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We consider the D3-D7 model and use the spectral function of a probe fermion on D7 to analyze the first
order phase transition from the black-hole embedding phase to another black-hole embedding phase in the
presence of the finite density and temperature. From the fermionic spectral functions, we study the
temperature dependence of the decay rate, and we observe various phenomena that support the first order
phase transition including jump in it at the critical temperature that corresponds to the first order phase
transition.
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I. INTRODUCTION

Shortly after the AdS/CFT correspondence [1–3] was
established, the method has been applied to investigate
quantum chromodynamics (QCD) and condensed matter
physics of strongly correlated systems widely. One of the
benefits of the holographic method is that it allows us to
study strongly coupled quantum many-particle systems
easily even for the system with finite temperature and finite
density effects.
The D3-D7 model [4] is one of the top-down models that

has been used widely for such a purpose. The background
Schwarzschild-AdS5 × S5 spacetime generated from the
D3-branes and the probe D7-brane play roles of the thermal
reservoir and charged particle system, respectively. The
solutions and behavior of the probe brane in the black-hole
spacetime, i.e., finite-temperature cases, were studied by
Refs. [5–8]. The system has intricate dependence on the
parameters exhibiting the phase transitions. One of the
solutions, that the probe brane falls into the black-hole
horizon, called black-hole embedding, is interpreted as a
deconfinement phase of the quarks or metallic phase of
the electrons. The authors of Refs. [5,6] found that there
are two different phases of the brane embeddings where the
D7-brane touches the black-hole horizon, and, as the

density increases, there is a jump in the position of the
horizon touching point. The brane in a phase named the
BH-I phase bends sharper than the brane in another phase
named the BH-II phase. The difference of these phases
should have a physical interpretation from the viewpoint
of the boundary field theory. Since the black-hole touching
configurations should be related to the metallic phase, the
phase transition should be related to the metal-to-metal
phase transition. Therefore, we can expect that certain phase
transition in spectrum or transport property. However, the
details of the physical meaning of the two phases has been
completely obscure.
Although the spectral functions of bosonic fluctuations

in this model were studied in Refs. [9–12], the fermionic
spectral functions are a more interesting quantity, because
they can be directly measured by angle-resolved photo-
emission spectroscopy experiments. In this work, therefore,
we consider a probe fermion field living on the D7 model
and compute the fermionic spectral function. The fermion
spectral functions for the bottom-up model were already
studied extensively [13–19]. However, the fermion spectral
function in fundamental representation with the D3-D7
model has not been studied much. Since we want the
fermion to provide the matter density, the natural candidate
of the fermionic field in the D7-brane is the fermionic
degree of freedom coming from the D3-D7 string [20]
rather than the mesino [21–25].
In this study, we consider a toy model with a fermionic

field ψ to utilize the D7’s induced metric. One should
notice that the brane configuration is coming from the D7-
brane and, therefore, common to all the fluctuations of it.
Our fermionic field is coupled to the bulk U(1) gauge fields
as in the bottom-up models, e.g., [13,14]. For a given
embedding, we obtain the fermionic spectral functions by
solving the Dirac equation. Because we consider the system
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in the black-hole geometry, the Fermi surface is always
smeared. We can locate the smeared Fermi surface by the
pole or singularity position of the spectral function, and the
density of state has a Drude-like peak at zero frequency
with a finite width. We study the behavior of the decay
width of the fermion for various temperatures. The width
exhibits a universal behavior of holographic models at high
enough temperature. In a specific range of the parameters, it
has a jump in the temperature associated with the first order
phase transition of the background D3-D7 system. We
believe that this is universal for all other brane models.
From the fermionic spectral functions, we study the

temperature dependence of the decay rate, and we observe a
jump in it at the critical temperature that corresponds to the
first order phase transition. We found that the jump in the
decay rate mimics that in the resistivity data in a recent
heavy fermion material. If the material were weakly
interacting, this would be natural, but it is unclear why
this similarity holds in the strongly interacting case, and
understanding this is left as an future work.
This paper is organized as follows. We present a review

of the D3-D7 model with finite density in Sec. II. In
Sec. III, we consider a toy model of the fermionic field
probing the background D3-D7-brane system, and we
study the spectral functions of the dual operator. We also
study the width of the spectral functions and its temperature
dependence, and we compare it with the resistivity data. We
discuss and conclude in Sec. IV.

