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We present a new vacuum of the bosonic higher-spin gauge theory in dþ 1 dimensions, which has
leftover symmetry of the Poincaré algebra in d dimensions. Its structure is very simple: the space-time
geometry is that of anti–de Sitter space, while the only nonzero field is a scalar. The scalar extends along the
Poincaré radial coordinate z and is shown to be linearly exact for an arbitrary mixture of its two Δ ¼ 2 and
Δ ¼ d − 2 conformal branches. The obtained vacuum breaks the global higher-spin symmetry, leading to a
broken phase that lives in the Minkowski space-time.
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I. INTRODUCTION

Higher-spin (HS) gauge theories [1] are often thought of
as underlying string theory in its allegedly unbroken
symmetry phase [2]; see also [3,4] for further related ideas.
A proposal in [5] suggested that superstrings propagate at
the boundary of 11-dimensional anti–de Sitter (AdS) space1
as a result of spontaneous HS symmetry breaking. The
specific mechanism relating the two theories is not practi-
cally available for a number of reasons. For one, while an
HS candidate rich enough to embrace arguably all stringy
states was recently proposed [7], the analysis of this theory
is still conceptually and technically challenging even at the
linearized level (see Ref. [8] for a work in this direction).
Second, HS theories formulated naturally in AdS space [9]
have recently faced the locality problem [10,11] which still
has not been fully resolved beyond cubic order (see
Refs. [12–15] for various approaches at quartic order).
Some accessible nonlinear HS models suitable for

symmetry-breaking studies are available in the form of
Vasiliev’s generating equations [16,17]. They describe
interactions of totally symmetric gauge fields at the level
of the classical equations of motion. Although the spectra
of these models are much poorer than those that string
theory suggests, the details of symmetry breaking that lead
to massive states are not known even for these simpler

models. It is curious to note in this regard how under an
ad hoc assumption on the AdS symmetry breaking one
arrives precisely at the stringy Regge leading trajectory [18].
In this paper, we attempt to make a step in a similar

direction by addressing the following simple question. Is
there an HS vacuum of the (dþ 1)-dimensional theory that
has Poincaré algebra as the global space-time symmetry in
d dimensions? Such a vacuum, if it exists, provides
arguably a systematic way to analyze the HS broken phase,
at least in some toy model examples. We answer this
question in the affirmative by manifestly constructing the
corresponding solution of the bosonic HS equations.
With such a vacuum, one can consider perturbation theory

about it. Fluctuating fields naturally acquire dependence on
the AdS boundary coordinates x⃗, as well as on the radial
bulk direction z. This way, one arrives at d-dimensional
(generally massive) excitations propagating in Minkowski
space-time at a fixed slice z. Among these, of great interest
are those that either depend on z trivially (for example, in a
scaling fashion) or result in a reorganization of HS modules
that effectively makes dynamics d-dimensional, along the
lines of [19,20]. The latter correspond to the broken phase of
dþ 1 HS theory in d dimensions.
In approaching this problem, we use the standard

unfolded formalism of [21] (see also [22] for its quantum
extension) that allows one to cast a highly nontrivial, many-
derivative HS interaction into the form of first-order
conditions at the cost of introducing infinitely many
auxiliary fields. The schematic form of these equations is

dxωþω�ω¼ϒðω;ω;CÞþϒðω;ω;C;CÞþ �� � ; ð1:1Þ

dxCþω�C−C�πðωÞ¼ϒðω;C;CÞþϒðω;C;C;CÞþ �� �
ð1:2Þ
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1Notice, however, that there are no simple supergroups in AdS
in d ≥ 8, [6].
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Further details on the above system will be provided
shortly. For now, we would like to focus on its general
structure. The fields ω ¼ ωðYjxÞ and C ¼ CðYjxÞ are the
generating functions of HS gauge fields and their field
strengths, respectively. The generating variables, collec-
tively called Y, encode spinning components and the
necessary auxiliary fields organized in accordance with
the HS algebra generated by the star product �. In
particular, the field spectrum contains a scalar associated
with the lowest component of C,

ϕðxÞ ≔ CðYjxÞjY¼0: ð1:3Þ

Infinite series ofϒ’s govern nonlinear gauge-invariant field
interactions. Their explicit form is at the core of the HS
problem. These can be extracted from the Vasiliev equa-
tions modulo a field redefinition [17]. Although systematic,
the procedure is substantially involved in practice and
draws one into the order-by-order factorization of the trace
ideal, a routine that sets the equations on shell. Given the
highly nonlinear nature of the Vasiliev theory, it is not too
surprising that there are only a handful of exact solutions
available in the literature ([23,24] in three and [25–31] in
four dimensions; see also the review [32]), while there are
none in arbitrary d except for the trivial one corresponding
to an empty AdS space,

