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We investigate the implications of decoherence induced by quantum spacetime properties on neutrino
oscillation phenomena. We develop a general formalism where the evolution of neutrinos is governed by a
Lindblad-type equation and we compute the oscillation damping factor for various models that have been
proposed in the literature. Furthermore, we discuss the sensitivity to these effects of different types of
neutrino oscillation experiments, encompassing astrophysical, atmospheric, solar, and reactor neutrino
experiments. By using neutrino oscillation data from long-baseline reactors and atmospheric neutrino
observations, we establish stringent constraints on the energy scale governing the strength of the decohe-
rence induced by stochastic metric fluctuations, amounting to, respectively, EQG ≥ 2.6 × 1034 GeV and
EQG ≥ 2.5 × 1055 GeV.
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I. INTRODUCTION

Propagation in a quantum spacetime can affect the
pattern of neutrino oscillations. Specifically, this may be
ascribed to deformations of the neutrino dispersion rela-
tion [1], minimal length and generalized uncertainty
principle scenarios [2,3], CPT violations [4–6], Lorentz
invariance violations [7,8], or generalized quantum
mechanical evolution equations leading to decoherence
mechanisms and collapse models [9–11]. Some of these
models cause deviations from the standard neutrino oscil-
lation pattern, while others [4,7,8] imply a damping of the
total neutrino fluxes (the two possibilities are discussed and
compared in [12]).
In this work, we investigate how neutrino oscillations are

affected by fundamental decoherence, a generic feature
emerging in quantum gravity research [13–19]. To account
for decoherence, the usual Schrödinger equation describing
propagation of neutrino wave packets is replaced by a
general Lindblad equation [20]. We fully develop the
relevant formalism and show that a Lindblad-type evolution
introduces an exponential damping factor into the oscil-
lation probability that quenches the oscillations, without
altering the neutrino fluxes. The functional dependence of

the damping factor on the neutrino energy characterizing
different neutrino experiments and on neutrino masses
depends on the specific decoherence model. We compute
it explicitly for a number of quantum spacetime-induced
decoherence mechanisms originating from different
sources: noncommutative spacetime [13], stochastic fluc-
tuations of a minimal length [14], stochastic fluctuations of
metric perturbations around Minkowski spacetime [15],
and the interaction with a thermal background of gravi-
tons [21]. We discuss the relevance of the resulting
oscillation damping for measurements exploiting reactor,
solar, atmospheric, and astrophysical neutrinos.
Because the experiment baseline generally enters lin-

early in the oscillation damping factor, one could naively
assume that long-baseline experiments might provide
stronger constraints on the effect. However, for very long
baselines, neutrino wave packets decohere already in the
standard oscillation scenario because of the different
propagation velocities of the mass eigenstates. Therefore,
oscillations are washed out and flavor eigenstates decohere
into mass eigenstates [22–25], thus rendering the funda-
mental decoherence effect irrelevant.
We find that the most sensitive probes for fundamental

decoherence are reactor and atmospheric neutrinos. Their
sensitivity to decoherence depends on the dependence of
the effect on the neutrino energy and masses. Among the
models we considered, we find that the only one that can be
significantly constrained using these observations is the one
where decoherence is induced by metric fluctuations [15].
For this model, we establish stringent constraints on
the quantum gravity scale governing the strength of the
effect. Even though this is the only model that can be
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meaningfully constrained using neutrino oscillations, for
completeness we discuss the dependence on the relevant
experimental parameters of all the models we considered,
to show in detail why neutrino oscillations do not offer a
good phenomenological window for them.
The plan of the paper is as follows. In Sec. II we review

the standard derivation of neutrino oscillation probability
in vacuo, including a discussion on standard decoherence
effects. In Sec. III we show how to adapt the standard
formalism to account for fundamental decoherence and
derive the general transition probability. We specialize our
computations to several decoherence models, computing
explicitly the resulting oscillation damping factors in a two-
flavor setting. In Sec. IV we discuss the sensitivity to
fundamental decoherence of different classes of neutrino
oscillation experiments, including astrophysical, atmos-
pheric, solar, and reactor neutrinos, showing that only
atmospheric and reactor neutrino experiments are poten-
tially relevant. We derive the neutrino energy range that
would make the various decoherence models relevant for
these kind of observations. Finally, we establish constraints
on decoherence induced by stochastic metric fluctuations
by using long-baseline reactor neutrino data from the
KamLAND experiment and atmospheric neutrino data
from the Super-Kamiokande experiment.

II. NEUTRINO OSCILLATION IN
THE STANDARD SCENARIO

Neutrino oscillations are commonly described within the
plane wave approximation [23], which requires specific
assumptions concerning the conditions at production
(equal energy, equal momenta, equal velocity, or energy-
momentum conservation). This is reasonable in the stan-
dard neutrino oscillation picture, and all of the possible
assumptions produce the correct oscillation probability.
However, it is not suited for decoherence analyses, since
typically the decoherence terms in the evolution break the
equivalence of the assumptions, resulting in ambiguous
results. For this reason, in the following, we describe
neutrino evolution within the wave packet formalism.
We start by briefly reviewing the derivation in the stan-
dard scenario following [23], and then generalize the
analysis by introducing decoherence effects. We remark
that a fully consistent treatment of neutrino oscillations
should require a relativistic quantum field theory frame-
work. However, the correct (standard) oscillation proba-
bility can also be derived with a first quantization approach,
see, e.g., [23]. It is then conceivable to discuss possible
decoherence effects affecting the standard oscillation pat-
terns within the same framework, as extensively done in the
literature [1,3–6,9,25–28].
The wave packet corresponding to a generic neutrino

flavor state jνγi can be written as a superposition of mass
state wave packets jψ ii ⊗ jνii as

jνγi ¼
X
i

U�
γijψ ii ⊗ jνii ¼

X
i

U�
γi

Z
d3pψ iðpÞjpi ⊗ jνii;

