifth
dimension (see Chapter 3), establishing such a bridge is
certainly welcome.

II. PRELIMINARY LOOP LINE ELEMENT

Let our starting point be a loop drawn in a flat plane
characterized by the Euclidean metric

ds2 ¼ dx21 þ dx22: ð5Þ

The area enclosed by a loop is given by

A ¼ 1

2

I
ðx1dx2 − x2dx1Þ ¼

1

2

Z
2π

0

r2dσ: ð6Þ

Being a global quantity, the enclosed area A is not sensitive
to the fine local structure of the loop configuration. The
mapping from the two-dimensional fx1; x2g plane onto the
one-dimensional A-axis is thus not one-to-one. And most
importantly, to be regarded a momentary drawback for our
purposes, it has nothing to do with the location of the
center-of-mass of the loop.
Equation (6) can be easily generalized for the case of a

loop residing within a larger flat space (or spacetime)
equipped with a Cartesian (or pseudo-Cartesian) coordinate
system. In this case, the projected areas Aij are given by

Aij ¼ 1

2

I
ðxidxj − xjdxiÞ ¼ 1

2

Z
2π

0

ðxix0j − xjx0iÞdσ; ð7Þ

where f0 ≡ ∂f
∂σ. For an n-dimensional spacetime, there are

now 1
2
nðn − 1Þ such projected areas, one per each pair of

spacetime indices. It should be emphasized that it is only
for the case of a flat rectangular space (or spacetime) that
(i) xi transforms as a vector itself, to be contrasted with the
differential dxi which always does, and (ii) owing to the
global nature of the associated Lorentz transformations,
the integration over a tensor is mathematically permissible.
In other words, Aij as given by Eq. (7) constitutes a rank-2
antisymmetric tensor in flat spacetime.

Now, for any given σ (keeping σ untouched), consider a
loop variation

xiðσÞ → xiðσÞ þ δxiðσÞ: ð8Þ

Following Euler-Lagrange, and subject to the periodicity
condition Eq. (2), we find

δAij ¼
I

ðδxidxj − δxjdxiÞ: ð9Þ

The increment δxiðσÞ can be controlled by some parameter
τ. In this case, we have δxi ¼ ẋidτ, where ḟ ≡ ∂f

∂τ. In turn,
the projected areas Aij get shifted by

δAij ¼ dτ
Z

2π

0

ðẋix0j − ẋjx0iÞdσ: ð10Þ

Note that, owing to the built-in i ↔ j antisymmetry, the
same result would have been obtained had we started from
the more general expression δxi ¼ ẋidτ þ x0idσ.
While the first derivative dAij

dt , involving the troublesome
contour integration, behaves as a tensor solely in flat
spacetime, it is the second derivative

d2Aij

dτdσ
¼ ẋix0j − ẋjx0i ð11Þ

that appears to constitute a legitimate tensor even in curved
spacetime. This may be the point to start from when
attempting to eventually generalize LSR into LGR.
The antisymmetry of the oriented cross sections is a

fundamental feature and does not depend on the structure of
the spacetime metric. The more so,

ϵαβxi;αx
j
;β fα; βg ¼ τ; σ ð12Þ

serves as a set of world sheet scalar densities associated
with the world sheet induced metric γαβ ¼ ηijxi;αx

j
;β. The

integrant within Eq. (10) is thus reparametrization invari-
ant. We note in passing that performing a proper repar-
ametrization transformation

�
τ → τ̃ðτ; σÞ ¼ TðτÞ
σ → σ̃ðτ; σÞ ¼ σ þ ΣðτÞ ; ð13Þ

prior to the integration, a transformation which fully
respects the Δσ̃ ¼ Δσ ¼ 2π, loop event periodicity, is
equivalent to a posteriori gauge fixing τ → TðτÞ.
Once curvilinear coordinates are being used, while the

integration over a tensor is apparently forbidden, there is a
simple way out. The trick is to invoke the vierbein
formalism, where the curvilinear flat spacetime metric
can be written in the form
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gμν ¼ ηijVi
;μðxÞVj

;νðxÞ; ð14Þ

notably involving total derivative vierbeins. Equation (10)
can then be easily generalized into

