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In the framework of the convolutional double copy, we investigate the asymptotic symmetries of the
gravitational multiplet stemming from the residual symmetries of its single-copy constituents at null
infinity. We show that the asymptotic symmetries of Maxwell fields in D ¼ 4 imply “double-copy
supertranslations”, i.e., BMS supertranslations and two-form asymptotic symmetries, together with the
existence of infinitely many conserved charges involving the double-copy scalar. With the vector fields in
Lorenz gauge, the double-copy parameters display a radial expansion involving logarithmic subleading
terms, essential for the corresponding charges to be nonvanishing.
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I. INTRODUCTION

The double copy (DC) is a powerful formal tool that, in
its most basic incarnation, captures key properties of
gravity by suitably combining two copies of a gauge
theory. This idea is at the basis of outstanding achievements
in scattering amplitude calculations [1,2] and also applies,
properly reinterpreted, to classical solutions, either exact or
perturbative [3–6]. (See [7–10] for recent reviews and
extended references.) It is therefore natural to wonder
whether it also links the asymptotic symmetries of gravity
and gauge theories, which characterize their infrared
structure and lie at the heart of soft theorems and memory
effects [11].
In this work, we give a positive answer to this question

by showing that, starting from spin-one large gauge trans-
formations, the DC allows one to derive Bondi-Metzner-
Sachs (BMS) supertranslations at null infinity, together
with the asymptotic symmetries of two-form gauge fields.
Furthermore, one also finds an infinite set of conserved
charges for the scalar field, reproducing those originally
found in [12], whose rationale in this setting is a conse-
quence of the scalar field being part of a multiplet together
with graviton and two-form. A DC perspective on asymp-
totic symmetries can be found in [13], with reference to the
self-dual sectors of gauge and gravitational theories.
Further related works are [14,15].

The convolutional approach to the DC was developed
in [16–20] and further explored in [21–27] from an off shell
perspective. Its original goal was to investigate the meaning
of the DC itself at the level of symmetries, and in this sense,
it provides a natural framework for our purposes. In [23], in
particular, it was implemented at the Lagrangian level up to
the cubic order in the Maxwell-like setup of [28–30], which
delivers a simple off shell encoding of the degrees of
freedom of the full gravitational multiplet, including the
scalar particle. This is achieved by recognizing that a
gauge-invariant scalar can be encoded off shell in the trace
of the graviton upon restricting the gauge symmetries of the
latter to linearized volume-preserving diffeomorphisms.
The corresponding action provides a generalization of
unimodular gravity allowing one to encompass in a single
tensor the degrees of freedom of the graviton, the scalar and
the two-form field. The corresponding Lagrangian descrip-
tion bears a direct connection with the rank-two sector of
free tensionless strings [31–34].
We thus start from the linear Lagrangian equations

of [23] in D ¼ 4 and consider both vectors in Lorenz
gauge, so that all single-copy fields, including the spectator
scalar entering the definition (1) of the DC field, satisfy the
massless Klein-Gordon equation. In this gauge, in order to
identify nonvanishing asymptotic charges one has to allow
for a polyhomogeneous expansion of the spin-one gauge
parameters in the radial coordinate, involving logarithmic
terms at first subleading order [35,36].
Given these inputs, we apply the method of

regions [37,38] in order to evaluate the falloffs of the
DC multiplet and of the corresponding parameters at null
infinity. As a first output, we find in particular for both the
gravitational parameter and the two-form parameter
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polyhomogeneous radial scalings. For the graviton, we
recover in this way BMS supertranslations in de Donder
gauge as discussed in [39–41], with the corresponding
asymptotic behaviors. Differently, for the two-form in
Lorenz gauge, to our knowledge logarithmic falloffs for
the parameters were not considered before, and in this
sense, the output of the DC in this sector provides an
original description of the corresponding asymptotic sym-
metries. The main upshot of our analysis is that such
logarithmic falloffs of the parameters turn out to be actually
necessary in order for the corresponding two-form asymtp-
totic charge to be different from zero. The reason is the
same one that requires the presence of similar falloffs in the
spin-one and spin-two cases: namely, if one assumes pure
power-law radial behavior of the gauge parameters, in
Lorenz gauge for vector fields or in de Donder gauge for
gravitons, the relevant coefficients entering the asymptotic
charges actually vanish, due to the d’Alembert equation
that the parameters themselves have to obey in the
corresponding gauges. The same mechanism applies to
the two-form in Lorenz gauge, although it was seemingly
overlooked so far. In this sense, it is notable that the DC
automatically encodes the generality of the mechanism and
prescribes the proper logarithmic behaviour for the param-
eters of the multiplet.
Furthermore, as anticipated, our DC derivation also

provides a novel interpretation for the asymptotic charges
involving massless scalar fields. While their symmetry
origin may be traced back to the massless scalar in D ¼ 4
being dual to a two-form gauge field [42,43], in the DC
setup they emerge as a consequence of the existence of
supertranslation charges involving a traceful graviton,
whose trace actually defines a gauge-invariant and physical
degree of freedom.
The paper is organised as follows: in Sec. II we introduce

the basics of the convolutional DC, and in Sec. III we
analyze the behavior of the DC field at null infinity as an
output of the corresponding behavior of its single-copy
constituents, while in Sec. IV we repeat the analysis for the
gauge parameters. In Sec. V we study the asymptotic
symmetries of the DC field and interpret them in terms of
the individual particles of the corresponding multiplet; in
particular, in the spin-two sector we recover in Sec. VA both
the supertranslation charges and the asymptotic charges
involving the scalar field, here identified in the sector
involving the trace of the DC field. In Sec. V B we analyze
the two-form sector and observe the relevance of the
polyhomogeneous expansion of the parameters. Section VI
collects our conclusions and a summary of future directions.