ð1Þ

where U is the neutrino mixing matrix and jpi are momen-
tum eigenstates. If the neutrino state is described by a
density operator ρðtÞ at time t, such that ρð0Þ ¼ jνβihνβj,
the transition probability from the initial flavor state β to a
different flavor state α within time t is given by

Pðβ → α; tÞ ¼ TrfρðtÞjναihναjg: ð2Þ

Taking into account the time evolution of the density matrix

ρðtÞ ¼ e−iHt
�jνβihνβj�

¼
X
i;j

U�
βiUβj

Z
d3pd3qψ iðpÞψ�

jðqÞe−i½EiðpÞ−EjðqÞ�t

× jpihqj ⊗ jνiihνjj ð3Þ

and decomposing the flavor states as in (1),

jναihναj ¼
X
k;l

U�
αkUαljϕkihϕlj ⊗ jνkihνlj; ð4Þ

the transition probability at time t reads

Pðβ → α; tÞ ¼
X
i;j

U�
βiUβjU�

αjUαi

Z
d3pd3qψ iðpÞψ�

j

× ðqÞϕjðqÞϕ�
i ðpÞe−i½EiðpÞ−EjðqÞ�t; ð5Þ

where we used the relation

Tr
��jpihqj ⊗ jνiihνjj

��jϕkihϕlj ⊗ jνkihνlj
��

¼ ϕkðqÞϕ�
l ðpÞδkjδli: ð6Þ

Note that the plane wave description can be recovered from
(5) by setting ϕiðpÞ ¼ eip·x, ψ iðpÞ ¼ δð3Þðp − piÞ and per-
forming one of the standard space-to-time conversion
techniques [23].
Since in any neutrino oscillation experiment the propa-

gation distance is much larger that the wave packet size,
the problem is effectively one dimensional, and only the
component of momenta in the direction between the source
and the detector is relevant. If the wave packets of the
produced and detected neutrinos are peaked, respectively,
in x ¼ 0 and x ¼ L, the corresponding momentum dis-

tribution functions are ψ iðpÞ ¼ fðSÞi ðp − piÞ and ϕiðpÞ ¼
fðDÞ
i ðp − p0

iÞe−ipL. Assuming that the momentum distri-
bution functions are sharply peaked around the mean
momenta pi (at emission) and p0

i (at detection), one can
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expand the energies Ei;jðpÞ about the mean momenta at
first order,

Ei;jðpÞ ≃ Ei;jðpi;jÞ þ ðp − pi;jÞvgi;j ; ð7Þ

where vgi;j ¼ pi;j=Ei;jðpi;jÞ is the group velocity of the
wave packet. Then the transition probability (5) reads

Pðβ → α; tÞ ¼
X
i;j

U�
βiUβjU�

αjUαie−iΔEijtþiΔpijL

×
Z

dpdqfðSÞi ðpÞfðSÞj
�ðqÞ · fðDÞ

j ðqþ δjÞ

× e−iqLfðDÞ
i

�ðpþ δiÞeipLe−i½pvgi−qvgj �t; ð8Þ

where we further shifted the integration variables p−pi→p
and q − pj → q and introduced the notation δi ¼ pi − p0

i,
ΔEij ¼ EiðpiÞ − EjðpjÞ and Δpij ¼ pi − pj.
Because the emission and arrival times of neutrinos are

not measured in typical oscillation experiments, the tran-
sition probability (8) is averaged over time [23] and a
normalization factor is introduced so that the probability is
normalized,

P
α;β Pðβ → αÞ ¼ 1,

Pðβ → αÞ ¼ N
X
i;j

U�
βiUβjU�

αjUαieiΔpijL

Z
dt

×
Z

dpdqfðSÞi ðpÞfðSÞj
�ðqÞ · fðDÞ

j ðqþ δjÞfðDÞ
i

�

× ðpþ δiÞeiðp−qÞLe−i½pvgi−qvgjþΔEij�t; ð9Þ

where N is the normalization factor. Integration over the
time variable results in a δðpvgi − qvgj þ ΔEijÞ. This is
simply enforcing an equal-energy condition on the wave
packet components, δðEiðpÞ − EjðqÞÞ. This condition
arises because only the equal-energy components are not
washed out by the rapidly oscillating factor in the integra-
tion. Therefore, the integration over time can be replaced by
enforcing the equal-energy condition on the wave packet
components. This produces equivalent results as to the time
integration when no decoherence is in place (the complete
proof can be found in [23] and will also be discussed
in [29]), and it is the only one that gives well-defined results
once decoherence processes are accounted for, as we show
in the following section.
Calling rij ¼ vgi=vgj , one finally obtains

