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In this work, we consider a general gravitational wave detector of gravitational waves interacting with an
incoming gravitational wave carrying plus polarization only placed inside a harmonic trap. This model can
be well acquainted with the description of a resonant detector of gravitational waves as well. The well-
known detector-gravitational wave interaction scenario uses the method of a semiclassical approach where
the detector is treated quantum mechanically but the gravitational wave is considered at a classical level. In
our analysis, we use a discrete mode decomposition of the gravitational wave perturbation which results in
a Hamiltonian involving the position and momentum operators corresponding to the gravitational wave and
the harmonic oscillator. We have then calculated the transition probability for the harmonic oscillator-
gravitational wave tensor product state for going from an initial state to some unknown final state. Using
the energy flux relation of the gravitational waves, we observe that if we consider the total energy as a
combination of the number of gravitons in the initial state of the detector then the transition probability for
the resonant absorption case scenario takes the analytical form which is exactly similar to the semiclassical
absorption case. In the case of the emission scenario, we observe a spontaneous emission of a single
graviton which was completely absent in the semiclassical analog of this model. This therefore gives a
direct signature of linearized quantum gravity.

DOI: 10.1103/PhysRevD.110.026008

I. INTRODUCTION

With the detection of gravitational waves by LIGO and
the LIGO-VIRGO collaborations, there has been a sudden
inflation in the area of research related to the quanta of the
linearized gravity and its detection in the future generation
of space-based gravitational wave detectors. The physics
related to the graviton and detector interaction has been
investigated quite thoroughly in [1–10]. These analyses
reveal the fact that a quantum gravitational treatment
modifies the geodesic deviation equation by a Langevin-
like equation which involves a stochastic noise term. In
these works the fluctuation over the Minkowski space-
time is decomposed into individual modes of different

frequencies and the modified Hamiltonian is constructed
which is later raised to operator status for a quantum gravity
treatment. In [1–4,9,10] the detector used is an interfero-
metric detector that is modeled by two freely falling masses
separated by a distance that is equal to the arm length of
the interferometric detector. Hence, the immediate step is
to consider harmonic oscillators instead of a free particle.
When the gravitational wave interacts with the matter
system, it creates tiny vibrations that are quite small
compared to the nucleus of the atom. Such a modification
resembles another kind of gravitational wave detector, also
known as the Weber bar detector [11] named after the
pioneer of the “gold rush” of gravitational wave detection,
James Weber. Instead of Weber bar detectors, one can also
consider gravitational wave interferometer detectors placed
inside a harmonic trap potential.
There is a plethora of literature [12–18] investigating

the quantum mechanical response of the bar detector with
an incoming gravitational wave. Recently there have been
some important investigations regarding parameter esti-
mation using quantum metrological techniques [19,20].
Making use of such quantum enhancement techniques,
proposals of a Bose-Einstein condensate-based detection of
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gravitational waves as well as dark energy have been put
forward in [21–24]. All of the above investigations involve
the interaction of a classical gravitational wave with
quantum matter. In the analyses [12–18], for the energy
scale relevant for the bar detector treated in a quantum
mechanical way, the gravitational wave behaves classically.
The next logical step is to consider both the harmonic
oscillator as well as the gravitational wave quantum
mechanically. To do so one needs to treat the small
fluctuations over the background Minkowski spacetime
quantum mechanically and investigate the hidden quantum
gravity signatures if any for such a forced harmonic
oscillator-graviton interaction model. In the semiclassical
picture (where the gravitational wave is treated classically)
[15–18], the transition probability for the harmonic oscil-
lator to go from its ground state to some other excited state
has been calculated using the Fermi-Golden rule. In such a
case, the excitation and the absorption probabilities come
out to be the same. Another important phenomenon in the
scenario of the interaction of electromagnetic radiation with
matter (the matter is surrounded by an electromagnetic
field) is the spontaneous emission of photons. In the case of
spontaneous emission of photons, a quantum mechanical
system emits a quanta of energy in the form of photons and
comes down from a higher excited energy level to a lower
excited level. The spontaneous emission is completely
a quantum field theoretic phenomenon and cannot be
explained classically. We aim to investigate if such sponta-
neous emission can be obtained in our current analysis of
the bar detector-gravitational wave system. Very recently,
proposals regarding detecting single gravitons using quan-
tum sensing have been made in [25].
In this work, we have considered a resonant bar detector