δAij ¼ dτ
Z

2π

0

ϵαβVi
;μV

j
;νx

μ
;αxν;βdσ

¼ dτ
Z

2π

0

ϵαβVi
;αV

j
;βdσ; ð15Þ

and one is back to the original case, only with the
rectangular coordinates ViðxÞ replacing the curvilinear
coordinates xμ.
The situation is totally different, however, for a curved

spacetime characterized by a nonvanishing Riemann ten-
sor). Having in mind Eq. (15), one may prematurely expect
that associated with a curved spacetime metric

gμνðxÞ ¼ ηijVi
μðxÞVj

νðxÞ; ð16Þ

where the vierbeins have now matured into full gauge
fields, are projected loop area increments of the form

δAij ¼ dτ
Z

2π

0

ϵαβVi
μV

j
νx

μ
;αxν;βdσ: ð17Þ

Unfortunately, with the exception of the two-dimensional
case, this formula does not make sense mathematically. The
problem is that it is impossible to erect any single
coordinate system that is locally inertial everywhere, unless
the spacetime continuum is flat. In other words, integration
over a Lorentz tensor does not make then any sense. It is
only in two dimensions, owing to the corresponding rank-2
Levi-Civita symbol ϵij, that δA12 ¼ 1

2
ϵijδAij, as defined by

Eq. (17), happens to be a Lorentz scalar. From this point
forward, on both pedagogical and simplicity grounds, while
still lacking a proper formula for δAμν in a curved back-
ground, and without invoking either gauge invariance of the
second type and/or the Regge-Teitelboim–like embedding
technique as potential remedies, we return to the comfort-
able choice of a Cartesian (or pseudo-Cartesian) spacetime.
Associated with each loop residing in an n-dimensional

spacetime there is a corresponding point in the so-called
loop spacetime, where the 1

2
nðn − 1Þ independent projected

areas Aij play the role of coordinates (see Fig. 2). Two such
loops are then mapped into two points in loop spacetime,
and in principle, provided the corresponding loop metric is
specified, a geodesic trajectory can be drawn. If the two
points are infinitesimally closed, we pay tribute to the
antisymmetric structure of Aij, imitate the general relativ-
istic structure of the Maxwell kinetic term, and accordingly
define the scalar loop line element

δS2 ¼ ηikηjl
16π2l2

δAijδAkl; ð18Þ

properly normalized for future assignments. Note that for
the special case n ¼ 4, there exists the option of supple-
menting Eq. (18), or even replacing it, by the dual term
proportional to ϵijklδAijδAkl. Equation (18) falls into the
category of area metrices [1]. Note in passing that areas also
play an important role in Regge [9] calculus, and oriented
areas enclosed by string constitute a vital part of the
Clifford space metric [10].
Unfortunately, the special relativistic limit Eq. (4) is still

unattainable at this stage. Substituting the Fourier expan-
sion Eq. (3) into Eq. (10), we obtain

δAij ¼ l2

Z
2π

0

ðξ̇iξ0j − ξ̇jξ0iÞdτdσ; ð19Þ

and immediately we notice that the center-of-mass xicmðτÞ
and its τ-derivative ẋicmðτÞ do not enter the game. This
poses a major drawback, as all pointlike (¼ shrinking loop)
events become practically indistinguishable, and pile at the
origin. Until the missing ingredient is found, and the center-
of-mass comes out of hiding, Eq. (18) has to be regarded
incomplete.

III. KALUZA-KLEIN TO THE RESCUE

A. Center-of-mass resurrection

Counterintuitively, the remedy comes from topology.
The idea is to supplement spacetime by an extra Kaluza-
Klein–like closed dimension. This has nothing to do though
with the original Kaluza-Klein idea. For some reason soon
to be clarified, this extra dimension must be spacelike. On
historical grounds we generically refer to such an extra
dimension as x5, and we consider loop events wrapped
around this cylindrical fifth dimension. The previously

FIG. 2. Associated with every simple loop event (black)
residing in an n-dimensional flat space or spacetime, there are
1
2
nðn − 1Þ simple projected areas (red, blue, green, and so on),

thereby mapping a loop event into a point fAxy; Ayz; Ayz;…g in
loop space.
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introduced spacetime coordinates xμ are now accompanied
by a new x5, subject to the periodicity condition

Δx5 ¼ 2πR: ð20Þ

The game changer element is then the presence of the
topological term Rσ in the modified Fourier expansion. To
be contrasted with Eq. (3), we now have

x5ðσÞ ¼ x5cm þ Rσ þ lξ5ðσÞ; ð21Þ

where as usual ξ5ðσÞ ¼Pn≠0 ξ
5
neinσ .

