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We explicitly compute the Neveu-Schwarz sector conventional type-I superstring tree-level amplitudes at
five points after compactifying to 4D, express the QFT building block in the helicity basis, and give several
attempts toward arbitrary n points. More specifically, we consider the interaction of one first excited level
and otherwise massless states of conventional type-I superstrings, where the four-dimensional states can, for
instance, be realized via D3 branes. We construct the amplitude by using the Berends-Giele currents. From
the recursion of Berends-Giele currents, we can generate the higher point amplitude. We also apply the
BCFW recursion with massive external legs shifted and get the amplitude for arbitrary n points.
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I. INTRODUCTION

The study of scattering amplitudes is one of the historical
origins of string theory [1]. For example, Veneziano
amplitude, a candidate amplitude for hadron scattering,
is often referred to as the first equation of string theory.
Also, some important features of string theory and quantum
field theory are hidden in the amplitudes. The computation
of string amplitudes is closely related to the correlation
functions of vertex operators on the so-called world sheet.
Technically, this is a two-dimensional conformal field
theory (CFT) on the world sheet. The CFT approach leads
to many interesting properties, and one of them is the
famous KLT relation [2]: For closed strings, the genus-zero
correlators and in fact, even their integrals over the vertex
points, can be factorized into left movers and right movers,
also called holomorphic and antiholomorphic building
blocks. KLT relation indicates the tree-level double-copy
relation, especially between perturbative gravity and gauge
theories.
In recent decades, numerous studies have been con-

ducted on this topic (see, for instance, [2–4]), and the KLT
and double-copy relation at tree level have already become
one of the essential features of string amplitudes. There are
also attempts toward loop-level generalizations [5–8]. In
the past 10 years, the discoveries of additional double-copy
structures indicated that, if all external states are massless,

the tree-level coupling of the type-I superstring [9,10] and
the open bosonic string [11,12] can be factorized into the
scalar integrals on disk (the disk integral is also known as
Z-theory amplitudes) and quantum field theory (QFT)
building blocks. Some recent papers even generalized this
relation to the coupling with 1 external mass-level-1 state
and found the QFT building block of this coupling [13–17].
This is closely related to the heterotic version of the
chiral or twisted string, also called the twisted heterotic
string [18,19]. The twisted heterotic string amplitudes have
been studied using the field theory methods in the context
of conformal supergravity amplitudes and their double
copy constructions [20–23]
When analyzing the QFT amplitude, the complexity and

computational difficulty of the traditional Feynman dia-
grammatic approach increase rapidly as the number of
external particles grows [24]. In contrast, the development
of modern amplitude methods in the past few decades has
directed an alternative route to arrive at otherwise intrac-
table results, both classical and quantum [24,25], and
various recursion relations. Apart from the famous on-shell
BCFW recursion [26], there is also a semi-on-shell
recursion relation based on the Berend-Giele (B-G) cur-
rents [27–29]. There are also applications to amplitudes of
various theories at tree and loop level [30–33].
Since the KLTand the additional double-copy relation are

key features of string amplitudes and KLT can work for
arbitrary excited states of strings, it is really important to
understand how the additional double-copy structure
behaves when excited states are involved. Since all the
information on polarization and momentum is inside the
QFT building block, it is important to learn the dynamical
structure of the QFT building block, especially in 4D after
compactification or due to the D branes. One of the most
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powerful tools in researching 4D QFT amplitudes is the
so-called spinor helicity formalism. Thus, our aim in this
paper is to produce the spinor helicity form of the QFT
building block for conventional type-I string amplitude.
We first reviewed the basic idea of spinor helicity, BCFW
recursion, dimension-agnostic Berends-Giele currents, and
B-G recursion. Then generalized the result involving one
of the universal Regge excitation states and up to three
massless gluons [34] to one excitation state coupling with
arbitrary n − 1 massless gluons, which result in a very
nice n-point amplitude formula Eq. (2.54) for a specific
configuration of external gluon helicities. This helicity
configuration resembles the so-called maximal helicity
violation (MHV) in pure Yang-Mills. We analytically
proved the five-point case and gave a numerical check
for the six-point case. We also applied BCFW to the QFT
building blocks of the conventional type-I superstring
amplitude. The final result is in agreement with Eq. (2.54).

II. NOTATION AND CONVENTION

A. Spinor helicity in four dimensions

Spinor helicity formalism [25] is another way1 of
expressing the QFT amplitude. It has extremely simplified
the calculation of the scattering amplitudes in four dimen-
sions [24]. There is also spinor helicity formalism in other
dimensions, for instance, three, six, and 10 dimensions [35],
but our discussion is specified to four dimensions; thus, we
only introduce the four-dimensional spinor helicity formal-
ism in this paper.
In this subsection, we will introduce the conventions for

the spinor helicity formalism:
We will mostly keep those in Elvang and Huang’s

Scattering amplitudes textbook [25]. The metric is chosen
to be the “mostly plus” metric, ημν¼diagð−1;þ1;þ1;þ1Þ.
We define the σ matrices2 as

ðσμÞαβ̇ ¼ ð1; σiÞαβ̇; ðσ̄μÞα̇β ¼ ð1;−σiÞα̇β; ð2:1Þ

where σi, i ¼ 1, 2, 3 are Pauli matrices:

σ1 ¼
�
0 1

1 0

�
σ2 ¼

�
0 −i
i 0

�
σ3 ¼

�
1 0

0 −1

�
: ð2:2Þ

The two sets of spinor indices are raised and lowered
individually using the SUð2Þ invariant tensor, also known
as the Levi-Civita tensor:

εαβ ¼ εα̇ β̇ ¼
�

0 1

−1 0

�
¼ −εαβ ¼ −εα̇ β̇; ð2:3Þ

and obey εαβε
βγ ¼ δα

γ

We contract ðσμÞαα̇ with kμ to get the 2 × 2 matrix kαα̇ ¼
kμσ

μ
αα̇ and also notice detðkαα̇Þ ¼ m2, which leads to the

obvious difference between the massive external states and
the massless external states; we will come to this later.

1. Spinor helicity for massless particles

For massless particles, we have detðkαα̇Þ ¼ 0, and thus,
the matrix kαα̇ is of rank 1. We can then write it as the direct
product form:

kαα̇ ¼ −λαλ̃α̇; ð2:4Þ

we also write λα and λ̃α̇ as jk�α and hkjα̇. So, we can also
write the momentum in a matrix form:

kαα̇ ¼ −jk�αhkjα̇: ð2:5Þ

Consider the Dirac equation in the massless case. The Dirac
equation would decouple into the Weyl equation without
mass. Thus, when m ¼ 0, we have

=kv�ðkÞ ¼ 0; ū�ðkÞ=k ¼ 0; ð2:6Þ

where v�ðpÞ and ū�ðpÞ are wave functions associated with
an outgoing antifermion and fermions. The wave functions
are related as u� ¼ v∓ and v̄� ¼ ū∓
We can now write the two independent solutions of the

Dirac equation as

vþðkÞ ¼
� jk�α

0

�
v−ðkÞ ¼

�
0

jkiα̇
�
; ð2:7Þ

and

ū−ðkÞ ¼ ð 0; hkjα̇ Þ ūþðkÞ ¼ ð ½kjα; 0 Þ: ð2:8Þ

The angle and square spinors are two-component commut-
ing spinors. After defining the spinor, we can write the
massless Weyl equation:

kα̇βjk�β ¼ 0; kαβ̇jkiβ̇ ¼ 0; ½kjβkβα̇ ¼ 0; hkjβ̇kβ̇α ¼ 0:

ð2:9Þ

We have two sets of important identities. First, the Fierz
identities:

1With respect to the covariant way, which preserves the
locality and Lorentz invariance in each Feynman diagram.