II. CONVOLUTIONAL DOUBLE COPY

The DC field,

Hμν ¼ Aa
μ ∘Φ−1

aa0 ∘ Ãa0
ν ¼ Aμ⋆Ãν; ð1Þ

is defined as a double convolution in Cartesian coordinates,
where

½f∘g�ðxÞ ¼
Z

dDyfðyÞgðx − yÞ ð2Þ

denotes the standard convolution, Aa
μ and Ãa0

ν are gauge
fields taking values in two generically different Lie
algebras, so that a and a0 represent color indices in
the adjoint representation, while Φ−1

aa0 is the convolution
inverse of a scalar field in the biadjoint of the two algebras1

defined by

Φaa0 ∘Φ−1
bb0 ðxÞ ¼ δabδa0b0δ

ðDÞðxÞ: ð3Þ

The DC field encodes the degrees of freedom of a graviton,
a Kalb-Ramond particle and a massless scalar, whose off
shell fields in D ¼ 4 can be identified in terms of the
following projections [17,23]:

hμν ¼ HS
μν −

1

2
ημνφ;

Bμν ¼ HA
μν;

φ ¼ Hα
α −

∂
α
∂
βHαβ

□
; ð4Þ

where HS
μν and HA

μν denote symmetric and antisymmetric
parts of Hμν, respectively. The Abelian gauge transforma-
tion of the DC field, encoding the local symmetries of the
graviton and of the two-form field,

δHμν ¼ ∂μαν þ ∂να̃μ; ð5Þ

involves the parameters,

αμ ¼ ϵ⋆Ãμ; α̃μ ¼ Aμ⋆ϵ̃; ð6Þ

where ϵa and ϵ̃a
0
are Lorentz scalars parameterizing the

gauge transformations of the spin-one gauge fields,

δAa
μ ¼ ∂μϵ

a; δÃa0
μ ¼ ∂μϵ̃

a0 : ð7Þ

In particular, in the convolutional DC dictionary the
reducibility of the gauge symmetry of the two-form HA

μν,
i.e., its gauge-for-gauge transformations, corresponds to
DC parameters involving pure-gauge vectors,

Aμ¼ ∂μρ; Ãμ¼∂μρ̃→αμ− α̃μ¼∂μðϵ� ρ̃−ρ� ϵ̃Þ: ð8Þ

The Lagrangian,

1In the spirit of [16], the global transformations of Aa
μ and Ãa0

ν
are compensated by those of Φ−1

aa0 , while we only consider the
linearized limit of the respective local transformations.
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L ¼ 1

2
Hμνðημρηνσ□ − ημρ∂ν∂σ − ηνσ∂μ∂ρÞHρσ ð9Þ

is gauge invariant under (5) provided the parameters satisfy

∂
μðαμ þ α̃μÞ ¼ 0; ð10Þ

and encodes the free propagation of the full DC multiplet.
Equivalent Lagrangians whose gauge invariance holds
without the need for the transversality condition (10)
involve either additional fields or the curvature for the
DC field. All these options were presented in [23].
In the ensuing sections, we will study the asymptotic

behavior at null infinity of the fields defined in (4) and of
the gauge parameters in (6), assuming that their single-copy
constituents satisfy the asymptotic conditions granting the
existence of spin-one asymptotic symmetries in Lorenz
gauge [35,36].

III. DOUBLE-COPY FIELD AT NULL INFINITY

In this section, we consider the expansion of the fields
involved in the DC construction at null infinity. In
particular, we shall assume a given fall-off behavior for
the single-copy fields and work out the implications of this
behavior for the DC fieldHμν. The main technical step is to
understand the interplay between the expansion of the
fields for large values of the radial coordinate r and the
operation of convolution.
Choosing the Lorenz gauge for the spin-one fields,2

∂
μAμ ¼ 0 ¼ ∂

μÃμ, the DC field satisfies

∂
μHμν ¼ 0 ¼ ∂

νHμν; ð11Þ

so that its free Lagrangian equations reduce to [23]

□Hμν ¼ 0: ð12Þ

We assume all single-copy fields to be on shell and write
the solutions to their equations of motion as follows3:

AμaðxÞ ¼
Z
k
eik·xaðAÞai ðkÞεiμðkÞ;

Ãνa0 ðxÞ ¼
Z
k
eik·xãðAÞa0j ðkÞε̃jνðkÞ;

Φaa0 ðxÞ ¼
Z
k
eik·xaðΦÞ

aa0 ðkÞ; ð13Þ

where

Z
k
fðkÞ ¼

Z
d4k
ð2πÞ3 θðk

0Þδðk2ÞfðkÞ þ c:c: ð14Þ

In addition, we also assume that the leading-order radial
falloffs of all single-copy fields be radiation falloffs
(tantamount to Coulombic falloffs in D ¼ 4), and thus,
such that the Cartesian components in (13) all scale as
follows:

Aμ ∼O
�
1

r

�
; ð15Þ

and similarly, for Ãμ and Φ.
The general solution to (12) is

Hμν ¼
Z
k
eik·xaðHÞ

ij ðkÞεijμνðkÞ: ð16Þ

On the other hand, taking the Fourier transform of Eq. (1),
which relates convolutions to ordinary products, by the
definition of the convolutional inverse,4 we eventually find

aðHÞ
ij ¼ aðAÞi ãðAÞj

aðΦÞ ; εijμν ¼ εiμε̃
j
ν; ð17Þ

where in the previous formula and in the following ones
color indices are implicit. We then determine the falloffs of
Hμν according to the method of regions [37,38]. To this
end, we parameterize Minkowski coordinates and momenta
in terms of Bondi coordinates as (see the Appendix for
details)

xμ ¼ utμ þ 2r
1þ jz⃗j2 q

μðz⃗Þ;

kμ ¼ μtμ þ ωqμðw⃗Þ: ð18Þ

2In the setup defined by (9) with DC parameters related by
(10), one can enforce the Lorenz gauge on one vector and deduce
the same condition on the second vector as a consequence of (10).
Alternatively, starting from the equivalent unconstrained setup
also presented in [23], one can directly enforce the Lorenz gauge
on both vectors and reduce the equations of motion to (12).

