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We studied the Hayden-Preskill thought experiment with the local projective measurement. Compared to
the original model, the measurement is applied to the Hawking radiation that was emitted after throwing the
quantum diary into the black hole. Within this setup, we explored the information recovery from the black
hole utilizing the Yoshida-Kitaev probabilistic strategy and demonstrated a perfect decoding in the ideal
case. Additionally, we analyzed the decoherence effects from the environment on the decoding protocol. It
shows that errors represented by the depolarizing channel can reduce the decoding probability and fidelity,
while errors represented by the dephasing channel do not affect the decoding protocol. Furthermore, we
discussed various aspects of the current model, including its relation to the black hole final state proposal
and the quantum simulations of the decoding protocols. Especially, employing the graphical representa-
tions, we provide an intuitive derivation of the equivalence between the Yoshida-Kitaev protocol and Petz
recovery map.
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I. INTRODUCTION

Whether the quantum information consumed by the
black hole can be retrieved from the Hawking radiation
is still a controversial problem, commonly referred to as the
black hole information puzzle [1]. The puzzle originates
from the discovery of Hawking radiation [2]. Hawking
radiation appears to be thermal and carries no information
about the initial matter that collapsed into the black hole. If
a black hole eventually evaporates completely, it seems to
lead to the loss of information about the initial state,
violating the principle of unitarity in quantum mechanics.
Various proposals, including the holographic principle [3],
the firewall hypothesis [4], and the entanglement island
[5,6], have been put forward to address this issue. However,
a complete resolution is still challenging and realizing that
may necessitate a deeper understanding of the UV-com-
plete theory of quantum gravity.
It is generally believed that quantum information theory

may provide insights into the black hole information
puzzle. Page [7,8] initiated the discussion on how the
quantum state of the black hole and the Hawking radiation
evolve with time from the perspective that the formation
and the evaporation of the black hole follow unitary
quantum mechanical process. By treating the black hole
as an ordinary quantum system with eSBH degrees of

freedom, where the coarse-grained entropy SBH is propor-
tional to the horizon area, he demonstrated that the
entanglement entropy of the Hawking radiation should
follow a specific time-dependent behavior, known as the
Page curve. Initially, the black hole is assumed to be in a
pure state and the entanglement entropy of the radiation
increases from zero. At a certain point (the Page time), the
entanglement entropy reaches a maximum and then starts
decreasing, eventually returns to zero. This behavior
indicates that once the black hole evaporates completely,
the radiation must be in a pure state again. Page’s analysis
showed that information is gradually released from the
black hole after the Page time. Recent progress of the
entanglement island calculation of Page curve [5,6] sug-
gests a mechanism for how information might be preserved
in the black hole evaporating process.
The issue of recovering information from the black hole

was also sharpened by Hayden and Preskill in a well known
thought experiment [9], where a diary encoding the quantum
information is thrown into the black hole that is maximally
entangled with the Hawking radiation. It is revealed that the
black holes can release information remarkably quickly and
decoding the quantum information from the Hawking
radiation is information-theoretically possible. The remark-
able result of Hayden and Preskill shows that the retrieval
time for an evaporatingblack hole can be characterizedby the
scrambling time (ts ∼ SBH log SBH), which is comparatively
small relative to thePage time.This suggests that information
encoded in the black hole’s degrees of freedomcan be rapidly
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mixed. It is also conjectured that black holes are the fastest
scramblers in nature [10]. Therefore, the interior dynamics of
the black hole can be properly modeled by a random unitary
process, which implies that black holes rapidly mix the
information of any infalling matter across their degrees of
freedom, leading to a highly chaotic and entangled state [11].
However, the computational complexity of the decoding

operations is not clearly resolved in the study of Hayden
and Preskill. This issue was addressed later by Yoshida and
Kitaev in [12], where two particular decoding strategies for
reconstructing a quantum state from the Hawking radiation
in the Hayden-Preskill thought experiment were proposed.
The first approach is the probabilistic decoding strategy,
which uses the EPR (Einstein-Podolsky-Rosen) projection
to retrieve the initial quantum state. This method achieves a
relatively small decoding probability but ensures high
decoding fidelity. It is also shown that the probabilistic
strategy can be promoted to be deterministic by increasing
the circuit complexity. Yoshida-Kitaev decoding strategy
has been attracted significant attentions, including the
decoherence effects on the information recovery [13,14],
the deterministic decoding for the Clliford scrambling
dynamics [15,16], the finite temperature effects [17,18],
the effects from local projective measurement or post-
selection [19–21] and realizing the circuit on the quantum
processors [22].
In the present work, we will investigate a revised version

of Hayden-Preskill experiment first suggested by Yoshida
in [20]. The difference from the original model [9] lies in
the introduction of the local projective measurement that is
applied on the Hawking radiations at the late times, i.e.,
the radiations that were emitted after throwing the quan-
tum diary into the black hole. This model was initially
inspired by the monitored quantum circuits [23–25], which
consists of both the unitary dynamics and the local
projective measurement. In [20], it was pointed out that
the Yoshida-Kitaev decoding strategies can be used to
recover information from the Hayden-Preskill experiment
with the projective measurement. However, the decoding
probability and the fidelity were not calculated. We will
utilize the graphical representation technique to calculate
the decoding probability and the fidelity for this model.
Because the projective measurement is closely related to
the post-selection in quantum mechanics, we will also
discuss the relation between the present model and the
black hole final state model proposed by Horowitz and
Maldacena [26], more precisely the generic final state
model proposed by Lloyd and Preskill [27]. Recently, from
the view point of quantum channel, the Petz recovery map
is demonstrated to be equivalent to the Yoshida-Kitaev
protocol for the Hayden-Preskill experiment [28]. Inspired
by this observation, we will establish that the Yoshida-
Kitaev decoding protocol, specifically applied to the
Hayden-Preskill experiment with the local projective meas-
urement, is also equivalent to the Petz recovery channel.