2We will omit the spinor indices ðα; β;…Þ later on when it
leads to no misunderstanding. When we come to the massive
spinor part, we use ða; b;…Þ as the little group indices. We will
come to the details in that section.
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ðσμÞαα̇ðσμÞββ̇ ¼ −2εαβεα̇ β̇;

ðσμÞαα̇ðσ̄μÞββ̇ ¼ −2δαβδα̇β̇;

½ajσμjbi½cjσμjdi ¼ 2½ac�hbdi;
½ajσμjbihcjσ̄μjd� ¼ 2hbci½ad�; ð2:10Þ

and second, the Schuten identity:

jiihjki þ jjihkii þ jkihiji ¼ 0: ð2:11Þ

2. Spinor helicity for massive particles

We now consider the massive spinor helicity formalism
[36,37]. The spinor helicity formalism of massive particles
has no essential difference from the one of massless
particles. We can regard the massive momentum as the
linear combination of two massless momenta:

kμi ¼ aμi þ bμi ; ð2:12Þ

where aμi , b
μ
i have the same spatial direction as kμi , which

are along z axis. We can write down the components of k, a,
b now:

kμi ¼ ðk0i ; 0; 0; k3i Þ aμi ¼
�
k0i þ k3i

2
; 0; 0;

k0i þ k3i
2

�

bμi ¼
�
k0i − k3i

2
; 0; 0;−

k0i − k3i
2

�
: ð2:13Þ

Or, more generally, (both direction and the length), we can
parametrize the massive momentum kμi :

kμi ¼ aμi −
m2

i

2ai · bi
bμi ; ð2:14Þ

and we can contract both side of this equation with σμ and
decompose aμi and bμi on the right-hand side into spinor
helicity form using Eq. (2.5) so that we have

kαα̇ ¼ ja�αhajα̇ þ jb�αhbjα̇: ð2:15Þ

This is simply a rank 2 matrix kαα̇, which can now be
written as

kαα̇ ¼ λα
aλ̃α̇a; ð2:16Þ

where a ¼ 1, 2 corresponds to ja�, jai and jb�, jbi
separately. We now rewrite λ and λ̃ as a matrix and regard
α and a as the matrix index. We then have:

k2 ¼ −m2 → det λ × det λ̃ ¼ −m2 ð2:17Þ

where we set3 det λ ¼ det λ̃ ¼ m. We can also raise or lower
the indices a, b by using ϵab and ϵab so that we can write

kαα̇ ¼ λα
aλ̃α̇

bϵab: ð2:18Þ

Also, notice that we have the Dirac equation:

kαα̇λ̃
α̇a ¼ λα

bλ̃α̇bλ̃
α̇a ¼ λα

bλ̃α̇bϵ
α̇ β̇λ̃β̇cϵ

ca

¼ λα
b detðλ̃Þδba ¼ mλα

a: ð2:19Þ

Similarly, we also have

kαα̇λαa ¼ −mλ̃α̇
a: ð2:20Þ

These two equations are equivalent to the Dirac
equation [38].
By using the [39] decomposition of massive momentum,

we can also write down the component of massive spinor4:

jkai ¼
� jbi m

habi
jai

�
jka� ¼

� ja�
jb� m

½ab�

�
: ð2:21Þ

In other references, people also define hkj as the massive
spinor. In our notation, it is simply za that is used to absorb
the SUð2Þ index.

hkj ¼ hkajza: ð2:22Þ

We have a constrain on za, z̄b and the antisymmetric
tensor ϵab:

zaεabz̄b ¼ −1: ð2:23Þ

We can construct the polarization tensor5 for the spin-2
massive particles as follows6:

Φμν
i ðki;−2Þ ¼

1

2m2
½ajσ̄μjbi½ajσ̄νjbi; ð2:24Þ

3This is a trivial convention; det λ and det λ̃ are not necessarily
equal to each other. There could be a phase factor that makes det λ
and det λ̃ both different from m but preserve the constraint
det λ × det λ̃ ¼ m2. Let us take the trivial one as an example;
we will come to this very soon.

4This convention is more non-trivial than the one mentioned
before. We now still have habi½ab� ¼ m2, but the habi¼ ½ab�¼m
relationship no longer exists.

5We will shortly see that this is simply the single particle
B-G current reduced to a specific four-dimensional choice of
polarization.

6The ðki;−2Þ in Φμνðki;−2Þ means the polarization is a
function of the momentum; for spin choice −2, we will omit
this bracket when it leads to no confusion.
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where Φμν is a traceless symmetric tensor. The momentum
k is decomposed as kμ ¼ aμ þ bμ. For a massive spin j
particle, there exist 2jþ 1 spin degrees of freedom, the spin
quantization axis is chosen as the direction of a in the rest
frame. Each spin choice corresponds to a state, we express
all of them by jm; ji, where m ¼ −j;−jþ 1;…; j − 1; j,
and the 2jþ 1 choices of m exactly correspond to the
2jþ 1 degrees of freedom we found for spin j particle.
We can relate the 2jþ 1 states by acting the raising and

lowering operator on one state and raising or lowering m:

Jþ1jm − 1; ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj −mþ 1Þ

2

r
jm; ji;

J−1jm; ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj −mþ 1Þ

2

r
jm − 1; ji; ð2:25Þ

where the boundary requirements are Jþ1jj; ji ¼
0, J−1j−j; ji ¼ 0.
Similar to the operator acting on states, we can define a

set of raising and lowering operators acting on the
polarization tensor:

Oþ1Φμ1μ2���μjðk;m − 1Þ ¼ 1ffiffiffi
2

p
�
þjai ∂

∂jbi − ½bj ∂

∂½aj
�
Φμ1μ2���μjðk;m − 1Þ

¼ Nðm; jÞΦμ1μ2���μjðk;mÞ;

O−1Φμ1μ2���μjðk;mÞ ¼ 1ffiffiffi
2

p
�
−jai ∂

∂jbi þ ½bj ∂

∂½aj
�
Φμ1μ2���μjðk;m − 1Þ

¼ Nðm; jÞΦμ1μ2���μjðk;m − 1Þ; ð2:26Þ

where we used Nðm; jÞ as a shorthand of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþmÞðj−mþ1Þ

2

q
, and get the polarization tensor corresponding to

j−1; 2i; j0; 2ijþ1; 2ijþ2; 2i by acting the raising and lowering operator on the j−2; 2i state7:

Φμνðk;−1Þ ¼ 1ffiffiffi
2

p Oþ1Φμνðk;−2Þ

¼ 1

4m2
½ð½ajσ̄μjai − ½bjσ̄μjbiÞ½ajσ̄νjbi þ ½ajσ̄μjbið½ajσ̄νjai − ½bjσ̄νjbiÞ�;

Φμνðk; 0Þ ¼ 1ffiffiffi
3

p Oþ1Φμνðk;−1Þ

¼ 1

2m2
ffiffiffi
6

p ½ð½ajσ̄μjai − ½bjσ̄μjbiÞð½ajσ̄νjai − ½bjσ̄νjbiÞ − ½ajσ̄μjbi½ajσ̄νjbi − ½bjσ̄μjai½bjσ̄νjai�: ð2:27Þ

B. Dimension-agnostic Berends-Giele recursions

From now on, we need to deal with the multiparticle
Berends-Giele currents and field strength. We use Latin
letters P;Q;X; Y;… to denote different sets of particles.
The so-called Berends-Giele (B-G for short) recursions

[27,40] is an effective approach to determining the tensor
structure of arbitrary D-dimensional tree amplitudes in
pure Yang-Mills theory, introduced by Berends and Giele
in 1987 [27]. The idea of B-G recursions is to recursively
combine all color-ordered Feynman diagrams with multi-
ple external on-shell legs and one single off-shell leg
using the B-G currents ϵμ12;…;p. They can be regarded as
functions of dynamical variables such as polarization
vectors ϵμi and null momentum vectors kμi of the external

particles i ¼ 1; 2;…; p constrained by the following
on-shell conditions:

ϵi · ki ¼ ki · ki ¼ 0; ð2:28Þ

where i ¼ 1; 2;…; p refer to external-state labels,
and the Lorentz-indices are denoted by Greek letters
μ; ν;… ¼ 0; 1;…; D − 1.
The B-G recursion of the Yang-Mills amplitude is done

via the recursion8 of the B-G current [27]:

sPϵ
μ
P ¼

X
XY¼P

½ϵX; ϵY �μ þ
X

XYZ¼P

fϵX; ϵY; ϵZgμ; ð2:29Þ

7Here, we only write two examples.
8The boundary constraint is that the single particle current equals the single particle polarization.
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where capital Latin letters P;Q;X; Y;… are multiple
particle labels, also known as the rank of the B-G current.
The length of, for example, P ¼ 12…p, is denoted by
jPj ¼ p. ½ϵX; ϵY �μ and fϵX; ϵY; ϵZgμ are defined as

½ϵX; ϵY �μ ¼ ðkY · ϵXÞϵμY − ðkX · ϵYÞϵμX þ
1

2
ðkμX − kμYÞðϵX · ϵYÞ;

ð2:30Þ

fϵX; ϵY; ϵZgμ ¼ ðϵX · ϵZÞϵμY −
1

2
ðϵX · ϵYÞϵμZ −

1

2
ðϵY · ϵZÞϵμX;