ω0 ¼ WAdS; C0 ¼ 0: ð1:4Þ

Even though Vasiliev’s system describes full nonlinear
dynamics, it is not yet clear which choice of field variables
leads to the vertices ϒ within a proper class of (non)local
interactions. This problem is currently under active inves-
tigation; see, e.g., [33–35].
We do not pursue the analysis of the original equations

from [17] in our work. Instead, we use the recently
proposed Vasiliev-like system [36] specialized to HS
interactions of symmetric fields in any dimensions [37].
The advantage of the latter approach is its manifest all-
order (off-shell) locality, which clears the way for an
unexpectedly simple nontrivial vacuum of the theory.
Let us briefly comment on the difference between the

original generating equations of [17] and those of [37].
Both systems describe unconstrained, i.e., off-shell non-
linear bosonic HS fields in arbitrary dimensions. Both
operate with the same set of fields governed by the off-shell
HS algebra and as such result in the same unfolded
equations (1.1)–(1.2). The key difference is the type of
the large ðz; YÞ algebra featuring in the generating systems,
which is responsible for the explicit form of the vertices that
show up on the right-hand sides of (1.1)–(1.2). In the case
of Vasiliev, the large algebra contains noncommuting z’s,
while in our case these z’s commute, which is not feasible
for generating the equations of [17] due to unavoidable star-
product divergences. Nevertheless, the commuting z

algebra has already effectively come out in the analysis
of [38], where the requirement of locality for the Vasiliev
vertices was imposed. To make it work within [37] required
revising the basic elements of the original Vasiliev equa-
tions. In [36] it was shown that the modification of the
Vasiliev construction that arises in the z-commuting limit is
indeed possible for the 4d HS system. This result was
then extended to any d in [37]. At the level of vertices
in (1.1)–(1.2) we believe the two systems from [17,37]
should reproduce identical results. This can be checked at
the first few interaction orders, but not yet at higher orders,
because the locality of the original equations of [17] is not
yet settled at higher orders.
It should be stressed once again that we are dealing with

the off-shell system here. The HS on-shell dynamics can be
obtained using the factorization procedure, the details of
which are currently under development. Taking the quo-
tient comes along with the very definition of HS physical
fields.
Our main finding is very simple. The HS theory of

symmetric fields in dþ 1 dimensions parametrized by the
Poincaré coordinates xμ ¼ ðx⃗; zÞ has the following exact
solution of (1.1) and (1.2):

ω0¼WAdS; ϕðx⃗;zÞ¼ ν1z2þν2zd−2; ð1:5Þ

whereWAdS is the appropriately chosen AdSdþ1 connection
and ν1;2 are arbitrary parameters. Unlike the standard HS
vacuum (1.4), the vacuum (1.5) introduces a nonzero scalar
profile, which is independent of the boundary coordinates
x⃗. It depends on the radial z satisfying the Klein-Gordon
equation

□AdSdþ1
ϕ¼m2ϕ; m2¼ 2ð2−dÞ; ð1:6Þ

where the mass-like term is given in terms of the negative
cosmological constant. We thus show that the linearized
approximation turns out to be all-order exact, leading to

ϒðω0;ω0;Cϕ;…;CϕÞ¼ϒðω0;Cϕ;…;CϕÞ¼ 0: ð1:7Þ

The proposed vacuum breaks the global HS symmetry
down to a subalgebra that has the Poincaré algebra as the
space-time symmetry in d dimensions. The reason the
scalar does not contribute to HS sectors is kinematical.
Being x⃗ independent, it is too symmetric, and thus offers no
spin structure whatsoever. Less clear is the absence of its
nonlinear self-interaction as the nature of the observed
higher-order cancellations remains obscure to us. On the
other hand, the solution obtained is remarkably simple and
naturally suggests proceeding with the linearized analysis
about it. The corresponding free theory arguably lives on
the Minkowski background in d dimensions. We hope to
report on progress in this direction elsewhere.
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The remainder of this paper is structured as follows.
In Sec. II we provide a brief review of Vasiliev’s HS algebra
in dþ 1 dimensions and present the generating equations
of [37]. A suitable ansatz, as well as the solution of
equations of motion, is given in Sec. III, where we also
provide the on-shell condition used, elaborate on its global
symmetries, and lay out a few basic properties of the
obtained vacuum. Our conclusions are given in Sec. IV.

II. HS GENERATING EQUATIONS

Equations (1.1)–(1.2) contain the 1-form ωðYjxÞ and
0-form CðYjxÞ valued in an HS algebra. Following [17], the
bosonic HS algebra in dþ 1 dimensions can be generated
using a set of oscillators,

Y ¼ ðyα; yaβÞ; a ¼ 0…d; α; β ¼ 1; 2; ð2:1Þ

where a is the oðd; 1Þ Lorentz index, while α and β are
attributed to an spð2Þ, which is designed to generate two-
row Young diagrams. Indeed, as shown in [17], whenever
the greek indices are contracted with the spð2Þ canonical
form ϵαβ ¼ −ϵβα forming an spð2Þ singlet, the coefficients
of a polynomial fðy; yÞ are nothing but a bunch of (Lorentz
traceful) two-row diagrams. For example, ωðYjxÞ generates
the following set of HS fields of arbitrary spin s ≥ 1:

ð2:2Þ

where by aðmÞ we traditionally denote the symmetrization
over m indices. The Moyal star defines a product in the
associative HS algebra,

ðf � gÞðy; yÞ ¼
Z

fðyþ u; y þ uÞ

× gðyþ v; y þ vÞeiuαvαþiua
αvbβηabϵ

αβ

; ð2:3Þ

where the functions f and g are assumed to be spð2Þ
singlets, while ηab is the oðd; 1Þ metric.
The generating 0-form CðYjxÞ from (1.1)–(1.2) mani-

fests the so-called twisted-adjoint module of the HS
algebra, where the twist in (1.2) is defined as the following
reflection:

πfðy; yÞ ¼ fð−y; yÞ: ð2:4Þ

The traceful two-row Young diagrams belong to what can
be referred to as the off-shell HS algebra. It contains a
greater set of fields than is required for the on-shell
dynamics. Correspondingly, the system (1.1)–(1.2) does
not describe dynamical evolution; rather, it offers a set of
the generalized Bianchi consistency constraints and con-
ditions that express any particular auxiliary field in terms of

space-time derivatives of other fields. Such type of unfolded
equations is usually called off shell (see, e.g., [39,40]).
The on-shell spectrum contains fewer fields. Namely,
those associated with the Lorentz traces of the two-row
Young diagrams have to be consistently dismissed. A
proper way of doing this is via factorization of the trace
ideal. The reader may find more on this matter in [41]. Let
us also add to this: star products in (1.1)–(1.2) do not
respect a chosen on-shell field representative condition in
general. Thus, Eqs. (1.1)–(1.2) should be treated modulo
terms from the corresponding ideal.

A. Generating equations

Vertices on the right-hand sides of (1.1)–(1.2) can be
generated order by order using equations from [37], which
are based on the Vasiliev idea that ωðYjxÞ can be embedded
into a bigger space with the extra two coordinates
zα ¼ ðz1; z2Þ,

Wðz;YjxÞ ≔ ωðYjxÞ þW1ðz;YÞ þW2ðz;YÞ þ � � � ð2:5Þ

The embedding is called canonical if

Wð0;YjxÞ ¼ ωðYjxÞ: ð2:6Þ

The generating equations of [37] read

dxW þW �W ¼ 0; ð2:7Þ

dzW þ fW;Λg� þ dxΛ ¼ 0; ð2:8Þ

dxCþ�
Wðz0;y;yÞ �C−C�Wðz0;−y;yÞ���z0¼−y ¼ 0; ð2:9Þ

where dz ¼ dzα ∂

∂zα, C ¼ Cðy; yÞ is z independent, just as it
appears in (1.1)–(1.2), and

Λðz; y; yÞ ¼ dzαzα

Z
1

0

dττeiτzβy
β
Cð−τz; yÞ ð2:10Þ

satisfies the condition

dzΛ ¼ Cðy; yÞ � γ; ð2:11Þ

where

γ ¼ 1

2
eizαy

α
dzβdzβ; ð2:12Þ

while the star product � extended to the ðz;YÞ space has
the form

ðf �gÞðz;YÞ¼
Z

fðzþu0;yþu;yÞ⋆gðz−v;yþvþv0;yÞ

×expðiuαvαþ iu0αv0αÞ; ð2:13Þ
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where ⋆ is a part of the star product (2.3) that acts on
y only,

ðf⋆gÞðyÞ ¼
Z

fðy þ uÞgðy þ vÞ expðiuαvαÞ: ð2:14Þ

From the above integrations, it is easy to derive

y� ¼ yþ i
∂

∂y
− i

∂

∂z
; z� ¼ zþ i

∂

∂y
; ð2:15Þ

�y ¼ y − i
∂

∂y
− i

∂

∂z
; �z ¼ zþ i

∂

∂y
; ð2:16Þ

y� ¼ y þ i
∂

∂y
; �y ¼ y − i

∂

∂y
: ð2:17Þ

In particular, one observes that z’s commute,

½zα; zβ�� ¼ 0: ð2:18Þ

Equation (2.13) reduces to (2.3) for z-independent func-
tions. Equations (1.1)–(1.2) result from (2.7)–(2.9) order by
order upon solving for the z dependence of W using (2.8)
and then substituting the result into (2.7) for (1.1) and
into (2.9) for (1.2). However, the prescribed procedure
leads to the unconstrained equations off the mass shell. To
set them on shell, one has to choose representatives for ω
and C and then strip the ideal contribution from (1.1)–(1.2)
off [17]. The ideal is generated with the help of certain
field-dependent spð2Þ generators found manifestly in [37].
Let us point to an unusual property of the system (2.7)–

(2.9). The last equation (2.9) of the three is not indepen-
dent. It follows from (2.8) via consistency. This fact is not
quite manifest, however. To check it, one applies dz to (2.8)
and uses the following projective identity [36]:

dz
�
Wðz; y; yÞ � Λ� ¼ �

Wðz0; y; yÞ � C���z0¼−y � γ; ð2:19Þ

dz
�
Λ�Wðz;y;yÞ�¼−

�
C�Wðz0;−y;yÞ���z0¼−y � γ: ð2:20Þ

Consistency of equations (2.19) and (2.20) is based on the
specific star product (2.13), the precise form of Λ (2.10),
and the functional class that evolves on (2.7) and (2.8), to
which the field W belongs. For more details, we refer
to [36,37]. Let us also note that the variable z0 within the
argument of W evades star multiplication and is set to −y,
as prescribed above.