The equivalence can be nicely illustrated by using the
graphical representations.
The aforementioned discussions are conducted under the

assumption of an ideal scenario where noise or decoherence
is not considered. In the real situations, the noise or the
decoherence cannot be avoided. Therefore, it is interesting
to investigate the decoherence effects on the model. In
quantum information theory, there exists various quantum
channels that can used to model the decoherence or noise
from the environments [29]. We will focus on two types:
the depolarizing channel and the dephasing channel.
Toward explicit calculations, we show that the depolarizing
channel can reduce the decoding probability as well as the
fidelity. Conversely, the dephasing channel has no impact
on the decoding procedure. Finally, we will conduct an
experimental simulation of the decoding protocol by using
the quantum processors. We execute two circuits on the
quantum processor, one for teleporting the quantum state
and another for teleporting the quantum entanglement. It is
shown that the Yoshida-Kitaev protocol for teleporting
quantum state is superior to the protocol for teleporting
quantum entanglement.
This paper is arranged as follows. In Sec. II, we study the

quantum information recovery in the Hayden-Preskill
experiment with the local projective measurement by
using the Yoshida-Kitaev protocol. In Sec. III, the relation
between the model with the projective measurement and
the black hole final state proposal is discussed. In Sec. IV,
by using the graphical representations, we show the
Yoshida-Kitaev protocol as a quantum channel is equiv-
alent to the Petz recovery map for the Hayden-Preskill
experiment. In Sec. V, the effects of the depolarizing noise
on the information recovery are discussed. In Sec. VI, we
show the results of executing the quantum circuits for
teleporting quantum state and quantum entanglement on
the quantum processors. The conclusion and discussion are
presented in the last section. In Appendix, we provide the
detailed calculations of the Haar averages of some quan-
tities used in the main text by invoking the graphical
representations.

II. INFORMATION RECOVERY WITH
PROJECTIVE MEASUREMENT

The original Hayden-Preskill thought experiment con-
sidered the question of under which condition quantum
information thrown into a black hole can be retrieved.
We use the visualization tool from tensor network to
illustrate the toy model considered in the present work.
The ideal model of the original Hayden-Preskill thought
experiment is depicted in the left panel of Fig. 1. The
quantum information is initially encoded in system A. A
reference system Ā, which is maximally entangled with
system A, is also introduced for later convenience. In Fig. 1,
the entanglement structure between the system A and the
reference system Ā is represented by a connected leg.
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The message system A is thrown into an old black hole
denoted as B. For an old black hole B, it is maximally
entangled with the early Hawking radiation R. In Fig. 1, the
entanglement structure between B and R is also represented
by a connected leg in the figure. The internal dynamics and
the evaporating process after the message system A is
absorbed by the black hole B are modeled by a random
unitary operator U. The late Hawking radiation D and the
remnant black hole C are the outputs of the unitary U. The
goal of the decoding process is to use the early radiation R
and the late radiation D to recover the initial quantum
information contained in A. Detailed calculations [9]
demonstrate that when jDj ≫ jAj, the entanglement
between Ā and black hole transfers to the entanglement
between Ā and DR, i.e., there exists no entanglement
between Ā and C. An external decoder with complete
access to radiation D and R can, in principle, apply the
decoding operator V to retrieve the quantum information,
as shown in the left panel of Fig. 1.
The Yoshida-Kitaev protocol provides a solution on how

to decode the quantum information through local oper-
ations on R and D. The essential of the protocol is to
implementing an auxiliary entangled system and applying
the operator U� on the early radiation R with the auxiliary
system to reverse the time evolution effectively. Then,
postselecting or projecting the outcome with the late
radiation onto the EPR state enables the recovery of the
initial state of A from the auxiliary system. However,
the postselecting or the projecting is probabilistic and
the protocol can be promoted into the deterministic one
with the cost of increasing the computational complexity.

A. Hayden-Preskill protocol with projective
measurement

In the present work, we consider a modified version of
Hayden-Preskill protocol [20]. Consider a projective meas-
urement is applied to D after the scrambling time. Without
loss of generality, we assume that the outcome of the
measurement is the state j0iD. The projective measurement
means the violation of the entanglement between Ā and

DR. Specifically, the projective measurement destroys all
quantum correlations between the subsystem D and the
rest of the system. Therefore, it is not apparent that the
information can still be retrieved due to this kind of
violation of entanglement. Now, if the decoder still wants
to retrieve the quantum information swallowed by the black
hole, he can only perform the local operations on the early
radiation R. In this section, we study the question of how to
retrieve the quantum information in this modified version
of the Hayden-Preskill thought experiment.
With the description of the model, the Hayden-Preskill

protocol with the projective measurement can be graphi-
cally represented by

ð2:1Þ

where jDj denotes the dimension of Hilbert space for the
subsystemD. In the following, we use the j · j to denote the
dimension of Hilbert space for the corresponding system.
In this graphical representation, represents the EPR

state of the subsystems A and Ā

jEPRiĀA ¼ 1ffiffiffiffiffiffijAjp XjAj−1
i¼0

jiĀi ⊗ jiAi: ð2:2Þ

The black dot stands for the normalization factor 1ffiffiffiffi
jAj

p .

Similar rules applies to the system B and R. It is obvious
that jAj ¼ jĀj and jBj ¼ jRj. The prefactor

ffiffiffiffiffiffiffijDjp
in

Eq. (2.1) is introduced to guarantee the normalization
condition

hΨHPjψHpi ¼ 1: ð2:3Þ

The calculation of the norm of the state jΨHPi is given in
the Appendix A 1.
We now consider under which condition the information

carried by A can be retrieved by decoding the radiation.
This can be obtained by judging the disentanglement
between the reference system Ā and the remainder black
hole C. To this aim, we consider the following quantity

kρĀC − ρĀ ⊗ ρCk1 ¼
Z

dUkρĀC − ρĀ ⊗ ρCk1: ð2:4Þ

Here, kOk1 ¼ Tr
ffiffiffiffiffiffiffiffiffiffi
O†O

p
is defined as the trace distance of

the operator O. The reduced density matrices of the

FIG. 1. Hayden-Preskill thought experiment and its decoder.
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corresponding subsystems are denoted as ρĀC, ρĀ and ρC,
respectively. The integral

R
dU stands for the integration of

the unitary operator U over the Haar measure. The quantity
in Eq. (2.4) describes the Haar average distance between
the reduced state ρĀC and the direct product of ρĀ and ρC. If
there is no entanglement between the subsystems Ā and C,
this quantity should be small enough.
For the original Hayden-Preskill protocol, the reduced

density matrices for the subsystem Ā and C are just the
maximally mixed density matrix. Here, with the projective
measurement on D, ρC is still maximally mixed, but ρĀ is
not. Therefore, it is reasonable to consider the quantity in
Eq. (2.4) instead of the quantity with ρĀ and ρC are
maximally mixed.
It can be shown that [30]

kρĀC − ρĀ ⊗ ρCk1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
jĀjjCj

q
½Trðρ2ĀCÞ

− TrðρĀC · ðρĀ ⊗ ρCÞÞ�12; ð2:5Þ

where we have used the fact that

Tr½ρĀC · ðρĀ ⊗ ρCÞ� ¼ Tr½ðρĀ ⊗ ρCÞ2�: ð2:6Þ

Explicit calculations (see Appendix A 2 and A 3) show that

Trðρ2ĀCÞ ¼
1

ðd2 − 1Þ
�
jAjdþ jDj

jAj d −
jAjjDj
d

−
d
jAj

�
; ð2:7Þ

Tr½ρĀC · ðρĀ ⊗ ρCÞ�

¼ 1

ðd2 − 1Þ
� jAj
jCj2 dþ jBj

jCj d −
jAj
jCj −

jBj
jCj2

�
: ð2:8Þ

where d is the dimension of the Hilbert space that the
scrambling operator U acts on. Note that d ¼ jAjjBj ¼
jCjjDj for an unitary dynamics.
Combining the previous results, we have the following

inequality

kρĀC − ρĀ ⊗ ρCk1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjAj2 − 1ÞðjCj2 − 1ÞjDj

