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We construct higher-derivative gravity theories in three dimensions that admit holographic c-theorems
and exhibit a unique maximally symmetric vacuum, at arbitrary order n in the curvature. We show that
these theories exhibit special properties, the most salient ones being the decoupling of ghost modes around
anti–de Sitter (AdS) space, the enhancement of symmetries at linearized level, and the existence of a one-
parameter generalization of the Bañados-Teitelboim-Zanelli (BTZ) black hole that, while being asymp-
totically AdS, is not of constant curvature but rather exhibits a curvature singularity. For such black holes,
we provide a holographic derivation of their thermodynamics. This gives a microscopic picture of black
hole thermodynamics for nonsupersymmetric solutions, of nonconstant curvature in higher-derivative
theories of arbitrary order in the curvature.
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I. INTRODUCTION

Three-dimensional massive gravity [1,2] has shown to be
an excellent setup to investigate several aspects of hologra-
phy and, in particular, to investigate to what extent the AdS/
CFT correspondence can be generalized. Not only does it
provide interesting backgrounds in which we can investigate
the scope of the holographic paradigm beyond the anti–de
Sitter (AdS) space—such as warped-AdS spaces [3–7],
spaces with anisotropic scale invariance [8], and asymptoti-
cally (A)dS black holes with nonconstant curvature [9,10]—
but it also provides examples of different set of boundary
conditions in AdS3 itself, yielding a rich variety of relaxed
falling off conditions near the boundary [11–13]. The study
of the latter has given rise to interesting discussions on how
sensitive the properties of the dual conformal field theory
(CFT) are to the prescription of specific boundary conditions.
It has been shown that key aspects of the boundary CFT2,
such as chirality or unitarity, get affected by the relaxation of
the standard Brown-Henneaux AdS3 asymptotic conditions;
see Refs. [11,14–19]. For example, in [20] we studied
weakened AdS3 boundary conditions in higher-curvature
theories that yield logarithmic terms that are induced by the
backreaction of quantum fluctuations in AdS3. Here, wewill

consider a different type of relaxed AdS3 asymptotics that
are compatible with the same higher-curvature theories,
which have a nice holographic interpretation in terms of
c-theorems. In Sec. II, we define the family of such theories,
which can be regarded as higher-order generalization of the
parity even new massive gravity (NMG) [2,10]. Demanding
the existence of a holographic c-theorem, we write down
higher-order Lagrangian densities with terms of arbitrary
order n in the curvature. This generalizes the results in the
literature about holographic c-teorems in three dimensions,
cf. [21,22]. When the additional requirement of the theory
having a unique maximally symmetric ansatz is considered,
the theories exhibit an additional conformal symmetry at the
linearized level. This symmetry is associated to the existence
of a new family of static black holes that generalize the
Bañados-Teitelboim-Zanelli (BTZ) solution. In Sec. III, we
check that the linearized equations of motion of these
theories are traceless, implying that, at this level, there is
an extra conformal symmetry. In Sec. IV, we study these
black holes, which have interesting properties, such as the
presence of a curvature singularity at the origin.We compute
the conserved charges and the thermodynamic variables of
these black holes, and we also reproduce their thermody-
namics from the holographic point of view. We conclude in
Sec. V with some remarks.

II. THEORIES SATISFYING A c-THEOREM
WITH A SINGLE VACUUM

The set of three-dimensional higher-curvature gra-
vity theories satisfying the existence of a holographic
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c-theorem [23,24] and the set of similar theories that
exhibit a single maximally symmetric vacuum were clas-
sified in [25]; see also [21,22,26,27]. Here, we are going to
study theories that belong to the intersection of both sets.
For the sake of clarity, we start reviewing the derivation at
quadratic and cubic order, and later, we will explain the
general construction to order n in the curvature.
We say that a given three-dimensional gravity theory of

order n,1

I ¼ 1

2lP

Z
d3x

ffiffiffiffiffiffi
−g

p ðLþ LmattÞ; ð1Þ

satisfies a simple holographic c-theorem if its field equa-
tions are at most of second order when evaluated on the
following ansatz:

ds2 ¼ dr2 þ e2AðrÞð−dt2 þ dx2Þ; ð2Þ

which interpolates between two asymptotically AdS3
regions; see Refs. [28,29]. The field equations involve a
suitable stress-energy tensor Tab associated to the matter
Lagrangian Lmatt. L is the gravitational Lagrangian, which
depends on the metric gab and the Riemann tensor Ra

bcd.
The two AdS3 asymptotic regions represent the infrarred
(IR) and the ultraviolet (UV) fixed points in the dual
description, and, as usual, the interpolation itself is under-
stood as the holographic realization of the renormalization
group (RG) flow.
For theories of this sort, we can construct a quantity cðrÞ

which decreases monotonically along the RG flow and
coincides with the Virasoro central charges of the CFT, c, at
the respective fixed point. Consequently, the function cðrÞ
whose derivative with respect to r obeys

c0ðrÞ ≥ 0; ∀ r; ð3Þ
is a good candidate to be the c-function in the dual picture.
More concretely, according to [29–31] we can consider

c0ðrÞ ¼ −
π

A0 ðTt
t − Tr

rÞ; ð4Þ

and using the null energy condition (NEC), we have
Tabξ

aξb ≥ 0, where ξa is a null vector, ξaξa ¼ 0. For a
perfect fluid of density ρ and pressurep, we haveTabξ