ð2:31Þ

and the Mandelstam variable with multiple particle indices
sP is defined as

sP ¼ 1

2
k2P; ð2:32Þ

where the multiple particle momentum kμP¼12…p ¼
kμ1 þ kμ2 þ � � � þ kμp.
To review the recursion of B-G current, we need to

define the division of multiparticle labels P ¼ 12…p. The
summation over XY ¼ P means dividing P into nonempty
sets X ¼ 12…j, Y ¼ jþ 1…p, where X, Y nonempty sets
indicate that 1 ≤ j ≤ p − 1; thus, this summation has jPj −
1 ¼ p − 1 terms. The same discussion can be applied to the
summation over XYZ ¼ P. We can also define the field
strength F:

Fμν
P ¼ kμPϵ

ν
P − kνPϵ

μ
P −

X
XY¼P

ðϵμXϵνY − ϵνXϵ
μ
YÞ; ð2:33Þ

and get the simpler form of the B-G current:

ϵμP ¼ 1

2sP

X
XY¼P

½ðkY · ϵXÞϵμY þ ϵνXF
νμ
Y − ðX ↔ YÞ�: ð2:34Þ

The color-ordered on-shell amplitudes at n ¼ pþ 1
points are recovered by taking the off-shell leg in the
rank-p B-G current ϵμP on shell. This is done by:

(i) Contracting with the polarization vector of particle
n: ϵμn, which is also a B-G current.

(ii) Removing the propagator s−112…p in the p-particle
channel of ϵμP, which would diverge when taken
particle n on shell.

Thus, we have

Að1; 2;…; n − 1; nÞ ¼ s12…n−1ϵ
μ
12…n−1ϵ

ν
nημν: ð2:35Þ

C. Twisted heterotic string and conventional
type-I superstrings

The twisted heterotic string [18,19,41,42] is a special kind
of string that satisfies the twisted level-matching condition.
One of the most important features of a twisted heterotic
string is that the spectrum is finite as opposed to the infinite
excited states for type II-A, II-B, or type I superstring theory.
The physical vertex operators represent the following three
multiplets of 10D N ¼ 1 supersymmetry:

(i) A gauge multiplet involving gluon (A) and
gluino (X ),

Va
A ¼ V̄a

J̄ ⊗ Vϵeik·X Va
X ¼ V̄a

J̄ ⊗ Vχeik·X; ð2:36Þ

(ii) A supergravity multiplet involving graviton, B field
and dilaton (V̄ ϵ̄ ⊗ Vϵ) as well as gravitino and
dilatino (V̄ ϵ̄ ⊗ Vχ),

(iii) A massive multiplet with k2 ¼ − 4
α0 comprising a

spin-2 field Φμν, a 3-form Eμνρ and a spin-32 field Ψ
α
μ,

VfΦ;E;Ψg ¼ V̄T ⊗ VfΦ;e;ψgeik·X; ð2:37Þ

where the massive states can be viewed as a double copy of a
tachyon, V̄T ¼ 1, with the first mass level of the open
superstring [42]. The Lagrangian description of the ampli-
tude with one external massive states and otherwise gauge
multiplets is given in [13]. We only discuss the tree-level
couplings of the conventional type-I superstring with only
one massive multiplet n:

Mtype-Ið1; 2;…; n − 1; nÞ ¼
X

ρ∈ Sn−3

FρðsnÞAð1; ρð2;…; n − 2Þ; n − 1jnÞjα0→4α0 ; ð2:38Þ

whereAð…Þ is a rational function of the external momenta as usual for QFT amplitudes. Hence,Að…Þ in Eq. (2.38) will be
later on referred to as “QFT building blocks.” Moreover, the disk integral FρðsnÞ is given by

FρðsnÞ ¼ ð2α0Þn−3
Z
Ω
dz2dz3…dzn−2

Yn−1
1≤i<j

jzijj2α0sijρ
�
s21
z21

�
s31
z31

þ s32
z32

�
� � �

�
sn−2;1
zn−2;1

þ � � � þ sn−2:n−3
zn−2;n−3

��
; ð2:39Þ

where zij ¼ zi − zj, Ω stands for the integration area. Here, it is 0 < z2 < z3 < … < zn−2 < 1 because we have
fixed ðz1; zn−1; znÞ → ð0; 1;∞Þ.
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We identify multiparticle polarizations with B-G currents
[27] mentioned in Sec. II B and write down the recursion
rules of B-G currents. Similar with Eqs. (2.33) and (2.34),
we have

Φμν
P ¼

ffiffiffiffi
α0

p X
P¼QR

Fμ
QρF

ρν
R þ cycP; ð2:40Þ

where the Fμν
P and the ϵμP has the same form as Yang-Mills

B-G current, following the discussion in [13]. cycP instructs
one to add cyclic permutations in P ¼ 1; 2;…; p. For
example, AP ¼ BP þ cycP where P ¼ 1, 2, 3, 4 means

AP ¼ BP þ cycP ¼ B1;2;3;4 þ B2;3;4;1 þ B3;4;1;2 þ B4;1;2;3:

ð2:41Þ

The amplitude can be constructed from B-G currents:

Að1; 2;…; n − 1jnÞ ¼ ðΦ12…n−1ÞμρðΦnÞμρ: ð2:42Þ

For the lowest or highest spin state of the only massive
particle, the single particle B-G current9 Φμν is simply a
direct product of the polarization vector of the lowest or
highest spin state of spin-1 massive particle: ϵμϵν. Our aim
is to prove this n-point amplitude is equal to Eq. (2.54).

D. Amplitudes compactified to 4D

We impose the external polarization and momentum to
lie in four-dimensional Minkowski space and convert the
amplitude into spinor helicity form.
Some useful expressions are stated below:

kiμσ
μ
αβ̇
¼ =kiαβ̇ ¼ ji�hij ϵμ−1i ¼ ½rjσμjii

½ir� ϵμþ1
i ¼ hrjσ̄μji�

hrii ;

ð2:43Þ

where i denotes the particle label, and μ denotes the Lorentz
index. The �1 on ϵi means the polarization of particle i is
�1. r denotes the reference spinor, which can be arbitrarily
chosen to be any spinor not proportion to that of i.
Suppose we choose different reference spinor: ½rj ¼ ½2j

or ½rj ¼ ½3j for ϵμ−1i :

ϵμ−1i ¼ ½2jσμjii
½i2� ϵ̃μ−1i ¼ ½3jσμjii

½i3� ; ð2:44Þ

and compute the difference:

ϵμ−1i − ϵ̃μ−1i ¼ ½2jσμjii
½i2� −

½3jσμjii
½i3� ¼ ½2jσμjii½i3�− ½3jσμjii½i2�

½i2�½i3� :

ð2:45Þ

Using simple Clifford algebra, we can conclude
δϵμ−1i ¼ ϵμ−1i − ϵ̃μ−1i ∝ kμi . This transformation on polari-
zation is simply a linearized gauge transformation and does
not have physical meaning. For convenience, we always
choose the reference spinor to be the spinor of another
particle and simplify our calculation. Take the four-point
Yang-Mills amplitude AYMð1þ; 2−; 3−; 4−Þ as an example.
Since it breaks the MHV requirement, it is supposed to be
0. We can choose the reference spinor of particle 2, 3, 4 to
be λ1, and set λ2 as the reference spinor of particle 1. Take
ϵ2 · ϵ3 as an example:

ϵ2 · ϵ3 ¼
½1jσμj2i
½21�

½1jσνj3i
½31� ημν ∝ ½11� ¼ 0; ð2:46Þ

this can be easily generalized to any dot products among
polarization vectors.10 By momentum power counting of
the numerators of n-point Yang-Mills amplitude, there is at
most n − 2 momentum. Together with n polarization
vectors of external legs contracting with metric, there must
be at least one dot product between polarization vectors,
which leads to the fact that amplitudes with all-minus
helicity and single-plus helicity vanish.
Now that we can consider the interaction we are

interested in, we will still start from a four-point example.