Pðβ→αÞ¼
X
i;j

U�
βiUβjU�

αjUαieiϕij
N
vgj

Z
dpfðSÞi ðpÞfðSÞj

�

× ðrijpþΔEij=vgjÞ ·fðDÞ
j ðrijpþΔEij=vgj þδjÞ

×fðDÞ
i

�ðpþδiÞeipð1−rijÞL; ð10Þ

where

ϕij ≔
�
Δpij −

ΔEij

vgj

	
L ≃

�
Δpij −

ΔEij

vgij

	
L ð11Þ

is the phase factor and the last approximation, in which
vgij ≔ ðvgi þ vgjÞ=2, can be performed because the differ-

ence between vgi and vgij is of order Δm2
ij and ΔEik is

already of order Δm2
ij. For relativistic or quasidegenerate

neutrinos, the momentum difference can be expanded
in terms of the energy difference and the mass diffe-
rence Δm2

ij,

Δpij ≃
ΔEij

vgij
−
Δm2

ij

2pij
; ð12Þ

where pij is the average momentum. This yields the
standard phase

ϕij ¼ −L
Δm2

ij

2pij
: ð13Þ

In general, the last phase factor in Eq. (10) can be rapidly
oscillating, and this would produce a loss of coherence for
the neutrino wave packets.1 However, in several exper-
imental setups of interest, this effect is negligible. This is
the case when two conditions are met.
The “propagation coherence condition” ensures that the

distance L traveled by the neutrinos is smaller than the
distance over which the wave packets corresponding to
different mass eigenstates separate because of the differ-
ence in their group velocities. This condition is satisfied if

L ≪ lcoh ¼ σX
vgij
Δvgij

; ð14Þ

where σX ¼ maxfσSx; σDx g is the maximum wave packet
spatial width between the source (S) and the detector (D),
and Δvgij ¼jvgi − vgj j.
The “interaction coherence condition,” related to the

coherence properties in the neutrino production and detec-
tion processes [23], ensures that the two momentum
distributions overlap in the domain of the integral. This
condition reads

ΔEij
σX
vgij

≪ 1: ð15Þ

When conditions (14) and (15) are satisfied, one can set
rij ¼ 1 in the integral (10) and neglect the term ΔEij inside

1For other possible causes of decoherence, see the discus-
sion in [30].
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the arguments of the distribution function. This leads to the
standard neutrino oscillation formula typically derived
within the plane wave assumption,

Pðβ → αÞ ¼
X
i;j

U�
βiUβjU�

αjUαieiϕij ; ð16Þ

with ϕij given by (13).

III. FUNDAMENTAL DECOHERENCE
IN NEUTRINO OSCILLATION

Fundamental decoherence causes a nonunitary evolution
of the neutrino wave packet. This can be described by
generalizing the Hamiltonian evolution via a Lindblad
equation [20],

∂tρ ¼ L½ρ�; ð17Þ

where the evolution operator is L½ρ� ¼ −i½H; ρ� þP
kðLkρL

†
k −

1
2
fL†

kLkρgÞ and Lk are the Lindblad oper-
ators that depend on the specific decoherence mechanism,
as we discuss later in this section. Then e−iHt in (3) is
replaced by etL, yielding the density operator evolution

ρðtÞ ¼ etL


jνβihνβj

�
¼

X
i;j

U�
βiUβj

Z
d3pd3qψ iðpÞψ�

jðqÞ

× etL
�jpihqj ⊗ jνiihνjj

�
¼

X
i;j

U�
βiUβj

Z
d3pd3qψ iðpÞψ�

jðqÞe−i½EiðpÞ−EjðqÞ�t

× e−tLijðp;qÞjpihqj ⊗ jνiihνjj; ð18Þ

where in the last line the Lindblad operators are taken to
commute with the momentum operator, an assumption that
is consistent with the specific decoherence models we
consider in this work, and Lijðp; qÞ is a model-dependent
positive function of p and q resulting from the action of the
Lindblad operators Lk on the jpihqj eigenstates. Restricting
to the one-dimensional approximation and following sim-
ilar steps as in the previous section, we obtain an expression
similar to (9), with an additional damping exponential in
the integral

PQGðβ → α; tÞ ¼ N
X
i;j

U�
βiUβjU�

αjUαieiΔpijL

×
Z

dpdqfðSÞi ðpÞfðSÞj
�ðqÞ · fðDÞ

j ðqþ δjÞ

× eiðp−qÞLfðDÞ
i

�ðpþ δiÞe−i½pvgi−qvgjþΔEij�t

× e−tLijðpþpi;qþpjÞ; ð19Þ

where PQGðβ → α; tÞ denotes the deformed probability.
Averaging over time would produce a divergent probability,

since Lijðp; qÞ ≥ 0 ∀ p; q. This can be traced back to the
fact that averaging over time in the presence of decoherence
is inherently an ill-defined procedure, since decoherence
processes break the time symmetry of quantum mechanical
laws. The time interval � −∞; 0½ corresponds to an non-
physical “recoherence,” which is the cause of the divergent
probability. We therefore directly enforce the equal-energy
condition on wave packet components, as discussed in the
previous section. Further substituting the remaining time
variable in the damping factor with L

vgij
, the transition

probability over a propagation distance L reads

PQGðβ → α;LÞ ¼ N
X
i;j

U�
βiUβjU�

αjUαieiϕij
2π

vgj

×
Z

dpfðSÞi ðpÞfðSÞj
�ðrijpþ ΔEij=vgjÞ

· fðDÞ
j ðrijpþ ΔEij=vgj þ δjÞ

× fðDÞ
i

�ðpþ δiÞeipð1−rijÞL

× e−Dijðpþpi;rijpþpj−v−1gj ΔEijÞ; ð20Þ

where Dijðp; qÞ ≔ v−1gij LLijðp; qÞ is the decoherence-
induced damping factor. If the coherence conditions dis-
cussed at the end of the previous section are satisfied, the
normalized transition probability reads

PQGðβ → α;LÞ ¼
X
i;j

U�
βiUβjU�

αjUαieiϕije−Dijðpi;pjÞ: ð21Þ

This general formula applies to any decoherence model
described by Lindblad-type evolution, provided that the
Lindblad operators commute with the momentum operator.
The effect of decoherence is to introduce a damping factor
in the transition probability, such that when the decohe-
rence effect is dominant no oscillation pattern in the
neutrino propagation is observed. In Sec. III B we special-
ize this formula to different models of quantum gravity-
induced fundamental decoherence.