Owing to the slight yet significant modification in the
corresponding partial derivative expansions, that is,

�
ẋ5 ¼ ẋ5cm þ lξ̇5

x05 ¼ Rþ lξ05
ð22Þ

in comparison with the former

�
ẋi ¼ ẋicm þ lξ̇i

x0i ¼ lξ0i
; ð23Þ

the projected areas split into two distinguishable categories.
While, as before, the center-of-mass derivative ẋicm is still
absent from

δAij

2π
¼
�
l2

2π

Z
2π

0

ðξ̇iξ0j − ξ̇jξ0iÞdσ
�
dτ; ð24Þ

it makes its resurrection via

δAi5

2π
¼
�
Rẋicm þ l2

2π

Z
2π

0

ðξ̇iξ05 − ξ̇5ξ0iÞdσ
�
dτ: ð25Þ

Notably, as expected, and in contrast with the presence of
ẋicm, irrelevant ẋ5cm stays completely out of the game.
Equipped with Eqs. (24) and (25), one can now recon-

struct the loop line element Eq. (18). In its modified
version, reflecting the underlying Mn ⊗ S1 spacetime, it
takes the final form

δS2¼ 1

8π2R2

�
ηijη55δAi5δAj5þ1

2
ηikηjlδAijδAkl

�
: ð26Þ

Here, by requiring ηijη55 ¼ ηij on consistency grounds, in

order to account for the mandatory ηijxicmx
j
cm term, we are

finally led to the tenable signature choice

η55 ¼ þ1; ð27Þ

a posteriori justifying the spacelike nature of x5 (nothing to
do with the original Kaluza-Klein theory). On the other

hand, given the underlying ηij metric, the coefficients ηikηjl
are uniquely fixed.

B. Pythagoras theorem in loop space

The special case we now discuss in detail is the simplest,
yet the most fundamental case in hand. And as such, it has
beenmoved from the appendix level to the main body of our
paper. To be specific, let us calculate the distance between
two arbitrary loops residing in a flat two-dimensional plane

ds2 ¼ dx2 þ dy2: ð28Þ

Following our prescription, our first step is to add the
Kaluza-Klein ingredient to the game, and deal with a larger
yet flat three-dimensional space governed by

ds̄2 ¼ ds2 þ dx25; Δx5 ¼ 2πR: ð29Þ

On simplicity and pedagogical grounds, we consider the
evolution (parametrized by λ) of a circular loop. The loop is
of radius rðλÞ, is centered at fxcmðλÞ; ycmðλÞg

xðλ; σÞ ¼ xcmðλÞ þ rðλÞ cos σ
yðλ; σÞ ¼ ycmðλÞ þ rðλÞ sin σ
x5ðλ; σÞ ¼ x5cmðλÞ þ Rσ; ð30Þ

and is furthermore wrapped, precisely once at this stage,
around the Kaluza-Klein cylinder. The three projected areas
are given explicitly by

dAxy

dλ
¼ 2πr

dr
dλ

; ð31Þ

dAx5

dλ
¼ 2πR

dxcm
dλ

; ð32Þ

dAy5

dλ
¼ 2πR

dycm
dλ

: ð33Þ

Substituting the latter into Eq. (26), we immediately find out
that

dS2 ¼ dx2cm þ dy2cm þ r2

R2
dr2; ð34Þ

and recalling the loop area Axy ¼ πr2, brings us to the final
Pythagoras formula

dS2 ¼ ds2cm þ
�
dA
2πR

�
2

: ð35Þ

We have thus reached a flat three-dimensional loop space,
with A

2πR serving as a third dimension. It is an open
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dimension, to be contrasted with the compact nature of x5,
thus mimicking the role of zcm. Altogether (see Fig. 3), the
geodesic distance L between two loops, of areas A1 and A2,
centered at fx1; y1g and fx2; y2g, respectively, is given by

L2 ¼ ðx2 − x1Þ2 þ ðy2 − y1Þ2 þ
�
A2 − A1

2πR

�
2

: ð36Þ

One may now wonder under what circumstances is the
(area difference2) term negligible? The trivial answer
would be when A1 ¼ A2, the case of a fixed loop area
(the rigid loop case obviously included). The generic case
calls for Axy ∼ l2 to pick up the only length scale floating
around. In general, however, as far as the geometry is
concerned, the area difference A1 − A2 stays at this stage
unbounded.