of gravitational wave (this same model also imitates a
general gravitational wave interferometer detector placed
inside a harmonic trap) interacting with a quantized
gravitational wave. It is important to note that we have
treated both the harmonic oscillator as well as the gravi-
tational wave quantum mechanically. Assuming the cou-
pling constant between the gravitational wave and the
detector to be small, we have used the full Hamiltonian of
the system up to linear order in the coupling constant.
Raising the canonically conjugate position and momentum
variables to operator status for both the gravitational field
and the harmonic oscillator, we obtain the final form of the
Hamiltonian operator. It is now possible to separate the
Hamiltonian operator into two parts, namely, the free part
of the Hamiltonian and the interaction part. Using the
analytical form of the interaction part of the Hamiltonian
operator in the interaction picture, we calculate the tran-
sition probability of the graviton-harmonic oscillator sys-
tem for going from an initial tensor product of the
individual number states to some final tensor product of
similar number states. We have explicitly calculated the

case where the harmonic oscillator is either initially in the
ground state or the second excited state. For the resonant
absorption scenario where the harmonic oscillator goes
from ground state to its second excited state, one graviton
gets absorbed and the gravitational wave state containing
ηG number of gravitons has now ηG − 1 number of
gravitons. In the ηG → 0 limit, this transition probability
vanishes which implies that when there are no gravitons in
the initial state of the gravitational wave, the probability of
the harmonic oscillator going from the ground state to an
excited state vanishes. In the case of the harmonic oscillator
being in the second excited state, we observe something
very unique. In the ηG → 0 limit, the transition probability
is nonvanishing and the contribution comes from the
emission of a single graviton. From the equation of energy
carried by gravitons, it is easy to estimate that the amplitude
of the gravitational wave vanishes if the number of gravi-
tons in a state goes to zero. Hence, for such a deexcitation,
the semiclassical treatment predicts a vanishing transition
probability in the ηG → 0 limit. This implies that the
harmonic oscillator can decay to its ground state by
spontaneous emission of a single graviton if and only if
the gravitational wave is treated as a quantum field. A very
important perspective of spontaneous emission of gravitons
by atomic hydrogen has been discussed in [26]. Such
spontaneous emission of gravitons has also been theoreti-
cally obtained in [27,28].
For the final part of our calculation, we have considered

the energy-flux relation for gravitational waves and
obtained the analytical form of the total energy of the
gravitational wave in terms of the frequency and amplitude
of the wave, Newton’s gravitational constant, and the radius
of the sphere through which the energy is either received or
released from the detector. We now consider that this entire
energy is a combination of integral multiples of the energy
carried by each quanta of the gravitational wave also known
as gravitons. Hence, it is safe to substitute E ¼ ηGℏω.
Finally, we obtain an analytical expression for the wave
amplitude and substitute it back in the expression for the
transition probability of the resonant absorption case.
Remarkably, the transition probability for the resonant
absorption case matches exactly with the semiclassical
analysis carried out in [15–18]. This analysis implements a
direct connection between the semiclassical and the quan-
tum gravitational analysis.

II. BACKGROUND MODEL AND TRANSITION
PROBABILITY

The background metric in which the analysis will be
carried out can be thought of as a small perturbation over
the Minkowski background,

gμν ¼ ημν þ hμν ð1Þ
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where ημν ¼ diagf−1; 1; 1; 1g. A much more rigorous
analysis will involve the substitution of the Minkowski
metric by a post-Newtonian metric as has been done in [29].
If we now consider the speed of light to be unity, then the

Einstein-Hilbert action can be written as

SEH ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R ð2Þ

with R being the Ricci scalar and g ¼ detðgμνÞ. Up to
quadratic order in the perturbation term in Eq. (1), we can
recast the Einstein Hilbert action as follows:

SEH ≃
1

64πG

Z
d4x
�
hμν□hμν − h□hþ 2hμν∂μ∂νh

− 2hμα∂κ∂αhμκ
�
: ð3Þ

Now we shall make use of the gauge symmetry of the
perturbation term given by

hμν ¼ h̄μν þ ∂μξν þ ∂νξμ: ð4Þ
We shall now impose the transverse-traceless gauge con-
ditions given by

∂κh̄κζ ¼ 0; h̄κκ ¼ 0; kρh̄ρζ ¼ 0 ð5Þ

with kρ ¼ δ0ρ being a constant timelike vector.
In the transverse traceless gauge, the form of the Einstein