A. Two-flavor analysis

Most neutrino oscillation experiments are sensitive to the
oscillation between two neutrino flavors, depending on
their sensitivity to different mass squared differences. In the
two-flavor case, the matrix U in (21) is parametrized in
terms of the mixing angle θ as

U ¼
�

cos θ sin θ

− sin θ cos θ

	
; ð22Þ

and the oscillation phase (13) reduces to ϕ ¼ −L Δm2

2p , with

Δm2 the mass squared difference and p the average
momentum. Then the standard transition probability (16)
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takes the well-known form

Pstdðα → βÞ ¼ sin2 2θ sin2
ϕ

2
ð23Þ

and the transition probability accounting for fundamental
decoherence (21) reduces to

PQGðα → βÞ ¼ sin22θ



1

2

�
1 − e−D

�þ e−Dsin2
ϕ

2

�

¼ e−DPstdðα → βÞ þ 1

2

�
1 − e−D

�
sin22θ;

ð24Þ

with D ¼ v−1g LLðpi; pjÞ, where vg ¼ p
E ¼ pffiffiffiffiffiffiffiffiffiffiffi

p2þm2
p is the

average group velocity of the two mass eigenstates,m is the
average mass, pi, pj are the mean momenta of such states,
and p is the average momentum.
For the analysis reported in the following sections, it is

useful to consider the survival probability

PQGðα → αÞ≡ 1 − PQGðα → βÞ
¼ e−DPstdðα → αÞ þ �

1 − e−D
�

×

�
1 −

1

2
sin22θ

	
; ð25Þ

where

Pstdðα→ αÞ ¼ 1−Pstdðα→ βÞ ¼ 1− sin2 2θ sin2
ϕ

2
: ð26Þ

This is consistent with the result reported in [27], where,
however, different possible forms for the damping factor
were considered with respect to this work.

B. Damping factor for different decoherence models

In this section, we specialize the general formulas (20)
and (25), which account for the effects of a Lindblad-type
evolution on neutrino oscillations, to a number of decohe-
rence mechanisms that find support in quantum gravity
research. Specific decoherence models can be distinguished
according to the functional dependence of the damping
factor on the neutrino energies and masses. In the follow-
ing, we focus on four models, whose properties are sum-
marized in Table I, in which fundamental decoherence is
induced by different possible features of quantum space-
time: noncommutative spacetime [13], stochastic fluctua-
tions of a minimal length [14], stochastic fluctuations of the
metric around Minkowski spacetime [15], and the inter-
action with a thermal background of gravitons [21].
Starting from the Lindblad operators characterizing the

evolution of quantum systems in each of these models, the
damping factor Dijðp; qÞ appearing in the oscillation

probability (20) and the resulting oscillation probability
(21) can be computed as described in the previous section.
Notice that, while in the original papers defining the various
models decoherence is assumed to be suppressed by the
Planck scale EP, in the following we replace this with a
generic quantum gravity scale EQG, to be constrained by
observations.
Decoherence induced by noncommutative spacetime [13]

leads to the transition probability

Pðβ → αÞ ¼
X
i;j

U�
βiUβjU�

αjUαieiϕije
− L
8vgij EQGp2

ij

�
Δm2

ij

�
2

: ð27Þ

In the two-flavor approximation, the damping factor reads

D ¼ L
8vgEQGp2

ðΔm2Þ2: ð28Þ

Decoherence induced by stochastic fluctuations of the
metric [15] results in the transition probability

Pðβ → αÞ ¼
X
i;j

U�
βiUβjU�

αjUαieiϕije
−

LE6
ij
ðΔm2

ij
Þ2

4vgij
EQGm4

i
m4
j : ð29Þ

Then the two-flavor damping factor is

D ¼ LE6ðΔm2Þ2
4vgEQGm4

i m
4
j
: ð30Þ

Depending on whether we consider the quasidegenerate
mass eigenstates m1 and m2 or the mass eigenstates m1 (or
m2) andm3, we can write the product of the masses in terms
of the average mass or the mass squared difference. If the
two mass eigenstates of interest are m1 and m2, as happens
to be the case for reactor neutrinos, we have mimj ∼m2, m
being the average mass. If the mass eigenstates of interest
are m1 (or m2) and m3, as happens to be the case for
atmospheric neutrinos, then mimj ¼ mmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

min þ Δm2
p

,
mmin being the minimum mass between the two mass
eigenstates.
The decoherence process induced by a fluctuating

minimal length [14] gives the transition probability

Pðβ → αÞ ¼
X
i;j

U�
βiUβjU�

αjUαieiϕije
− 16L

vgij E
5
QG

E4
ijðΔmijÞ2

; ð31Þ

and the damping factor in the two-flavor approximation

D ¼ 16L
vgE5

QG

E4ðΔmÞ2: ð32Þ

Depending on whether we consider the quasidegenerate
mass eigenstates or not, we can approximate the mass
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difference squared with the squared mass difference or
write the former in terms of the latter. For the quasidegen-
erate mass eigenstates, we have ðΔmÞ2 ∼ Δm2. For the
nondegenerate mass eigenstates, we have instead
ðΔmÞ2 ¼ �

−mmin þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

min þ Δm2
p �

2.
A thermal background of gravitons [21] yields the

exponential factor

exp



−t

kBT
2E2

QG

�
EiðpÞ − EjðqÞ

�
2

�
ð33Þ

in the evolved density operator (18). Therefore, this model
predicts no contribution to the probability after the equal-
energy condition is imposed and has no observable effect
on neutrino oscillations. Therefore, neutrino oscillations
cannot provide a phenomenological test ground for this
model. We summarize the results described above in
Table I. We note that, among the models we consider,
the only one that can be recast in terms of the phenom-
enological models analyzed in [26] is the first one in
Table I. Specifically, the third model in Table I, which turns
out to be the most interesting one for our purposes, is not
included in the analysis of [26].