C. Light cone in loop spacetime

Had one started from a Lorentzian spacetime M2

enriched by a compact (Δx5 ¼ 2πR) fifth dimension

ds̄2 ¼ −dt2 þ dz2 þ dx25; ð37Þ

and analogously considered the simple τ-evolution

tðτ; σÞ ¼ tcmðτÞ þ aðτÞ cos σ
zðτ; σÞ ¼ zcmðτÞ þ bðτÞ sin σ
x5ðτ; σÞ ¼ x5cmðτÞ þ Rσ; ð38Þ

one would have once again ended up with the fundamental
Eq. (35), only with Atz ¼ πab. Note that Aij is not sensitive
to the time/spacelike nature of the ij-indices.
Altogether, as long as loop dynamics is not switched on,

the kinematical evolution of a loop event, residing in M2

and being wrapped around S1, is described by means of the
geodesic evolution of a pointlike event in flatM3. While the

Poincare-like symmetry associated with the loop spacetime
metric

dS2 ¼ −dt2cm þ dz2cm −
�
dA
2πR

�
2

ð39Þ

is well established, it contains some novel elements such as
a fzcm; Ag boost and a ftcm; Ag rotation. The timelike
nature of the Atz-dimension stems from the opposite time/
spacelike assignments of t and z, as expressed via
ηttηzz ¼ −1, in accordance with ηttη55 ¼ −1. The accom-
panying energy/momentum relation takes then the form

m2 ¼ E2
cm þ E2

A − p2
cm; ð40Þ

where the total energy now has two independent sources
E2 ¼ E2

cm þ E2
A. The second energy operator

EA ¼ −2πiR
∂

∂A
ð41Þ

is identified as the generator of loop area expansions in the
ft; zg-plane. As a trivial consistency check one may verify
that a loop of a constant area, not necessarily of a constant
shape, would return the familiar formulas describing a
point particle moving in 1þ 1 dimensions.

D. From special relativity to loop
special relativity

The loop spacetime line element Eq. (26) and the
subsequent special cases discussed bring us one step closer
to our second goal, which is formulating a LSR theory
capable of supporting the special relativity (SR) limit

δS2 ¼ ηijdxicmdx
j
cm þO½l2�: ð42Þ

The idea of trapping the loop around the compact fifth
dimension can be conveniently realized by executing the
partial gauge choice (σ-redefinition)

x5ðτ; σÞ ¼ x5cmðτÞ þ Rσ: ð43Þ
This way, starting from the most general Fourier expan-
sions for

xiðτ; σÞ ¼ xicmðτÞ þ l
X
n≠0

ξinðτÞeinσ; ð44Þ

we can significantly simplify the explicit expressions for
the associated infinitesimal projected areas. Absorbing for
simplicity the l

R ratio within ξi, we find

1

2πR
dAi5

dτ
¼ d

dτ
xicm; ð45Þ

1

2πR
dAij

dτ
¼ 2R

d
dτ

X
n>0

ℑðnξinξj⋆n Þ; ð46Þ

FIG. 3. Generalized Pythagoras theorem: Let L denote the
geodesic distance between two loops, demonstrated here for
circles of opposite sides, so that A2 − A1 ¼ πðr22 − ð−r21ÞÞ. While
the shape of the loop stays unconstrained in the absence of loop
dynamics, the center-of-mass location, as well as the loop area,
evolves linearly.
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which can finally be substituted into Eq. (26). Altogether,
the LSR line element takes the elegant form

ds2LSR ¼ ds2SR − R2ðds2E − ds2BÞ : ð47Þ

Our anchor, the (3þ 1)-dimensional center-of-mass SR line
element, is hereby supplemented by a (3þ 3)-dimensional
Maxwell-like structure. It should be noted that (i) all O½l�
mixed pieces have been dropped away by the specific gauge
choice Eq. (43), and consequently that (ii) x5cmðτÞ appears
irrelevant as it has no realization in our formalism.
Naturally, attention is devoted to the light cone structure.

The special relativistic ds2SR ¼ 0 is replaced by its loop
special relativistic ds2LSR ¼ 0. Thus, from the point of view
of an observer, unfamiliar with (or just insensitive to) LSR,
as is evident from

ds2LSR ¼ 0 ⇒ ds2SR ¼ R2ðds2E − ds2BÞ; ð48Þ

the center-of-mass light cone acquires a six-dimensional
(hopefully Planck scale) Maxwell-like fine structure. Three
of the extra dimensions are “electric” (timelike) and the
other three are “magnetic” (spacelike). They are supposed
to fade away as R → 0. This seems to constitute the main
physics fingerprint of LSR.