ðd2 − 1Þ

s

≈
jAjffiffiffiffiffiffiffijDjp ; ð2:9Þ

where in the approximation we have used the assumption
that all the subsystems are large enough.
One can perform the estimation of the quantity given in

Eq. (2.4) by replacing the reduced density matrices ρĀ with
the maximally mixed, one can obtain the result

����ρĀC −
1

jĀjjCj IĀ ⊗ IC

����
1

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjAj2 − 1ÞðjCj2jDj − 1Þ

ðd2 − 1Þ

s
:

ð2:10Þ

For sufficiently large subsystems, the results presented in
Eq. (2.9) and (2.10) have no difference. The reason is that
on the average, the reduced density matrices ρĀ has no
difference compared with the maximally mixed one.
The inequality means that if the decoupling condition

jDj ≫ jAj2 ð2:11Þ

is attained, the reference subsystem is not entangled with
the black hole any longer and the information contained in
the subsystem A can be retrieved from decoding the early
radiation R.
Let us give more discussions on the model and the

results. Originally, this kind of model was suggested by
Yoshida as a simply toy model that reproduces the features
of monitored quantum circuits. The monitored quantum
circuits consist of both the unitary scrambling dynamics
and the local projective measurements. It is generally
believed that the local projective measurement break the
long range quantum entanglement. From the viewpoint of
quantum error correction, the local quantum information is
encoded into a larger physical space by the unitary
scrambling dynamics. Therefore, the local projective meas-
urement cannot destroy the initial quantum state easily, as
we have shown by the explicit calculations.
In fact, by turning the graph in Eq. (2.1) upside down and

adding a series of scrambling operators and local projective
measurements between the initial state and the final state, it
can be transformed into a monitored quantum circuits. The
insight from the monitored quantum circuits indicates that
as long as the qubits number nA of subsystem A is small
than the half of the qubits nD of subsystem D, the output
subsystems A and B of the monitored quantum circuit are
maximally entangled despite the detailed properties of the
scrambling dynamics and the initial state. This condition is
consistent with the decoupling condition. Therefore, the
retrievable of quantum information from the black hole
with projective measurement is equivalent to the entangle-
ment preserving in monitored quantum circuits [20].

B. Yoshida-Kitaev decoding protocol

Now we consider whether the Yoshida-Kitaev decoding
protocol still works for the Hayden-Preskill protocol with
the projective measurement. In this case, the late radiation
subsystem D has been projected onto a specific state. The
decoder can only apply the local operations on the early
radiation subsystem R.
Given the Hayden-Preskill state jΨHPi as graphically

represented in Eq. (2.1), the Yoshida-Kitaev decoding
protocol proceeds as follows:
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(1) Prepare a copy of jEPRiĀA, denoted as jEPRiA0Ā0 .
(2) Apply U� on RA0. We denote the resultant state as

the state jΨini. It can be graphically represented as

ð2:12Þ
It can be checked that jΨini is normalized, i.e.
hΨinjΨini¼1.
The calculation is presented in A 4.

(3) Do the projective measurement on D0. If the out-
come is j0i, it means the successful decoding of the
initial information contained in A. We denote the
resultant state as jΨouti, which can be graphically
represented as

ð2:13Þ
An additional prefactor 1ffiffiffi

P
p is introduced to preserve

the normalization of jΨouti. It is actually the projec-
ting probability of the subsystem D0 onto j0i.

At this stage, let us discuss more on the local projective
measurement. In the present model, the projective measure-
ment is performed on the late radiation subsystem D, i.e. the
measurement is done by the decoder outside of the black hole.
After themeasurement, the decoder can only operate the early
radiation to recover the information. This is different from the
model studied in [21]. In that model, inspired by the non-
isometricmap [31], a portionof blackhole degrees of freedom
is post-selected onto fixed state. Thepost-selectionhappens in
the black hole interior and the decoder can still operate the
early and the late radiation to recover the information.
One can also imagine that the local projective measure-

ment is performed by an intruder who has the access only to
the late radiationD. Then the current model is similar to the
model suggested by Yan et al. in [32]. However, their model
is not based on the framework of black hole scrambling. It is
shown that the decoder who has the access to the partially
destroyed system can still recover the initial information by
applying the time reversal unitary dynamics and using the
technique of quantumstate tomography.Here, the situation is
a little different. The subsystem C, which is the remainder
black hole, is not available to the external decoder. The
decoder can only apply the local operations on the early
radiation and the local measurement on the outcome sub-
systemD0. In principle, the quantumstate of the subsystemD
after the measurement of the intruder is not known to the
decoder, although the intruder cannot get anything useful
about the initial state. In this case, thedecoder can also invoke
the technique of quantum state tomography to perfectly

reconstruct the state of the subsystemD. This will allow the
decoder to compare his measurement outcome with the
quantum state of the subsystem D. Therefore, the Yoshida-
Kitaev decoding protocol can in principally be applied to
recover the information in the case that the projective
measurement is performed by an intruder.
The Yoshida-Kitaev decoding protocol is a probabilistic

one. We confront with the following two questions: (1) the
probability of successful decoding, i.e., the probability of the
projecting the state of D0 onto j0i; (2) the decoding fidelity
measured by the matching of the state jΨouti with the state
jEPRiĀĀ0 , which quantifies the quality of the decoding.
Using the graphical representation, the decoding prob-

ability is given by

ð2:14Þ
where the graph is just the representation of Trðρ2ĀCÞ.
Therefore, one can calculate the Haar average of the
decoding probability as

P̄ ¼
Z

dUP ¼ jBj
jDj

Z
dUTrðρ2ĀCÞ

¼ 1

ðd2 − 1Þ
�

d2

jAj2 þ
d2

jDj −
d2

jAj2jDj − 1

�
≈

1

jAj2 ; ð2:15Þ

where in the last step we have used the decoupling
condition Eq. (2.11). It shows that, in the current model,
although we should collect more radiation from the black
hole to complete the decoding task, the decoding proba-
bility in the ideal case is the same as the original Hayden-
Preskill protocol, which only depends on the Hilbert space
dimension of the initial infalling subsystem A.
The decoding fidelity can be calculated as