III. SOLUTION

The natural vacuum of HS theory is AdSdþ1 space
described by a z-independent bilinear in a Y flat connection
W0 satisfying (2.7). It is convenient to choose it using the
Poincaré coordinates, in which the metric reads

ds2 ¼ 1

z2
ðdz2 þ ηijdxidxjÞ; ð3:1Þ

where the radial coordinate z should not be confused with
zα, while xj ≔ x⃗ are coordinates on the d-dimensional
Minkowski boundary, i; j ¼ 0…d − 1, with metric ηij.
Let us introduce the following notation for the split-
component ya:

ya ¼
�
yj ¼ y⃗; a ¼ j < d;

iȳ; a ¼ d;
ð3:2Þ

where the imaginary i is introduced conventionally, while ȳ
is not complex conjugate to any y’s but rather is an
independent component. The commutation relations

½yiα;yjβ�� ¼2ηijϵαβ; ½yα;yβ�� ¼2iϵαβ; ½ȳα; ȳβ�� ¼−2iϵαβ
ð3:3Þ

provide the following comprehensive set of oðd; 2Þ con-
formal algebra generators:

Mij¼
1

2
yαi yjα; Pi¼

1

2
yαi ðy− ȳÞα;

Ki ¼
1

2
yαi ðyþ ȳÞα; D¼−

1

2
yαȳα: ð3:4Þ

The connection

W0 ¼
i
z
ðdxjPj − dzDÞ ð3:5Þ

can be shown to satisfy (2.7). We fix this vacuum in our
analysis by assuming that it receives no correction even in
the case of a nonzero field configuration of field C. In what
follows, we also need the associated star commutators
derived from (2.13),

½P⃗; •�� ¼ iy⃗α
�

∂

∂ȳα
þ ∂

∂yα

�
− i

�
y − ȳ − i

∂

∂z

�
α ∂

∂y⃗α
; ð3:6Þ

½D; •�� ¼ −iyα
∂

∂ȳα
− iȳα

∂

∂yα
þ ϵαβ

∂
2

∂zα∂ȳβ
: ð3:7Þ

A. Weyl module and T ansatz

The nontrivial part of the following analysis is to solve
for the Weyl module C satisfying (2.8) and (2.9). Let us
specify conditions that we impose to constrain our ansatz
forC. First, as we have mentioned, Eqs. (2.7)–(2.9) result in
no dynamics unless on-shell representatives are picked and
the trace ideal is factored out. As shown in, e.g., [41], a
convenient C-representative is twisted traceless [due to the
twist (2.4)], rather than the usual AdS traceless typical of
the 1-form ωðYjxÞ. In our notation, the former condition
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takes the form

ΔαβC ≔
�
ηij

∂

∂yiα
∂

∂yjβ
−

∂

∂ȳα
∂

∂ȳβ
− yαyβ

�
C ¼ 0: ð3:8Þ

The operator Δαβ can be shown to commute with the free
equations arising from (2.9) upon substituting (3.5) in place
of W:

D̃C¼ 0; ½Δαβ;D̃� ¼ 0; ð3:9Þ

where

D̃ ¼ dx þ
dx⃗
z
·

�
iy⃗αyα − i

∂

∂y⃗α
∂

∂yα
− y⃗α

∂

∂ȳα
− ȳα

∂

∂y⃗α

�

þ i
dz
z

�
yαȳα þ ϵαβ

∂

∂yα
∂

∂ȳβ

�
: ð3:10Þ

In addition, representatives singled out by (3.8) respect the
action of the spin operator of the twisted-adjoint module,

ŝ¼ 1

2

�
yaα

∂

∂yaα
−yα

∂

∂yα

�
¼ 1

2
ðy⃗ · ∂⃗α− ȳα∂̄α−yα∂αÞ;

½ŝ;Δαβ� ¼−Δαβ: ð3:11Þ

Thus, Eq. (3.8) is consistent with a natural choice of having
the scalar as the lowest component of the Weyl module
Cðy; ȳ; y⃗jxÞ (see also [42]),

ϕðxÞ ¼ Cð0; 0; 0⃗jxÞ: ð3:12Þ

Now, aiming at the exact solution, we would like C to be
nonzero within the scalar sector only. This implies that the
eigenvalue of spin operator is zero,

ŝC ¼ 0: ð3:13Þ

Even though the scalar sources higher spins in interactions,
in general, this may not be the case for a highly symmetric
scalar profile. Thus, we assume C to depend on the
Poincaré radial z only; in other words, we take it to be
x⃗ independent.
With the above preparations, we propose the following

ansatz:

C ¼ z2eiyαȳ
α
Tðp; q; zÞ; ð3:14Þ

where

p¼−z2y⃗α · y⃗βyαyβ; q¼ 2iz2yαȳα: ð3:15Þ

The normalization and z-scaling are chosen conveniently.
Equation (3.13) is trivially satisfied, justifying the scalar
structure of the module. The exponential factor in (3.14)

although can be absorbed into T remains conveniently
isolated. A similar exponential was already introduced
in [19] as a kind of intertwining operator between free
bulk fields and boundary currents. At the lowest inter-
action level, the same exponential was observed to
commute with nonlinearities of HS equations in their
local form [43,44]. In addition, being a star-product
projector, it shares this characteristic feature with the
HS bulk-to-boundary propagators [42],

eiyȳ � eiyȳ ¼ 1

4
eiyȳ: ð3:16Þ

Given the universality of the above substitution in various
applications, we refer to (3.14) as the T ansatz.

B. Obtaining the solution

All is set to proceed with solving (2.8) and (2.9).
Plugging (3.5) into (2.8) and using that W0 from (3.5) is
z independent, we arrive at two conditions for Λ from the
dz and dx⃗ 1-forms, correspondingly,

½D;Λα�� ¼ −iz
∂

∂z
Λα; ð3:17Þ

½Pi;Λα�� ¼ 0: ð3:18Þ

Equivalently, using (3.6) and (3.7),

�
ȳβ

∂

∂yβ
þ yβ

∂

∂ȳβ
þ iϵβγ

∂

∂zβ
∂

∂ȳγ

�
Λα ¼ z

∂

∂z
Λα; ð3:19Þ

�
y− ȳ− i

∂

∂z

�
β ∂

∂y⃗β
Λα− y⃗β

�
∂

∂y
þ ∂

∂ȳ

�
β

Λα¼ 0: ð3:20Þ

Substituting (3.14) into (2.10),

Λα ¼ z2
Z

1

0

dττzαeiτzðy−ȳÞTðp;q; zÞ; ð3:21Þ

where we introduced

p¼−τ2z2y⃗α · y⃗βzαzβ; q¼−2iτz2zαȳα: ð3:22Þ

Plugging (3.21) into (3.19) and (3.20) and after quite a
lengthy calculation (see the Appendix for a sketch of
the derivation) that repeatedly uses partial integration of
the form

zα
∂

∂zα

Z
1

0

dτρðτÞfðτzÞ¼
Z

1

0

dτρðτÞτ∂τfðτzÞ

¼ ρð1ÞfðzÞ−ρðτÞτfðτzÞjτ¼0

−
Z

1

0

dτ∂τ
�
τρðτÞ�fðτzÞ; ð3:23Þ
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we arrive at

Z
1

0

dττeiτzðy−ȳÞ
�
T 0
z−4z

�
T 0
qþpT 00

pqþ
q
2
T 00
qq

��
¼ 0;

ð3:24Þ
Z

1

0

dττ2eiτzðy−ȳÞðT 0
q−3T 0

p−2pT 00
pp−qT 00

pqÞ¼ 0; ð3:25Þ

where T 0
s ¼ ∂

∂s T. At this stage, the on-shell condition (3.8)
has not been imposed yet. It gives us another constraint for
our ansatz (3.14), namely,

d ·T 0
pþ2pT 00

pp−2T 0
q−2z2T 00

qq¼ 0; d¼ δi
i: ð3:26Þ

Let us now set

T 0
z − 4z

�
T 0
q þ pT 00

pq þ
q
2
T 00
qq

�
¼ 0; ð3:27Þ

T 0
q − 3T 0

p − 2pT 00
pp − qT 00

pq ¼ 0 ð3:28Þ

in order to satisfy (3.24) and (3.25). Substituting (3.14)
into (2.9) gives no new conditions as it leads again to (3.27)
and (3.28). This fact is not surprising because, as was
stressed (see also [36]), (2.9) comes as a consistency
condition of (2.8). Eventually, the solution we look for
should satisfy the three differential equations (3.26)–(3.28).
However, it should be analytic in p and q. The simplest
solution of this system is

T ¼ ν ¼ const; ð3:29Þ

which is not trivial; see (3.14). However, there is another
solution that can be found in terms of power series,

T ¼
X
m;n

fm;nðzÞ
m!n!

pmqn: ð3:30Þ

Substituting (3.30) into (3.26)–(3.28) and leaving the
technical details for the Appendix, let us present the final
result:

T¼ zd−4
X
m;n

�
1

z2

�
mþn pmqn

m!n!Γð2þ2mþnÞΓðd−2
2
−m−nÞ :

ð3:31Þ

The above power series can be summed up using the
contour representation of the gamma function,

1

ΓðkÞ¼
I

dρρ−keρ; k∈N; ð3:32Þ

leading eventually to the following final form of T:

T ¼ ν1 þ ν2

I
dρ

eρ

ρ2

�
z2 þ p

ρ2
þ q

ρ

�d−4
2

; ð3:33Þ

where ν1 and ν2 are arbitrary constants, while p and q are
given by (3.15). The integration contour encircles the origin
to avoid branch cuts. Thus, the obtained vacuum of the
system (2.7)–(2.9) is described by the connection (3.5) and
Weyl module (3.14) and (3.33), which we present here in
terms of the original variables for convenience:

W0 ¼
i
2z

�
dxjyαj ðy − ȳÞα þ dzyαȳα

�
; ð3:34Þ

C¼ eiyαȳ
α

�
ν1z2þν2zd−2

I
dρ

eρ

ρ2

�
1þx1

ρ2
þx2

ρ

�d−4
2

�
;

ð3:35Þ

where

x1¼−y⃗α · y⃗βyαyβ; x2 ¼ 2iyαȳα: ð3:36Þ

Assuming analyticity in p and q, the solution (3.33)
is the only solution of the partial differential equa-
tions (3.26)–(3.28). This may sound surprising given
that no boundary conditions were imposed, but in fact, as
the analysis in theAppendix shows, this system is somewhat
fine-tuned to have very few analytic solutions. For example,
had the coefficient p in (3.27) been different, say, 2p, there
would be no analytic solutions at all, other than T ¼ const.

C. Basic properties

Let us recapitulate some salient features of the obtained
background.
(1) The vacuum 1-form connection W0 is given by the

AdS bilinears in the Poincaré coordinates (3.5). It
remains undeformed despite nontrivial scalar exci-
tation in C. This in turn implies that the scalar itself
satisfies free equations trivializing the nonlinear self-
interaction. Its profile can be extracted from (3.12),

ϕðx⃗; zÞ ¼ ν1z2 þ ν2zd−2: ð3:37Þ

It does not depend on the boundary coordinates x⃗
and offers an arbitrary mixture of its two branches2

of conformal dimensions Δ1 ¼ 2 and Δ2 ¼ d − 2.
Given that the radial coordinate z is dimensionless
(in terms of the cosmological constant), the two
constants ν1 and ν2 carry the standard dimension of a
scalar in dþ 1. The solution is on shell because it

2The case of d ¼ 4 corresponding toΔ1 ¼ Δ2 is exceptional as
one loses the logarithmic scalar branch given by z2 log z. The
missing branch cannot be captured by (3.33). It would be
interesting to reconsider this case separately, in particular to
see whether the free solution remains exact.
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satisfies the chosen condition (3.8) from factor
algebra. Since W gains no C corrections and since
the linear C is exact, our background trivializes the
higher-order vertices (1.7).

(2) The independence of Eq. (3.37) from x⃗ suggests that
the leftover global space-time symmetry of the
vacuum is the Poincaré algebra in d dimensions
spanned by the Lorentz generators Mij and trans-
lations Pi. This is indeed the case, as can be seen
from the analysis of the conditions δϵW0 ¼ δϵC ¼ 0,
which give

dxϵþ ½W0; ϵ�� ¼ 0; ð3:38Þ
dzϵþ ½Λ; ϵ�� ¼ 0: ð3:39Þ

Taking ϵ to be zα independent, we have from (3.39)
that ½Λ; ϵ�� ¼ 0. Taking into account (3.18) as well as
the simple observation that Lorentz generators com-
mute with Λ, ½Mij;Λ�� ¼ 0, the space-time global
symmetry parameter that satisfies (3.39) reads

ϵ ¼ 1

2
ξijðx⃗; zÞMij þ ξiðx⃗; zÞPi; ð3:40Þ

where ξ are some x-dependent parameters. Plug-
ging (3.40) into (3.38), it is easy to obtain that ξij
are arbitrary constants, while

ξi¼
1

z
ðξ0i þξjixjÞ; ξ0i ¼ const: ð3:41Þ

Thus, (3.40) indeed parametrizes Poincaré algebra
in d dimensions.

(3) The structure of the T module (3.33) is different in
odd and even dimensions. In the latter case, T is
always a polynomial, e.g.,

Td¼8¼ ν1þν2z4
�
1þ x21

120
þx22

6
þx1

3
þx2þ

x1x2
12

�
;

ð3:42Þ
while in the odd case it is not, as the integration
in (3.33) brings all powers of p and q. Note also that
the contour representation (3.33) was already intro-
duced in [42] in a different context. This integral can
be expressed in terms of the Gegenbauer polyno-

mials CðαÞ
n ðxÞ as follows:

I
dρ

eρ

ρ2

�
1−

2xy
ρ

þy2

ρ2

�−α
¼
X
n

yn

ðnþ1Þ!C
ðαÞ
n ðxÞ:

ð3:43Þ
The Gegenbauer polynomials are known to arise as
generating functions of the conserved currents of the
OðNÞ model; see, e.g., [45]. The presence of these

polynomials in the structure of theTmodulemay be a
manifestation of the Flato-Fronsdal theorem [46,47].