3Let us note that, even in the presence of localized sources, the
homogeneous solutions (13) provide good approximations for the
fields far from the sources [44].

4We employ (3) to identify

Z
p
aðAÞi ðpÞΦ−1

bb0 ðpÞ½·� ¼
Z

d4p
ð2πÞ4

aðAÞi ðpÞ
aðΦÞðpÞ ½·�;

where Φ−1
bb0 ðpÞ denotes the Fourier coefficients of Φ−1

bb0 ðxÞ.
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Changing integration variables in (16), we get

Hμν ¼
Z

∞

0

dω
ω

2

Z
d2w⃗½e−iωq0ðw⃗Þu−

iωrjw⃗−z⃗j2
1þjz⃗j2

aðHÞðωqðw⃗ÞÞεμνðqðw⃗ÞÞ þ c:c:�; ð19Þ

where, in particular, the Minkowskian components of the
polarization tensor are treated as functions of w⃗.
In the large-r limit, the leading behaviour of Hμν is

determined by those regions where

ωrjw⃗ − z⃗j2
1þ jz⃗j2 ∼Oð1Þ: ð20Þ

There are two relevant regions: jw⃗ − z⃗j2 ∼ 1
r (collinear

region) and ω ∼ 1
r (regular region), whereas contributions

from other regions are either scaleless or lead to rapidly
oscillating integrals.
The collinear region is the one responsible for the

radiative order Hμν ∼Oð1rÞ. Indeed, by performing the
change of variables w⃗ ¼ z⃗þ s⃗ffiffi

r
p with s⃗ formally of Oð1Þ

and expanding around z⃗, one obtains a Gaussian integral in
s⃗ to leading order so that (19) gives

Hcoll
μν ∼

iπ
r

Z
∞

0

dω
2ω

e−iωq
0ðz⃗ÞuaðHÞðωqðz⃗ÞÞεμνðqðz⃗ÞÞ þ c:c:

ð21Þ

The radiative order is present for all fields satisfying the
massless wave equation (at least asymptotically),
and in this respect, its DC origin is to be traced back to
the fact that whenever the vectors are on shell and
in the Lorenz gauge the DC field satisfies indeed
□Hμν ¼ 0 [23].
In the regular region, on the other hand, one has to take

into account the expansion of the Fourier coefficients for
small frequency. Upon assuming the following leading-
order behavior (denoted with the subscript 0):

aðHÞðωqðw⃗ÞÞ ∼ ωβ−2aðHÞ
0 ðqðw⃗ÞÞ; ð22Þ

where β > 0 for the integral in (19) to be convergent, in
general, one would end up with

Hreg
μν ∼

ΓðβÞ
ðirÞβ ð1þ jz⃗j2Þ

Z
d2w⃗

aðHÞ
0 ðqðw⃗ÞÞεμνðqðw⃗ÞÞ

2jw⃗ − z⃗j2β þ c:c:;

ð23Þ

where ΓðβÞ is the gamma function. We thus obtain
contributions Oð 1

rβ
Þ from this region, which would be

overleading with respect to radiation for β < 1.
However, if the single-copy constituent fields in (1), all

fall off like 1
r at null infinity; by means of a similar

reasoning, one finds

aðAÞ ∼
1

ω
aðAÞ0 ; aðÃÞ ∼

1

ω
ãðÃÞ0 ; aðΦÞ ∼

1

ω
aðΦÞ
0 ; ð24Þ

or, equivalently,

βA ¼ βÃ ¼ βΦ ¼ 1: ð25Þ

From the first of (17), we derive

βH ¼ βA þ βÃ − βΦ ¼ 1; ð26Þ

and therefore,

aðHÞðωqðw⃗ÞÞ ∼ 1

ω
aðHÞ
0 ðqðw⃗ÞÞ; ð27Þ

consistently with the form of the leading soft factors as
determined by the soft theorems [45–48], as we shall
discuss in the Sec. V. This shows that, for single-copy fields
on their mass shell with radiation leading falloffs, and for
vectors in Lorenz gauge, the DC field (1) is in the same
gauge and displays the same leading falloffs ∼Oð1rÞ. Note
that the polarization vectors and tensors in (17) are invariant
under rescalings of the massless momentum.
To conclude this section, we would like to comment on

the structure of the leading components of the DC field
(similar considerations apply to the vectors as well).
To begin with, the regular region cannot provide any
u-dependence to leading order, as one can read from (23).
Furthermore, using

cos

�
π

2
β

�
jw⃗ − z⃗j−2β ¼ π2

2
δð2Þðw⃗ − z⃗Þ þOðβ − 1Þ ð28Þ

(see e.g., [49]), one can perform the integral (23)5 in the
limit β → 1 and see that the leading contribution from the
regular region gets localized in z⃗.
For the collinear region, we see that it captures the

contribution of radiation, since, as we see from (21), it
retains an arbitrary u dependence. The same computation in
arbitrary dimension shows that the contribution from this
region scales like r−

D−2
2 .