ð2:16Þ

QUANTUM INFORMATION RECOVERY FROM A BLACK HOLE … PHYS. REV. D 110, 026010 (2024)

026010-5



where in the last step we have used the average decoding
probability P ≈ 1

jAj2 when the decoupling condition is

perfectly satisfied.
In the above equation, it also shows that the decoding

fidelity is inversely proportional to the decoding probability
as F ¼ 1

jAj2P, which means a small decoding probability

resulting in the high decoding quality. In the original
decoding strategy [12], the subsystems D and D0 are
projected onto the EPR state. Here, they are projected
onto the direct product state j0iD ⊗ j0iD0 . It is known that
the computational basis can be transformed onto the bell
basis by using a simple unitary matrix. This implies that the
two kinds of projections are equivalent. Our results
presented in Eq. (2.15) and (2.16) also confirm this point
as long as the decoupling condition is satisfied.
It should be pointed out that the results presented in

Eq. (2.15) and (2.16) are obtained under the assumption
that the time evolution operator U is Haar random unitary.
This assumption is particularly useful in scenarios where
the exact nature of the time evolution operator in the black
hole interior is not known for an outside observer.
Furthermore, the assumption simplifies the analysis and
allows an analytical treatment of the decoding probability
and fidelity. However, the assumption is different from the
original one made in [12], where for the model without
projective measurement, the operator U is assumed to be a
general scrambling unitary and the results for the decoding
probability and fidelity are given by the out-of-time-order
correlators (OTOCs) at the late time. Both approaches offer
valuable insights into the problem of the information
recovery from the black hole.

III. RELATION TO BLACK HOLE FINAL
STATE PROPOSAL

The final state projection model of black hole evaporation
proposed by Horowitz and Maldacena (HM) aimed to
resolve the paradox of the Hawking’s semiclassical predic-
tion with the unitary of black hole by postselecting the
quantum state of black hole interior onto the maximally
entangled state at the singularity [26]. This model also
inspired the recent proposal of the nonisometric holographic
mapof the blackhole interior [31],which states that at the late
times of Hawking evaporation, a large portion of the degrees
of freedom in the black hole interior from the effective field
theory description is annihilated by the holographic map to
the fundamental degrees of freedom.
The HM proposal (shown in the left panel of Fig. 2),

states that the infalling matter system A and the interior
Hawking partner modes Rin are post-selected onto a
specific entangled state. This is similar to quantum tele-
portation circuit, where the quantum information contained
in the infalling matter system effectively flows backward in
time and can be recovered from the radiation outside of the
black hole. However, the original HM proposal does not

take the scrambling dynamics in the black hole interior into
account. In fact the interaction between the infalling matter
system and the infalling partner system of the radiation
inside of the black hole can effectively reduce the fidelity of
the teleportation as discussed by Gottesman and Preskill
in [33].
Lloyd and Preskill proposed a generic final state model

[27], which is illustrated in Fig. 3. Here, we consider a
slightly different circuit but essentially the same version as
the model proposed by Lloyd and Preskill. The meanings
for the subsystem A, Ā, R and B are interpreted in the
caption of Fig. 3. After the scrambling dynamics between A
and B inside the event horizon, at the singularity the interior
degrees of freedom are all projected onto the specific state
j0i. The interaction can effectively result in that the state of
B and R used in the teleportation protocol will not be
maximally entangled.

FIG. 2. The original final state models proposed by Horowitz
and Maldacena (left) and Gottesman and Preskill (right). The
infalling matter system A and the interior Hawking partner modes
Rin are post-selected onto a specific entangled state. In the left
panel, S is a unitary operator. In the right panel, U is the
scrambling operator that represents the interaction between in
infalling matter and the interior modes.

FIG. 3. The generic final state model proposed by Lloyd and
Preskill. In this circuit, the infalling matter A is entangled with a
reference system Ā and the black hole B is entangled with the
radiation R.
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It is apparent that this version of the final state model can
be properly interpreted as the Hayden-Preskill protocol
where the projective measurement is performed on the
whole outcome of the scrambling dynamics. Our previous
discussions can be properly applied in this model by setting
jCj ¼ 1. For the decoupling condition given in Eq. (2.11) is
converted into by noting that jDj ¼ jAjjBj here

jBj ≫ jAj: ð3:1Þ

Note that jBj ¼ jRj. The above equation also implies that
the quantum information can be retrieved from the radiation
R as long as the Hilbert space of the radiation R is greater
than that of the infalling matter system A. Therefore, the
Yoshida-Kitaev decoding protocol can also be introduced
to decode the initial quantum information contained in A.
The decoding protocol is explicitly illustrated in Figure 4.
In this protocol, one may suspect that there is no way to
compare the measurement outcomes of D0 with the final
state h0jD of the black hole because there is no classical
channel to transport the measurement results inside of the
event horizon out. The essential point is that the final state
measurement or post-selection should be understand as the
boundary condition at the singularity which is prior to the
outside observers. Thus, there is no need of classical
communication to convey the measurement results. The
decoding probability and the fidelity are given by

P̄ ¼ 1

ðd2 − 1Þ
�
jBj2 þ jAjjBj − 1 −

jBj
jAj

�
;

F ¼ 1

PjAj2 : ð3:2Þ

In the large d and large jBj limit, the decoding proba-
bility is still approximated by P ≈ 1

jAj2 and the fidelity

attains the maximal value 1 in the ideal case.
Actually, the decoding problem is also related to entan-

glement distillation, which refers to a protocol in quantum
information theory where high-quality entangled state is
generated or extracted from a collection of lower-quality
or mixed entangled state. The decoupling condition in
Eq. (3.1) indicates that the reference subsystem Ā and the
radiation R are in a lower-quality entangled state. The goal

of entanglement distillation is to produce more pure and
stronger entangled states. The distillation protocol involves
local operations and classical communication (LOCC)
among the entangled parties to purify the entangled states
by filtering out noise and unwanted components, ultimately
enhancing the overall entanglement content. In the current
model, the problem is how to use the LOCC to decompose
R into a bipartite system R1 and R2 and make sure that Ā
and R1 are in the EPR state.
Inspired by the spirit of entanglement distillation, we can

revise the decoding protocol by only measuring a portion
degrees of freedom for the output of the scrambling U�, as
shown in Fig. 5. In this protocol, the scramblingU� and the
measurement on the subsystem D0 can be viewed as a
distillation protocol. Although the subsystem D0 is ran-
domly selected, the Hilbert space dimension jD0j is
imposed to satisfy the relation

jD0j ¼ jAj2; ð3:3Þ

in order to guarantee jC0jjA0j ¼ jRj.
An explicit calculations show that the decoding proba-

bility and the fidelity are given by

P̄ ¼ 1

ðd2 − 1Þ
�
2jBj2 − 1 −

jBj2
jAj2

�
;

F ¼ 1

PjAj2 : ð3:4Þ

Thus in the large d and large jBj limit, the probability is
doubled compared with the protocol in Fig. 4 with the loss
of the decoding quality.