II. A REVIEW: D3-D7 MODEL
WITH FINITE DENSITY

A. Background solutions

We briefly review the D3-D7 model [4] with finite
baryon density and temperature following [5,6], where the
authors showed phase transitions from a black-hole phase
to another black-hole phase. The action of the D7 probe
brane is given by the following Dirac-Born-Infeld action:

SDBI½X; A� ¼ −τ7
Z

d8ξ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det½hab þ ð2πα0ÞFab�

p
; ð1Þ

where τ7 is the tension of the D7-brane and hab is the
induced metric given by

hab ¼
∂XM

∂ξa
∂XN

∂ξb
gMN: ð2Þ

ξa and XM are the coordinates of world volume and ten-
dimensional bulk, respectively. gMN is the metric of the
background ten-dimensional spacetime. We set the back-
ground spacetime to Schwarzschild-AdS5 × S5 spacetime.
In isotropic coordinates, the metric can be written as

ds2 ¼ w2

L2

�
−
f1ðwÞ2
f2ðwÞ

dt2 þ f2ðwÞdx⃗2
�

þ L2

w2
ðdρ2 þ ρ2dΩ3

2 þ dw5
2 þ dw6

2Þ; ð3Þ

where f1ðwÞ ¼ 1 − w4
h=w

4, f2ðwÞ ¼ 1þ w4
h=w

4,
w2 ¼ ρ2 þ w2

5 þ w2
6, and dΩ3

2 is the line element of the
unit three-sphere.1 The Hawking temperature T is related
to the location of the horizon wh by wh ¼ πT=

ffiffiffi
2

p
. For

convenience, we use the following metric:

ds2 ¼ L2

u2

�
−
fðuÞ2
f̃ðuÞ dt

2 þ f̃ðuÞdx2
�
þ L2

du2

u2

þ L2ðdθ2 þ sin2θdφ2 þ cos2θdΩ3
2Þ; ð4Þ

where fðuÞ ¼ 1 − u4=u4h and f̃ðuÞ ¼ 1þ u4=u4h. u and w
are related by u ¼ 1=w. w5, w6, and ρ are related to θ, φ,
and u by

w5 ¼ u−1 sin θ cosφ; w6 ¼ u−1 sin θ sinφ;

ρ ¼ u−1 cos θ; ð5Þ

respectively. The other nonzero supergravity field is a
Ramond-Ramond five-form flux

Fð5Þ ¼ −
4

L4u5
fðuÞf̃ðuÞdt ∧ dx ∧ dy ∧ dz ∧ dw

þ 4L4volðS5Þ; ð6Þ

where volðS5Þ is the volume form of the unit five-sphere.
It satisfies the self-dual constraint in the type IIB super-
gravity: �Fð5Þ ¼ Fð5Þ.
We choose the world volume coordinates as ξa ¼

ðt; x⃗; u;Ω3Þ; then the transverse directions are θ and φ.
Since φ can be set to zero by virtue of a symmetry, θðuÞ
describes an embedding of the probe brane. The induced
metric is given by

habdξadξb ¼
1

u2

�
−
fðuÞ2
f̃ðuÞ dt

2 þ f̃ðuÞdx2
�

þ
�
1

u2
þ θ0ðuÞ2

�
du2 þ cos2θdΩ3

2: ð7Þ

We set L ¼ 1 for simplicity. Fab is the field strength of the
world volume U(1) gauge fields Aa. We consider an ansatz
for the gauge fields as Aadξa ¼ AtðuÞdt so the nonzero
components of the field strength are only Ftu and Fut.
Writing SDBI ¼