Altogether, for the leading order from both regions, one
has

Hμν ∼
1

r
εμνðz⃗Þðηregðz⃗Þ þ ηcollðu; z⃗ÞÞ; ð29Þ

5In order to evaluate (23) via (28), we also used the reality of
aðHÞ
0 , inherited from the corresponding condition on its single-

copy constituents.
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with ηregðz⃗Þ, ηcollðu; z⃗Þ scalar functions encoding contribu-
tions from Hreg

μν and Hcoll
μν , respectively. As a consequence,

in force of (18) and (29), one finds that

Hrν ¼
∂xμ

∂r
Hμν ¼

qμðz⃗Þ
q0ðz⃗ÞHμν; ð30Þ

implying that the radial components of the DC field fall off
faster than 1=r, owing to the transversality of εμνðz⃗Þ in (29).
Note that, due to the transverse projection, our discussion
of spin-1 and spin-2 fields does not include the information
on the Coulombic fields that determine the total global
charges. These considerations will be important for (66)
and (84) below.

IV. ASYMPTOTIC SINGLE-COPY PARAMETERS

Let us now move to the analysis of the behavior of the
gauge parameters at null infinity. We will start by deter-
mining the conditions on the large-r expansion of the
single-copy parameters, which allow one to describe spin-
one asymptotic symmetries. In the next section, we will
then proceed to identify the implications on the corre-
sponding double-copy gauge parameters defined in (6).
In Lorenz gauge, one has

□ϵa ¼ 0 ¼ □ϵ̃a
0
; ð31Þ

so that the general form of the spin-one parameters is

ϵðxÞ ¼
Z
k
eik·xaðϵÞðkÞ; ϵ̃ðxÞ ¼

Z
k
eik·xãðϵÞðkÞ: ð32Þ

The very existence of spin-one asymptotic symmetries in
this gauge requires the parameters to admit a polyhomo-
geneous expansion of the form,6

ϵðr; u; z⃗Þ ¼
X∞
n¼0

ϵðnÞðu; z⃗Þ
rn

þ
X∞
n¼1

λðnÞðu; z⃗Þ log r
rn

: ð33Þ

Indeed, if the logarithmic series in (33) were not included,
the wave equations (31) would imply the conditions,

D2ϵð0Þ ¼ 0 ¼ D2ϵ̃ð0Þ; ð34Þ
that would force the leading order parameters to be constant
and would thus set to zero the putative asymptotic-symmetry
parameters. The same mechanism holds for vector param-
eters as well, and it will be instrumental to grant the existence
of asymptotic symmetries for the graviton and the two-form
components of the DC field [35,36].
Thus, the scaling behavior of the Fourier coefficients in

(32) must be such to grant not only the existence of the

Oð1Þ coefficients, that can only come from the regular
region in the large-r analysis of (32), but also the first
subleading terms to scale like log r

r , while in addition being
linear7 in u. With reference to the parameterization (18), an
expansion compatible with (33) is

aðϵÞðωqðw⃗ÞÞ ∼ i
π2

ωβ−2ð2πbðϵÞ0 ðw⃗Þ − logωaðϵÞ0 ðw⃗ÞÞ; ð35Þ

where all functions are real.8 Let us discuss the two
contributions separately.
From bðϵÞ0 , we find to leading order,

ϵglob ¼ 2
ΓðβÞ
πrβ

sin

�
π

2
β

�Z
d2w⃗bðϵÞ0 ðw⃗Þjw⃗ − z⃗j−2β; ð36Þ

which, in the limit β → 0, implies

ϵglob ¼
Z

d2w⃗bðϵÞ0 ðw⃗Þ; ð37Þ

which is well defined for integrable bðϵÞ0 ðw⃗Þ and does not
depend on z⃗, consistently with the fact that without
admitting a polyhomogeneous expansion in (33), one
can only find a constant leading order parameter.
From aðϵÞ0 , we find instead

ϵas ¼
1

2π
ðlog rþ γEÞ

Z
d2w⃗aðϵÞ0

þ 1

2π

Z
d2w⃗aðϵÞ0 log

�jw⃗ − z⃗j2
1þ jz⃗j2

�
þOðβÞ; ð38Þ

where γE is the Euler-Mascheroni constant. In particular,
consistency with (33) requires the log r term not to be

present, a condition that holds whenever aðϵÞ0 is a total
derivative. We will consider

aðϵÞ0 ðw⃗Þ ¼ Δ2fðw⃗Þ; ð39Þ

where Δ is the R2 Laplacian. Due to (39), the first integral
in (38) cancels while, upon integrating by parts the second
one, one finds, for β → 0,

ϵas ¼ Δfðz⃗Þ; ð40Þ

6Here and inwhat follows, we denotewith fðnÞ the component of
Oðr−nÞ in the radial expansion of a given function f, and use a
different letter for coefficients multiplying logarithmic terms, if any.

7The logarithmic tail in (32) will generate logarithmic falloffs
on some field components as well, although in a pure-gauge
sector that will not affect any gauge-invariant observable. Even if
included directly in the field expansion, however, it is possible to
show that they would not change e.g., the finiteness of the energy.

8The most general leading-order expansion would include an
imaginary part for bðϵÞ0 which, in its turn, would generate an
additional contribution to the asymptotic symmetries.
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thus showing how one can obtain, together with global
transformations, asymptotic gauge parameters retaining a
nontrivial dependence on the angular coordinates. Let us
observe that the first subleading term resulting from the
ansatz (35), is indeed of order log r

r with coefficient

λð1Þ ¼ 1

2
uD2ϵas ð41Þ

linear in u, consistently with Ref. [36].