IV. EXPERIMENTAL CONSTRAINTS
ON FUNDAMENTAL DECOHERENCE

Different neutrino oscillation experiments, involving
astrophysical, atmospheric, solar, or reactor neutrinos, span
a wide range of propagation lengths and energy. In this
section, we start by discussing the potential sensitivity to
decoherence of these classes of neutrino oscillation experi-
ments. This depends on the specific model of fundamental
decoherence that is considered, since the damping factors
that are derived from each model have different depend-
encies on the neutrino energies and masses. We show that
only the decoherence induced by metric perturbations [15]
may affect neutrino oscillations to an observable level,
assuming that the decoherence effect is suppressed by the
Planck energy scale, and we use atmospheric and reactor
experiments to establish constraints on the model.

A. Sensitivity of different neutrino oscillation
experiments to fundamental decoherence

Before considering the sensitivity of neutrino oscillation
experiments to specific fundamental decoherence models,
two general considerations are in order.
The standard neutrino oscillation patterns, governed by

the phase factor ϕ of (13), depend on the ratio E
L: when

E
L ∼ Δm2 oscillations are visible, while E

L ≪ Δm2 is the fast
oscillation regime, where it is only possible to measure
the averaged probability. In this fast oscillation regime,
the standard survival probability for a two-flavor oscilla-
tion (23) reads

hPstdðα → αÞi ¼ 1 −
1

2
sin22θ: ð34Þ

When accounting for decoherence, the average over the
oscillations in (25) gives the same result as in the standard
case

hPQGðα → αÞi ¼ hPstdðα → αÞi ¼ 1 −
1

2
sin22θ; ð35Þ

thus Lindblad-type decoherence has no observable effects
in this regime. This is the regime characterizing solar
neutrino oscillations, which are therefore not relevant for
these kinds of decoherence studies.
Because the damping factor in the oscillation probability

Dij depends linearly on the propagation length L (see
Table I), one would naively expect that the best setup for
testing fundamental decoherence is provided by astrophysi-
cal neutrino observations, for which L is the largest.
However, in this regime the fundamental decoherence
mechanism competes with the standard decoherence that
is induced by the difference in propagation velocities of
different neutrino mass eigenstates, discussed in Sec. II.
For illustrative purposes, we discuss this by focusing
on the model in [13], for which the damping factor is
Dijðp; qÞ ¼ L

2vgijEQG
ðp − qÞ2, but similar arguments hold

for any Lindblad-type decoherence that leads to the

TABLE I. Lindblad operators and damping factors for different quantum gravity-induced decoherence models.
Pj is the jth component of the momentum operator, EQG is the quantum gravity scale, kB is the Boltzmann constant,
m is the mass, and H is the free Hamiltonian. The Lindblad operator for the model [15] is computed within a
relativistic version of the model, see the Appendix.

Model Physical source of decoherence Lindblad operators Damping factors

(A) Deformation of symmetries [13] Lj ¼ 1ffiffiffiffiffiffiffi
EQG

p Pj D ¼ LðΔm2Þ2
8vgEQGp2

(B) Metric perturbations [15] L ¼ P2

2m
ffiffiffiffiffiffiffi
EQG

p D ¼ LE6ðΔm2Þ2
4vgEQGm4

i m
4
j

(C) Fluctuating minimal length [14] L ¼ 4
ffiffi
2

p
mffiffiffiffiffiffiffi

E5
QG

p H2 D ¼ 16LE4ðΔmÞ2
vgE5

QG

(D) Gravitons at temperature T [21]
L ¼

ffiffiffiffiffiffi
kBT

p
EQG

H
D ¼ 0
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oscillation probability (20). We also consider a simple
case in which the shape factors are Gaussian distributions
with the same variance at the source and the detector for
all the mass eigenstates, with δi ¼ δj ¼ 0 and ΔEij ¼ 0.
Specifically, we set

fðSÞi ðpÞ ∝ e
− p2

2σ2p ; ð36Þ
where the normalization is unimportant since it is absorbed
in the factor N in (20). With these choices, and approxi-
mating vgj with vgij , Eq. (20) yields

Pðβ → αÞ ¼ N 2π
ffiffiffiffiffiffi
2π

p X
i;j

8>>>>>><
>>>>>>:
U�

βiUβjU�
αjUαie

iϕij

h
1−

Lð1−rijÞ2σ2p
2EQGð1þr2

ij
ÞvgijþLð1−rijÞ2σ2p

i
·

e

−
L2ð1−rijÞ2vgij σ2pþ

2ð1þr2
ij
Þϕ2

ij
LEQG

4ð1þr2
ij
Þvgijþ

2Lð1−rijÞ2σ2p
EQGffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vgij

�
2
�
1þ r2ij

�
vgij þ

Lð1−rijÞ2σ2p
EQG

	s

9>>>>>>=
>>>>>>;
: ð37Þ

The exponential damping factor in (37) takes two con-
tributions: one, which vanishes when EQG → ∞, is due to
the Lindblad deformation of the evolution equation; the
other one, proportional to ð1 − rijÞ2, is due to the velocity
difference between mass eigenstates. Even though the
velocity difference is rather small, and its effect can be
partially controlled by decreasing σp through suitable
detection techniques [25], the decoherence it induces is
strong enough to wash out oscillations over propagation
length scales typical of astrophysical neutrinos. Therefore,
the effects of quantum gravity-induced decoherence are not
observable.
For atmospheric and reactor neutrinos the standard de-