1. Pure gluon example

The pure gluon example is also known as the Yang-Mills
interaction, one of the cases in which the amplitude can be
expressed using the closed form of spinor helicity. We can
generate the current from the polarization. To calculate the
amplitude more easily, we take the spinor helicity form.
After applying the recursion rule of B-G currents and the
spinor helicity form of the polarization vector, the B-G
current that has all on-shell gluons with the same helicity
can be expressed as [27]

ϵμðiþ; iþ 1þ;…; nþÞ ¼ hrjσ̄μ=ki;iþ1;…;njriffiffiffi
2

p hriihi; iþ 1i � � � hn− 1; nihnri ;

ð2:47Þ

where the hrj and jri stand for the reference spinor. We
have chosen the reference spinor for each on-shell leg to
be the same. Using the recursion relation, we can get the
B-G current where the first on-shell gluon has negative
helicity. Here, we choose the reference spinor of particle 1
to be λ2 and the reference spinor for particle 2; 3;…; n as
λ1. We get [27]

9Now it can be regarded as polarization tensor.

10We will prove this relation for any two polarization vectors
later on using Fierz identity Eq. (2.10).
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ϵμð1−; 2þ;…; nþÞ ¼ h1jσ̄μ=k2;3;…;nj1iffiffiffi
2

p h12ih23i � � � hn1i

×
Xn
m¼3

h1j=km=k1;2;…;mj1i
k21;2;…;m−1k

2
1;2;…;m

: ð2:48Þ

After contracting with the negative helicity gluon n and
some simple simplification, we have the well-known
Parker-Taylor formula [24]:

Að1−;2þ;3þ;…;n− 1þ;n−Þ ¼ h1ni4
h12ih23i � � � hn1i : ð2:49Þ

2. Four-point QFT building block example

Consider the QFT building block of the four-point type-I
super string Að1−; 2þ; 3þj4−2Þ; the underline denotes the
massive leg. The momentum of the particle is k4, which can

be decomposed into the summation of two null vectors,
denoted by a and b:

kμ4 ¼ aμ þ bμ a2 ¼ b2 ¼ 0: ð2:50Þ

We can always choose the reference spinor of particle 1 to
be λ2; different reference spinor choices can always bring
us different cancellations, but the final result of the
amplitude is always the same.
Let us set the reference spinor of particle 2,3 to be λ1.

The cancellation table of the dot product between polari-
zation vectors is.

ϵiϵ̇j ¼ 0; i:j ¼ 1; 2; 3: ð2:51Þ

The four-point string amplitude can be written as
[Eq. (V.74)] in [34], as described in Eq. (2.38), and we
focus on the QFT building block. In our reference spinor

choice, we can easily find ϵi · ϵj ¼ ϵ2 · k1 ¼ ϵ3 · k1 ¼ ϵ1 · k2 ¼ 0, where i, j ¼ 1, 2, 3. We can simplify the four-point QFT
building block to11

Að1−; 2þ; 3þj4−2Þ ¼ Φμν

�
ðϵ3 · k2Þðϵμ1ϵν2Þ − ðϵ2 · k3Þðϵμ1ϵν3Þ þ ðϵ1 · k3Þðϵμ2ϵν3Þ þ

1

s1;3
ðϵ1 · k3Þðϵ3 · k2Þðϵμ2kν1Þ

þ 1

s1;3
ðϵ1 · k3Þðϵ3 · k2Þðϵμ2kν3Þ þ

1

s1;3
ðϵ1 · k3Þðϵ2 · k3Þðϵμ3kνÞ

þ 1

s2;3
ðϵ1 · k3Þðϵ3 · k2Þðϵμ2kν1Þ −

1

s2;3
ðϵ1 · k3Þðϵ2 · k3Þðϵμ3kν1Þ

�
; ð2:52Þ

and we can now rewrite it into the spinor helicity form:

Að1−; 2þ; 3þj4−2Þ ¼ h1bi4½ab�2
m2h12ih23ih31i : ð2:53Þ

The central result of this work is a conjectural generalization to arbitrary n-point QFT building blocks:

Að1−; 2þ;…; n − 2þ; n − 1þjn−2Þ ¼ ½ab�2
2m2

h1bi4
h12ih23i � � � hn − 1; 1i : ð2:54Þ

After applying the spin raising operator, we can easily get

Að1−; 2þ;…; n − 2þ; n − 1þjn−1Þ ¼ ½ab�2
m2

h1bi3h1ai
h12ih23i � � � hn − 1; 1i ;

Að1−; 2þ;…; n − 2þ; n − 1þjn0Þ ¼
ffiffiffi
6

p ½ab�2
2m2

h1bi2h1ai2
h12ih23i � � � hn − 1; 1i ;

Að1−; 2þ;…; n − 2þ; n − 1þjnþ1Þ ¼ ½ab�2
m2

h1bih1ai3
h12ih23i � � � hn − 1; 1i ;

Að1−; 2þ;…; n − 2þ; n − 1þjnþ2Þ ¼ ½ab�2
2m2

h1ai4
h12ih23i � � � hn − 1; 1i : ð2:55Þ

11We assume all constant factors are hidden in the disk integration building block and thus will not show up in our QFT amplitude.
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The aim of this paper is to prove these formulas. For
simplification, we will focus on the coupling with n−2.
Others can be generated by acting spin raising operator on
the polarization.

3. Comparing helicity configurations

In the previous section, we gave the spinor helicity form
of one specific helicity configuration Eq. (2.54), which is
similar to the MHV helicity configuration in Yang-Mills
theory Eq. (2.49). The helicity configuration in Eq. (2.54)
will be referred to as MHV-like helicity configuration.
There are also other helicity configurations, and changing
helicities in Eq. (2.54) to all-plus would arrive at another
QFT building block, which turns out to vanish:

Að1þ; 2þ;…; n − 2þ; n − 1þjn−2Þ ¼ 0: ð2:56Þ

The vanishing of all-plus QFT building blocks to all
multiplicities n will be proven in Appendix A and is
analogous to the vanishing of single-minus and all-plus
helicity amplitudes in Yang-Mills theory. There are also
helicity configurations similar with the NMHV;N2MHV;…
in Yang-Mills theory, Að1−; 2−; 3þ…; n − 1þjnÞ, for exam-
ple. The spinor helicity form of them are expected to
be much more complicated in the same way as
NMHV;N2MHV, etc. Helicity configurations in pure
Yang-Mills theory give rise to more lengthy amplitude
formulas than the MHV sector.

E. Basic idea of BCFW recursion

BCFW method [26,43] aims to construct higher point
QFT amplitudes using lower point QFT amplitudes. It is
based on the factorization property of amplitudes,12 also
known as the unitary requirement of amplitudes. The
factorization property can be expressed as

ð2:57Þ

whereAn denotes an amplitude with n external legs. While
AL and AR denote subamplitudes on the left-hand side and
right-hand side separately, momentum kI is the internal
momentum that flows from left to right or right to left, up to
our choice. Suppose the external momentum of the left-
hand side subamplitude is k1; k2; � � � ki and define set I:

I ¼ f1; 2; 3;…ig: ð2:58Þ

We set the direction of all n external momentum out-
ward, and kI flows from left to right. After applying
momentum conservation, we have kI ¼ k1 þ k2þ
� � � þ ki. On the other hand, the external legs of AR are
denoted by set J:

J ¼ fiþ 1; iþ 2; � � � ng; ð2:59Þ

for the same reason, kI ¼ −kiþ1 − kiþ2 − � � � − kn.

For most of the amplitudes we might need, kI is off
shell.13 After complex shifting external momentum,

k̂μi ¼ kμi þ zrμi z∈C i∈ I; ð2:60Þ

and with some constraints on r, we can solve zI which
makes kI on shell. The on-shell condition of external
momentum and momentum conservation is preserved. kI
is thus shifted as

k̂I ¼ kI þ z
X
i∈ I

ri: ð2:61Þ

The complex shift zri should not influence the funda-
mental property of the amplitude and the shifted momentum.
Thus, we want the external legs still satisfy their on-shell
condition with mass unchanged. This will lead to some
constraints on ri. All ri satisfying the constraints can be the

12When the propagator becomes on shell, the whole amplitude will decompose into products of two lower-multiplicity amplitudes.
13Which is easily seen using momentum conservation and the on-shell requirement for external momentum.
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shift we use. To give a clean and convenient form of the
expressions, we always choose the ri as simple as possible
and choose the suitable z, making k̂2I ¼ 0 for some I, and
factorize the amplitude we need into the multiplication of
two subamplitudes and a pole on the z plane. Each
propagator corresponds to a pole on the complex plane.
According to the Cauchy theorem, we have

0 ¼
X
zI

Resz¼zI

ÂnðzÞ
z

− Bn; ð2:62Þ

where the index I in zI denotes the pole corresponding
to kI on shell, and Bn is the residual of the pole at the
infinite point.
Especially, zI ¼ 0 stands for the amplitude without

shifting external momentum, which is the original ampli-
tude. We have

An ¼ −
X
zI≠0

Resz¼zI

ÂnðzÞ
z

þ Bn: ð2:63Þ

III. RESULT AT FIVE POINTS

In this section, we will take the five-point case as an
example. Using the B-G recursion, we can analytically
prove that the five-point QFT building blocks are