IV. RECOVERY CHANNEL WITH PROJECTIVE
MEASUREMENT AS PETZ MAP

Hayden-Preskill protocol can be viewed as a quantum
channel from the subsystem A to the subsystem DR. When
the decoupling condition is satisfied, the channel is
recoverable. The recovery channel is known as Petz
map. Recent study revealed the relationship between the
Yoshida-Kitaev protocol and Petz map [28]. It shows that

FIG. 4. The decoding protocol for the generic final state model. FIG. 5. The decoding protocol for the generic final state model
where only a portion of the output of scrambling operator U� is
measured.
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the Yoshida-Kitaev protocol as a quantum channel can be
written in the form of Petz map. In this section, we will
discuss whether the Yoshida-Kitaev protocol for the quan-
tum information recovery in the Hayden-Preskill experi-
ment with the projective measurement can be rewritten as
the form of Petz map. We will mainly use the graphical
representations to derive the result.
In this section, we consider the case that only the

subsystem A is thrown into the black hole B, i.e. the
reference system Ā will not be presented for instance. In
Fig. 6, we have illustrated the Hayden-Preskill protocol and
the Yoshida-Kitaev protocol explicitly. From the viewpoint
of quantum error correction code, the state ρA of the
subsystem A is the logical state, which is encoded in
subsystem R by the scrambling with the black hole B and
the local projective measurement on the subsystem D. In
the present case, the Hayden-Preskill protocol can be
treated as a quantum channel from HA to HR. It can be
written as the form of quantum channel

ð4:1Þ

where the factor jDj is introduced to guarantee that the
channel is trace-preserving.
It was shown that the Hayden-Preskill channel is

reversible if the decoupling condition is satisfied. The
recovery channel is the well known Petz map [34–36]. For a
state ωR in HR, it is explicitly given by

RPetz½ωR� ¼ σ
1
2N †

HP½N HP½σ�−1
2ωRN HP½σ�−1

2�σ1
2; ð4:2Þ

where σ is an arbitrary full rank density matrix on HA and
N †

HP is the adjoint channel of N HP. For an arbitrary state
ρA in HA, the Petz map can recover the state N HP½ρA� as

RPetz∘N ½ρA� ¼ ρA: ð4:3Þ

For a scrambling channelN HP,N HP½σ� has a nearly flat
spectrum and can be approximated by a maximally mixed
state. It turns out that the Petz recovery map can be
simplified as

RPetz ∼N †
HP: ð4:4Þ

In the following, we will show that the Yoshida-Kitaev
protocol, which can also be treated as a quantum channel, is
identical to the N †

HP up to a normalization factor.
The adjoint channel of N HP is defined as

TrR½N HP½ρA�OR� ¼ TrA½ρAN †
HP½OR��; ð4:5Þ

where OR is an arbitrary operator acting on HR. By using
the graphical representation, we have

ð4:6Þ

where an identical transformation between two graphs are
performed. Combining Eq. (4.5) and Eq. (4.6), we can
obtain the adjoint channel of NHP as

ð4:7Þ

FIG. 6. Hayden-Preskill protocol (contained in blue box) and
Yoshida-Kitaev decoding protocol (contained in red box).
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which can be rewritten as

N †
HP½ωR� ¼ jDjhEPRjBRUT

CD ⊗ IRðIC ⊗ j0iDh0j
⊗ ωRÞU�

CD ⊗ IRjEPRiBR: ð4:8Þ

Now let us consider the quantum channel corresponding
to Yoshida-Kitaev protocol. From Fig. 6, the decoding
protocol written as the form of quantum channel is given by

RYK½ωR� ¼ jDjTrC0 ½h0jDU�
RA0 ⊗ IĀ0 ðωR ⊗ jEPRiA0Ā0

× hEPRjÞUT
RA0 ⊗ IĀ0 j0iD�: ð4:9Þ

Again, using the graphical representation, it is also given as

ð4:10Þ

It is easy to see that the graph representation of the Yoshida-
Kitaev channel is identical to the graph of the adjoint
channel of Hayden-Preskill channel up to a factor jBj

jAj.
Therefore, we have

RYK ¼ jBj
jAjN

†
HP: ð4:11Þ

One may concern the output of the channel N †
HP is

different from the output of the channel RYK because
one is a density matrix on HA and another is a density
matrix on HĀ0 . This can be easily fixed by noting that the
two Hilbert spaces are isometric.
In summary, by using the graphical representations, we

have shown that the Yoshida-Kitaev decoding protocol for
the Hayden-Preskill experiment with the local projective
measurement is equivalent to the Petz recovery channel.
Compared the approach employed in [28], our derivation
provides a more direct and intuitive insight into the
equivalence between the Yoshida-Kitaev decoding protocol
and the Petz recovery map.

V. INFORMATION RECOVERY WITH
PROJECTIVE MEASUREMENT

IN NOISE CHANNELS

In this section, we consider the decoherence effects on
the information recovery with projective measurement. For
this aim, we model the decoherence with the most common

quantum channels: depolarizing channel. A detailed dis-
cussion on the depolarizing channel is carried out, which
shows the significance impact on the decoding probability
and fidelity. We also briefly comment on another kind of
quantum channel: dephasing channel, which shows that
there is no effect on the decoding protocol.

A. Depolarizing channel

The depolarizing channel is given by [29]

QðρÞ ¼ ð1 − pÞUρU† þ p
Id̃
d̃
; ð5:1Þ

where p is the probability of the decoherence, d̃ is the
dimension of the densitymatrixρ and Id̃ is the identitymatrix
of dimension d̃. The depolarizing channel is a “worst-case
scenario” channel. It is clear that the input density matrix is
replaced by themaximallymixed statewith the probabilityp.
When p ¼ 0, there is no decoherence. When p ¼ 1, the
channel is full depolarizing.
In this case, the Hayden-Preskill state with the projective

measurement is replaced with

ð5:2Þ

where the prefactor is to preserve the normalization. As an
intuitive understanding of how the depolarizing channel
works, one can refer to Appendix A 5 for the calculation of
the normalization of this state.
It is expected that the decoupling condition may be

changed. However, a detailed calculation shows that it is
unchanged. Let us consider the following quantity as the
one without decoherence noise

kρ̃ĀC − ρ̃Ā ⊗ ρ̃Ck1 ≤
ffiffiffiffiffiffiffiffiffiffiffiffi
jĀjjCj

q
½Trðρ̃2ĀCÞ

− Trðρ̃ĀC · ðρ̃Ā ⊗ ρ̃CÞÞ�12; ð5:3Þ

where the reduced density matrices are obtained from the
Hayden-Preskill state in Eq. (5.2).
Using the results from Appendix A 6 and A 7, the

inequality can be estimated as
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ðkρ̃ĀC − ρ̃Ā ⊗ ρ̃Ck1Þ2 ≤
�jAj2
d2