Hilbert action in Eq. (3) can be recast as

SEH ¼ −
1

64πG

Z
d4x∂κh̄ij∂κh̄ij: ð6Þ

Instead of directly considering the resonant detector sys-
tem, we start by considering a system of two freely falling
particles with one having a much higher mass than the
other particle [1–3]. One can consider the particle with the
higher mass to be on-shell. In order to proceed further, one
can write down the metric in Fermi normal coordinates as
follows [2]:

g00ðt; ξÞ ¼ −1 − Ri0j0ðt; 0Þξiξj þOðξ3Þ; ð7Þ

g0kðt; ξÞ ¼ −
2

3
R0jklðt; 0Þξjξl þOðξ3Þ; ð8Þ

gjkðt; ξÞ ¼ δjk −
1

3
Rjlkpðt; 0Þξlξp þOðξ3Þ ð9Þ

with ξ denoting the coordinate separation between the two
particles. The Riemannian tensor is evaluated on a timelike
geodesic and as a result, it only depends on the temporal
coordinate. Under a gauge transformation, the Riemannian
tensor remains invariant for small linear perturbations about
the flat Minkowski background. As a result of such small
perturbations, the Riemannian tensor constructed in the
Fermi-normal coordinates is the same as it is in the
transverse-traceless gauge. For a detailed pedagogical
derivation of the Fermi normal coordinates, we refer the
readers to [30].
The relativistic action for the particle with the smaller

mass m0 reads

Sp ¼ −m0

Z
dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνẎμẎν

q
ð10Þ

where the coordinates for the particle are denoted by
Yμ ¼ ft; ξig. One can now replace τ by t in Eq. (10) using
the reparametrization invariance of the action in Eq. (10).
The model in general represents the arm of an interferom-
eter detector. The above action can be augmented by a
harmonic potential term by placing the entire system inside
a harmonic trap which represents an ideal resonating bar.
The modified action reads

SRD ¼−m0

Z
dt

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dYμ

dt
dYν

dt

r
þ 1

2
ω2
0gμνY

μYν

!
: ð11Þ

It is important to note that the gravitational wave-particle
(detector) interaction is for a very small timescale (of the
order of a few milliseconds). As a result, one can also
neglect terms Oðt3; t2ξ2Þ. Substituting Eqs. (7)–(9) in
Eq. (11) and keeping terms up to Oðξ2Þ, one can obtain
the following simplified form of the action

SRD ≃ −m0

Z
dt
�
1þ Rj0k0ðt; 0Þξjξk − δijξ̇

iξ̇j
�1
2 −

m0ω
2
0

2

Z
dt
��
1þ Rj0k0ðt; 0Þξjξk

�
t2 þ δijξ

iξj
�

≃ −m0

Z
dt

�
1þ 1

2
Rj0k0ðt; 0Þξjξk −

1

2
δjkξ̇

jξ̇k þ ω2
0

2
δjkξ

jξk
�

ð12Þ

where Rj0k0ðt; 0Þ ¼ − 1
2
̈h̄jkðt; 0Þ is in the transverse-

traceless gauge, ω0 denotes the frequency of the harmonic
trap or the bar detector, and the small terms along with the
terms that will not contribute in the overall dynamics of the

resonant bar have been dropped. It is important to note that
the above action describing the interaction of the detector
with the gravitational wave remains unchanged in the
transverse-traceless gauge.
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One can now substitute the form of the Riemann
curvature tensor in terms of the spacetime fluctuation
(hjk) in Eq. (12) as

SRD≃
m0

2

Z
dt

�
δjkξ̇

jξ̇kþ1

2
̈̄hjkðt;0Þξjξk−ω2

0δjkξ
jξk
�

ð13Þ

where we have gotten rid of the first term in Eq. (12) which
will not have any contribution to the dynamics of the
system.
Our primary aim is to quantize the small spacetime

fluctuations over the background spacetime metric. In order
to quantize the gravitational fluctuation, we decompose the
perturbation over the flat spacetime into discrete individual
frequency modes, and for a valid normalization condition,
we consider the entire system to be located inside a box of
side length L. The discrete mode decomposition reads

h̄jlðt; xÞ ¼
1

lp

X
k;s

qk;seik:xεsjlðkÞ ð14Þ

where qk;s is the mode amplitude, εsjl denotes the polari-

zation tensor with s ¼ þ;×, and k ¼ 2πn
L (n∈Z3) denotes

the wave vector for the system being in a box of length L.
Making use of the discrete mode decomposition in
Eq. (14), one can write down the full gauge fixed action
of the combined gravitational wave-resonant detector
system as well as interferometer detectors placed inside
a harmonic trap potential as