Að1−1;2þ1;3þ1;4þ1j5−2Þ¼ ½ab�2
2m2

h1bi4
h12ih23ih34ih41i;

Að1−1;2þ1;3þ1;4þ1j5−1Þ¼ ½ab�2
m2

h1bi3h1ai
h12ih23ih34ih41i;

Að1−1;2þ1;3þ1;4þ1j50Þ¼
ffiffiffi
6

p ½ab�2
2m2

h1bi2h1ai2
h12ih23ih34ih41i ;

Að1−1;2þ1;3þ1;4þ1j5þ1Þ¼ ½ab�2
m2

h1bih1ai3
h12ih23ih34ih41i;

Að1−1;2þ1;3þ1;4þ1j5þ2Þ¼ ½ab�2
2m2

h1ai4
h12ih23ih34ih41i: ð3:1Þ

By using B-G currents, we construct the QFT building
block for j−2; 2i state coupling with four gluons and

generate the coupling of other spins by applying the raising
and lowering operator Eq. (2.26) on polarization tensorΦμν.
The underlined external leg stands for the massive leg.

Here is particle 5; we decompose the momentum pμ
5 into

pμ
5 ¼ aμ þ bμ, where a and b are both massless. After we

work out the result forAð1−1; 2þ1; 3þ1; 4þ1j5−2Þ, we would
use the raising and lowering operator on the amplitude and
get the result for different spin state of particle 5. Thus, in
this section, we only work out the coupling with j−2; 2i
state of particle 5. For the j−2; 2i state, the polarizationΦμν

can be decomposed as

Φð−2Þ
μν ¼ ϵð−1Þμ ϵð−1Þμ ; ð3:2Þ

where the superscript (−2) and (−1) is just an index
identifying the spin choice of the polarization. Since we
only analyze the coupling with spin −2 state of particle 5,
we will omit this index.
According to the definition Eq. (2.42), we have

Að1−1;2þ1;3þ1;4þ1j5−2Þ¼ðΦ1234ÞμνðΦ5Þμν
¼

ffiffiffiffi
α0

p X
P¼QR

Fμ
QρF

ρν
R ðΦ5ÞμνþcycP;

ð3:3Þ

where P ¼ 1234.

A. Some basic facts

Some equations can help us simplify our calculation.
Before we move on, let us derive them first.14

As before, we take the reference spinor of particle 1 to be
λ2, and the reference spinor of all other massless particles15

r2; r3…; rj ¼ λ1. Thus, all polarization vectors of massless
particles have h1j or j1i in their numerator; by using the
Fierz identities Eq. (2.10), we can easily find that the
contraction between any two polarization vectors of a
massless particle gives zero. This special choice of refer-
ence spinor can bring us more information.
First, we can express the Berends-Giele currents in

terms of spinor helicities. Two examples are Eqs. (2.47)
and (2.48). With our reference spinor choice, we rewrite
the closed form of the B-G current for massless states in the
QFT building block of type-I superstring as follows:

ϵμðiþ; iþ 1þ;…; nþÞjrμi;iþ1;…;n¼kμ
1
¼ h1jσ̄μ=ki;iþ1;…;nj1iffiffiffi

2
p h1iihi; iþ 1i � � � hn − 1; nihn1i

ϵμð1−; 2þ;…; nþÞjrμ
2;3;…;n¼kμ

1
;r1¼kμ

2
¼ h1jσ̄μ=k2;3;…;nj1iffiffiffi

2
p h12ih23i � � � hn1i

Xn
m¼3

h1j=km=k1;2;…;mj1i
k21;2;…;m−1k

2
1;2;…;m

: ð3:4Þ

14These equations work for arbitrary n.
15There is no need to define a reference spinor for a massive particle.
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Under this reference spinor choice, using B-G recursion,
we can easily show that the spinor helicity closed form of a
B-G current always has a similar numerator structure
h1jσ̄μ=ki;jj1i. Therefore, if we contract any two B-G cur-
rents, using Fierz identity Eq. (2.10), we immediately get a
result proportional to h11i ¼ 0.
Second, let us contract any B-G current with momentum

kμ1; we can always get a result proportional to h1j=k1. We
can expand =k1 ¼ −j1i½1j. The final result is proportional
to h11i ¼ 0. For the same reason, ϵ1 · k2 ¼ 0.

Third, the B-G current we use is the same as the
one for Yang-Mills amplitude, which is ϵμ12jrμ2¼kμ

1
;r1¼kμ

2
¼

ϵμ21jrμ2¼kμ
1
;r1¼kμ

2
¼ 0:

ϵμ12jrμ
2
¼kμ

1
;r1¼kμ

2
¼ 1

2s12
½ðk2 · ϵ1Þϵμ2− ðk1 · ϵ2Þϵμ1�

����
rμ
2
¼kμ

1
;r1¼kμ

2

¼ 1

2s12
½ðk2 · ϵ1Þϵμ2− ðk1 · ϵ2Þϵμ1�

����
rμ
2
¼kμ

1
;r1¼kμ

2

¼ 0:

ð3:5Þ

B. Contributions of each configuration

In Eq. (3.3), P ¼ 1, 2, 3, 4 are divided intoQ and R. Thus, we can write down all the configurations ofQ and R before we
calculate each of them16:

Configurations 1 2 3 4 5 6

Q 1 1; 2 1; 2; 3 2 2; 3 3

R 2; 3; 4 3; 4 4 3; 4; 1 4; 1 4; 1; 2

: ð3:6Þ

1. The only nonzero configuration

Among all six configurations in Eq. (3.6), there is only one configuration that nontrivially contributes to the final result of
the five-point QFT building block, which is configuration 1. Consider the coupling with j−2; 2i state for computation
simplicity:

Fμ
1ρF

ρν
234ðΦ5Þμν ¼ ðkμ1ϵ1ρ − k1ρϵ

μ
1Þ½kρ234ϵν234 − kν234ϵ

ρ
234 − ðϵρ2ϵν34 − ϵν2ϵ

ρ
34 þ ϵρ23ϵ

ν
4 − ϵν23ϵ

ρ
4Þ�ðΦ5Þμν

¼ ðkμ1ϵ1ρ − k1ρϵ
μ
1Þ½kρ234ϵν234 − kν234ϵ

ρ
234�ðΦ5Þμν; ð3:7Þ

where we applied the basic rules and concluded in Sec. III A in the second step. After converting into the spinor helicity
form and applying Eq. (2.47), we get

Fμ
1ρF

ρν
234ðΦ5Þμν ¼

hbj=k1ja�ffiffiffi
2

p
m

½2j=k234j1iffiffiffi
2

p ½12�
h1bi½aj=k234j1i

mh12ih23ih34ih41i þ 2
½2a�hb1i
2½12�m ðk1 · k234Þ

h1bi½aj=k234j1i
mh12ih23ih34ih41i

¼ h1bi4½ab�2
2m2h12ih23ih34ih41i ; ð3:8Þ

where this is exactly the five-point amplitude we claimed.