(4) One should be cautious about interpreting the
fields (3.34) and (3.35) as proper physical fields
of the on-shell system. Indeed,while they do enjoy the
chosen representative conditions and therefore are on
shell, their physical interpretationmay not be straight-
forward, given that the factorization procedure that
brings the off-shell system (2.7)–(2.9) on shell is not
yet detailed. It is likely that the physical fields may
acquire a form different from (3.34)–(3.35). That this
might be the case is signaled by the lack of corrections
to the space-time background from a scalar despite its
nonzero stress tensor. Nevertheless, the Poincaré
symmetry of physical fields is guaranteed due to
the fact that the quotienting comes about in terms of
the HS module C [37], which itself is Poincaré
invariant in our case.

(5) As a final remark, let us stress the importance of the
Fock-type projector (3.16) in the construction of the
Weyl module (3.14). It comes out in many HS
applications. For example, it offers a “forgetful
property” of the HS bulk-to-boundary propagators,
making the HSN-point correlators calculable in [48].
It also appears within the structure of HS black holes;
see, e.g., [28,29,44]. Most notably, in some cases it
makes consideration of the projector-based solutions
within the original Vasiliev framework of [16] prob-
lematic due to the artificial star-product divergences
it elicits at the level of master fields. For example,
in [31] a class of various exact solutions that admit six
isometrieswas found.One of these (called typeDW0)
is a four-dimensional analog of our solution. It is also
based on the Fock-type projector which, however,
develops singularities to the lowest interaction order.
As a result, this particular solution of [31] is supple-
mented with a specific regularization prescription.
Given that the vacuum obtained in this paper is free
from any divergences, we may expect that the
divergences of [31] are really spurious.

IV. DISCUSSION

We constructed a very simple vacuum (3.34)–(3.35) of
the nonlinear bosonic HS theory in dþ 1 dimensions. All
of its fields vanish except for the scalar, which spreads
along the Poincaré radial direction z in AdS. Being highly
symmetric, it respects the Poincaré algebra that naturally
acts on AdS slices at fixed z as the global space-time
symmetry. As a result, the obtained solution mildly breaks
global HS symmetry.
In obtaining this vacuum, we chose a suitable AdSdþ1 flat

connection as a combination of translations and a dilatation
from the algebra oðd; 2Þ using the standard Poincaré
coordinates. As the HS equations (2.7)–(2.9) are off shell,
we were forced to impose the extra condition (3.8) that
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selects the on-shell representative. To solve the system, the
so-called T ansatz (3.14) based on the Fock projector was
used. This particular choice, first introduced at the free level
in [19], ismotivated by the immunity of the Fock projector to
HS nonlinearities [43,44]. The T module enjoys a system of
partial differential equations that admits an explicit solution
in terms of Gegenbauer polynomials. Quite remarkably, the
solutionwe found trivializes the interactingHS vertices (1.7)
in a given frame, which makes it linearly exact. Thus, the
scalar profile features a superposition of its shadow Δ ¼ 2
and current Δ ¼ d − 2 branches that come with arbitrary
dimensionful constants (3.37). In dþ 1 ¼ 4, the analogous
vacuum was found as a solution of Vasiliev’s equations
in [31], modulo regularized divergencies. The formalism
used in this paper features nodivergences, thus, implying that
the infinities Ref. [31] has clashedwith are likely unphysical.
An intriguing problem for the future is to elaborate on

the structure of the field spectrum about the proposed
vacuum. Naturally, we expect the corresponding theory to
live in d-dimensional flat space. It is conceivable that the
spectra differ for Δ ¼ 2 and Δ ¼ d − 2 vacua, as well
as for the mixture of the two. Given that the vacuum
parameters ν1;2 [Eq. (3.37)] are dimensionful, one may
expect the fluctuations on the Minkowski space to acquire
ν-dependent masses, as an option. Another feasible option
is that the spectrum is massless, while ν appears in
interaction vertices. The latter case would relate HS theory
in AdS to a hypothetical one in Minkowski space in a
way that infers no flat limit. In any case, the free-field
analysis does not promise to be immediately straightfor-
ward. Indeed, while the constructed vacuum is on shell,
the generating system (2.7)–(2.9) is not. This implies that
one has to factor out the ideal associated to the field
traces to set free fields on their mass shell. The form of this
ideal is driven by the field-dependent spð2Þ constructed
in [37]. Unlike the case of the standard HS vacuum (1.4),
which generates an ideal out of field traces at the free level,
the new vacuum makes the spð2Þ generators depend on the
vacuum structure ofT from (3.33). Thismay offer a technical
complication in the process of on-shell factorization.
The vacuum obtained may also play an important role in

the HS AdS/CFT correspondence [49–52]. So, in d ¼ 3,
the case that sparked a surge of interest due to its
conjectural relevance to the Wilson-Fisher model [49], it
is the spinorial version of the solution (3.33) with ν1 ¼ 0
that has emerged as an intertwiner of fields and currents
within the Vasiliev equations at the free level [19]. It would
be very interesting to extend this analysis to all orders.
In particular, the holomorphic (chiral) generating equations
of [36] are accessible to all-order analysis. It is also of
interest to trace the d ¼ 3 HS symmetry breaking from the
boundary perspective in its massive state (see, e.g., [53]),
where masses resulted from the breaking of scale invari-
ance. It is conceivable that the vacuum parameters may be
related to the mass of a scalar of the potential boundary dual
Poincaré-invariant quantum field theory.
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APPENDIX: DERIVATION EXTRAS