E. Toward loop general relativity:
Nash global isometric embedding

Attempting to go beyond flatness, one would now like to
calculate the geodesic distance L between two loops which
reside in a curved background, say two parallel loops living
on a two-dimensional sphere of constant radius l. The
crucial point is that the two-sphere can be globally
embedded within a flat three-dimensional space, that is,

xðθ; σÞ ¼ l sin θ cos σ

yðθ; σÞ ¼ l sin θ sin σ

zðθ; σÞ ¼ l cos θ; ð49Þ

subject to the global constraint x2 þ y2 þ z2 ¼ l2. The
only nonvanishing projected area increment is then

δAxy ¼ 2πl2 sin θ cos θdθ: ð50Þ

Following our prescription, one invokes the Kaluza-Klein
topological term

x5ðθ; σÞ ¼ Rσ; ð51Þ

and consequently finds

L ¼ l
R

Z
θ2

θ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 cos2 θ þ R2

p
sin θdθ: ð52Þ

However, from a variety of reasons outlined toward the end
of the Introduction, this is not necessarily a recipe for LGR.
Still, one cannot rule out the possibility, make it a
conjecture, that Nash local/global embedding may even-
tually play some role in constructing LGR.

IV. IS LOOP DYNAMICS IMPERATIVE?

A. Introducing the Planck scale

So far, we have demonstrated how to map a loop event,
residing in Mn ⊗ S1 Kaluza-Klein spacetime, into a point-
like event residing in a larger 1

2
nðnþ 1Þ-dimensional flat

loop spacetime whose center-of-mass submetric is supple-
mented by a Maxwell style higher dimensional companion.
We are also aware of the topological advantage that, being
wrapped around the fifth dimension, the loop event cannot
really shrink to a pointlike event. However, as it stands,
while the mandatory SR limit has been nontrivially
recovered, the overall picture is still not fully satisfactory.
The reasons are fourfold:

(i) Arbitrary loop shape: The loop-to-point mapping is
unfortunately not one-to-one, and only captures the
projected areas involved. Equation (26) is incapable
of telling one loop configuration from the other as
long as their projected areas are the same. The
challenge would be to convert such a residual degree
of freedom into a physically tamed shape uncer-
tainty.

(ii) Unbounded loop size: Whereas the fifth dimension
invoked is compact by definition, characterized by
its tiny Kaluza-Klein (KK) radius R, the loop
projected areas Aij can in principle take arbitrarily
large values. In turn, unless the projected areas are
themselves of orderO½R2�, the loop line element δS2

will be dominated by the Maxwell-like term rather
than by the center-of-mass term.

(iii) Multiple timelike dimensions: Once ηij is specified,
and x5 is assigned spacelike, the signatures of
Maxwell-like terms are not a matter of choice. To
be specific, a single timelike spacetime coordinate t
gives rise to (n − 1) timelike loop spacetime coor-
dinates Ait [and of course to 1

2
ðn − 1Þðn − 2Þ space-

like loop spacetime coordinates Aij]. This opens the
door for problematic mathematical as well as philo-
sophical cause-and-effect issues, arguing that the
behavior of physical systems could not be predicted
reliably. Saying this, note that several theories,
F-theory and 2T-theory [11] among them, do host
multiple timelike (and necessarily accompanied by
spacelike) dimensions.

(iv) Multiple KK wrappings: Recalling that π1ðS1Þ ¼ Z,
the closed loop event can carry an arbitrary integer
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winding number w ¼ n ≠ 0. We can of course
always generalize our simple loop assumption, that
is, allow no self-intersections of the loop’s oriented
projections (which surround the projected areas Aij),
but it is not natural to do so in the presence of a
nontrivial topology. After all, a winding numberw ¼
n ≠ �1 loop gives rise to ðjnj − 1Þ self-intersections
on the KK cylinder. A presumably quantum field
theoretical self-interaction mechanism, capable of
decomposing a w ¼ n loop into n separated w ¼ 1
simple loops, is certainly in order, but unfortunately
stays beyond the scope of the present paper.

Appreciating the above potential drawbacks, one is left
with two apparently contradictable options:

Option I: The exact configuration of the loop event does
not show up at the classical level at all. Had R
vanished as ℏ → 0, such an option would have been
encouraged by quantum mechanics, with every loop
configuration carrying its own amplitude. In fact, this
option favors the entrance of the Planck scale into the
game via

R ∼ lP ¼
ffiffiffiffiffiffiffi
ℏG
c3

r
; ð53Þ

implying that R should vanish at the G → 0 limit as
well and of course as c → ∞.