−
ð1 − pÞ2
ðd2 − 1Þ

�
1 −

1

jBj2
��

× ðjCj2 − 1ÞjDj

≈
jAj2
jDj ; ð5:4Þ

where in the second step we have used the approximation
condition that the subsystems are large enough. This result
shows that in the depolarizing channel, the decoupling
condition does not change, and is still given by Eq. (2.11).
We now proceed to apply the Yoshida-Kitaev protocol to

recover the quantum information from the depolarizing
channel. The protocol works the same manner as discussed
in the previous section, except the scrambling operators U
and U† are replaced with the completely positive and trace
preserving quantum channel Q.
The decoding probability P can be graphically repre-

sented by

ð5:5Þ

A straightforward graphical calculation then yields the
Haar average of the probability as

P̄ ¼ ð1 − pÞ2
ðd2 − 1Þ

�
d2

jAj2 þ
d2

jDj −
d2

jAj2jDj − 1

�
þ ð2p − p2Þ

jDj

≈
ð1 − pÞ2
jAj2 þ 1

jDj −
ð1 − pÞ2
jAj2jDj −O

�
1

d2

�
; ð5:6Þ

where in the second step we have used the large d
approximation. When the decoupling condition is perfectly
satisfied and the depolarizing probability is small, the
decoding probability can be written as

P̄ ≈
ð1 − pÞ2
jAj2 ; ð5:7Þ

which is smaller than the decoding probability without the
decoherence noise. As compared with the result for the
decoding probability given in Eq. (2.15), this result
indicates that the noise quantum channel can reduce the
decoding probability.
In addition, in the limit case with the decoherence

probability p ¼ 1, the average decoding probability is
P̄ ¼ 1

jDj. However, this result is entirely unreasonable.

Because, in this case, the initial entangled subsystems Ā

and A do not interact with the auxilliary subsystems A0 and
Ā0 any longer. The Yoshida-Kitaev protocol does not work.
Now let us turn to the calculation of the decoding

fidelity. Using the graphical representation, the decoding
fidelity can be straightforwardly calculated as follows

ð5:8Þ

This result suggests that

FP ¼ 1

jAj2
�
ð1 − pÞ2 þ ð2p − p2Þ

jDj
�
: ð5:9Þ

By using the Haar average of the decoding probability
given in Eq. (5.6), one can get

F ≈ 1 −
1

ð1 − pÞ2
ðjAj2 − 1Þ

jDj ≈ 1 −
1

ð1 − pÞ2
jAj2
jDj ; ð5:10Þ

where the decoupling condition and the large subsystem
approximation are used. The fidelity is always smaller than
1 when the decoherence effects are considered. It is also
obvious that the decoding fidelity decreases along with the
increasing of the depolarizing probability p. This is to say
that the decoherence also reduces the decoding fidelity. In
the depolarizing channel (5.1), the last term represents the
case where an error appears with the probability p. If the
error takes places, the quantum state is completely depo-
larized, i.e., it is transformed into the maximally mixed
state. This means a loss of information contained in the
system. Therefore, the fidelity of the Yoshida-Kitaev
protocol cannot reach the value of the ideal case without
the decoherence, although the decoupling conditions (2.11)
and (5.4) for the two cases are apparently identical.
Recall that the Yoshida-Kitaev protocol is analogous to

the quantum teleportation [37]. It is known that for the
random pure input state of an individual qubit [38], the
maximal average fidelity reachable by the perfect telepor-
tation protocol is 2

3
. For a random mixed state [39,40], the

maximal mean fidelity is given by FQT ¼ 0.811. As we
have seen in the last section, for the perfect decoding
protocol, the fidelity can reach nearly 1. This means that the
scrambling dynamics can improve the fidelity greatly
compared with the classical quantum teleportation proto-
col. This is to say that a successful decoding always serves
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as a definite signature of quantum scrambling. However,
when considering the decoherence effects, the fidelity is
strictly less than unity. In this way, one can estimate the
threshold value of the decoherence probability as

p ¼ 1 −
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijDjð1 − FQTÞ

p ; ð5:11Þ

where we have set jAj ¼ 2 for the case that only one qubit is
thrown into the black hole. When the decoherence prob-
ability p is greater than this threshold value, the advantage
of scrambling dynamics in teleporting the quantum state by
using the Hayden-Preskill protocol is not significant com-
pared to that by using the classical teleportation protocol.
At last, let us comment on the decoding probability and

the fidelity for the depolarizing channel without projective
measurement. In [13], the author considered the Yoshida-
Kitaev protocol with the decoherence noise. It is argued
that by jointly measuring both the decoding probability and
the decoding fidelity, one can directly extract the precise
“noise” parameter p which quantitatively captures the
nonscrambling-induced decay of out-of-time-order corre-
lation functions, thereby characterizing the amount of noise
in the quantum channel. The argument is based on the
observation that the product of the probability and the
fidelity is given by

FP ¼ 1

jAj2
�
ð1 − pÞ2 þ ð2p − p2Þ

jDj2
�
: ð5:12Þ

This relation is for the decoding protocol without projective
measurement, and is slightly different from the one given in
Eq. (5.9). However, the Haar average of the probability and
the fidelity are not explicitly presented. Here, by using the
graphical calculations, we can get

P̄ ¼ ð1 − pÞ2
ðd2 − 1Þ

�
d2

jAj2 þ
d2

jDj2 −
d2

jAj2jDj2 − 1

�
þ ð2p − p2Þ

jDj2

≈
ð1 − pÞ2
jAj2 þ 1

jDj2 −
ð1 − pÞ2
jAj2jDj2 −O

�
1

d2

�
; ð5:13Þ

and

F ¼ 1

jAj2P
�
ð1 − pÞ2 þ ð2p − p2Þ

jDj2
�
≈ 1 −

1

ð1 − pÞ2
jAj2
jDj2 :

ð5:14Þ
The last equation shows that, when the decoupling con-
dition is perfectly satisfied, the measurement of the
decoding fidelity is sufficient to extract the noise parameter.