coherence effect we just discussed is negligible. Moreover,
the full oscillation pattern is visible and not averaged out, as
is instead the case for solar neutrinos. Therefore, in the
following we focus on these kinds of neutrino observations
to study fundamental decoherence.
We start by computing, for each of the models in Table I,

the theoretical ranges for neutrino energies that would
produce significant decoherence effects in oscillations
when using the mass and length parameters typical of
reactor and atmospheric neutrino experiments and assum-
ing EQG ¼ EP ∼ 1019 GeV. For simplicity, we work in a
two-flavor setup and we require that the corresponding
damping factor satisfies the condition D≳ 1, which
ensures that the decoherence effect is large enough to

affect the oscillation pattern [9]. We then compare these
energy ranges with the realistic energies characterizing
reactor and atmospheric neutrinos, in order to identify the
models that can be effectively constrained with these kinds
of observations.
For long-baseline reactor experiments, we take as

reference propagation distance L ∼ 105 m and we set
Δm2 ∼ ðΔmÞ2 ∼ 10−5 eV2 [31], since such experiments
are sensitive to the mass squared difference between the
quasidegenerate mass eigenstates m1 and m2. The damping
factors of the various decoherence models also depend on
the neutrino mass value, for which we take two possible
reference values,m ∼ 10−2eV andm ∼ 1 eV, the maximum
value allowed by cosmological data [32]. Once these
parameters are fixed, the requirement D≳ 1 identifies a
range in neutrino momentum p for each decoherence
model. These are listed in Table II. Considering that the
typical energy of reactor neutrinos, such as those detected
by the KamLAND experiment [31], is in the range
[1, 10] MeV [31], only decoherence induced by stochastic
metric fluctuations [15] might be constrained significantly
using these kinds of data.
A similar analysis can be applied to atmospheric neutrino

oscillation experiments, that are sensitive to the mass
squared difference between eigenstatesm1;2 andm3, so that
Δm2 ∼ 10−3 eV2 [33]. We assess the sensitivity of these
experiments considering again two possible values of the

TABLE II. Observability windows for the decoherence models listed in Table I using reactor neutrino
experiments, for different values of the neutrino mass. Details of the computations are provided in the main
text. Note that when two ranges are shown for p, this comes from solving the quadratic equation that comes from the
condition D ≳ 1.

Model Observability window for m ¼ 10−2 eV Observability window for m ¼ 1 eV

(A) p≲ 10−8 eV p≲ 10−8 eV
(B) p≲ 10−22 eV or p≳ 100 eV p≲ 10−23 eV or p≳ 104 eV
(C) p ≲ 10−147 GeV or p≳ 1024 GeV p≲ 10−143 GeV or p≳ 1024 GeV
(D) � � � � � �
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lowest-mass eigenstate, mmin ∼ 10−2eV and mmin ∼ 1 eV.
Atmospheric neutrinos can propagate over a wide range of
distances, spanning several orders of magnitude, from
10 km to 104 km [33]. For the scope of estimating the
sensitivity of this kind of observation, we take the mini-
mum and the maximum possible values. The observability
windows are reported in Tables III and IV, respectively.
Again, we see that only decoherence induced by stochastic
metric fluctuations [15] might be constrained significantly
using atmospheric neutrino oscillation data.
Summarizing the results of this subsection, solar and

astrophysical neutrinos cannot be used to test Lindblad-
type decoherence. Reactor and atmospheric neutrino
experiments can, in principle, be used to this aim. How-
ever, not all models predict a level of decoherence that
might be detected by these experiments, if the energy scale
governing the strength of decoherence is set to the Planck
scale. Among the four models we considered, only the one
where decoherence is induced by metric fluctuations can be
meaningfully constrained using these experiments. In the
following subsections we derive the constraints on the
energy scale associated with this model.
Before we conclude this section, we would like to

comment on the concerns expressed in [28], where the
possibility to test quantum gravity-induced decoherence
with neutrino oscillation experiments was questioned. The
quantum gravity model considered in [28] (see also [27])
had a similar form as the one of [14] (since the Lindblad
operator depends on the energy). And, indeed, we find that
the damping factor associated with this model is heavily
suppressed, in accordance with the estimates provided
in [28]. For other models, such as the one in [15], similar
arguments as those used in [28] do not lead to such a large

suppression of the damping factor and, in fact, lead to
estimates of the damping factor consistent with those we
report in Table I.

B. Constraints from long-baseline reactor neutrinos

We base our analysis on the data used by the KamLAND
Collaboration for precision measurements of neutrino
oscillation parameters concerning the mass eigenstates
m1 and m2 [31]. Within this two-flavor approximation,
the survival probability accounting for Lindblad-type de-
coherence is (25), and the damping factor D for decohe-
rence induced by metric fluctuations [15] is given by (30).2

As can be seen in Fig. 1, neutrino oscillations in the
KamLAND experiment are damped with respect to the
pattern of a neutrino beam traveling in vacuo and with a
fixed baseline. This is expected, since several reactors are
involved in the experiment, placed at different distances
from the detectors, and the neutrino beam travels through
matter. Including these effects would require a more refined
analysis and a full knowledge of the KamLAND experi-
ment. However, such a detailed modeling goes beyond the
scope of this work, since it is not needed when the goal is to
provide a conservative bound on quantum gravity-induced
decoherence. To this aim, in fact, it is sufficient to ask
that decoherence is not as strong as to dampen oscillations
on its own more than what the known damping effects do.
Indeed, if this was not the case, the damping stemming
from quantum-spacetime effects, combined with this stan-
dard damping, would completely quench the oscillations.