Option II: The exact configuration of the loop event does
acquire a physical meaning already at the classical
level. The introduction of dynamics via some string
theoretical action seems then unavoidable, with the
main goal being to encourage loop events to shrink
(positive string tension). Such a dynamical approach
would furthermore account for the assumption that
Aij ∼ R2 and that the perimeter 2πR of the fifth
dimension share the one and the same length scale.
While the second option may seem easier to utilize

on technical grounds, it is the first option which
actually catches our imagination. Thus, we choose
to adopt the Planck length scale Eq. (53), but without
giving up the idea of loop event self-dynamics. In
other words, we attempt to make a compromise, and
choose the following.

Option Iþ II: Translated into the Lagrangian formalism,
we propose

I ¼ ILSR þ ΛING ; ð54Þ

where ILSR ¼ R dS is the loop spacetime geodesic
action, and ING ¼ R ffiffiffiffiffiffiffiffi−g2

p
dτdσ stands for the famil-

iar string theoretical Nambu-Goto action (or alterna-
tively for its Polyakov variant). The first ingredient
contains the SR limit, but is insensitive to the detailed
structure of the loop. The second ingredient does not

have an SR limit, but forcefully governs the inner loop
dynamics.Λ is a dimensionless coefficient, which may
be eventually elevated in some stage to the level of a
Lagrange multiplier. To show our point we discuss
now in some detail the simplest pedagogical case of
sufficient complexity, namely a two-dimensional soap
world sheet embedded within a three-dimensional
Euclidean space.

B. No-go Nambu-Goto

We now prove, as was claimed before, that the Nambu-
Goto action (as well as its Polyakov variant) cannot
consistently serve as a measure of the “distance” between
two loops. To stand on familiar geometrical grounds, we
choose to make our point using the simplest pedagogical
case of a two-dimensional soap world sheet embedded
within a three-dimensional Euclidean space

x1ðz;σÞ¼ rðzÞcosσ x2ðz;σÞ¼ rðzÞsinσ x3ðz;σÞ¼ z;

ð55Þ

connecting two circles of equal radii

rð−hÞ ¼ rðhÞ ¼ l: ð56Þ

The corresponding Nambu-Goto action reads

ING ¼ 2π

Z
h

−h
rðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0ðzÞ2

q
dz: ð57Þ

The Euler-Lagrange equation and the corresponding ana-
lytic solution are given by

rr00 − r02 − 1 ¼ 0 ⇒ rðzÞ ¼ cosh kz
cosh kh

l; ð58Þ

subject to the symmetric boundary condition

cosh kh ¼ kl: ð59Þ

It can be numerically verified that there is no solution for
l
h < 1.508, with the critical value marking a phase tran-
sition, a phenomenon which can be experimentally dem-
onstrated with soap films. The critical point is associated
with the extra mathematical condition

sinh kh ¼ l
h
: ð60Þ

In other words, the Nambu-Goto action cannot be inter-
preted as distance between loops separated too far (beyond
criticality) apart.
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C. Kaluza-Klein modified Nambu-Goto

We now show that the trick of adding a compact fifth
dimension and wrapping the loop event once around it,
that is,

x1ðz; σÞ ¼ rðzÞ cos σ
x2ðz; σÞ ¼ rðzÞ sin σ
x3ðz; σÞ ¼ z

x5ðz; σÞ ¼ Rσ; ð61Þ

while having some advantage over the plain Nambu-Goto
(NG) case, is still quite problematic. The former Nambu-
Goto action Eq. (57) gets now generalized into

INGþKK ¼ 2π

Z
h

−h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrðzÞ2 þ R2Þð1þ r0ðzÞ2Þ

q
dz; ð62Þ

and subsequently, the modified Euler-Lagrange equation
takes the form

ðr2 þ R2Þr00 − rð1þ r02Þ ¼ 0: ð63Þ

The analytic solution looks very much like the one given by
Eq. (58), save for the modified boundary condition

cosh kh ¼ klffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2R2

p ; ð64Þ

replacing the former Eq. (59).
A critical hc ¼ 2.790R plays now a major role. For

h < hc, there is exactly one real solution for every a. For
h > hc, there can still be a single real solution provided
l < lmin or l > lmax. However, for h > hc and
lmin < l < lmax, where lmin;max are the local extrema
values of Eq. (64), there appear to be three real solutions.
Not only is uniqueness lost, but furthermore, one unex-
pectedly faces a hysteresis phenomenon.
There is, however, some encouraging news to report on.