V. DOUBLE COPY OF ASYMPTOTIC
SYMMETRIES

Let us now analyze the asymptotic behavior of the DC
parameters αμ and α̃μ given in (6), as determined by the
behavior their single-copy constituents discussed in the
previous section. In force of the single-copy Lorenz gauge,
they satisfy

□αμ¼0; ∇μαμ¼0 and □α̃μ¼0; ∇μα̃μ¼0; ð42Þ

so that the general form of their Minkowskian components
is

αμðxÞ¼
Z
k
eik·x

aðϵÞãðAÞ

aðΦÞ ε̃μ; α̃μðxÞ¼
Z
k
eik·x

aðAÞãðϵÞ

aðΦÞ εμ:

ð43Þ

We thus see that the ω-scaling of the Fourier coefficients,

aðαÞ ¼ aðϵÞãðAÞ

aðΦÞ ; ãðαÞ ¼ aðAÞãðϵÞ

aðΦÞ ; ð44Þ

is the same scaling as that of aðϵÞ and ãðϵÞ, since in our setup
aðAÞ, ãðAÞ and aðΦÞ all scale like ω−1, as specified in (24).
For instance, for aðαÞ, we have

aðαÞðωqðw⃗ÞÞ ∼ i
π2

ωβ−2ð2πbðαÞ0 ðqðw⃗Þ − logωaðαÞ0 ðqðw⃗ÞÞÞ;
ð45Þ

with

bðαÞ0 ¼ ãðAÞ0

aðΦÞ
0

bðϵÞ0 ; aðαÞ0 ¼ ãðAÞ0

aðΦÞ
0

Δ2f; ð46Þ

where we took our choice (39) for aðϵÞ0 into account. On

closer inspection, however, aðαÞ0 in (46) is not a total
derivative. In this sense, evaluating the leading order
in (43) by means of the counterpart of (38), one would
seemingly have to retain also the contributions correspond-
ing to the first two terms to the rhs of (38) and thus, in
particular, a term diverging as Oðlog rÞ.

However, let us recall that, for asymptotic fields
generated by sources moving in the bulk, the form of
the leading contribution for soft momenta q is fixed by
soft theorems to be the sum of terms of the following
type [45–48]:

aðAÞ0 ¼e
ε ·p
p ·q

; aðÃÞ0 ¼ ẽ
ε̃ ·p
p ·q

; aðΦÞ
0 ¼ gΦ

p ·q
; ð47Þ

each associated to the motion of a given background
particle of hard momentum p, with e, ẽ, and gΦ the
corresponding couplings and where we choose εμi ðz⃗Þ ¼
ðzi; δij;−ziÞ ¼ ε̃μi ðz⃗Þ, which is equivalent to set the refer-
ence vector y introduced in (A8) to yμ ¼ ð−1; 0; 0; 1Þ. From
the DC perspective [50,51], where at each vertex the
particles in the gravitational multiplets are interpreted as
products of single-copy constituents, upon further choosing
gΦ ¼ eẽffiffiffiffiffiffi

8πG
p , with G denoting the gravitational constant, one

finds

aðHÞ
0 ¼

ffiffiffiffiffiffiffiffiffi
8πG

p ε · pε̃ · p
p · q

: ð48Þ

This observation has an immediate implication on the
structure of the ratios in (46), that have to take the form,

ãðAÞ0

aðΦÞ
0

¼
ffiffiffiffiffiffiffiffiffi
8πG

p

e
ε̃ · p: ð49Þ

Making use of (49) and (39), one finds that the dangerous
term eventually cancels, since

log rþ γE
2π

Z
ddw⃗ðΔ2fÞε̃ · pε̃μ ¼ 0; ð50Þ

because Δ2ðε̃ · pε̃μÞ ¼ 0, which motivates our choice (39).
Let us highlight two main features of the so-derived

asymptotic behavior of the DC parameters:
(i) They keep a nontrivial angular dependence at Oð1Þ

for large r. In terms of single-copy inputs we find,
performing the integral in (43),

αð0Þμðz⃗Þ¼αμglobþΔfΨ̃μþfΔΨ̃μ−2∂if∂iΨ̃μ; ð51Þ

where we defined

Ψ̃μ ¼ ãðAÞ0

aðΦÞ
0

ε̃μ ¼
ffiffiffiffiffiffiffiffiffi
8πG

p

e
ε̃ · pε̃μ: ð52Þ

(ii) They inherit from their single-copy constituents a
polyhomogeneous expansion of the form,
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αμ ¼ αð0Þμðz⃗Þ þO
�
log r
r

�
: ð53Þ

The Bondi components of αμ are related to the Minkowski
ones, here denoted as αμM, by

αu¼−q̂ ·αM; αr¼ n̂IαIM; αi¼1

r
ðDin̂IÞαIM; ð54Þ

with I ¼ 1, 2, 3 and

q̂μðz⃗Þ ¼ qμðz⃗Þ
q0ðz⃗Þ ¼ ð1; n̂Iðz⃗ÞÞ; ð55Þ

while Di denotes the covariant derivative on the sphere.
They satisfy

D2αð0Þu þ 2αð0Þr þ 2Diα
ð1Þi ¼ −q̂ ·D2αð0ÞM ¼ 0; ð56Þ

as a consequence of (42), where D2 ¼ DiDi and we used
D2n̂I ¼ −2n̂I. For the ensuing discussion, it is useful to
parameterize the solutions of (56) in terms of a scalar
function Θðz⃗Þ and vector on the sphere Σiðz⃗Þ as follows:

αð0Þuðz⃗Þ ¼ Θðz⃗Þ;
αð1Þiðz⃗Þ ¼ −DiΘðz⃗Þ þ Σiðz⃗Þ;

αð0Þrðz⃗Þ ¼ 1

2
D2Θðz⃗Þ −DiΣiðz⃗Þ: ð57Þ

At this point, we collected all the results needed in order to
analyze the asymptotic symmetries of the multiplet sub-
sumed in Hμν From the Lagrangian (9), one can see that
HS