S¼ SEHþSRD

¼
Z

dt
m
2

X
k;s

�
q̇2k;s−k2qk;s

�

þ
Z

dt
m0

2

�
δjlξ̇

jξ̇l−
1ffiffiffiffiffiffiffi
ℏG

p
X
k;s

q̇k;sεsljðkÞξ̇jξl−ω2
0δjlξ

jξl
�

ð15Þ

where ξ is the coordinate variables corresponding to the
detector phase space, ω0 is the frequency of the detector
(harmonic oscillator frequency), and m ¼ L3

16πℏG2. For a
resonant bar detector, a one-dimensional model can be
considered, as the length of the bar is always much larger
than the other two directions perpendicular to its length. For
an interferometer detector, the long detector arm can be
considered to be one-dimensional (a two-mass system
with one mass way smaller than the other one) and the
harmonic trap potential term will be taken care of by its
one-dimensional analog. It is now possible to consider
the wave vector k to be propagating along the z direction
with magnitude ω ¼ jkj, along with plus polarization
only. Considering negligible fluctuations along the z and
y directions, one can recast the total action of the system as

S ¼
Z

dt

�
m
2
ðq̇2 − ω2q2Þ þm0

2

�
ξ̇2 −

2Gq̇ ξ̇ ξ
m0

− ω2
0ξ

2

��
ð16Þ

where G ¼ m0

2
ffiffi
ℏ

p
G
, ξx ¼ ξ and ℜðqkz ;þÞ ¼ q. It is important

to note that we have considered c ¼ 1 in our current
analysis. The Lagrangian corresponding to the action in the
above equation reads

L ¼ m
2
ðq̇2 − ω2q2Þ þm0

2

�
ξ̇2 − ω2

0ξ
2
�
− Gq̇ ξ̇ ξ: ð17Þ

The momentum conjugate to the position variables q and ξ
read

p ¼ ∂L
∂q̇

¼ mq̇ − Gξ̇ξ; π ¼ ∂L

∂ξ̇
¼ m0ξ̇ − Gq̇ξ: ð18Þ

Using the form of the Lagrangian in Eq. (17) and the
conjugate momentum variables, one can write down the
Hamiltonian for the system as

H ¼
p2

2m þ π2

2m0
þ Gpπξ

mm0

1 − G2ξ2

mm0

þ 1

2
mω2q2 þ 1

2
m0ω

2
0ξ

2: ð19Þ

As the coupling constant G is assumed to be very small, one
can express the Hamiltonian of the system in Eq. (19) up
to OðGÞ as

H ≃
p2

2m
þ π2

2m0

þ Gpπξ
mm0

þ 1

2
mω2q2 þ 1

2
m0ω

2
0ξ

2: ð20Þ

Following [3], we also assume that the coupling G is turned
on and off adiabatically and as a result GðtÞ → GfðtÞ such
that fðt < tiÞ ¼ fðt > tfÞ ¼ 0 and fðti ≤ t ≤ tfÞ ¼ 1.
Here, ti denotes the time at which the interaction between
the detector and the gravitational wave begins and tf
denotes the time when the gravitational wave stops inter-
acting with the detector. This switching function allows one
to define tensor product states at times t ¼ ti and t ¼ tf.
In order to quantize the above Hamiltonian, we raise the

position and momentum variables corresponding to both
the resonant detector and gravitational wave to operator
status and obtain the Hamiltonian operator of the detector-
graviton system to be

Ĥ ¼
�
p̂2

2m
þ 1

2
mω2q̂2

�
⊗ 1̂RD

þ 1̂GW ⊗
�

π̂2

2m0

þ 1

2
m0ω

2
0ξ̂

2

�

þ G
2mm0

p̂ ⊗
�
ξ̂ π̂þπ̂ ξ̂

� ð21Þ
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where ½ξ̂; π̂� ¼ ½q̂; p̂� ¼ iℏ with 1̂RD and 1̂GW denoting the
identity operators corresponding to the Hilbert space
of the resonant bar detector1 and the gravitational wave.
The Hamiltonian in Eq. (21) can be separated into two
parts, Ĥ ¼ Ĥ0 þ Ĥint with Ĥint ¼ G