2. Other configurations vanish individually

We can analytically prove that except for the configuration mentioned in Sec. III B 1, all other five configurations vanish
individually. We will show these one by one:

16Notice ðΦ5Þμρ is symmetric in m and p indices. Thus, we can exchange Q and R without changing the final result. This decreases
the number of configurations by a factor of 2.
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(i) Configuration 2
Configuration 2, Fμ

12ρF
ρν
34ðΦ5Þμν equals to

Fμ
12ρF

ρν
34ðΦ5Þμν ¼ ½kμ12ϵ12ρ − k12ρϵ

μ
12 − ðϵμ1ϵ2ρ − ϵ1ρϵ

μ
2Þ�½kρ34ϵν34 − kν34ϵ

ρ
34 − ðϵρ3ϵν4 − ϵν3ϵ

ρ
4Þ�ðΦ5Þμν

¼ −ðϵμ1ϵ2ρ − ϵ1ρϵ
μ
2Þkρ34ϵν34ðΦ5Þμν ¼ 0: ð3:9Þ

(ii) Configuration 3
Configuration 3, Fμ

123ρF
ρν
4 ðΦ5Þμν equals to

Fμ
123ρF

ρν
4 ðΦ5Þμν ¼ ½kμ123ϵ123ρ − k123ρϵ

μ
123 − ðϵμ1ϵ23ρ − ϵ1ρϵ

μ
23 þ ϵμ12ϵ3ρ − ϵ12ρϵ

μ
3Þ�½kρ4ϵν4 − kν4ϵ

ρ
4�ðΦ5Þμν

¼ −
4h1bi2½24�ðk14 · k23h1j=k23ja�½4a� þ h1j=k23j4�hbj=k14ja�½ba�Þ

m2h12ih13ih14ih23i½14�½21�

þ 4hb1i2½4a�2½24�½23�
m2h12ih13i½14�½21� −

4hb1i2½24�h1j=k23ja�2
m2h12ih13ih14ih23i½21� ¼ 0: ð3:10Þ

(iii) Configuration 4
Configuration 4, Fμ

2ρF
ρν
341ðΦ5Þμν equals to

Fμ
2ρF

ρν
341ðΦ5Þμν ¼ ½kμ2ϵ2ρ − k2ρϵ

μ
2�½kρ341ϵν341 − kν341ϵ

ρ
341 − ðϵρ34ϵν1 − ϵν34ϵ

ρ
1 þ ϵρ3ϵ

ν
41 − ϵν3ϵ

ρ
41Þ�ðΦ5Þμν

¼ −
4h1bi2½2a�2ðh13i½14�½32� þ 2k4 · k13½42�Þ

m2h12ih23ih34ih41i½14�½21� þ 4h1bi2½2a�2ð½41�h1j=k34j2� þ 2k3 · k4½42�Þ
m2h12ih23ih34ih41i½14�½21� ¼ 0:

ð3:11Þ

(iv) Configuration 5
Configuration 5, Fμ

23ρF
ρν
41ðΦ5Þμν equals to

Fμ
23ρF

ρν
41ðΦ5Þμν ¼ ½kμ23ϵ23ρ − k23ρϵ

μ
23 − ðϵμ2ϵ3ρ − ϵ2ρϵ

μ
3Þ�½kρ41ϵν41 − kν41ϵ

ρ
41 − ðϵρ4ϵν1 − ϵν4ϵ

ρ
1Þ�ðΦ5Þμν

¼ −
4h1bi2½24�ðh1j=k23j4�hbj=k23ja�½ab� þ k14 · k23h1j=k23ja�½4a�Þ

m2h12ih13ih14ih23i½14�½21�

þ 4hb1i2½4a�2½24�½23�
m2h12ih13i½14�½21� −

4hb1i2½24�h1j=k23ja�2
m2h12ih13ih14ih23i½21� ¼ 0: ð3:12Þ

(v) Configuration 6
Configuration 6, Fμ

3ρF
ρν
412ðΦ5Þμν equals to

Fμ
3ρF

ρν
412ðΦ5Þμν ¼ ðkμ3ϵ3ρ − k3ρϵ

μ
3Þ½kρ412ϵν412 − kν412ϵ

ρ
412 − ðϵρ4ϵν12 − ϵν4ϵ

ρ
12 þ ϵρ41ϵ

ν
2 − ϵν41ϵ

ρ
2Þ�ðΦ5Þμν

¼ −
4h1bi2½24�2½3a�ðh1j=k24ja�k3 · k5 þ h1j=k24j3�h3j=bja�Þ

m2k212k
2
14h13ik2124

þ 4h1bi2½24�2½3a�2
m2k212k

2
14

¼ 0: ð3:13Þ

IV. THE N-POINT AMPLITUDE

One can easily apply Eqs. (2.33), (2.34) and the definition
of ΦP Eq. (2.40) for multiple particles to the n-point
amplitude Eq. (2.42) and count the number of terms in
the B-G recursions. More specifically, we shall count the
number of configurations Fμ

QρF
ρν
R compatible with the cyclic

ordering of Að1; 2;…; n − 1jnÞ. Similar to Eq. (3.6), the

number of configurations for n-point amplitude is n2−3nþ2
2

,
which increases at order ofOðn2Þ. From the computation of
five points, one can also tell that the complexity of each
configuration increases when considering higher point
amplitudes. Thus, we cannot analytically work out the
closed form one by one. However, there is some special
configuration that we can easily work out for arbitrary
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n point, and one of them equals to the n point QFT building block we claimed:

Að1̂−; 2þ;…; n − 2þ; n − 1þjn̂−2Þ ¼ ½ab�2
2m2

h1bi4
h12ih23i � � � hn − 1; 1i : ð4:1Þ

A. The nonzero configuration

Similar to the five-point example, one configuration contributes to the closed form we expected for the n-point amplitude:

Fμ
1ρF

ρν
23…n−1ðΦnÞμν ¼ ðkμ1ϵ1p − k1pϵ

μ
1Þ½kρ23…n−1ϵ

ν
23…n−1 − kν23…n−1ϵ

ρ
23…n−1 − ðϵρ2ϵν3…n − ϵν2ϵ

ρ
3…n þ � � �Þ�ðΦnÞμν

¼ ðkμ1ϵ1p − k1pϵ
μ
1Þ½kρ23…n−1ϵ

ν
23…n−1 − kν23…n−1ϵ

ρ
23…n−1�ðΦnÞμν; ð4:2Þ

where in the last step, we used the important facts in Sec. III A that any two B-G currents contract to zero, and k1 contracting
with any B-G currents gives zero. After applying the spinor helicity form, the QFT building block of j−2; 2i state coupling
with n − 1 gluons equals to

Fμ
1ρF

ρν
23…n−1ðΦnÞμν ¼

hbj=k1ja�ffiffiffi
2

p
m

½2j=k23…n−1j1iffiffiffi
2

p ½12�
h1bi½aj=k23…n−1j1i

mh12ih23i � � � hn − 2; n − 1ihn − 1; 1i

þ 2
½2a�hb1i
2½12�m ðk1 · k23…n−1Þ

h1bi½aj=k23…n−1j1i
mh12ih23i � � � hn − 2; n − 1ihn − 1; 1i

¼ ½ab�2
2m2

h1bi4
h12ih23i � � � hn − 2; n − 1ihn − 1; 1i ; ð4:3Þ

where we used Schouten identity, momentum conservation, and Fierz identity. It is exactly what we claimed in Eq. (2.54)

B. Other configurations

For other configurations, we believe they are individu-
ally equal to zero as it goes for a five-point amplitude.
We can prove one of them equals zero analytically, but
for others, what we can do so far is numerically check
up to six points. This numerical check provided the
confirmation of Eq. (2.54) at n ¼ 6. Similarly, one can

give a numerical check for a n ¼ 7 or higher point QFT
building block.
We can prove that one configuration goes to zero

individually for n-point amplitude. This is a generalization
of configuration 2 in Eq. (3.6). More specifically, we
divide 1; 2; 3;…; n into 1,2 and 3;…; n. Still, we focus on
the QFT building block of spin −2 massive particle
coupling with gluons:

Fμ
12ρF

ρν
3…n−1ðΦnÞμν ¼ ½kμ12ϵ12ρ − k12ρϵ

μ
12 − ðϵμ1ϵ2ρ − ϵ1ρϵ

μ
2Þ�

× ½kρ3…;n−1ϵ
ν
3…;n−1 − kν3…;n−1ϵ

ρ
3…;n−1 − ðϵρ3ϵν4…;n − ϵν3ϵ

ρ
4…;n þ � � �Þ�ðΦnÞμν

¼ −ðϵμ1ϵ2ρ − ϵ1ρϵ
μ
2Þkρ3…;n−1ϵ

ν
3…;n−1ðΦnÞμν

∝
�h1bi½a2�h1j=k3…;n−1j2�

k212
−
h1j=k3…;n−1j2�h1bi½a2�

k212

�

¼ 0; ð4:4Þ

and as for other configurations, we can numerically
check they vanish separately for a six-point amplitude.
Thus, we believe Eq. (4.3) is the only nonzero configu-
ration that contributes to the expected result for an
arbitrary n point, and all other configurations sum to
zero. We will later on prove this using the BCFW
recursion.