μν and HA
μν decouple, which makes it sensible to analyze

their asymptotic properties separately. In particular, our
analysis for the two-form sector will entail some novel
considerations with respect to those available in the
literature, and for this reason, we shall discuss it in more
detail.
Given that the asymptotic charges involve appropriate

components of the curvatures, let us recall the definition of
the DC curvature given in [16],

Rμνρσ ¼ −
1

2
Fμν⋆F̃ρσ ¼ RS

μνρσ þ RA
μνρσ; ð58Þ

involving the linearized Riemann tensor for HS
μν together

with a gauge invariant combination of derivatives of HA
μν,

whose Minkowskian components both look

RI
μνρσ ¼

1

2
ð∂μ∂σHI

νρ−∂ν∂σHI
μρþ∂ν∂ρHI

μσ−∂μ∂ρHI
νσÞ; ð59Þ

with I ¼ A, S. More explicitly, it is useful to recognize that

RA
μνρσ ¼

1

2
ð∂μHνρσ − ∂νHμρσ; Þ; ð60Þ

with

Hαβγ ¼ ∂αHA
βγ þ ∂γHA

αβ þ ∂βHA
γα; ð61Þ

the field strength for the two-form HA
μν.

A. Supertranslations and scalar charges

The gauge parameter of HS
μν is

ξμ ¼ 1

2
ðαμ þ α̃μÞ ð62Þ

and satisfies

□ξμ ¼ 0; ∇ · ξ ¼ 0; ð63Þ
due to (42). The asymptotic surface charges correspond to
the fixed − u, large − r limit of

QS ¼ −r3
Z

dzdz̄γzz̄ðξuRS
urur þ ξiRS

irurÞ; ð64Þ

where, due to (4), one can identify two contributions to the
curvature,

RS
μνρσ ¼ Rh

μνρσ þ Rφ
μνρσ; ð65Þ

associated to the graviton hμν and to the scalar φ,
respectively. In particular, because of (11), the graviton
hμν is in de Donder gauge, while the condition ∇ · ξ ¼ 0

is consistent with the scalar degree of freedom being
encoded in the equation for the trace of HS

μν [23,28,29].
Supertranslations in de Donder gauge were discussed
in [39–41], and in the remainder of this section, we will
show how we recover the corresponding results from
the DC.
The falloffs on Hμν imply the following scalings:

φ; huu; hur; hri ¼ O
�
1

r

�
; hrr ¼ O

�
1

r2

�
;

hui; hzz̄ ¼ Oð1Þ; hzz; hz̄ z̄ ¼ OðrÞ; ð66Þ

while the leading Bondi components of ξμ satisfy (56) and
(57), with the substitutions,

Θðz⃗Þ → Tðz⃗Þ ¼ 1

2
ðΘðz⃗Þ þ Θ̃ðz⃗ÞÞ;

Σðz⃗Þ → Siðz⃗Þ ¼ 1

2
ðΣiðz⃗Þ þ Σ̃iðz⃗ÞÞ: ð67Þ

It is possible to perform small gauge transformations

employing Si setting to zero hð1Þur and hð2Þrr . The residual
parameters are then further constrained by q̂ ·Diξ ¼ 0,
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which suffices to fix the correct cross-dependences among
the components of ξμ, namely,

ξð1Þi ¼ −DiTðz⃗Þ; ξð0Þr ¼ 1

2
D2Tðz⃗Þ: ð68Þ

This identifies the leading-order asymptotic symmetries of
the DC graviton as BMS supertranslations. The corre-
sponding charge receives contribution only from the first
term in (64), on account of (66), and has the form,

Qh ¼ −
Z

dzdz̄γzz̄Tðz; z̄ÞRhð3Þ
urur; ð69Þ

with

Rhð3Þ
urur ¼ −

1

2
DiDjhð−1Þij : ð70Þ

In addition, from both terms in (64), one finds that the
DC builds infinitely many asymptotic charges for the scalar
field of the form,

Qφ ¼ −
1

2

Z
dzdz̄γzz̄ðD2 þ 1ÞTðz; z̄Þφð1Þ; ð71Þ

which reproduce the asymptotic charges first proposed for
scalar fields in [12], with the identification of the corre-
sponding smearing function with ðD2 þ 1ÞTðz; z̄Þ.

B. Two-form asymptotic symmetries

In the present section, we denote the two form as

HA
μν ¼ Bμν: ð72Þ

The parameter of Bμν in (4) is defined as

Λμ ¼ 1

2
ðαμ − α̃μÞ ð73Þ

and satisfies

□Λμ ¼ 0; ∇ · Λ ¼ 0; ð74Þ

where the latter condition is tantamount to a choice of
gauge-for-gauge, implemented via (8). The asymptotic
charge corresponding to (64) emerges from the r → þ∞
limit of

QB ¼ −r3
Z

dzdz̄γzz̄ðΛuRA
urur þ ΛiRA

irurÞ; ð75Þ

where, in this case, the first contribution vanishes identi-
cally. Thus, its very existence depends on the presence of a
term of Oð 1r3Þ in ΛiRA

irur. The latter, in its turn, originates

from Λið1ÞRAð2Þ
irur with

RAð2Þ
irur ¼ Hð1Þ

iur ¼ ∂uB
ð1Þ
ri ¼ −DjBð−1Þ

ij ; ð76Þ

where, in the last equality, we used the equations of motion.
Altogether, the tentative asymptotic charge is

QB ¼
Z

dzdz̄γzz̄Λið1ÞDjBð−1Þ
ij ; ð77Þ

and we need to determine whether in our DC setup there is
room for a nonvanishing coefficient Λið1Þ. From (53), we
obtain