R
L, the Lagrangian density is given by

1The radial coordinate w can be written as w2 ¼ P
6
i¼1 wi

2 and
ρ2 ¼ P

4
i¼1 wi

2. The coordinate w is related to the Schwarzschild
coordinate r by w2 ¼ r2

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − r4h

p
.
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L ¼ −N cos3 θh3=2xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhttjhuu − A0

tðuÞ2
q

; ð8Þ

where N ¼ τ7ð2π2Þ. A constant of motion d for At is
given by

d ¼ 1

N
∂L

∂A0
tðuÞ

: ð9Þ

d is related to the charge density in the boundary theory.
Solving the equation of motion, we can write

A0
tðuÞ ¼ −dufðuÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2θ0ðuÞ2

f̃ðuÞðd2u6 þ f̃ðuÞ3cos6θðuÞÞ

s
: ð10Þ

A chemical potential μ is obtained by

μ ¼
Z

0

uh

A0
tðuÞdu ¼ Atð0Þ − AtðuhÞ: ð11Þ

We have set AtðuhÞ ¼ 0.
We perform the Legendre transformation to eliminate

A0
tðuÞ from the Lagrangian density (8):

L̃≡ L − A0
tðuÞ

∂L
∂A0

tðuÞ
¼ −N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhttjhuuðd2 þ h3xxcos6θÞ

q
:

ð12Þ
The Euler-Lagrange equation of L̃ gives us the equation of
motion for θðuÞ:

∂

∂u

"
−

ffiffiffiffiffiffiffiffiffiffiffi
jhttjΞ
huu

s
θ0ðuÞ

#
− 3cos5θ sin θh3xx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhttjhuu

Ξ

r
¼ 0;

Ξ≡ d2 þ h3xxcos6θ: ð13Þ

We can solve the equation of motion from u ¼ uh with a
regular condition.2 For regular solutions, θ0ðuhÞ ¼ 0 must
be satisfied at u ¼ uh. The family of solutions is para-
metrized by θðuhÞ and d. The range of θðuhÞ is
0 ≤ θðuhÞ < π=2. θðuÞ has an asymptotic expansion of

θðuÞ ¼ mquþ θ2u2 þ � � � ; ð14Þ
at u ¼ 0. mq and θ2 are related to the quark mass and the
quark condensate in the boundary theory, respectively.

FIG. 1. Top: relation between the density and chemical potential for various temperatures. Bottom: brane embeddings corresponding
to I and II in the top panel.

2In the case of T ¼ 0, the analytic solutions for the embedding
function and the gauge field are found in Ref. [26].
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[See Eq. (A4).] In the isotropic coordinates, mq is the
separation distance between the probe D7-brane and the
D3-branes at the AdS boundary: w5ðu ¼ 0Þ ¼ mq.
Since the system has a scaling symmetry, we should

consider only scale invariants. By taking mq as a scale, we
define scale invariant temperature, chemical potential, and
density by

T̃ ≡ T
mq

; μ̃≡ μ

mq
; d̃≡ d

m3
q
; ð15Þ

respectively. We also define scaled isotropic coordinates by
w̃5 ¼ w5=mq, w̃6 ¼ w6=mq, and ρ̃ ¼ ρ=mq for fixed mq.
By definition, w̃5ðu ¼ 0Þ is always one.
By solving Eq. (13), we obtain relation between d̃ and μ̃

for several T̃, as we show in the top panel in Fig. 1. The
results agree with those obtained in Ref. [6]. In the range
of 0.34341 < T̃ < 0.34468, μ̃ becomes a multivalued
function of d̃, and, hence, there are multiple solutions
for given d̃ at T̃. In the bottom panel in Fig. 1, we show the
corresponding embeddings labeled by I and II at d̃ ¼
0.002 and T̃ ¼ 0.34385.3 We refer to the upper solution
and the lower solution in the bottom panel in Fig. 1 as BH-
I and II embedding, respectively. The first order phase
transition occurs in such a case. The transition points are
determined from the free energy or the Maxwell con-
struction as we discuss in the Appendix. At T̃ ¼ 0.34341,
the system has the second order phase transition when
d̃ ¼ 0.0039385. At a temperature out of the above range,
there is a crossover.
The phase structures are summarized as phase diagrams