V. APPLICATION OF BCFW RECURION
ON THE QFT BUILDING BLOCK

Considering the helicity configuration, the naive BCFW
shifted leg should be 1 and n, and the external leg n is
massive; thus, the BCFW shift for the massive particle is
needed. We will show in the appendix that this kind of shift
can indeed provide us with the expected result, but there
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exists a tentative boundary term. In this section, we will
show if we shift leg 2 and 3 instead, we can still find the
expected result without any BCFW boundary.
The momentum is shifted as

k̂μ2 ¼ kμ2 þ zrμ k̂μ3 ¼ kμ3 − zrμ; ð5:1Þ

where the =r needs to satisfy was chosen to be

=r ¼ j3�h2j þ j2i½3j: ð5:2Þ

Shifting the momentum leads to the following shifted
spinor helicities:

j2̂� ¼ j2� þ zj3�
j3̂i ¼ j3i − zj2i; ð5:3Þ

where other spinor helicity is unshifted, j2̂i ¼ j2i and
j3̂� ¼ j3�. We have the following relations:

h2̂ 3̂i ¼ h23i ½2̂ 3̂� ¼ h23i: ð5:4Þ

We can now rewrite the four-point amplitude into spinor
helicity form:

Að1−; 2þ; 3þj4−2Þ ¼ ½ab�2
2m2

h1bi4
h12ih23ih31i : ð5:5Þ

To prove the expected form, we need to assume the n − 1
point amplitudes satisfy

Að1−; 2þ; kþI ; 5þ;…; n − 2þ; n − 1þjn−2Þ

¼ ½ab�2
2m2

h1bi4
h12ih2kIihkI5i � � � hn − 1; 1i ð5:6Þ

and show that the existence of the expected form for any
n − 1 point always leads to the existence of n point since
we already proved the five-point case using B-G recursion;
if such n − 1 → n always exists, such form would be true
for an arbitrary n-point amplitude. The shifted n-point
amplitude equals the sum of all residues of poles on the z
plane, which corresponds to the sum of different configu-
rations of subamplitudes.
However, one can easily see that there exists only one

pole that gives a nonvanishing contribution when we shift 2
and 3, which is:

The 12-channel here does not contribute because of the
special three-point kinematics, which is:

0 ¼ k21;2 ¼ h12̂i½12̂� ¼ h12i½12̂�: ð5:7Þ

The only way to make the RHS vanish is to set ½12̂� ¼ 0,
but it leads to the subamplitudeAð1−; 2þ;−kþI Þ ¼ 0. Other
poles either have all-plus helicity for three-point Yang-
Mills amplitude or have single-minus helicity for four or
higher-point Yang-Mills amplitude, which vanishes due to
the mostly helicity violation (MHV) requirement.
The three-point pure Yang-Mills amplitude can be

written as

Âð3̂þ; 4þ;−k−I Þ ¼
½3̂4�4

½3̂4�½4k̂I�½k̂I 3̂�
; ð5:8Þ

where I ¼ 3, 4 and kI ¼ k3;4, and we construct the n-point
amplitude from n − 1 point amplitude using the three-point
pure Yang-Mills amplitude as a building block:

Að1−; 2þ; 3þ…; n − 2þ; n − 1þjn−2Þ ¼ ÂL
1

k2I
ÂR

¼ ½ab�2
2m2

h1bi4
h12̂ih2̂k̂Iihk̂I5i � � � hn − 1; 1i ×

1

h3̂4i½3̂4�

×
½3̂4�4

½3̂4�½4k̂I�½k̂I 3̂�
: ð5:9Þ
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We can simplify the above equation using

½3̂k̂I�hk̂I5i ¼ ½34�h45i
h2̂k̂Ii½k̂I 4̂� ¼ h23i½34�: ð5:10Þ

Finally, we get the n-point amplitude:

Að1−; 2þ;…; n − 2þ; n − 1þjn−2Þ ¼ ½ab�2
2m2

h1bi4
h12ih23i � � � hn − 1; 1i ; ð5:11Þ

where the boundary comes from the z dependence of the amplitude. More specifically, the large z limit of the amplitude
corresponds to the boundary. Since we shift momentum 2, 3, the naive z dependence we can read from the amplitude exists
in h34i. Thus, the naive z dependence is 1

z, which leads to the vanishing boundary. One can produce the n-point
generalization of Eq. (3.1):

Að1−; 2þ;…; n − 2þ; n − 1þjn−2Þ ¼ ½ab�2
2m2

h1bi4
h12ih23i � � � hn − 1; 1i ;

Að1−; 2þ;…; n − 2þ; n − 1þjn−1Þ ¼ ½ab�2
m2

h1bi3h1ai
h12ih23i � � � hn − 1; 1i ;

Að1−; 2þ;…; n − 2þ; n − 1þjn0Þ ¼
ffiffiffi
6

p ½ab�2
2m2

h1bi2h1ai2
h12ih23i � � � hn − 1; 1i ;

Að1−; 2þ;…; n − 2þ; n − 1þjnþ1Þ ¼ ½ab�2
m2

h1bih1ai3
h12ih23i � � � hn − 1; 1i ;

Að1−; 2þ;…; n − 2þ; n − 1þjnþ2Þ ¼ ½ab�2
2m2

h1ai4
h12ih23i � � � hn − 1; 1i ; ð5:12Þ

using the raising and lowering operator as mentioned before.

VI. CONCLUSION

In this paper, we reviewed connections between tree-
level amplitudes of twisted heterotic strings and conven-
tional type-I superstrings [13]. By using B-G currents and
their recursion, we explicitly worked out the formula for the
QFT building block of four-point and five-point cases.
After that, we conjectured a compact formula Eq. (2.54) for
the QFT building block of n-point conventional type-I
superstring amplitude of the spin-2 state at the first mass
level coupled to n − 1 gluons in spinor helicity basis. In
Sec. V, we finally used the recursive construction to
approach the n-point formula and arrived at Eq. (5.11),
which is exactly Eq. (2.54); this provided the proof of the
desired formula using BCFW recursion.
This formula can be regarded as a n-point generalization

from the four-point coupling of one single spin-2 massive
state and massless states in [34]. More importantly, by
the choice of gluon helicities ð1−; 2þ; 3þ;…; n − 1þÞ, the
n-point conjecture Eq. (2.54) can be viewed as a massive
extension of the Parker-Taylor formula [24] for pure-gluon
tree amplitudes with MHV helicities. We also offered

various pieces of evidence: We provided an analytic proof
at five points and a numerical check at six points.
One possible generalization of this topic is toward

amplitudes with more massive states or higher excited
states, and one can find detailed studies for mass level 2
states in [44,45]. What is more, if we generalize to two
higher excited massive states, such higher-spin amplitudes
were recently used to study classical Kerr black-hole
scattering [39,46].
Another direct generalization is to consider the NMHV-

like QFT building block of conventional type-I string
amplitude, which is having two or more massless particles
having minus helicity. We have proven that the QFT
building block with all massless particles having plus
helicity vanishes; this is similar to the behavior of MHV
violated Yang-Mills amplitude. One can expect that the
NMHV-like amplitude would be more complicated, as how
NMHV amplitude behaves in Yang-Mills theory.
The massive double copy mentioned in this work

emerges from the consistency constraints at low multi-
plicity [47]. The all-multiplicity result could serve as an
important consistency check for future studies.
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APPENDIX A: PROOF OF VANISHING
ALL-PLUS HELICITY CONFIGURATION

In this appendix, we will discuss the QFT building block
with all-plus helicity configuration17: Að1þ; 2þ;…;
n − 2þ; n − 1þjn−2Þ. We claim that the QFT building block
with this helicity choice equals zero.
We cannot use the old reference spinor helicity choice as

before since all the helicities of gluons are the same. In this
appendix, we choose all the reference spinors of gluons to
be hbj, and the polarization vectors can be written as

ϵμi jrμ¼bμ ¼
hbjσ̄μji�
hbii : ðA1Þ

By using B-G currents Eq. (2.42) and its definition
Eq. (2.40), we can express the QFT building block as we
did in Eq. (3.3), but with P ¼ 1; 2; 3;…; n − 1 this time:

Að1þ; 2þ;…; n − 2þ; n − 1þjnÞ ¼ ðΦPÞμνðΦnÞμν
¼

ffiffiffiffi
α0

p X
P¼QR

Fμ
QρF

ρν
R ðΦnÞμν þ cycP; ðA2Þ

where we can apply Eq. (2.33) and expand Fμ
Qρ and Fρν

R .
Since we are considering the all-plus helicity configuration,
we can apply Eq. (3.4) to ϵμX, where X can be any multiple-
particle label:

ϵμðiþ; iþ 1þ;…; nþÞjrμi;iþ1;…;n¼bμ

¼ hbjσ̄μ=ki;iþ1;…;njbiffiffiffi
2

p hbiihi; iþ 1i � � � hn − 1; nihnbi: ðA3Þ

By using Fierz identity Eq. (2.10), we can easily find any
contraction among polarization vectors or B-G currents
equal to zero. For the same reasons, reference spinors
jrii ¼ jbi lead to vanishing contractions ϵμPðΦnÞμν for the
arbitrary multiparticle P. As a consequence of our choice of
reference spinors,