TABLE III. Observability windows for the decoherence models listed in Table I using atmospheric neutrino
experiments, for different values of the neutrino mass L ¼ 10 km. Details of the computations are provided in the
main text.

Model Observability window for mmin ¼ 10−2 eV Observability window for mmin ¼ 1 eV

(A) p≲ 10−8 eV p≲ 10−7 eV
(B) p≲ 10−19 eV or p≳ 102 eV p≲ 10−20 eV or p≳ 103 eV
(C) p≲ 10−145 GeV or p≳ 1023 GeV p≲ 10−141 GeV or p≳ 1024 GeV
(D) � � � � � �

TABLE IV. Observability windows for the decoherence models listed in Table I using atmospheric neutrino
experiments, for different values of the neutrino mass and L ¼ 104 km. Details of the computations are provided in
the main text.

Model Observability window for mmin ¼ 10−2 eV Observability window for mmin ¼ 1 eV

(A) p≲ 10−7 eV p≲ 10−6 eV
(B) p≲ 10−16 eV or p≳ 10 eV p≲ 10−18 eV or p≳ 103 eV
(C) p≲ 10−142 GeV or p≳ 1022 GeV p≲ 10−138 GeV or p≳ 1023 GeV
(D) � � � � � �

2Given the energies at play in this regime, the velocity factor
is vg ≃ 1.
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In Fig. 1 we also plot the survival probability (25),
computed taking into account the appropriate values for
experimental parameters as detailed in the figure caption.
The only free parameter is the quantum gravity scale EQG,
and to produce the plot we fixed it to a reference value
EQG ¼ 1024 GeV for illustrative purposes. We can see that
decoherence effects are stronger at higher energies (lower
values of L

E), while at lower energies the deformed survival
probability approaches the standard one in vacuo. There-
fore, the most sensitive regime to test decoherence is the
one corresponding to the first oscillation period, so we use
data points in the range L

E ∈ ½10; 45� kmMeV−1 to provide
a constraint on the model, see Fig. 2. This restriction is
justified by the fact that, if the quantum spacetime-induced
damping had observable effects in the remaining part of the
L
E interval, it would also have a much stronger effect on the
oscillation pattern in the considered L

E interval, thus being
incompatible with the data in that regime.
Our constraint is derived by asking that the difference

between the χ2 obtained by fitting the deformed probability
(25), with D given by (30), to KamLAND data and the χ2

corresponding to KamLAND best fit line is not larger than
2.7, corresponding to a 90% confidence level for a differ-
ence of 1 in the counting of degrees of freedom for the two
fits. In the expression for the damping factor (30), we set
the oscillation parameters to be the values reported by the
Particle Data Group (PDG) in [34]. We also set L ¼
180 km as done in the original oscillation analysis by
the KamLAND Collaboration [31]. Moreover, since the
constraint on the quantum gravity scale is stronger for

smaller neutrino masses [see (30)], a conservative bound is
found by setting m ¼ 1 eV, namely,

EQG ≥ 2.6 × 1034 GeV: ð38Þ

C. Constraints from atmospheric neutrinos

We use the data collected by the Super-Kamiokande
Collaboration and reported in [33]. The relevant LE range is
½1; 104� kmGeV−1, so that the observed oscillation pattern
is sensitive to the parameters relative to the mass eigen-
states m1 and m3. As can be seen in Fig. 3, the fast oscilla-
tion regime starts for LE ≳ 103 kmGeV−1. In this regime, the
data only probe the average oscillations and the averaged
quantum gravity-deformed survival probability converges
to the standard one, see (35). For this reason, we limit our
analysis to data in the range L

E ∈ ½1; 103� kmGeV−1, where
the oscillation pattern is visible and decoherence produces
observable effects, see Fig. 4. We compare the χ2 obtained
by fitting the data with the deformed probability (25), with
D given by (30),3 and the χ2 corresponding to the standard
oscillation pattern with oscillation parameters taken from
the PDG [34]. We require that the difference between the
two χ2 is less than 2.7, corresponding to a 90% confidence
level for the 1 degree of freedom difference between the
two models. A conservative constraint is found by setting

FIG. 1. We plot the standard survival probability (red dot-dashed curve) in vacuo, given by (26), the quantum gravity-deformed
probability with damping factor (30) (blue solid line), the data points from KamLAND experiment [31] (black dots with error bars), and
the KamLAND best fit for such data (orange dashed curve). The oscillation parameters are set to the PDG values in [34] sin2 2θ ¼ 0.85
and Δm2 ¼ 7.53 × 10−5 eV2. The damping factor (30) is computed by setting L ¼ 180 km, EQG ¼ 1034 GeV, and m ¼ 1 eV.

3Given the energies at play in this regime, the velocity factor
is vg ≃ 1.
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mmin ¼ 1 eV in (30), since the constraint on the quantum
gravity scale would be stronger with smaller values of the
mass. Moreover, each data point in Fig. 4 results from
oscillation over a distance that spans several orders of

magnitude, roughly from L ¼ 10 km to L ¼ 104 km.
Because the constraint on the quantum gravity scale is
stronger for higher travel distances [see (30)], we take a
conservative approach again and set L ¼ 10 km in our

FIG. 2. We plot the quantum gravity-deformed probability with damping factor (30) (blue solid line) with the value of EQG ¼
2.6 × 1034 GeV corresponding to the upper limit we set as described in the main text, the data points from KamLAND experiment [31]
in the range L

E ∈ ½10; 45� kmMeV−1 (black dots with error bars), and the KamLAND best fit for the full dataset reported in Fig. 1 (orange
dashed curve). The oscillation parameters and the other decoherence parameter are the same as for Fig. 1.