This has to do with the large loop separation region h ≫ R,
a region which plain ING Eq. (57) simply could not reach.
In this case, we derive the long distance behavior

I
2πR

≃ 2hþ l2

R
tanh

h
R
þ � � � ; ð65Þ

showing a smallOðl2R Þ correction to the classical large value
of 2h. For some classical wrapped string solutions
see Ref. [12].

D. Combining LSR with Nambu-Goto

Sticking to Eqs. (61), we now substitute the various
xiðz; σÞ into the action Eq. (54) to arrive at

IΛ ¼ 2π

Z
h

−h

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ r2r02

p
þΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2þ r2Þð1þ r02Þ

q �
dz:

ð66Þ

Here, Λ is just a dimensionless coefficient, not a Lagrange
multiplier. Λ → ∞ marks the NG-limit, whereas Λ → 0
takes us back to the LSR territory (see Fig. 4). At the first
glance, the associated Euler-Lagrange equation looks quite
cumbersome, but once recasted into the form r00 ¼ fðr; r0Þ,
with R and h serving as parameters, it can be numerically
handled straightforwardly.
The numerical lesson is twofold:
(i) Λ ≥ 0 on z-evolutionary grounds, as otherwise we

are necessarily driven into an undesirable r ¼ 0
collapse.

(ii) Λ ≪ 1 on self-consistency grounds, as otherwise we
loose track of LSR, which becomes merely a
perturbation on the classical string action. For such
a small mixing parameter Λ, we obtain

IΛ

2πR
¼2h

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þl2

R2

r
Λ

!
þ��� forΛ≪1; ð67Þ

to be fully contrasted with

IΛ

2πR
¼ 2hΛξþ � � � for Λ ≫ 1; ð68Þ

where ξ is some geometrical O½1� factor.

V. LOW FREQUENCY BREATHING MODE

In a LorentzianM4 ⊗ S1 background, with the following
loop assignments:

FIG. 4. From LSR to NGþ KK: Soap branes connecting two
identical circular rings, residing in a three-dimensional space and
separated 2h apart. As Λ grows, while holding the KK radius R
fixed, the LSR cylinder transforms into an NGþ KK narrow
waist candlestick (owing its stability to R ≠ 0).
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x0ðτ; σÞ ¼ τ

x1ðτ; σÞ ¼ rðτÞ cos σ
x2ðτ; σÞ ¼ rðτÞ sin σ
x3ðτ; σÞ ¼ 0

x5ðτ; σÞ ¼ Rσ; ð69Þ

corresponding to a circular loop evolving in the xy-plane,
the action Eq. (66) is traded for

IΛ¼2π

Z � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−r2ṙ2

p
þΛ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2þr2Þð1− ṙ2Þ

q �
dτ: ð70Þ

Associated with the latter action is the Euler-Lagrange
equation

̈r
r
¼ −

ṙ2 þ Λð1 − ṙ2Þmðr; ṙÞ
r2 þ ΛðR2 þ r2Þmðr; ṙÞ ; ð71Þ

where mðr; ṙÞ is given explicitly by the ratio

mðr; ṙÞ ¼ ðR2 − r2ṙ2Þ32
R2ðR2 þ r2Þ12ð1 − ṙ2Þ32 : ð72Þ

Without loosing generality, the accompanying initial con-
ditions are rð0Þ ¼ l, ṙð0Þ ¼ 0.
The solutions rðτÞ of Eq. (71) are in general oscillatory

in τ, with frequencies of the general form

ωΛ ¼ 1

R
fΛ

�
l
R

�
; ð73Þ

which we now proceed to extract. There are no oscillatory
solutions, however, for

−
l2

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ l2

p ≤ Λ ≤ 0; ð74Þ

an important observation when the small Λ regime is one’s
preference.
A remark is in order. The fact that the oscillatory

solutions pass through r ¼ 0, corresponding to an orienta-
tion flip of the loop in the xy-plane, is of no special
concern. Owing to the underlying topology, that is, being
wrapped around the Kaluza-Klein cylinder, the loop cannot
really shrink to a singular point.
Three trivial cases can be immediately verified:
(i) Λ ¼ 0marks the LSR limit. As explained earlier, the

area∼r2 evolves linearly with τ, and given our initial
conditions, we face

rðτÞ ¼ a: ð75Þ

In light of the forthcoming analysis, we assign

ωLSR ¼ 0: ð76Þ

(ii) Λ → ∞ is recognized as the NGþ KK limit. In
this case, we recover radial oscillations via
rðτÞ ¼ l cosωτ, with frequency