in Fig. 2. The phase structure changes depending on

whether d̃ or μ̃ is treated as a controlling parameter, in
other words, considering a canonical ensemble or a grand
canonical ensemble, respectively. We show the first order
transition line as the black curve and the second order phase
transition line as the black dashed line. In the canonical
ensemble, the ranges of the phase transition are 0.34341 <
T̃ < 0.34468 and 0 < d̃ < d̃c ¼ 0.0039385. In this case,
the embeddings are always given by the BH embeddings,
but it is divided by the first order phase transition line in T̃
for d̃ < d̃c. We call the low- and high-temperature regime
in d̃ < d̃c as the BH-I and BH-II phase, respectively. The
BH-I and II embeddings shown in the bottom panel in
Fig. 1 belong to the BH-I and II phase, respectively. In the
grand canonical ensemble, there are brane solutions with-
out touching the black-hole horizon called Minkowski
embeddings. The Minkowski embeddings are realized with
vanishing density. We do not focus on such solutions in
this study.

III. PROBING BY A FERMIONIC FIELD

In this section, we consider dynamics of a spinor field
probing the background D7-brane’s world volume. Our
fermion is coming from the string connecting D3-D7 rather
than the D7-D7, unlike the mesino. In the scaling limit
where D3’s disappear to be the AdS gravity, the string
connects D7 and horizon, and the low-energy physics of the
string becomes that of the Dirac fermion in fundamental
UðNfÞ representation on D7 world volume. Here, we set
Nf ¼ 1. This string as a fermion was also utilized in [20] to
argue that, in the presence of the finite density of the
fermion, only black-hole embedding (BHE) is allowed.
Here, our transition is from BHE to BHE. The Dirac
fermion in fundamental representation is charged and,
therefore, should contribute to the conductivity. As a first
step of the study of the fermionic spectral function in the

FIG. 2. Phase diagrams of the probe brane. Left: canonical ensemble; i.e., d̃ is a controlling parameter. The black line is the first order
phase transition line. The end point at d̃ ¼ d̃c ≈ 0.004 indicates the second order phase transition end point. For d̃ < d̃c, we call the low-
and high-temperature regime as the BH-I and BH-II phase, respectively. Right: grand canonical ensemble; i.e., μ̃ is a controlling
parameter. The black line is the first order phase transition line. The dashed line denotes the second order phase transition line.

3Since the solution at the middle point of the μ̃ − d̃ curve will
be unstable, we do not focus on it in this paper.
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D3-D7 model, we consider the fermion’s action governed
by the five-dimensional part of the induced metric (7)
ignoring the three-sphere part of induced metric to avoid
the technical complication. This should not change the
essential features, since the shape of the brane is already
encoded in the five-dimensional model, and extra factors of
cos θ in the measure should not change the qualitative
features of the theory.
We now consider the following simplified model:

Sspinor ¼ i
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det hμν

q
ψ̄ðγμDμ −mÞψ þ Sbou; ð16Þ

where hμν is the five-dimensional part of the induced
metric, that is,

hμνdxμdxν ¼
1

u2

�
−
fðuÞ2
f̃ðuÞ dt2 þ f̃ðuÞdx2

�

þ
�
1

u2
þ θ0ðuÞ2

�
du2: ð17Þ

Dμ ¼ ∇μ − iqAμ is a gauge covariant derivative, and Sbou is
the boundary action which will be specified later. Notice
that the covariant derivative is also defined with respect to
the five-dimensional metric hμν. Using the spin connection
with respect to hμν, it can be written as

∇μ ¼ ∂μ þ
1

8
ωμ

νρ½γν; γρ�; ð18Þ

where γμ denotes gamma matrices in the curved spacetime
and γμ are gamma matrices in the tangent space that will be

defined as follows: It can be written as γμ ¼ eμμγ
μ, where

eμμ is the inverse matrix of vielbein eμ
μ, which satisfies

eμ
μeννημν ¼ hμν, and γμ is the gamma matrices in the

tangent space. The gamma matrices in the five-dimensional
spacetime can be chosen as

γ0 ¼ σ1 ⊗ iσ2; γ1 ¼ σ1 ⊗ σ1; γ2 ¼ σ1 ⊗ σ3;