2mm0
p̂ ⊗ ðξ̂ π̂þπ̂ ξ̂Þ

denoting the interaction part of the Hamiltonian. Before
the gravitational wave has started interacting with the
detector and after it has stopped interacting, we can
consider the total state of the system as a tensor product
of the individual number states corresponding to the
gravitational wave and the harmonic oscillator [3]. The
position and momentum operators for the gravitational
wave as well as the resonant bar detector in terms of their
respective creation and annihilation operators read

q̂ ¼
ffiffiffiffiffiffiffiffiffiffi
ℏ

2mω

r
ðâþ â†Þ; p̂ ¼ i

ffiffiffiffiffiffiffiffiffiffi
mℏω
2

r
ðâ† − âÞ; ð22Þ

ξ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ
2m0ω0

s
ðχ̂ þ χ̂†Þ; π̂ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0ℏω0

2

r
ðχ̂† − χ̂Þ ð23Þ

where ½â; â†� ¼ 1 ¼ ½χ̂; χ̂†�.
Using Eqs. (22) and (23) and making use of the

commutation relation, one can recast Eq. (21) in the
following form:

Ĥ ¼ ℏω

�
â†âþ 1

2

�
⊗ 1̂RD þ 1̂GW ⊗ ℏω

�
χ̂†χ̂ þ 1

2

�

−
ℏG

2mm0

ffiffiffiffiffiffiffiffiffiffi
mℏω
2

r
ðâ† − âÞ ⊗ ðχ̂†2 − χ̂2Þ: ð24Þ

One can now define the eigenstates corresponding
to the individual number operators N̂GW ¼ â†â and
N̂RD ¼ χ̂†χ̂ as

N̂GWjηGi ¼ ηGjηGi; N̂RDjnri ¼ nrjnri ð25Þ

where jnri denotes the nrth excited state of the harmonic
oscillator and jηGi denotes the gravitational wave state
containing ηG number of gravitons. As the initial and
final state of the gravity waver-detector system can be
represented as a tensor product of the corresponding
number states, we can write the initial and final state of
the system as jψ ii ¼ jηGi ⊗ jnri ¼ jηG; nri and jψfi ¼
jη0G; n0ri with jψ ii ≠ jψfi. Our primary aim is to calculate
the transition probability for the system going from the
state jψ ii to jψfi. In order to calculate the form of the
transition probability we need the analytical structure of
the interaction Hamiltonian in the interaction picture which
is calculated as

Ĥint
I ðtÞ ¼ e

i
ℏĤ0tĤinte−

i
ℏĤ0t

¼ G
2mm0

p̂I ⊗
	
ξ̂Iπ̂I þ π̂I ξ̂I


 ð26Þ

where p̂IðtÞ, ξ̂IðtÞ, and π̂ðtÞ are p̂, ξ̂, and π̂ respectively in
the interaction picture.
Up to first order in the interaction Hamiltonian in the

interaction picture, one can write down the transition
probability of the system for going from jψ ii to jψfi as
follows:

PifðtÞ ¼ jhψfjÛIðt; tiÞjψ iij2

≃
1

ℏ2

����
Z

t

ti

dt0hψfjĤint
I ðt0Þjψ ii

����2: ð27Þ

The usual notion of calculating such transition probabilities
is to set the limit ti → −∞ and tf → ∞ [15,16]. Extending
the integration limits and substituting the form of Ĥint

I ðt0Þ
from Eq. (26) in the above equation, we obtain the form of
the transition probability as

Pif ¼ 1

ℏ2

����
Z

∞

−∞
dt0hψfjĤint

I ðt0Þjψ ii
����2 ¼ ℏωπ2G2

2mm2
0

��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηG þ 1Þðnr þ 2Þðnr þ 1Þ

p
δη0G;ηGþ1δn0r;nrþ2

× δðωþ 2ω0Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηG þ 1Þnrðnr − 1Þ

p
δη0G;ηGþ1δn0r;nr−2

× δðω − 2ω0Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηGðnr þ 2Þðnr þ 1Þ

p
δη0G;ηG−1δn0r;nrþ2

× δð−ωþ 2ω0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηGnrðnr − 1Þ

p
δη0G;ηG−1δn0r;nr−2

× δð−ω − 2ω0Þ
���2 ð28Þ

1In order to avoid making repeated statements, we have stuck to the resonant bar detector model system as our primary model. It is
also important to note that the same things will hold for an interferometer detector placed inside a harmonic trap potential.
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where
R∞
−∞ dteiðω1−ω0

1
Þ ¼ 2πδðω1 − ω0

1Þ. Now δðωþ 2ω0Þ
[or δð−ω − 2ω0Þ] gives nonvanishing contribution when
ω ¼ −2ω0 which is not a physical condition. Therefore, the
transition probability in Eq. (28) can be simplified as
follows:

Pif ¼ ℏωπ2G2

2mm2
0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðηG þ 1Þnrðnr − 1Þ

p
δη0G;ηGþ1δn0r;nr−2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηGðnr þ 2Þðnr þ 1Þ

p
δη0G;ηG−1δn0r;nrþ2



2

× δ2ðω − 2ω0Þ: ð29Þ

The above form of transition probability ensures the fact
that due to graviton-detector interaction, the harmonic
oscillator will always jump up or jump down two con-
secutive energy eigenstates.