aξb ¼
½ðρþ pÞuaub þ pgab�ξaξb ¼ ðρþ pÞðuaξaÞ2 ≥ 0. Using
ua ¼ ð1; 0; 0Þ, with uaua ¼ −1, we have Tt

t ¼ −ρ and
Tr

r ¼ p. Hence, NEC implies

Tt
t − Tr

r ≤ 0: ð5Þ

The explicit expression of the c-function can be obtained
from the Wald-like formula [21,30,32]

cðrÞ ¼ π

2A0
∂L

∂Rtr
tr
; ð6Þ

where the derivative of the Lagrangian density L is to be
evaluated on the interpolating ansatz (2). Below, wewill see
how this works in concrete examples of different orders.

A. Quadratic order

As said, we are interested in higher-curvature three-
dimensional gravity theories that satisfy the following two
conditions: (a) obeying simple holographic c-theorems as
described above, and (b) exhibit a unique maximally
symmetric vacuum. Let us start by considering the well-
known example of quadratic theories.
In three dimensions the Weyl tensor identically vanishes

and so the Riemann curvature tensor is totally determined
by the Ricci tensor and the metric. Because of this, we can
write the most general theory as a function of the Ricci
tensors Rab and the Ricci scalar R. In particular, this means
that, at second order in curvature, it suffices to consider
only two quadratic curvature invariants, R2 ¼ Ra

aRb
b and

R2 ¼ Rb
aRa

b; then, one can consider theories of the form
Lðgab; RabÞ without loss of generality. We can write the
quadratic term of the Lagrangian, F ð2Þ, as

F ð2Þ ¼ L2ðα1R2 þ α2R2Þ; ð7Þ

with L being some length scale so that the coupling
constants α1 and α2 are dimensionless. The field equations

coming from F ð2Þ, which we write Kð2Þ
ab ¼ lPT

ð2Þ
ab , are

Kð2Þ
ab

L2
¼ 2α1RabR −

1

2
gabðα1R2 þ α2R2Þ

þ 2α1ðgab□ −∇a∇bÞRþ 2α2Rc
aRbc

þ α2
2
gab□Rþ α2□Rab − 2α2∇c∇ðaRc

bÞ; ð8Þ

where we use the notation 2AðaBbÞ ¼ AaBb þ AbBa for
tensor product symmetrization. Evaluating in the interpo-
lating AdS ansatz (2), we easily see that the combination
Tð2Þt

t − Tð2Þr
r reads

lP

L2
ðTð2Þt

t−Tð2Þr
rÞ¼ 4ð3α1þα2ÞðA0Þ2A00

− ð8α1þ3α2Þ½4ðA00Þ2þ2A0Að3Þ þAð4Þ�:
ð9Þ

From here, we see that the choice α2 ¼ − 8
3
α1 reduces the

equation of motion to second order. The resulting theory is
the Bergshoeff-Hohm-Townsend gravity, also known as
New Massive gravity (NMG) [10], with the couplings α1
and α2 being proportional to the inverse of the squared
graviton mass. This choice is particularly suitable for a

1We remember that in three dimensions, the Planck length can
be written in terms of the gravitational constant as lP ¼ 8πGN.

M. CHERNICOFF et al. PHYS. REV. D 110, 026005 (2024)

026005-2



simple holographic c-theorem, as the NEC (5) is satisfied
provided that A00 < 0.
Let us mention that the existence of a simple holographic

c-theorem can also be inferred without making use of the
ansatz (2). It simply follows from the fact that, for the
choice α2 ¼ − 8

3
α1, the trace of the field equations,

Kð2Þ ¼ gabKð2Þ
ab , is of second order, yielding

Kð2Þ

L2
¼ 1

2
ðα1R2 þ α2R2Þ þ

1

4

�
α1 þ

3

8
α2

�
□R: ð10Þ

This implies the absence of a scalar mode around the
maximally symmetric vacuum, reducing by one the number
of local degrees of freedom and rendering the theory
dynamically healthy. This is precisely why NMG is an
interesting massive model: it lacks a ghost mode
around AdS.
Now, if we include the Einstein-Hilbert and the cosmo-

logical term in the action, the full theory up to n ¼ 2 reads2

Lð2Þ ¼ Rþ 2

L2
þ α1L2

�
R2 −

8

3
R2

�
; ð11Þ

whose vacuum field equations are given by

Eð2Þ
ab ¼ Gab −

1

L2
gab þ Kð2Þ

ab ¼ 0; ð12Þ

whereGab ¼ Rab − 1
2
gabR is the Einstein tensor and Kð2Þ

ab is
given in (10). The quadratic theory admits, in general, two
maximally symmetric backgrounds (two vacua). In order
for the theory to have a unique vacuum, we must fix the
value of the constant α1. To do so, we consider the field
equations (12) and evaluate them on Einstein metrics of the
form3