Λu ¼
X∞
n¼0

ΛðnÞu

rn
þ
X∞
n¼1

λðnÞu
log r
rn

;

Λr ¼
X∞
n¼0

ΛðnÞr

rn
þ
X∞
n¼1

λðnÞr
log r
rn

;

Λi ¼
X∞
n¼1

ΛðnÞi

rn
þ
X∞
n¼2

λðnÞi
log r
rn

; ð78Þ

where in particular the leading coefficients are related by

D2Λð0Þu þ 2Λð0Þr þ 2D · Λð1Þ ¼ 0;

2∂uλ
ð1Þr ¼ ðD2 − 2ÞΛð0Þr − 2D · Λð1Þ;

2∂uλ
ð2Þi ¼ ðD2 − 1ÞΛð1Þi þ 2DiΛð0Þr; ð79Þ

as a consequence of the Lorenz gauge condition. We
parameterize the corresponding solutions as follows:

Λð0Þu ¼ τðz⃗Þ;
Λð1Þi ¼ −Diτðz⃗Þ þ σiðz⃗Þ;

Λð0Þr ¼ 1

2
D2τðz⃗Þ −D · σðz⃗Þ; ð80Þ

having defined

τðz⃗Þ ¼ 1

2
ðΘðz⃗Þ − Θ̃ðz⃗ÞÞ;

σiðz⃗Þ ¼ 1

2
ðΣiðz⃗Þ − Σ̃iðz⃗ÞÞ; ð81Þ

with τðz⃗Þ and σiðz⃗Þ providing the counterparts of (67).
From the second of (80), we see that in principle there are
two types of contributions toQB, depending on τðz⃗Þ and on
σiðz⃗Þ, respectively. The contribution to the charge involving
τðz⃗Þ, however, actually vanishes,

QB
τ ¼

Z
dzdz̄γzz̄ðDz̄Dzτ −DzDz̄τÞBð−1Þ

zz̄ ¼ 0: ð82Þ

This outcome can be understood upon recognising that
variations involvingΛð1Þi ¼ −Diτ represent gauge-for-gauge
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transformations that do not affect the free data encoded in

Bð−1Þ
ij . Thus, it is the presence of a nontrivial σiðz⃗Þ that allows

one to identify the asymptotic charge of the two-form,

QB
σ ¼

Z
dzdz̄γzz̄ðDz̄σz −Dzσz̄ÞBð−1Þ

zz̄ : ð83Þ

Let us observe that the parameters τðz⃗Þ and σiðz⃗Þ play a role
which is somehow reversed with respect to their gravitational
counterparts Tðz⃗Þ and Siðz⃗Þ defined in (67), with the super-
translation parameter Tðz⃗Þ providing the relevant asymptotic
symmetry and Siðz⃗Þ encoding small gauge transformations.
A few comments are in order:
(i) The field coefficient Bð−1Þ

zz̄ appearing in the charge
(77) is consistent with the single-copy induced
falloffs of the two-form components,

Bur ¼ O
�
1

r2

�
; Bui ¼ Oð1Þ;

Bri ¼ O
�
1

r

�
; Bij ¼ OðrÞ; ð84Þ

where we also took into account that the Lorenz
gauge together with the equations of motion set to

zero Bð1Þ
ur and Bð0Þ

ri . [See (30).]
(ii) The polyhomogeneous expansion (78), however,

induces partial violations of the falloffs (84). Indeed,
if σi ≠ 0 then

δBur ¼ O
�
1

r

�
; δBui ¼ Oðlog rÞ;

δBri ¼ Oð1Þ; δBij ¼ OðrÞ; ð85Þ

and therefore, the falloffs are generically not pre-
served except for Bij, which encodes the free data.
The same mechanism is at work for the spin-one
and spin-two cases in Lorenz and de Donder
gauges, respectively, where polyhomogeneous scal-
ings of the parameters were found to be necessary in
order for asymptotic charges to exist. One possible
attitude is to interpret the violations of (84) as
physically innocuous, since they affect only pure-
gauge components of the field and as such do not
alter any physical observables [36]. Alternatively,
one may also envisage the possibility to generalize
the falloffs of the fields from the very start, as
suggested in [41,52], possibly in order to take the
presence of matter into account. As an indication
supporting this option one can show that even with
falloffs modified as in (85) the energy flux through
null infinity would be finite anyway.

(iii) The asymptotic symmetries at null infinity of two-
forms in D ¼ 4 Minkowski space were analyzed in
Lorenz gauge in [42] and in radial gauge in [43], to

the purpose of identifying dual counterparts of the
conserved asymptotic charges for scalars found
in [12]. See also [53,54] for analyses at spatial
infinity. In both [42,43], however, the scalings of the
parameters were chosen so as to always preserve the
(putative) falloffs of the fields. In the radial gauge
chosen in [43], the observed outcome was the
absence of an order-zero asymptotic charge. In the
Lorenz-gauge analysis of [42], which is closer to our
present perspective, the parameter falloffs in par-
ticular had to preserve the condition,

Bui ¼ Oð1Þ; ð86Þ

which, as shown above, is incompatible with the
polyhomogeneous scalings (78). If one were to
remove the logarithmic terms in (78), however, the
actual falloffs for the fields would eventually match
up to those in (84), as one can recognize by taking the
equations of motion into account, while the corre-
sponding equations on the leading components of the
parameter would imply that only the τ contribution to
Λið1Þ in (80) would be different from zero. For the
latter however, as shown in (82), the tentative charge
actually vanishes. To summarize, according to our
findings the only way to preserve the falloff (86) is by
restricting the gauge parameters in such away that the
charge itself vanishes, and therefore does not identify
an asymptotic symmetry.

The charges (83) should provide the dual counterparts of
the asymptotic charges for scalar fields found in [12].