III. RESONANT ABSORPTION

We consider the simple case of the resonant bar detector
being in a ground state (nr ¼ 0). From the form of the
transition probability in Eq. (29), it is evident that only the
second term within the parentheses contributes toward a
nonvanishing probability for the system provided that
η0G ¼ ηG − 1. The condition η0G ¼ ηG − 1 signifies the fact
that the final gravitational wave state is short of a graviton
that has been absorbed by the detector and the detector
has excited to the second excited energy level simulta-
neously. For nr ¼ 0, we obtain the form of the transition
probability as

P02 ¼
ηGℏωπ2G2

mm2
0

δ2ðω − 2ω0Þ ¼
4ηGℏωπ3G

L3
δ2ðω − 2ω0Þ

ð30Þ
where we have substituted the analytical forms of G and m.
Our next aim is to establish a connection between the
transition amplitude obtained in our case with that of the
semiclassical case where the phase-space variables obey
Heisenberg’s uncertainty principle. In [15,16], the transi-
tion probability for the harmonic oscillator going from
its ground state to a higher excited state was calculated
for a generalized uncertainty principle (GUP) framework.
If now the GUP parameter is taken to zero, only the
transition probability indicating a ground state to second
excited state transition, survives. The transition probability
in such a semiclassical analysis for a periodic linearly
polarized gravitational wave with the form hjkðtÞ ¼
2f0 cosωtðε×σ1jk þ εþσ3jkÞ, takes the form

P02 ¼
1

2
π2f20ω

2ε2þδ2ðω − 2ω0Þ ð31Þ

with f0 denoting the amplitude of the gravitational wave.
For the case of the gravitational wave carrying a plus

polarization only, one obtains εþ ¼ 1 (using the condition
ε2þ þ ε2× ¼ 1). In order to truly relate the quantum gravi-
tational and semiclassical results, we need to calculate the
energy carried by the gravitational wave.
The total energy flowing through an area dA within the

time span t ¼ −∞ to t ¼ ∞ reads [31]

dE
dA

¼ 1

32πG

Z
∞

−∞
dthḣTTij ḣTTij i ð32Þ

where hTTij denotes the fluctuating part of the spacetime
metric in the transverse traceless gauge and h� � �i denotes a
temporal average. The above formula assumes the entire
system inside a sphere of radius r, hence, one can write
dA ¼ r2dΩ which indicates the energy going out or
coming in through a solid angle dΩ. As our entire analysis
is restricted to one dimension only, the hTT11 component will
contribute in Eq. (2.15), leading to the expression of the
total energy leaving the sphere or vice versa as

E ¼ r2

8G

Z
∞

−∞
dthḣ2þðtÞi: ð33Þ

Now the integral can be conducted first then the temporal
average is just an average over a constant parameter [31].
Hence, one can get rid of the average. Now for a periodic
plane polarized gravitational wave with a template hþðtÞ ¼
2f0 cosωt, a single time cycle ranges from t ¼ 0 to t ¼ 2π

ω .
It is now possible to calculate the total energy entering or
exiting through the spherical area in one periodic cycle as

E ¼ r2f20ω
2

2G

Z 2π
ω

0

sin2 ωt ¼ πωr2f20
2G

: ð34Þ

Although the entire system is effectively one-dimensional
in our analysis (because of the larger length of the detector
than its span in other directions), when the energy is
emitted or released via the enclosed (imaginary) sphere, we
need to consider a three-dimensional post-interaction pic-
ture. Initially, we have considered a box of length L but
when the energy flux relation is considered, a sphere of
radius r is considered. Effectively, for a large L we can
consider the box of length L to be embedded inside
the sphere of radius r such that all the corner points of
the box lie on the surface of the sphere. Under such an
assumption, r ¼ Lffiffi

2
p and the energy expression takes the

form E ¼ πωf2
0
L2

4G . If the gravitational wave is quantized,
then the energy Ewill be carried by ηG number of gravitons
with mode frequency ω. Hence, we can write E ¼ ηGℏω.
Substituting the value of r and E in Eq. (34), we obtain the
form of the square of the amplitude as

f20 ¼
4ηGℏG
πL2

: ð35Þ
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Using the above form of the square of the amplitude in
Eq. (30), we can write down the form of the transition
probability P02 as