R̄ab ¼
2

L2
⋆
ḡab; ð13Þ

where L⋆ is the AdS radius (in contrast to length scale L,
which gives the bare cosmological constant −L−2). Notice
that the Einstein condition (13), in 2þ 1 dimensions imply
that the spacetime is of constant Riemann curvature,
namely Rab

cd ¼ − 1
L2
⋆
δabcd. The result of such evaluation is

a quadratic equation of the quotient χ0 ¼ L2=L2
⋆ relating

the bare and effective cosmological constants through the
quadratic equation

Ēab ¼ 0 ⇔ 1 − χ0 −
2α1
3

χ20 ¼ 0; ð14Þ

which in general has two solutions. This equation admits a
unique solution (a unique vacuum) for χ0 ¼ 2. This
requirement fixes the second available coupling constant
in (11) and defines the one-parameter quadratic Lagrangian
density [9]

Dð2Þ ¼ Rþ 2

L2
− L2

�
3

8
R2 −R2

�
: ð15Þ

This theory, at this very special point of the parameter
space, exhibits very interesting properties such as enhanced
symmetry at linearized level. For L2 < 0 this special point
agrees with the partially massless point in dS3.

B. Cubic order

Now, let us take a look at the cubic order: A Lagrangian
density of cubic order is constructed in a similar way, by
combining R3 and the product RR2 together with three
contracted Ricci tensors R3 ¼ Rb

aRc
bR

a
c . That is

F ð3Þ ¼ L4ðα3R3 þ α4RR2 þ α5R3Þ: ð16Þ

In this case, the piece of the field equations coming
from (16) reads

Kð3Þ
ab

L4
¼ Rabð3α3R2 þ α4R2Þ

−
1

2
gabðα3R3 þ α4RR2 þ α5R3Þ þ 2α4RRc

aRbc

þ ðgab□ − ∇a∇bÞð3α3R2 þ α4R2Þ

þ□

�
α4RRab þ

3α5
2

Rc
aRbc

�
þ 3α5Rc

aRd
bRcd

þ gab∇c∇d

�
α4RRcd þ 3α5

2
RcfRd

f

�

− 2∇c∇a

�
α4RRc

b þ
3α3
2

Rd
bR

c
d

�
ð17Þ

which, evaluated on the interpolating AdS ansatz (2), yields

lP

L4
ðTð3Þt

t−Tð2Þr
rÞ¼−36ðA0Þ4A00ð9α3þ3α4þα5Þþ

1

3
ð72α3

þ25α4þ9α5Þ½5ðAð3ÞÞ2þ16ðA00Þ3
þ5Að4ÞA00 þ12Að3ÞA0ðρÞ3þ6ðA0Þ2ðAð4Þ

þ8ðA00Þ2Þþ34Að3ÞA0A00�

−
1

3
ð72α3þ17α4Þ½ðAð3ÞÞ2þ2ðA00Þ3

þAð4ÞA00 þ2Að3ÞA0ðρÞA00� ð18Þ

We see that fixing two of the three coupling constants as

α4 ¼ − 72α3
17

and α5 ¼ 64α3
17

, we again have a theory

2Fromnowon,whenwewriteLðnÞwe include in theLagrangian
all curvature orders up to order n.

3In turn, Einstein metrics also satisfy R̄ ¼ − 6
L2
⋆
and R̄2 ¼ 24

L4
⋆
.
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satisfying a simple holographic c-theorem. As before, one
could be tempted to derive the same constraints between α3,
α4 and α5 by demanding the vanishing of higher-order
terms in the trace of the field equations. However, at third
order the constraints are much more involved than at
second order.
We can now add the cubic theory F ð3Þ to the quadratic

theory (11), which also satisfies the same requirement. This
yields the full theory

Lð3Þ ¼ Rþ 2

L2
þ α1L2

�
R2 −

8

3
R2

�

þ α3L4

�
R3 −

72

17
RR2 þ

64

17
R3

�
: ð19Þ

In total, the c-theorem fixes three coupling constants–one
out of two at quadratic order and two out of three at cubic
one—and leaves two of them undetermined; we choose the
latter to be α1 and α3. Now, proceeding in a similar way as
in the previous subsection, we demand the existence of a
unique vacuum: this amounts to evaluate the field equations

Eð3Þ
ab ¼ Gab −

1

L2
gab þ Kð2Þ

ab þ Kð3Þ
ab ¼ 0; ð20Þ

on the Einstein manifold ansatz R̄ab ¼ − 2
L2
⋆
gab. Using the

expression for Kð2Þ
ab and Kð3Þ

ab given in (10) and (17), we find

Ēð3Þ
ab ¼ 0 ⇔ 1 − χ0 −

2α1
3

χ20 þ
12α3
17

χ30 ¼ 0; ð21Þ

and, from this, we see two conditions to get a single value
χ0 ¼ 3, namely α1 ¼ − 1

2
and α3 ¼ − 17

324
. After imposing

these constraints, we find the third order extension of
theory (15), whose Lagrangian density is

Dð3Þ ¼ Rþ 2

L2
−
L2

6
ð3R2 − 8R2Þ

þ L4

324
ð17R3 þ 72RR2 − 64R3Þ: ð22Þ

As the quadratic theory defined by the Lagrangian
density (15), the cubic theory coming from (22) has
interesting features; among them, extra symmetries at
linearized level and the existence of a rich variety of black
hole solutions. We will discuss these features later.

C. Arbitrary order n

After reviewing the procedure to obtain higher-curvature
theories that (a) satisfy a simple holographic c-theorem and
(b) possess a single vacuum for the cases n ¼ 2 and n ¼ 3,
we now move to arbitrary n. As mentioned before, the
space of higher-curvature theories is substantially reduced
in three dimensions due to the vanishing of the Weyl tensor.