ϵP · ϵQjrμi¼bμ ¼ 0; ϵμPðΦnÞμνjrμi¼bμ ¼ 0: ðA4Þ

Each contribution Fμ
QρF

ρν
R ðΦnÞμν to the B-G formula

Eq. (2.42) vanishes in the all-plus helicity configuration:

Fμ
QρF

ρν
R ðΦnÞμνjrμi¼bμ

¼
�
kμQϵQρ − kQρϵ

μ
Q −

X
XY¼Q

ðϵμXϵYρ − ϵXρϵ
μ
YÞ
	

×

�
kρRϵ

ν
R − kνRϵ

ρ
R −

X
ZW¼R

ðϵρZϵνW − ϵνZϵ
ρ
WÞ

	
ðΦnÞμνjrμi¼bμ

¼ −kμQkνRðϵQ · ϵRÞðΦnÞμνjrμi¼bμ ¼ 0; ðA5Þ

where the second step follows from discarding any
ϵμPðΦnÞμν, and we finally use the vanishing of ϵQ · ϵR in
the last step. Thus, the QFT building block with all plus
helicity choice vanishes.
Or we can use a similar power counting as in Sec. II D;

there are n − 1 momentum vectors in each term, but there
exist n − 1 polarization vectors and one polarization tensor,
which has two indices. There are nþ 1 indices from
polarizations in total. Thus, there exists at least one
contraction between two Lorentz indices of the polar-
izations in each term. We can conclude that the QFT
building block with all plus helicity choice vanishes.

APPENDIX B: BCFW RECURSION
WITH 1 AND N SHIFTED

We can generalize the discussion to two or even more
massive states in the future. Thus, knowing how to apply
the shift with massive particles to the QFT building block is
useful, although we have tentative boundaries in this shift
choice.

1. BCFW shift for massive momentum

The BCFW shift for all massless external momentum is
already discussed in the review section. For the amplitude
with massive legs, we need to shift the massive momentum
kj and the massless momentum ki as follows [48]:

k̂μj ¼ kμj þ zrμ

k̂μi ¼ kμi − zrμ: ðB1Þ

The momentum conservation is naturally satisfied. We
expand kμj into kμj ¼ aμ þ bμ.
The on-shell condition becomes

k̂2j þm2 ¼ 0

k̂2i ¼ 0: ðB2Þ

Next, we choose a suitable z, which makes the complex
shifted propagator on shell. We can find the z we want by
solving the mass shell equation:

17Still, the other spin choice of massive particle n are
generated by using the raising and lowering operator as we
did in Eq. (2.27).
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k̂2I þm2
I ¼

�X
i∈ I

k̂i

�
2

þm2
I ¼ 0

k̂2J þm2
J ¼

�X
j∈ J

k̂j

�
2

þm2
J ¼ 0; ðB3Þ

where m2
I and m2

J denote the mass of kμI and kμJ. Since the
only two shifted momentums are kμj and kμi , the complex
shifts of kμI and kμJ are also zrμ. Only single first-order
singularity contributes residual. We need to set the second
order and higher order to zero, which means

r2 ¼ 0: ðB4Þ

The first constraint on rμ is that rμ has to be a null vector.
Plugging back to the on-shell condition of momentum 1
and n, we have:

ki · r ¼ kj · r ¼ 0: ðB5Þ

The second constrain on rμ is that rμ has to be orthogonal to
both kμi and kμj .
Momentum conservation is automatically satisfied. The

simplest nontrivial rμ found is

rμ ¼ −
1

2m
hijβ̇kβ̇αj σμαα̇jiiα̇; ðB6Þ

and we can also define =r by contracting rμ with σμ:

=rαβ̇ ¼ rμðσνÞαβ̇ημν ¼ −
1

2m
hijγ̇kνj σ̄γ̇δν σμδδ̇jiiδ̇σ

ρ
αβ̇
ημρ

¼ −
1

m
ð=kjjiiÞαhijβ̇

¼ 1

m
ðja�αhaii þ jb�αhbiiÞhijβ̇: ðB7Þ

2. Application to the QFT building block

We can now apply our new BCFW recursion with
massive external legs shifted into the QFT building block.
The momentum is shifted as

k̂μ1 ¼ kμ1 þ zrμ k̂μn ¼ kμn − zrμ; ðB8Þ

where we still expand the massive leg into a and b:

kμn ¼ aμ þ bμ; ðB9Þ

where n is the only massive leg. Plugging back to Eq. (B6),
we get

rμ ¼ −
1

2m
h1jβ̇kβ̇αn σμαα̇jiiα̇: ðB10Þ

The =r is

=rαβ̇ ¼ rμðσνÞαβ̇ημν ¼ −
1

2m
h1jγ̇kνnσ̄γ̇δν σμδδ̇j1iδ̇σ

ρ
αβ̇
ημρ

¼ −
1

m
ð=knj1iÞαh1jβ̇ ¼

1

m
ðja�αha1i þ jb�αhb1iÞh1jβ̇:

ðB11Þ

As for the shifted spinor helicity, we have

=̂k1 ¼ =k1 þ z=r ¼ j1�h1j þ z
m
ðja�ha1i þ jb�hb1iÞh1j

=̂kn ¼ =aþ =b − z=r ¼ ja�haj þ jb�hbj − z
m
ðja�ha1i

þ jb�hb1iÞh1j; ðB12Þ

where momentum pn is decomposed into pn ¼ aþ b.
Thus, we have

j1̂� ¼ j1� þ z
m
ðja�ha1i þ jb�hb1iÞ

hâj ¼ haj − z
m
ha1ih1j

hb̂j ¼ hbj − z
m
hb1ih1j; ðB13Þ

where other shifted spinor helicity is unchanged. We have
several special relations:

hâ 1̂i ¼ ha1i hb̂ 1̂i ¼ hb1i
½â 1̂� ¼ ½a1� ½b̂ 1̂� ¼ ½b1�: ðB14Þ

After rewriting four-point amplitude into spinor helicity
form, we can get

Að1−; 2þ; 3þj4−2Þ ¼ ½ab�2
2m2

h1bi4
h12ih23ih31i ; ðB15Þ

where k4 ¼ aþ b, the same as the discussion before for
general n.
Suppose the n − 1 point amplitudes take the form:

Aðk−I ; 3þ;…; n − 2þ; n − 1þjn−2Þ

¼ ½ab�2
2m2

hkIbi4
hkI3ih34i � � � hn − 1; kIi

: ðB16Þ

The three-point pure Yang-Mills amplitude can be
written as

Að1−; 2þ;−kþI Þ ¼
½2kI�4

½12�½2kI�½kI1�
; ðB17Þ

where I ¼ 1, 2 and kI ¼ k1;2, and we can always construct
the n-point amplitude from lower point amplitudes.
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Interestingly, there is still only one pole giving nonzero contribution:

The helicity choice on the propagator has to be plus on
the left and minus to the right because we have shown
that the all-plus configuration vanishes. We can only have a
three-point Yang-Mills amplitude on the left, due to the
MHV.

Að1̂−; 2þ;…; n − 2þ; n − 1þjn̂−2Þ

¼ ½ab�2
2m2

hk̂Ib̂i4
hk̂I3ih34i � � � hn − 1; k̂Ii

×
1

h1̂2i½1̂2�

×
½2k̂I�4

½1̂2�½2k̂I�½k̂I 1̂�;
ðB18Þ

where we ignore the boundary term for now. We can
simplify the above equation using the following:

½2k̂I�hk̂Ib̂i ¼ −½2j1̂jâi ¼ ½21̂�h1bi
½1̂k̂I�hk̂I3i ¼ ½1̂2�h23i

hn − 1; k̂Ii½k̂I2� ¼ hn − 1; 1̂i½1̂2�: ðB19Þ

Finally, we get the n-point amplitude:

Að1̂−; 2þ;…; n − 2þ; n − 1þjn̂−2Þ

¼ ½ab�2
2m2

h1bi4
h12ih23i � � � hn − 1; 1i: ðB20Þ

This is what we expected for the n-point amplitude. It
agrees with the nonzero configuration we analytically
worked out in Sec. IVA.
However, there is one more thing noticeable: We also

need to consider the boundary contribution. We can find the
naive boundary in Eq. (B20).
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