ωNG ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ l2

p : ð77Þ

(iii) The limit l
R → 0 is trustfully translated into rðτÞ

R → 0.
As the scale of rðτÞ shrinks away, one immediately
notices that mðr; ṙÞ → 1. Altogether, as could have
been expected, and for any finite Λ, we are back to
NGþ KK only with

ωΛ →
1

R
: ð78Þ

For a positive string tension Λ > 0, we now prove
the existence of a periodic breathing mode, and
attempt to study the entire range ωLSR < ωΛ < ωNG.
Our interest lies, however, with the low frequency
mode associated with the LSR governed case
Λ ≪ 1. The transition from the low to high fre-
quency regimes is depicted (for the special case
l ¼ R) on a log-log graph; see Fig. 5.

(iv) Λ ≪ 1 is our case of interest. On simplicity and
pedagogical grounds, we choose to make our points
using the prototype case l ¼ R. The periodic

numerical solution then suggests ωΛ ∼
ffiffiffi
Λ

p
R , a result

which we now extract semianalytically. We start by
noticing that mðτÞ is a shallow function of τ. It starts
at mð0Þ ¼ 1=

ffiffiffi
2

p
and stays below 1 up to an

extremely narrow yet finite peak when rðτÞ passes
through zero. We then replace mðτÞ by its τ-average

FIG. 5. High to law frequency transition as a function of the
string tension Λ (plotted for the special case l ¼ R ¼ 1). While
ωΛ is Λ-independent at the high-ω regime, it is ∼

ffiffiffiffi
Λ

p
at the low-ω

regime.
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constant value 1ffiffi
2

p < m < 1 (a tenable value is

m ≃ 0.8). And finally, throwing away two terms
of tiny numerical contributions, we arrive at the
approximated equation of motion

̈r
r
≃ −

ṙ2 þ Λm
r2 þ R2Λm

: ð79Þ

Not only does the latter equation admit an analytic
solution, but it forcefully captures the essence
(shape, extrema, zeros) of the original numerical
solution of Eq. (71). The semianalytic solution is
given explicitly by

τ

R
¼ E

�
π

2
;
−1
Λm

	
− E

�
arcsin

rðτÞ
R

;
−1
Λm

	
; ð80Þ

where E½ϕ; χ�≡ R ϕ0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ sin2 θ

p
dθ stands for the

elliptic integral of the second kind.
The role of the constant term in Eq. (80) is to reassure

that rð0Þ ¼ R. Furthermore, the radial velocity

ṙðτÞ ≃ −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2

R2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

R2Λm

q ð81Þ

not only confirms that ṙð0Þ ¼ 0 but also correctly takes care
of the physical upper bound jṙðτÞj ≤ 1. Our main bonus is
now the frequency formula

ωΛ ¼ 2π

Δτ
¼ π

2RE½π
2
; −1Λm�

: ð82Þ

Appreciating the fact that E½π
2
; −1x � behaves as 1ffiffi

x
p for x ≪ 1,

we end up with the low frequency limit

ωΛ ≃
π
ffiffiffiffiffiffiffiffi
Λm

p

2R
for Λ ≪ 1 : ð83Þ

Note that for Λ ≫ 1 we recapture Eq. (78).

VI. EPILOGUE

This paper focuses on an unexpected role played by the
compact fifth dimension, serving as the missing topological
ingredient which allows for the conversion of an area metric
into a legitimate line element in loop spacetime. Ironically,
it is the Kaluza-Klein ansatz which paves the way for LSR
to exhibit the indispensable SR limit. Associated with
M4 ⊗ S1 is then a ten-dimensional loop spacetime metric,
whose four-dimensional center-of-mass core term is sup-
plemented by a six-dimensional Maxwell-style Planck-
scale fine structure which drops away at the shrinking
loop limit.
There are, however, as listed in Chapter 4, four flies in

the LSR ointment, so to speak. Being kinematical in nature,
LSR suffers from arbitrary loop shapes, unbounded loop
sizes, multiple timelike dimensions, and multiple KK
wrappings. Some of these problems require a dynamical
solution, suggesting the presence of a positive string
tension. But dynamical Nambu-Goto (or Polyakov) by
itself will not do either, as it clearly lacks the SR limit in the
technical sense of Eq. (4). The action marriage Eq. (54) is
perhaps an elegant, and by far the simplest, way out. It
comes with a clear signature, that is, a low-frequency
breathing mode. And finally, just a reminder that the
generalization of LSR into LGR is still in order. Nash
global isometric embedding may play a key role in
constructing the latter theory.
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