This allows for a classification of Lagrangians that is
substantially simpler than in higher dimensions. All the
independent theories are obtained from contractions of the
Ricci tensor and the metric, Lðgab; RabÞ. Naively, when
making the counting of independent densities, as we did for
n ¼ 2 and n ¼ 3, one might expect that, at each order n, a
new order-n operator constructed from the Ricci tensor
appears. However, it turns out that, for n ≥ 4, one can remove
such additional operators by using Schouten identities
δa1…an
b1…bn

Rb1
a1 � � �Rbn

an ≡ 0, n > 3. As a consequence, the most
general gravity theory in three dimensions involving theRicci
tensor and its contractions at order n can be written as [22]

I ¼ 1

2lP

Z
d3x

ffiffiffiffiffi
jgj

p
LðnÞ;

LðnÞ ¼ Rþ 2

L2
þ
X
n

F ðnÞðR;R2;R3Þ; ð23Þ

whereR2 ¼ Ra
bR

b
a andR3 ¼ Ra

bR
b
cRc

a. Alternatively, we can
express the Lagrangian density in terms of contractions of the
traceless Ricci tensor R̃ab ¼ Rab − 1

3
gabR. Defining S2 ¼

R̃a
bR̃

b
a and S3 ¼ R̃a

bR̃
b
cR̃c

a, we will write the most general
Lagrangian density as follows

LðnÞ ¼ Rþ 2

L2
þ
X
n

GðnÞðR;S2;S3Þ; ð24Þ

this basis turns out to be more convenient to derive and
present the results.We focus onhigher-curvature theories that
admit a polynomial expression, i.e.,

F ðnÞðR;R2;R3Þ ¼
X

iþ2jþ3k¼n

αijkL2ðiþ2jþ3k−1ÞRiRj
2R

k
3;

ð25Þ

GðnÞðR;S2;S3Þ ¼
X

iþ2jþ3k¼n

βijkL2ðiþ2jþ3k−1ÞRiSj
2S

k
3; ð26Þ

where αijk and βijk represent the dimensionless coupling
constants for each order-n term.
The higher-curvature terms of order n satisfying a simple

holographic c-theorem are given by special values of αijk
and βijk; we denote those Lagrangian densities F ðnÞ

c-theorem,
which were previously identified in [25]. They obey

F ðnÞ
c-theorem ¼ γnCðnÞ þ Ωð6Þ · F ðn−6Þ

general; ð27Þ

where4

4Note that we do not use the expression for CðnÞ given in [25].
Instead, we use the three-dimensional case of the Lagrangian with
the same properties presented in [33], which is a simpler
expression.
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CðnÞ ¼ Rn −
Xbn=2c
p¼1

24p
�

n
2p

�
Rn−2pSp

2

þ
Xbðn−1Þ=2c

p¼1

24pþ1p

�
n

2pþ 1

�
Rn−2p−1Sp−1

2 S3 ð28Þ

and Ωð6Þ ¼ 6S2
3 − S3

2 is a density that vanishes identically
when evaluated on the ansatz (2). As shown in [25], CðnÞ

is the only nontrivial density satisfying a holographic
c-theorem. Notice that, as we checked in the quadratic
and the cubic cases, imposing second-order equations for
the ansatz (2) for a set of order-n densities yield n − 1

conditions, leaving only one free constant: γn.
Now, let us turn our attention to the second requirement:

the theory must possess a single vacuum. This demands
additional n − 1 constraints to the values of γn, with γ0 and
γ1 being the bared cosmological constant and the bared
Planck mass, respectively.
The full field equations in vacuum for the general

Lagrangian density (24) are given by

EðnÞ
ab ¼ Gab − gab

1

L2
þ
X
n

KðnÞ
ab ¼ 0 ð29Þ

where the piece corresponding to the order-n invariant
GðnÞ reads

KðnÞ
ab ¼−

1

2
gabGðnÞ þ2GðnÞ

S2
R̃c
aR̃cbþ3GðnÞ

S3
R̃c
aR̃cdR̃d

b

þgab∇c∇d

�
GðnÞ
S2
R̃cdþ3

2
GðnÞ
S3
R̃cfR̃d

f

�

þ
�
gab□−∇a∇bþ R̃abþ

1

3
gabR

�
ðGðnÞ

R −GðnÞ
S3
S2Þ

−2∇c∇a

�
R̃c
bG

ðnÞ
S2

þ3

2
R̃d
bR̃

c
dG

ðnÞ
S3

�

þ
�
□þ2

3
R

��
GðnÞ
S2
R̃abþ

3

2
GðnÞ
S3
R̃c
aR̃cb

�
¼ 0; ð30Þ

and GðnÞ
X represents the partial derivative of the GðnÞ with

respect to the invariant X, i.e. GX ¼ ∂G=∂X.
Now, consider AdS3 spacetime: then, the three densities

in our class of Lagrangian take the values5

R̄¼−
6

L2
⋆
; S̄2 ¼ 0; S̄3¼ 0: ð31Þ

Substituting this into the full field equations ĒðnÞ
ab ¼ 0, we

obtain the simple relation

2

L2
−

2

L2
⋆
þ
X
n

�
ḠðnÞ þ 4

L2
⋆
ḠðnÞ
R

�
n ¼ 0: ð32Þ

If we consider a Lagrangian expressed in terms of a
polynomial as in (26); then, equation (32) reduces to the
characteristic polynomial