P02 ¼
f20π

4ω

L
δ2ðω − 2ω0Þ: ð36Þ

In order to find out the final expression for the transition
probability P02, we need the analytical expression of the
box length L. Initially, when we have considered a box of
length L, the underlying assumption is that the interaction
and its effects are confined within the box of length L.
Now in time t ¼ 2π

ω , the gravitational wave travels a path
of distance λ ¼ 2πc

ω jc→1 ¼ 2π
ω . Hence, one can consider a

sphere of radius λ around the harmonic oscillator such the
oscillator is placed at the center of the sphere. Again, for a
sufficiently large L, we have assumed a spherical enclosure
so that the initial box of length L is stretched over a sphere
of radius λ. Hence, one can make the simple assumption
L ≃ πλ ¼ 2π2

ω . Substituting the value of L in Eq. (36), we
obtain the form of the transition probability to be

P02 ¼
1

2
f20π

2ω2δ2ðω − 2ω0Þ ð37Þ

which is identical to the form of the transition probability
in Eq. (31) (εþ ¼ 1 as ε× ¼ 0) obtained using the semi-
classical treatment. Here we have made use of the energy-
flux relation of a classical gravitational wave in Eq. (32)
and have considered the total energy to be carried by ηG
number of gravitons. Then we used it in the quantum
gravity scenario to relate the quantum gravitational results
with that of the semiclassical analysis. The striking feature
is the exact similarity of the two results. This exact
identification with the semiclassical treatment ensures
the fact that the consideration of the gravitational wave
with an integral number of gravitations carrying energy
equal to the reduced Planck’s constant multiplied by the
frequency of the gravitational wave is quite valid. Now,
although the absorption case is identical to the semi-
classical analog of this model, the emission case offers a
little bit more subtlety. This we shall look at in the next
section.

IV. SPONTANEOUS EMISSION OF GRAVITONS

We now consider the case when the initial state of the
total system is jψ ii ¼ jηG; 2i and the final state is
jψfi ¼ jηG þ 1; 0i. The form of the transition probability
in Eq. (29) for the above initial and final states take the form

P20 ¼ ðηG þ 1Þ 4ℏωGπ
3

L3
δ2ðω − 2ω0Þ: ð38Þ

For the semiclassical scenario, it is easy to observe that
P02 ¼ P20 [14–18]. If ηG → 0, then from Eq. (35) it is easy

to see that f0 vanishes and as a result P02 also vanishes. But
in this limit P20 ≠ 0, and takes the form

P20 ¼
hω4G
4π4

δ2ðω − 2ω0Þ: ð39Þ

Now ηG → 0 signifies that the initial state of the gravita-
tional wave-detector system is jψ ii ¼ j0; 2i denoting that
there are no gravitons in the initial tensor product state. The
nonvanishing probability in Eq. (39) indicates that when
the harmonic oscillator is in an excited state, it can emit a
graviton spontaneously and come back to the ground state.
This spontaneous emission is a direct consequence of a
degenerate parametric down conversion process2 as can be
seen from the form of the interaction term in Eq. (24) and
as a result it creates an asymmetry between the resonant
absorption and spontaneous emission processes. This
spontaneous emission of graviton is purely a quantum
gravity phenomenon and is absent in the semiclassical
analysis. As the gravitational wave is treated as a quantum
field, ηG → 0 condition implies that the initial state is a
vacuum state. The spontaneous emission scenario of
gravitons can be thought of as vacuum fluctuation of the
surrounding gravitational field (same as the electromag-
netic counterpart). The general frequency range of detec-
tion by a LIGO-VIRGO detector is in the 102–104 Hz
range. In the case of the Weber bar detectors, they can
reach up to a resonance frequency ω0 ∼ 5 × 103 Hz. The
resonant condition ensures that ω ∼ 104 Hz. For such a
case, the transition probability in Eq. (39) takes the form
P02 ¼ hω4G

4π4c5
δ2ðω − 2ω0Þ ∼ ð10−73 sec−2Þδ2ðω − 2ω0Þ. For

a classical gravitational wave f0 ∼ 10−21 which gives a
value of the transition probability in Eq. (37) as P02 ∼
ð10−33 sec−2Þδ2ðω − 2ω0Þ. Equating the above result and
the contribution from ηG number of gravitons indicates that
for f0 ∼ 10−21 there are ηG ∼ 1040 number of gravitons
carrying the energy E in the time interval 0 < t < 2π