B. On dephasing channel

The dephasing channel is also one of the most common
decoherence channels. It is a unital map that destroys the

relative phases between the computational basis states
fjkig. It is defined as [41]

ΛðρÞ ¼ ð1 − pÞρþ p
Xd̃−1
k¼0

PkρPk; ð5:15Þ

with the projector Pk ¼ jkihkj and d̃ being the dimension of
the Hilbert space. The parameter p∈ ½0; 1� characterizes
the noise strength. When p ¼ 0, there is no noise. When
p ¼ 1, the noise is maximal and the coherence vanishes
completely.
In general, the effect of the dephasing channel is to

eliminate the off-diagonal terms of the density operator
when represented with respect to the computational basis.
For our case, we consider the dephasing channel acting on
the following density matrix

ρ ¼ jEPRiĀAhEPRj ⊗ jEPRiBRhEPRj: ð5:16Þ

It is obvious that the EPR state in computational basis is
diagonal. Therefore, the resulting density operator in the
dephasing channel is the same as the input one. We can
conclude that the dephasing channel has no effect on the
Yoshida-Kitaev decoding protocol.

VI. QUANTUM SIMULATION OF INFORMATION
RECOVERY WITH PROJECTIVE

MEASUREMENT

In this section, we will try to implement the Yoshida-
Ketaev protocol on the quantum processors to verify the
feasibility of the information recovery from the black hole
with the projective measurement. The scrambling operator
are modeled by the 3-qubit scrambling unitary [13], which
can disperse all single-qubit operators into three-qubit
operators [21]. We are examining two aspects: one for
teleporting the quantum state and another for teleporting
quantum entanglement.
The circuit for teleporting quantum state is shown in

Fig. 7. It can be divided into three parts. In the first part,
the entangled pairs are prepared by using the Hadamard
gate and controlled-X gate. Then the first six qubits are
scrambled by a series of controlled-Z gates and Hadamard
gates. At last, five qubits are measured. In this circuit, we
want to teleport the quantum state of qubit q0 to qubit q6.
The circuit was executed on the IBM-brisbane processor.
The measurement outcomes are given in Fig. 8.
Recall the decoding protocol presented in Eq. (2.13), the

measurement on qubits q1 and q2 is to model the projective
measurement of the subsystem D and the measurement on
q3 and q4 is to model the measurement on the subsystem
D0. If the two measurement outcomes coincide, for in-
stance, if both are “00” as we have selected, it signifies that
the state ofD0 is projected onto the same state ofD. The red
and the blue bars in Fig. 8 represent this case. Thus we can
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compute the decoding probability as P ¼ 43.1%. The
successful decoding means recovering the quantum
state of q0 on qubit q6. The measurement outcome of q6
being “0” means a successful decoding. Thus the red bar
represents the frequency of successful decoding event. The
decoding fidelity is computed as F ¼ 92.9%, which means
a high quality of teleporting quantum state toward this
circuit.
The circuit for teleporting quantum entanglement is

shown in Fig. 9. This circuit is similar to that for telepor-
ting the state. However, by using this circuit, we want to
teleport the entanglement between q0 and q1 to q0 and q7.
Therefore, in the final step, we perform an entanglement
measurement on q0 and q7. The circuit was executed on the
IBM-kyoto processor. The measurement outcomes are
given in Fig. 10.
In this case, the red and the blue bars in Fig. 10 also

represent the successful projection ofD0 onto the same state

FIG. 7. Quantum circuit for teleporting quantum state.
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FIG. 8. The measurement outcomes from executing the circuit
in Fig. 7 on IBM-brisbane quantum processor. The horizontal
axis represents the measurement outcome of q1q2q3q4q6 and the
vertical axis represents the corresponding frequency.

FIG. 9. Quantum circuit for teleporting quantum entanglement.
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with D. The decoding probability is given by P ¼ 42.0%.
The successful teleportation of quantum entanglement is
indicated by themeasurement outcomes of q0 and q7 is “00”,
which is represented by the red bar in the chart. Thus the
decoding fidelity is given byF ¼ 41.4%. It indicates that the
quality of teleporting quantum entanglement is significantly
lower than that of teleporting the quantum state.
The simulation results indicate that as long as we have an

efficient quantum processor, the recovery of information
from black hole is achievable. It is generally conjectured
that black holes are the fast scramblers in nature [10,42,43].
In addition, from the perspective of quantum mechanics,
the dynamics of black holes as an isolated objects must
be unitary. Therefore, the interior dynamics of black hole
is generally modeled by a random unitary operator [7,8].
Our simulations of the decoding protocols on the quantum
processors employ the assumption that the interior unitary
dynamics of black hole is known to the external observers.
Recent study shows that the assumption is not necessary
[16,44]. It is demonstrated that even without the prior
knowledge of the internal dynamics, the information swal-
lowed by a black hole can be recovered by the external
observer using a strategy from quantum machine learning.
By throwing test information into the black hole and
analyzing the outgoing Hawking radiation, the decoder
can in principle learn how to construct a Clifford circuit to
decode the information. Therefore, this strategymay provide
an essential tool for decoding Hawking radiation. On the
other hand, it challenges the assumption of black hole
scrambling.

VII. CONCLUSION AND DISCUSSION

In summary, we have explored various aspects related to
the Hayden-Preskill thought experiment with the local
projective measurement. The measurement is assumed to

be applied on the Hawking radiation that was emitted after
throwing the quantum diary into the black hole. First, in
Sec. II, we have shown that the Yoshida-Kitaev probabi-
listic decoding strategy can be properly applied to recover
information from the Hayden-Preskill protocol with the
projective measurement. The decoding probability and
fidelity are explicitly calculated by using the graphical
representation technique, which shows a small decoding
probability resulting in the high decoding quality.
Then we discuss the relation between the model with

projective measurement and the black hole final state
model. For the generic final state model, we discuss two
types of decoding protocols, distinguished by how much
degrees of freedom are projected. For the first protocol, all
the output degrees of freedom from the scrambling dynam-
ics are projected, which shows the similar decoding
probability and fidelity as obtained in Sec. II. For the
second protocol, only a portion of degrees of freedom is
projected. The results for the decoding probability and
fidelity show that the probability can be enhanced with the
cost of decoding quality.
We also illustrated that the Yishida-Kitaev decoding

protocol treated as a quantum channel is equivalent to the
Petz recovery channel for the Hayden-Preskill protocol
with the local projective measurement. The derivation is
mainly completed by using the graphical representations,
which indicates that this technique is a powerful tool in
studying the problems related to the black hole information.
Then by taking the decoherence or the noise into

account, we studied their effects on the projective meas-
urement model. We have investigated two types of
decoherence channels: the depolarizing channel and the
dephasing channel. Toward explicit calculations, we show
that the depolarizing channel can reduce the decoding
probability as well as the fidelity. Conversely, the dephas-
ing channel has no impact on the decoding procedure.
Finally, we have conducted an experimental simulation