1 − χ0 þ
X
n

bnχn0 ¼ 0; ð33Þ

where bn ¼ ð−1Þn6n−1ð3 − 2nÞβn00. Notice that, as antici-
pated above, the terms involving S2 and S3 do not
contribute to the characteristic polynomial and so do not
modify χ0.
A single-vacuum theory has order-n degeneration of the

solution to the characteristic polynomial. For them, the
value of χ0 is given by

χ0 ¼ n; ð34Þ
which generalizes what we have obtained for n ¼ 2 and
n ¼ 3. Based on this observation, it was argued in [25] that
a Lagrangian density of the form

LðnÞ
single vac ¼

2

L2
þ Rþ

Xn
i¼2

�
n
i

�
L2ði−1Þ

ni6i−1ð3 − 2iÞR
i

þ S2h2ðR;S2;S3Þ þ S3h3ðR;S2;S3Þ; ð35Þ

where h2 and h3 are any analytic functions of their argu-
ments, possesses a singleAdS3 vacuum.Notice that, in these
theories, the coupling constant of the order-n curvature term
scales as ∼L2n−2, with the bared cosmological constant
being∼L−2. This implies that the theory is strongly coupled,
with the UV and the IR regimes being related. This is
precisely the reason why, while higher-derivative terms are
generically expected to yield short-distancemodifications to
general relativity, for these theories we still expect long-
range modifications. This is what we will actually find:
slow-decaying modes will alter the standard asymptotically
AdS3 behavior in an interesting manner.
With this in mind, we can combine expressions (28)

and (35) to find a theory satisfying both requirements:
(a) possessing a holographic c-theorem and (b) a single
vacuum. The single vacuum requirement imposes a par-
ticular value of the coupling constant for the term Rn,
however, it leaves unspecified what h2 and h3 should be, as
they do not modify the characteristic polynomial. As a
consequence, we can include the same coupling constant
for the additional two terms appearing in (28), so that we do
not spoil the relative factors that guarantee the existence of
a holographic c-theorem at order n. In turn, we obtain the
following Lagrangian

5These expressions make manifest the convenience of using
the basis ðR;S2;S3Þ instead of ðR;R2;R3Þ, as R̄2 ¼ 12

L4
⋆
,

R̄3 ¼ 24
L6
⋆
, making the general analysis using the latter more

involved.
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DðnÞ ¼ 2

L2
þRþ

Xn
i¼2

�
n
i

�
L2ði−1Þ

ni6i−1ð3−2iÞ

×

�
Ri−

Xbi=2c
p¼1

24pð2p−1Þ
�

i
2p

�
Ri−2pSp

2

þ
Xbði−1Þ=2c

p¼1

24pþ1p

�
i

2pþ1

�
Ri−2p−1Sp−1

2 S3

�
; n≥1;

ð36Þ

which, of course, reproduces the quadratic and cubic
theories Dð2Þ and Dð3Þ, presented in (15) and (22) respec-
tively, although in the ðR;S2;S3Þ basis, namely

Dð2Þ ¼ 2

L2
þ R −

L2

24
ðR2 − 24S2Þ: ð37Þ

Dð3Þ ¼ 2

L2
þ R −

L2

18
ðR2 − 24S2Þ

−
L4

2916
ðR3 − 72RS2 þ 576S3Þ: ð38Þ

The expressions for higher n densities, DðnÞ, are more
complicated. To illustrate that, let us show some examples
up to order n ¼ 6

Dð4Þ ¼ 2

L2
þ R−

L2

16
ðR2 − 24S2Þ

−
L4

1728
ðR3 − 72RS2 þ 576S3Þ;

þ L6

276480
ðR4 − 144R2S2 − 1728S2

2 þ 2304RS3Þ;
ð39Þ

Dð5Þ ¼ 2

L2
þ R −

L2

15
ðR2 − 24S2Þ −

L4

1350
ðR3 − 72RS2 þ 576S3Þ þ

L6

135000
ðR4 − 144R2S2 − 1728S2

2 þ 2304RS3Þ

þ L8

28350000
ðR5 − 240R3S2 − 8640RS2

2 þ 5760R2S3 þ 27648S2S3Þ; ð40Þ

Dð6Þ ¼ 2

L2
þ R −

5L2

72
ðR2 − 24S2Þ −

5L4

5832
ðR3 − 72RS2 þ 576S3Þ þ

L6

93312
ðR4 − 144R2S2 − 1728S2

2 þ 2304RS3Þ

þ L8

11757312
ðR5 − 240R3S2 − 8640RS2

2 þ 5760R2S3 þ 27648S2S3Þ

þ L10

3265173504
ðR6 − 360R4S2 − 25920R2S2

2 − 69120S3
2 þ 11520R3S3 þ 165888RS2S3Þ: ð41Þ

The statement that, at each order n, there is a unique
theory that satisfy at the same time (a) having simple
holographic c-theorem and (b) having a unique maximally
symmetric vacuum, has to be understood on-shell.6 In fact,
we have the freedom of adding toDðnÞ Lagrangian densities
that do not alter the properties a) and b). An example of this
is the deformed Lagrangian density Dð6Þ0 ¼ Dð6Þ þ Ωð6Þ,
which fulfill the same requirements. Still,Dð6Þ0 andDð6Þ are
equivalent in what regards to our requirements, so that we
can talk about an equivalence class of theories.