Herewe show that (3.21) solves Eq. (2.8) of the generating
system, which for the chosen AdS connection (3.5) reduces
to (3.19) and (3.20). To derive (3.19) and (3.20) from (2.8),
the following formulas are very handy:

yαj ðyα − ȳαÞ � fðz; y; ȳ; y⃗Þ

¼
�
yαj þ iϵαβ

∂

∂yβj

��
yα þ i

∂

∂yα
−

∂

∂zα
− ȳα þ i

∂

∂ȳα

�

× fðz; y; ȳ; y⃗Þ; ðA1Þ
fðz; y; ȳ; y⃗Þ � yαj ðyα − ȳαÞ

¼
�
yαj − iϵαβ

∂

∂yβj

��
yα − i

∂

∂zα
− i

∂

∂yα
− ȳα − i

∂

∂ȳα

�

× fðz; y; ȳ; y⃗Þ; ðA2Þ
Combining these gives us (3.6). One derives (3.7) analo-
gously. Substituting (3.21) into (3.19) yields

½yαj ðyα− ȳαÞ;Λξ��
¼ 4z2zξzγy

γ
j

Z
1

0

dττ2eiτzðy−ȳÞ
�
∂T
∂q

þ τð1− τÞ�izαðyα− ȳαÞ�

×
∂T
∂p

−4τ
∂T
∂p

−2τp
∂
2T
∂p2

−qτ
∂
2T

∂p∂q

�
: ðA3Þ

To proceed, we notice that for T ¼ Tðp; qÞ we have the
identity

τ
∂T
∂τ

¼ 2p
∂T
∂p

þ q
∂T
∂q

; ðA4Þ

which allows us to rewrite some terms as derivatives with
respect to τ and then integrate by parts using (3.29). Thisway,
we obtain

½yαj ðyα − ȳαÞ;Λξ�� ¼ 4z2zξzγy
γ
j

Z
1

0

dττ2eiτzαðyα−ȳαÞ

×
�
∂T
∂q

− 3
∂T
∂p

− 2p
∂
2T
∂p2

− q
∂
2T

∂p∂q

�
;

ðA5Þ
which equals zero due to (3.28).
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In a similar way, the dz sector of (2.8) can be solved.
Plugging (3.21) into (3.7) and using (A4) gives

i
2z

½yαȳα;Λξ�� ¼ zzξ

Z
1

0

dττ2
∂

∂τ
ðeiτzαðyα−ȳαÞÞ

�
1þ2z2

∂

∂q

�

×T−zzξ

Z
1

0

dττeiτzαðyα−ȳαÞq
∂T
∂q

−zzξ

Z
1

0

dτ
∂

∂τ

�
τ3eiτzαðyα−ȳαÞ

�
1þ2z2

∂

∂q

�
T

�
:

ðA6Þ

Differentiation with respect to z then amounts to

∂Λξ

∂z
¼ zξ

Z
1

0

dττeiτzαðyα−ȳαÞ
�
2zþ2zp

∂

∂p
þ2zq

∂

∂q
þz2

∂

∂z

�
T:

ðA7Þ

Combining (A6) and (A7), one arrives at

∂Λξ

∂z
þ i
2z

½yαȳα;Λξ��

¼ z2zξ

Z
1

0

dττeiτzαðyα−ȳαÞ
�
∂T
∂z

−4z

�
∂T
∂q

þp
∂
2T

∂p∂q
þq
2

∂
2T
∂q2

��
;

ðA8Þ

which is again zero due to (3.27).

1. Solving equations on T

Plugging the power series ansatz (3.30) into (3.28)
and (3.26), we obtain the following equations for

coefficients, respectively:

fm;nþ1 ¼ ð3þ 2mþ nÞfmþ1;n; ðA9Þ

ðdþ 2mÞfmþ1;n − 2fm;nþ1 − 2z2fm;nþ2 ¼ 0: ðA10Þ

Using (A9), one can reduce (A10) to

fm;nþ1 ¼
1

z2

d
2
−m − n − 2

2þ 2mþ n
fm;n for n ≥ 1: ðA11Þ

This equation can be easily solved as

fm;nðzÞ¼
φðzÞ

z2ðmþnÞ
1

Γð2mþnþ2ÞΓðd
2
−m−n−1Þ ; ðA12Þ

where φðzÞ is a yet undefined function. Equation (3.27)
describes evolution with respect to z and gives the follow-
ing equation for φðzÞ:

∂φðzÞ
∂z

¼ ðd − 4ÞφðzÞ
z

: ðA13Þ

Thus, the general solution (up to an overall constant) of
equations on fm;nðzÞ reads

fm;nðzÞ ¼
zd−4−2m−2n

Γð2mþ nþ 2ÞΓðd
2
−m − n − 1Þ : ðA14Þ

Plugging these coefficients back into the power series
(3.30), one obtains (3.31).
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