of the decoding protocol using the quantum processors.
We execute two circuits on the quantum processor, one
for teleporting the quantum state and another for tele-
porting the quantum entanglement. It is shown that the
Yoshida-Kitaev protocol for teleporting quantum state is
superior to the protocol for teleporting quantum
entanglement.
It should be noted that we only apply the probabilistic

decoding strategy to the model with the projective mea-
surement. For future direction, it is interesting to study
how the deterministic decoding strategy proposed in [12]
can be applied to the present model. The deterministic
decoding strategy invokes a Grover search algorithm to
recover the initial state of the matter system. In general,
the deterministic strategy can improve the decoding
probability with the cost of the computational complexity
[12,13,21]. Therefore, applying the deterministic strategy
to the model with the projective measurement will allow
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FIG. 10. The measurement outcomes from executing the circuit
in Fig. 9 on IBM-kyoto quantum processor. The horizontal axis
represents the measurement outcome of q1q2q3q4q6q0 and the
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us to analyze the computational complexity and compare
it with the original setup.
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APPENDIX: CALCULATIONS OF THE HAAR
AVERAGES USING THE GRAPHICAL

REPRESENTATIONS

In this appendix, we give the graphical represen-
tations for the calculations of the Haar average. The
Haar integral formulas used in our computation are given
by [45,46] Z

dUUijU
†
j0i0 ¼

1

d
δii0δjj0 ; ðA1Þ

Z
dUUi1j1Ui2j2U

†
j0
1
i0
1
U†

j0
2
i0
2

¼ 1

ðd2− 1Þ ðδi1i01δi2i02δj1j01δj2j02 þ δi1i02δi2i01δj1j02δj2j01Þ

−
1

dðd2− 1Þ ðδi1i01δi2i02δj1j02δj2j01 þ δi1i02δi2i01δj1j01δj2j02Þ: ðA2Þ

It is convenient to represent the integral formulas in the
graphical form

ðA3Þ

ðA4Þ

These graphical representations provide a convenient way to calculate the Haar averages. In the following, we will present
the detailed calculations of some of the results presented in the main text.

1. The normalization of the Hayden-Preskill state
with projective measurement

For the Hayden-Preskill state jΨHPi in Eq. (2.1), its conjugate state is given by reversing the graphical representation
of jΨHPi

ðA5Þ

The norm of the Hayden-Preskill state is then given by
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ðA6Þ

Note that the topology and connectivity of the identical
graphs remain unchanged throughout the transformation
between them. Additionally, we also use the fact that a loop
effectively contributes the result with a factor correspond-
ing to the dimension of the associated Hilbert space.

2. Calculation of Haar average of Trðρ2
ĀC
Þ

The density matrix for the Hayden-Preskill state with the
projective measurement is given by

ðA7Þ

The reduced density matrix of for the combined subsystem
ĀC is given by tracing out the subsystem R as

ðA8Þ

For ρ2ĀC, we have

ðA9Þ

With some rearrangement, the trace of ρ2ĀC is then given by

ðA10Þ

In arriving at the above representation, we have used the
fact that
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ðA11Þ

The average can be early carried out by using the graphical representation of the Haar integral as

ðA12Þ

where we have used the identity d ¼ jAjjBj ¼ jCjjDj to
eliminate the unrelated factor jBj and jCj. This is the result
presented in Eq. (2.7).

3. Haar average of Tr½ρĀC · ðρĀ ⊗ ρCÞ�
As noted in the main text, the reduced density matrix of

the subsystem C is maximally mixed, i.e. ρC ¼ IC
jCj.

However, ρĀ is not, which can be explicitly given by

ðA13Þ

Then, Tr½ρĀC · ðρĀ ⊗ ρCÞ� can be graphically given by

ðA14Þ

Using the graphical representation of Haar integral, one
can get

¯Tr½ρĀC · ðρĀ ⊗ ρCÞ�

¼ 1

jCj3
�

1

ðd2 − 1Þ ðjAj
2jBjjCj þ jAjjBj2jCj2Þ

−
1

dðd2 − 1Þ ðjAj
2jBjjCj2 þ jAjjBj2jCjÞ

�
: ðA15Þ

With some simplification, one can get the result presented
in Eq. (2.8).
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4. The normalization of jΨini
The normalization of the state jΨini is easy to verify, which is given by as follows

ðA16Þ

5. The normalization of ρ̃HP

The acting of the depolarizing channel on the Hayden-Preskill state can be graphically represented as

ðA17Þ

The trace of gρHP can be obtained by connecting the corresponding endpoints. It is easy to see that the two graphs in the
above equation all give the same factor 1

jDj. Then the trace of ρ̃HP is given by

Trρ̃HP ¼ jDj
�
ð1 − pÞ 1

jDj þ
p
jDj

�
¼ 1: ðA18Þ
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From the above illustration, we can see that the depolariz-
ing channelQ can be decomposed into two parts: the first is
original density matrix without coherence and the second is
the completely depolarizing part which corresponds a
maximally mixed state.

6. Haar average of Trðρ̃2
AC
Þ

From the Hayden-Preskill state in Eq. (5.2), one can get
the reduced density matrix of the subsystem ĀC as

ðA19Þ

Then ρ̃2ĀC is given by

ðA20Þ

By noting that

ðA21Þ

the trace of ρ̃2ĀC is given by

ðA22Þ

By using the decomposition similar to Eq. (A17), one
can calculate the Haar average of ρ̃2ĀC. The procedure is
rather troublesome but the result can be written in a
compact form. The final result is given by

Trðρ̃2ĀCÞ ¼ ð1 − pÞ2Trðρ2ĀCÞ þ
ð2p − p2Þ

jBj ; ðA23Þ

where Trðρ2ĀCÞ has been calculated in Eq. (A12).

7. Haar average of Tr½ρ̃ĀC · ðρ̃Ā ⊗ ρ̃CÞ�
The calculation is similar to that is performed in

Appendix A 3. We briefly show the procedure. It is easy
to see that the reduced density matrix of the subsystem C is
a maximally mixed, i.e. ρ̃C ¼ IC

jCj. Therefore the following
equation is satisfied

Tr½ρ̃ĀC · ðρ̃Ā ⊗ ρ̃CÞ� ¼ Tr½ðρ̃Ā ⊗ ρ̃CÞ2�: ðA24Þ

The Haar average of Tr½ρ̃ĀC · ðρ̃Ā ⊗ ρ̃CÞ� can be calculated
by using the following graphical representation

ðA25Þ

The result is given by

Tr½ρ̃ĀC · ðρ̃Ā ⊗ ρ̃CÞ� ¼ ð1 − pÞ2Tr½ρĀC · ðρĀ ⊗ ρCÞ�

þ ð2p − p2Þ
jBjjCj2 ; ðA26Þ

where the first term on the right hand side is given
by Eq. (A15).
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