III. LINEARIZED FIELD EQUATIONS

In this section we show that all the theories defined by
the Lagrangian densities DðnÞ, given in (36), satisfy that the
trace of the field equations vanish at linearized level, and
that this is associated to the existence of a new gauge

symmetry. To show this explicitly, recall that the field
equations at leading order in perturbation theory for any
three-dimensionalmodel expressed in terms of (24) read [25]

1

4
EðnÞ
ab

L ¼
�
eþ c

�
□þ 2

L2
⋆

��
GL

ab þ ð2bþ cÞ

× ðḡab□ −∇a∇bÞRL −
1

L2
⋆
ð4bþ cÞḡabRL

¼ lP

4
TL
ab; ð42Þ

where TL
ab is the linearized stress-energy tensor and where

the linearized Einstein tensor, Ricci tensor, and Ricci scalar
are given by

GL
ab ¼ RL

ab −
1

2
ḡabRL þ 2

L2
⋆
hab; ð43Þ

RL
ab ¼∇ðaj∇chcjbÞ−

1

2
□hab−

1

2
∇a∇bh−

3

L2
⋆
habþ

1

L2
⋆
hḡab;

ð44Þ
6We use the same definition of equivalent densities as the one

introduced in [34].
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RL ¼ ∇a∇bhab −□hþ 2

L2
⋆
h; ð45Þ

respectively. The parameters e, c and b in (42) are to be
interpreted as the effective Planck length leff

P and the masses
(squared) of gravitational modes, which we denote m2

g

and m2
s , as

leff
P ¼ 1

4e
; m2

g ¼−
e
c
; m2

s ¼
eþ 8

L2
⋆
ð3bþcÞ

3cþ8b
: ð46Þ

They are obtained from the relations

e¼ 1

4lP
½1þ ḠR�; b¼ 1

4lP

�
1

2
ḠR;R−

1

3
ḠS2

�
; c¼ 1

4lP
ḠS2

;

ð47Þ

where we used again the notation GX ¼ ∂G=∂X, GX;X ¼
∂
2G=∂X2.
Taking this into account, we can compute the specific

values of the parameters e, b and c parameters for the
theory (36). This gives

e ¼ 1

4lP

�
1þ

Xn
i¼2

�
n
i

� ð−1Þi−2i
nð3 − 2iÞ

�
¼ 1

4lP

ffiffiffi
π

p
ΓðnÞ

Γðn − 1=2Þ ;

c ¼ −L2
⋆e; b ¼ −

3

8
c: ð48Þ

In turn, this implies that the effective Planck length is
given by

leff
P ¼ lP

Γðn − 1
2
Þffiffiffi

π
p

ΓðnÞ ; ð49Þ

while the other physical parameters read

m2
g ¼ −

1

L2
⋆
¼ −

n
L2

; m2
s → ∞: ð50Þ

The latter shows that the ghost scalar modes decouples,
generalizing what occurs in NMG.
Without imposing any particular value for e, b and c yet,

the trace of the linearized field equations reads

ḡabEL
ab ¼ ð8bþ 3cÞ□RL −

�
24b
L2
⋆
þ 8c
L2
⋆
þ e

�
RL: ð51Þ

We see that the term proportional to □RL vanishes as a
consequence of imposing a c-theorem (48). Using the other
relations, which implement the single-vacuum condition,
we see that the coefficient of RL in the second term of (51)
vanishes too, and in that case we obtain

EL ¼ 0: ð52Þ

This means that the theories we are considering have an
extra conformal symmetry at linearized level around con-
stant curvature backgrounds, which corresponds to a Weyl
symmetry transformation. This symmetry is associated to
the existence of a family of conformally flat solutions that
generalize the BTZ black hole [35]. We will study these
solutions in the next section.

IV. HAIRY BLACK HOLES

A. The solution

We now proceed to prove that our theories (36) admit a
one-parameter family of exact solutions that generalize the
BTZ black hole. The metric is

ds2hbh ¼−fðrÞdt2þ dr2

fðrÞþ r2dϕ2; fðrÞ¼ r2

L2
⋆
þbr−λ;

ð53Þ

which, indeed, reduces to the metric of the static BTZ
geometry when b ¼ 0. A stationary generalization includ-
ing an angular momentum parameter a also exists [9]. The
parameter b is an additional integration constant that can be
regarded as a gravitational hair, so that we refer to (53) as
the hairy black hole (that is what the subindex hbh in (53)
stands for). When the hair parameter b is different from
zero, the solution exhibits a curvature singularity at the
origin; the expansion of the Ricci scalar around r ¼ 0 is
R ¼ − 2b

r þOðr0Þ. The solution has a rich causal structure,
depending on the interplay between the parameters b, L⋆
and λ. The black holes have a single horizon rþ unless
b < 0 and −b2L2