ω . It is
important to note that every bar detector can be considered
as a combination of a large number of cylinders of
harmonic oscillators of length equal to the length of the
resonant bar. Now the diameter of such a cylinder can attain
the lowest value which is equal to the diameter of a single
atom. A Weber bar now has a diameter of one meter. The
radius of an atom is close to r0 ∼ 3 × 10−10 m. Hence, there
is approximately ðπ0.52Þ=ðπð3 × 10−10Þ2Þ ∼ 1018 number
of atoms on the surface of the bar detector. Therefore,
the entire bar detector can be considered as a combination
of maximum N ∼ 1018 numbers of such one-dimensional
cylinders with harmonic oscillator frequency equal to ω0.
Then each bar detector has a mass m0

0 ¼ m0=N.

2A parametric down-conversion process is a nonlinear optical
process (in this case gravitational) where two or more excitations
spontaneously convert into a single photon (here graviton) or
vice versa.
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As they are of the same length and made of the same
components we can assume the frequencies of each of the
oscillators to be the same. Hence, the transition probability
due to spontaneous emission from one such harmonic oscil-
lator gets multiplied by 1018 resulting in a joint transition
probability of P02 ¼ ð10−55 sec−2Þδ2ðω − 2ω0Þ. Although
the existence of the square of the Dirac-delta function
theoretically claims that it will make the transition prob-
ability very high when the resonance condition gets
satisfied, the Dirac-delta function comes in due to a time
integral from ti → −∞ to t → ∞ in the form of the
transition probability in Eq. (27). A more realistic scenario
will occur for a finite initial and final limit of the time
integral in the form of the transition probability. Now a
spontaneous emission of graviton denotes that the initial
vacuum state will have one graviton. If the number of
spontaneous emissions is made arbitrarily high, the final
field state will contain a large number of gravitons which
will effectively create a very small fluctuation over the
background. This can be considered as a gravitational
fluorescence-like effect where gravitons will emit in all
possible directions. Still, a collective spontaneous emission
shall lead to such amplified fluctuation over the spacetime
metric. Such fluctuations, if they exist, will be almost
impossible to detect. Now, if it is possible to modify the bar
detectors in the future in such a way that the resonance
condition amplifies the transition probability exponentially,
then it may be possible to detect such spontaneous emission
from resonant bar detectors in a very far future. It may be
also possible to detect this kind of scenario in an interfer-
ometer detector if it is possible to create a harmonic trap
potential for the same.

V. CONCLUSION

We consider a resonant bar detector of gravitational wave
(or an interferometer detector placed inside a harmonic trap
potential) interacting with an incoming gravitational wave
with plane polarization only. We apply a mode decom-
position of the small perturbation over the Minkowski
background and obtain the total Hamiltonian of the

gravitational wave-resonant bar detector system. The
Hamiltonian operator is then constructed by raising all
the phase space variables corresponding to the gravitational
wave as well as the resonant bar detector. Making use of the
Fermi-Golden rule, we obtained the transition probability
of the system going from an initial joint tensor product of
individual number states to some final state. We then
specifically considered the case for the detector going
from the ground state to the second excited energy state.
Using the energy flux relation for a classical gravitational
wave and considering the total energy carried by the
gravitational wave as a combination of ηG number of
gravitons, we observed that the transition probability is
exactly similar to that of the case where a classical
gravitational wave interacts with a resonant bar detector.
This identification with the semiclassical model solidifies
the quantum gravity approach of using the graviton-bar
detector interaction model. For a semiclassical model, the
resonant absorption and emission probabilities are exactly
the same. However, in the current quantum gravity analysis,
we observe that for a deexcitation of the resonant bar
detector from the second excited energy state to the ground
state, the transition probability does not vanish for ηG → 0
limit contrary to the resonant absorption case. This indi-
cates the phenomenon of spontaneous emission of a
graviton. This is the most interesting outcome of our
analysis as spontaneous emission of gravitons cannot be
observed in a semiclassical let alone a classical analysis. It
is important to note that some very small local perturbations
can replicate such a spontaneous emission process. Hence,
one needs to construct an experimental scenario such that
no other external perturbations lead to a similar effect.
Under such conditions, if the spontaneous emission of
gravitons is detected it can be considered to be a possible
evidence for a signature of quantum gravity. Finally, we
have calculated some numerical values indicating that it
will be very difficult to observe the spontaneous emission
of gravitons from a resonant bar detector unless the
resonance condition amplifies the transition probability
exponentially.
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