FIG. 3. We plot the standard oscillation probability (solid orange curve), the quantum gravity-deformed probability (dotted blue curve)
with damping factor (30), withmmin ¼ 1 eV, L ¼ 10 km, and EQG ¼ 1049 GeV, chosen for illustrative purposes, and the data collected
in [33]. The values of the oscillation parameters used for the plot are those reported in the PDG [34], Δm2

23 ¼ 2.45 × 10−3 eV2 and
sin2 2θ23 ¼ 0.99. The L

E axis is in logarithmic scale.
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analysis. With this, we find

EQG ≥ 2.5 × 1055 GeV: ð39Þ

V. CONCLUSIONS

We showed that fundamental decoherence, originating
from quantum properties of spacetime, can alter the pattern
of oscillation of neutrinos, causing the emergence of a
damping factor in the neutrino transition probability. This
might be significant, in principle, for long-baseline-reactor
neutrino experiments and for atmospheric neutrino obser-
vations. These are general results concerning all quantum
spacetime-induced decoherence models that can be
described in terms of a Lindblad-type equation for the
evolution of neutrinos. However, whether a specific model
affects observations to a detectable level depends on the
specific decoherence-inducing mechanism. These predict
different forms of the damping factor, characterized by the
dependence on the neutrino energy and mass. Among
the models we considered, we found that only the one
where decoherence is induced by stochastic metric fluctu-
ations [15] can be significantly constrained using reactor
and atmospheric neutrinos. With these, we set conservative
constraints on the scale governing the strength of the
decoherence process that are several orders of magnitude
stronger than the Planck scale, EQG ≥ 2.6 × 1034 and
EQG ≥ 2.5 × 1055 GeV from the KamLAND reactor neu-
trino experiment and the Super-Kamiokande atmospheric
neutrino observatory, respectively. These constraints would

require the scale governing the model to be unrealistically
large, so that the hypothesis that the decoherence induced
by stochastic metric perturbations affects neutrino oscil-
lations can be considered to be ruled out.

ACKNOWLEDGMENTS

We acknowledge financial support by the program
STAR Plus, funded by Federico II University and
Compagnia di San Paolo, and by the MIUR, PRIN 2017
Grant No. 20179ZF5KS. This work contributes to the
European Union COST Action CA18108 “Quantum grav-
ity phenomenology in the multimessenger approach.”

APPENDIX: RELATIVISTIC MODEL WITH
STOCHASTIC METRIC FLUCTUATIONS

To study the effects of decoherence induced by stochas-
tic metric perturbations on neutrino oscillations, in this
appendix we derive a stochastic Schrödinger equation
resulting from the metric fluctuations defined in [15],
adapted to a relativistic regime.
Consider a particle evolving freely in a spacetime with

stochastic perturbations. Denoting by τ the proper time of
the particle and with t the laboratory time, the Schrödinger
equation in the laboratory time reads [35]

iℏ
d
dt
jψi ¼ τ̇Hjψi; ðA1Þ

where H is the Hamiltonian with respect to the proper
time τ and

FIG. 4. We plot the standard oscillation probability (solid orange curve), the quantum gravity-deformed probability (blue solid curve)
with damping factor (30), with EQG ¼ 2.5 × 1055 GeV, corresponding to our upper limit (39), and the data collected in [33] in the range
L
E ∈ ½1; 103� kmGeV−1. The values of the oscillation parameters and the other decoherence parameters are the same as in Fig. 1.
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τ̇ ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμν

dxμ

dt
dxν

dt

r
: ðA2Þ

Writing the metric as gμν ¼ ημν þ hμν, with jhμνj ≪ jημνj
being a (time-dependent) stochastic perturbation, we get

τ̇ ¼ γ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

hμνpμpν

m2c2

r
∼ γ−1

�
1 −

hμνpμpν

2m2c2

	
; ðA3Þ

where γ is the Lorentz factor and the last expansion comes
from ημνpμpν ¼ −m2c2 and jhμνj ≪ jημνj. By calling
H0 ¼ γ−1H the free Hamiltonian in the laboratory frame

and Hs ¼ − hμνpμpν

2m2c2 H0 the stochastic correction, we get a
stochastic Schrödinger equation

iℏ
d
dt
jψi ¼ ðH0 þHsÞjψi: ðA4Þ

By following the same techniques in [14] (namely, by
means of a cumulant expansion [36]) and assuming
the following form for the correlator of the stochastic
fluctuations [15]

hhijðtÞhmnðt0Þi ¼ τcδijδmnδðt − t0Þ; ðA5Þ

with all the other correlators being 0 and with τc being the
characteristic time scale of the perturbations, we get the
Lindblad equation

∂tρ ¼ −
i
ℏ
½H0; ρ� −

τc
ℏ2



p2

2m2c2
H0;



p2

2m2c2
H0; ρ

��
: ðA6Þ

By restoring natural units (ℏ ¼ c ¼ 1) and by setting the
scale of the fluctuations to be the quantum gravity scale
τc ¼ E−1

QG, we see that the Lindblad operator defining this
equation is given by

L ¼ p2

2m2

H0ffiffiffiffiffiffiffiffiffi
EQG

p ; ðA7Þ

which leads to a damping factor

Dij ¼
LE6

ij

�
Δm2

ij

�
2

4vgijEQGm4
i m

4
j
: ðA8Þ
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