⋆ < 4λ < 0; in the latter cases, it may have
two horizons, rþ and r−, given by

r� ¼ L⋆

2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2

⋆ þ 4λ
q

− bL⋆

�
;

rþ − r− ¼ L⋆

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2

⋆ þ 4λ
q

: ð54Þ

Notice that when −b2L2
⋆ ¼ 4λ the two horizons coincide

and the solution becomes extremal.
Let us now compute the quantities G, GR, GS2

, and GS3
for

this solution: The first two take simple expressions, namely

Gjds2hbh ¼
2b
r
þ 2

L2
⋆

�
3−

1

n

�
−

ffiffiffi
π

p
ΓðnÞ

Γðn− 1
2
Þ
�
2b
r
þ 4

L2
⋆

�
; ð55Þ

GRjds2hbh ¼
ffiffiffi
π

p
ΓðnÞ

Γðn − 1
2
Þ
�
bL2

⋆

6r
þ 1

�
− 1: ð56Þ

GS2
and GS3

take a more involved form, namely
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GS2
jds2hbh ¼

ffiffiffi
π

p
ΓðnÞ

Γðn − 1
2
Þ

"
L2
⋆ þ r

b

 
9 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 6bL2

⋆

r

r !
þ r2

b2L2
⋆

 
3 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 6bL2

⋆

r

r !

−
�
−
b
r

�
n−1 62−nL2n

⋆ Γð2n − 2Þ
ð2bL2

⋆ þ 3rÞΓðn − 1ÞΓðnþ 1Þ 2F̃1

�
1; n −

1

2
; nþ 2;−

2bL2
⋆

3r

�#
; ð57Þ

GS3
jds2hbh ¼

ffiffiffi
π

p
ΓðnÞ

Γðn − 1
2
Þ
	

4r
b3L2

⋆
½bL2

⋆ð9r −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6bL2

⋆rþ 9r2
q

Þ − 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6bL2

⋆r
3 þ 9r4

q
þ 18r2�

þ nðnþ 1ÞL2n
⋆ Γð2n − 1Þ

2n−33n−2Γðnþ 2Þ
�
−
b
r

�
n−2
�
2F̃1

�
2; n −

1

2
; nþ 2;−

2bL2
⋆

3r

�

þ ðn − 2Þ2F̃1

�
1; n −

1

2
; nþ 2;−

2bL2
⋆

3r

��

; ð58Þ

where 2F̃1ða; b; c; zÞ ¼ 2F1ða; b; c; zÞ=ΓðcÞ is the regular-
ized hypergeometric function.
Having these expressions, we can plug them into the field

equations (30) and verify that they are indeed satisfied. This
proves the existence of the hairy black holes (53) for the
family of theories defined by the Lagrangian density (36).
This is a generalization of the NMG hairy black hole
solutions to all order in the curvature.
Since the theories defined by (36) obey the holographic

c-theorem condition, it is natural to undertake a holo-
graphic analysis of the thermodynamics of the hairy
black holes (53). This is more interesting than the case
of BTZ solution because, on the one hand, solution (53) is
not of constant curvature and, consequently, is not locally

equivalent to AdS3. On the other hand, the existence of an
extra parameter makes the matching with the dual CFT
quantities less evident.

B. Central charge

In preparation to the holographic computation of the
black hole thermodynamics, let us first compute the central
charge of the CFT that would be dual to the theories defined
by (36). This amounts to use the formula

c ¼ 4πL⋆

lP
gab

∂DðnÞ

∂Rab
: ð59Þ

Explicitly, we have

∂DðnÞ
∂Rab

¼ gab þ
Xn
i¼2

�
n
i

�
L2ði−1Þ

ni6i−1ð3 − 2iÞ
	
iRi−1gab

−
Xbi=2c
p¼1

24pð2p − 1Þ
�

i
2p

�
½ði − 2pÞRi−2p−1Sp

2g
ab þ 2pRi−2pSp−1

2 R̃a
cR̃bc�

þ
Xbði−1Þ=2c

p¼1

24pþ1p

�
i

2pþ 1

�
½ði − 2p − 1ÞRi−2p−2Sp−1

2 S3gab

þ ð2p − 1ÞRi−2p−1Sp−2
2 S3R̃a

cR̃bc þ Ri−2p−1Sp−1
2 S3ð3R̃a

cR̃bc − S2gabÞ�


: ð60Þ

After evaluating this expression on AdS3 [i.e., b ¼ 0 and λ ¼ −1 in (53)] and inserting the result back in (59), we obtain

c ¼ 12πL⋆

lP

ffiffiffi
π

p
ΓðnÞ

Γðn − 1
2
Þ ¼

12πL⋆

leff
P

; ð61Þ

where in the second equality we used the relation between leff
P and lP given in (49). For Einstein gravity (n ¼ 1) we recover

the Brown-Henneaux central charge c ¼ 3L=ð2GNÞ [36].
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C. Conserved charges and thermodynamics

Let us now compute the thermodynamic variables
and the conserved charges associated to the black hole
solution (53). The Hawking temperature is