VI. CONCLUSIONS

In this work, we presented a concrete and general
incarnation of the DC of asymptotic symmetries, whereby
electromagnetic large gauge transformations “square” to
BMS supertranslations for the graviton and to asymptotic
symmetries for the Kalb-Ramond two-form, while also
providing an explanation to the existence of infinitely many
asymptotic charges for the scalar field. Our approach
consisted in performing the asymptotic expansions of the
on shell fields by means of the method of regions, which
allowed us to deduce the falloffs of the double-copy fields
from those of their single copy constituents under suitable
assumptions. A similar mechanism works for the corre-
sponding asymptotic symmetry parameters. The appear-
ance of terms involving log r at subleading orders, which is
a common feature of asymptotic expansions performed in
Lorenz and de Donder gauges, motivated us to revisit the
study of the asymptotic symmetries and charges for the
double-copy fields, in particular for the two-form. We
found that the logarithms “predicted” by the convolutional
double copy in this way are precisely those needed to allow
for the existence of nontrivial asymptotic symmetries and
charges.
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There are several possible generalizations of our work
that could be considered in the future. As observed, the
study of the DC for asymptotic symmetries in the convolu-
tional approach is tightly linked to soft theorems, and it
would be interesting to better investigate this connection.
Let us mention that an alternative route to asymptotic
symmetries, and thus, to their double copy, is also offered
by the representation of asymptotic symmetries in terms of
OPE expansions of celestial conformal field theory ampli-
tudes [55,56]. Moreover, while in this work we have only
considered the leading terms in the expansion of fields and
parameters, one could consider higher-order terms as well as
nonlinear corrections, exploring their possible connection
with subleading soft theorems. In particular, while here
we have focused on reproducing BMS supertranslations
from the large gauge transformations of spin one particles,
it is natural to wonder whether gravitational superro-
tations [40,57] can also be encompassed by this framework.
Further potential developments include the generalization

ofour approach to different, yet related, contexts.The studyof
asymptotic symmetries and the associated soft theorems has
been generalized to (anti)–de Sitter backgrounds [58–61],
for which the convolutional DC dictionary has recently been
investigated in [27]. Another enticing perspective is to
investigate asymptotic symmetries of higher spin gauge
fields [62,63] formulated as convolutional double copies of
lower-spin building blocks.9 Moreover, since the convolu-
tional DC can be equivalently formulated in any number of
spacetime dimensions, it is certainly possible to imagine that
our work and the generalizations thereof could be also
explored beyond D ¼ 4.
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APPENDIX: COORDINATE CONVENTIONS

We adopt the mostly plus convention for the metric.
Bondi coordinates in D ¼ 4 are defined as ðu; r; ziÞ, with r
denoting the radial coordinate, u the retarded time, and zi

(i ¼ 1, 2) the angular coordinates, which we parameterize
either as stereographic coordinates,

z ¼ eiϕ cot
θ

2
and z̄ ¼ e−iϕ cot

θ

2
; ðA1Þ

with θ∈ ½0; π� and ϕ∈ ½0; 2πÞ, or in terms of a real vector,

z⃗ ¼ ðz1 ¼ Rez; z2 ¼ ImzÞ: ðA2Þ

The Minkowski metric reads

ds2 ¼ −du2 − 2dudrþ r2γijdzidzj; ðA3Þ

where γij is the unit metric on the two-sphere, which is
antidiagonal in terms of ðz; z̄Þ, with γzz̄ ¼ 2

ð1þzz̄Þ2, while it is

diagonal when using z⃗, namely, γij ¼ 2
ð1þjz⃗j2Þ2 δij. For the

Minkowski coordinates xμ, we also adopt the following
parametrization:

xμ ¼ utμ þ 2r
1þ jz⃗j2 q

μðz⃗Þ; ðA4Þ

where tμ ¼ ð1; 0; 0; 0Þ and

qμðz⃗Þ ¼ 1

2
ð1þ jz⃗j2; 2z1; 2z2; 1 − jz⃗j2Þ: ðA5Þ

We denote with Di, the covariant derivative with respect
to γij and with D2, the corresponding Laplace
operator: DiDi ¼ D2, where case by case, we take care
of clarifying the type of z–coordinates that we use in the
various situations. At the same time, we use ∂i to denote
the partial derivative with respect to zi, and we define
Δ ≔ ∂i∂

i.
For the momenta, we use Bondi-like coordinates, namely

ðμ;ω; wiÞ, where μ ¼ k0 − jk⃗j is an analog of the retarded
time u, and wi are the angular components of the momen-
tum, which can be parameterized again either as stereo-
graphic coordinates ðw; w̄Þ or in terms of a real vector w⃗.
However, ω is not the standard frequency but a convenient
re-definition thereof useful to employ in various integrals,

as it will become clear soon. In particular, we use ω ¼ jk⃗j
q0ðw⃗Þ

so that the counterpart of (A4) is

kμ ¼ μtμ þ ωqμðw⃗Þ; ðA6Þ

In the ðμ;ω; w⃗Þ–coordinates the metric reads

dk2 ¼ −dμ2 − ð1þ jw⃗j2Þdμdω − 2ωwidμdwi

þ ω2δijdwidwj; ðA7Þ

and therefore the unit metric on the two sphere is now
simply γijðw⃗Þ ¼ δij. Hence, the covariant derivative with
respect to γijðw⃗Þ is an ordinary partial derivative ∂i,
providing great simplifications when performing integra-
tion by parts. Polarization vectors in momentum space can
be defined as [49]

εμi ¼ ∂i

�
qμ

y · q

�
; ðA8Þ

with y a null reference vector.
9See [64] for a chiral higher-spin DC and [65] for a Kerr-

Schild-type one.
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