T ¼ f0ðrþÞ
4π

¼ 1

4πL⋆

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2

⋆ þ 4λ
q

¼ rþ − r−
4πL2

⋆
; ð62Þ

which vanishes for the extremal solution rþ ¼ r−.
The mass of the solution can be easily computed by

making use of the following trick: defining the variable

r0 ¼ rþ bL2
⋆

2
the metric function takes the form

fðr0Þ ¼ r02
L2
⋆
− ðλþ b2L2

⋆
4
Þ, which is the usual form of the

BTZ metric but having shifted the mass parameter as

λ ↦ λþ b2L2
⋆

4
. Of course, this also changes the metric

component gϕϕ; however, it does so in a subleading
contribution Oðr0Þ that does not affect the flux integral
in the charge computation. Therefore, the mass of the hairy
solution simply corresponds to the mass of the BTZ in the
higher-curvature model, Mðb¼0Þ ¼ π

leffP
λ, but with a shift in

λ. More precisely, we have the mass

M ¼ π

4leff
P

ðb2L2
⋆ þ 4λÞ ¼ πðrþ − r−Þ2

4leff
P L2

⋆
: ð63Þ

This result is confirmed by the explicit calculation of the
mass using the Abbott-Deser-Tekin method (see Ref. [37]
and references therein), which we explicitly checked up to
order n ¼ 6.
Now we turn our attention to the Bekenstein-Hawking

entropy S, which can be computed using the Wald entropy
formula. This formula states that, for theories constructed
with the Ricci tensor and its contractions, the following
identity holds

S ¼ −
π

lP

Z
Σh

∂L
∂Rab

ϵacϵb
cω; ð64Þ

where ω ¼ ffiffiffi
h

p
dϕ represents the volume 1-form of the

induced metric hab and ϵab is a bi-normal vector to
the spacelike bifurcation surface Σh. As we consider the
theories defined with the densities DðnÞ, we can use expres-
sion (60) and evaluate it on the hairy black hole (53).
We use that the binormal vector is ϵab ¼ −2δt½aδ

r
b� with

the normalization ϵabϵab ¼ −2. With all this, we obtain that
the entropy is

S ¼ 2π2L⋆

lP

ffiffiffi
π

p
ΓðnÞ

Γðn − 1
2
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2L2

⋆ þ 4λ
q

¼ 2π2ðrþ − r−Þ
leff
P

; ð65Þ

which reduces to the standard expression for BTZ when
b ¼ 0. This result for the black hole entropy, together with

the Hawking temperature and themass computed above, can
be shown to satisfy the first law of black hole mechanics

dM ¼ TdS; with d ¼ dλ
∂

∂λjb
þ db

∂

∂bjλ
; ð66Þ

i.e. with the functional variation being defined in terms of
both λ and b. Also, combining the results above, we can also
compute the free energy

F ¼ M − TS ¼ −
πðrþ − r−Þ2
2leff

P L2
⋆

; ð67Þ

which does vanish for the extremal solutions.

D. Holographic derivation

Alternatively, we can compute the black hole entropy
using holography. Concretely, we can resort to the relation
that is expected to be satisfied by the central charge of the
dual CFT, the Hawking temperature and the Bekenstein-
Hawking entropy; namely

S ¼ 2π2L⋆c
3

T; ð68Þ

which, in fact, is found to match the result (65). This
agreement is known to hold for the BTZ solution in
arbitrary higher-curvature model, and the proof of that
statement makes use of the fact that BTZ is locally
equivalent to AdS3 [38]. Here, in contrast, we are verifying
this for a more general type of geometry, which are not of
constant curvature but rather exhibit a curvature singularity
at the origin.
In the case the black hole presents two horizons (b < 0)

we can use that 2πðrþ − r−Þ ¼ 2πL⋆
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
⋆b

2 þ 4μ
p

¼
Aþ − A−, to express the entropy as follows

S ¼ πðAþ − A−Þ
leff
P

; ð69Þ

where A� ¼ 2πr� is the perimeter of the horizon at r�.
This form of writing the entropy is convenient as it permits
a further check of the holographic expressions. In fact, for
the static solution, the eigenvalues of the Virasoro gen-
erators L0 þ L̄0 and L0 − L̄0 are given by

Δþ Δ̄ ¼ L⋆M; Δ − Δ̄ ¼ 0; ð70Þ

respectively. This enables to check that the usual form of
the Cardy formula holds; namely

S ¼ 2π

ffiffiffiffiffiffi
cΔ
6

r
þ 2π

ffiffiffiffiffiffi
cΔ̄
6

s
; ð71Þ
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this exactly matches (65) and (68). A generalization of this
calculation for the case of stationary black holes
(Δ − Δ̄ ≠ 0) is also doable, but the expressions in that
case are much more cumbersome and we prefer to omit the
details.

V. CONCLUSIONS

In this paper we have generalized results of
Refs. [2,9,10,21,22,35,39] to the case of arbitrary order
n in the curvature tensor. More precisely, we have con-
structed higher-derivative gravity theories in three dimen-
sions that, on the one hand, (a) admit simple holographic c-
theorems and, on the other hand, (b) exhibit a unique
maximally symmetric vacuum. For such theories, we have
proven a series of interesting properties, the most salient
ones being (i) the decoupling of ghost gravitational modes
about AdS space, (ii) the enhanced of gauge symmetry at
linearized level, (iii)the presence of slow-decaying mode in
AdS, (iv) the existence of hairy black holes of nonconstant

curvature that generalize BTZ solution (v) whose thermo-
dynamics can be rederived from the holographic perspec-
tive. The latter is remarkable as it corresponds to a
holographic description of black hole microstates for
nonsupersymmetric solutions of nonconstant curvature in
higher-derivative theories of arbitrary order in the
curvature.
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