γ3 ¼ σ2 ⊗ I2; γu ¼ σ3 ⊗ I2; ð19Þ

where σ1, σ2, and σ3 are the Pauli matrices. Then, ψðxμÞ is
written as a four-components spinor field.
The equation of motion is the Dirac equation

ðγμDμ −mÞψðt; x⃗; uÞ ¼ 0: ð20Þ

Substituting the five-dimensional metric, we can write

γμDμ ¼ eνμγ
μð∂μ − iqAμÞ þ

1

4
euuγu∂u lnð− detðhμνÞhuuÞ:

ð21Þ

Considering the following transformation:

ψðxμÞ ¼ ð− detðhμνÞhuuÞ−1=4ϕðxμÞ; ð22Þ

we obtain the following equation:

½eνμγμ̄ð∂ν − iqAνÞ −m�ϕðxμÞ ¼ 0: ð23Þ

We decompose the four-component spinor field ψ as
follows:

ψðxμÞ ¼ ψþðt; x⃗; uÞ þ ψ−ðt; x⃗; uÞ; ð24Þ

where ψ� are projected by ψ� ¼ P�ψ with
P� ¼ ð1� γuÞ=2. According to Ref. [15], the asymptotic
behaviors of the spinors are written as

ψþ ¼ ψ ð0Þ
þ uΔ− þ ψ ð1Þ

þ u1þΔþ þ � � � ;
ψ− ¼ ψ ð0Þ

− uΔþ þ ψ ð1Þ
− u1þΔ− � � � ; ð25Þ

where Δ� ¼ 2�m. ψ ð0Þ
� and ψ ð1Þ

� are related to the
source and fermionic operator with the scaling dimen-
sion of Δþ, respectively. To obtain retarded responses,
we also impose the ingoing-wave boundary condition at
the black-hole horizon. In order to compute the Green’s
function, we need to fix the boundary action. We
employ

Sbdy ¼ lim
u→ε

i
2

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−hhuu

p
ψ̄ψ ; ð26Þ

where ε is a small positive cutoff ε and ψ̄þ ¼ ψ†γ0.4

This choice of the boundary term is known as the
standard quantization [27]. The retarded Green’s func-
tion is obtained by

GRðkÞ ¼ iSγ0 ¼ 2mþ 1

k2
ðγ · kÞT γ0; ð27Þ

where S and T are defined, respectively, by

ψ ð1Þ
− ¼ Sψ ð0Þ

þ ; ψ ð1Þ
þ ¼ T ψ ð0Þ

− : ð28Þ

The Green’s function has a scaling dimension of −2m.
We can also derive the flow equation for GRðk; uÞ from
the Dirac equation, as those in Ref. [19]. In the
following section, we compute the result by solving
the flow equation.
For later convenience, we define spectral function by

Aðω; jk⃗jÞ ¼ −ImtrGRðω; k⃗Þ: ð29Þ

4A similar boundary action was employed in [23] for the top-
down model.
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Since the system is isotropic, Aðω; kÞ depends only on
k≡ jk⃗j. We also define a scaled spectral function

Ãðω̃; k̃Þ ¼ m2m
q × Aðmqω̃; mqk̃Þ: ð30Þ

A. Spectral function

We show the spectral functions of the two embed-
dings with μ̃ ¼ 0.5 in Fig. 3. The left panel in Fig. 3
corresponds to a solution in the BH-I phase, and the
right panel in Fig. 3 corresponds to a solution in the
crossover region in Fig. 2. The spectral function of
the left panel in Fig. 3 is similar to those obtained in
Ref. [28]. In both cases, the Dirac points are shifted
by μ. It is also similar to the results of Refs. [13,28].
As T increases, the peaks of the spectral function are
smeared.
It is considered that the Fermi level is located at ω ¼ 0.

The intersection between the peaks and the horizontal axis
is considered as the Fermi surface, but it is smeared at finite
temperatures. In the following, we define the Fermi
momentum of the smeared Fermi surface and the width
of the Drude-like peak.

B. Smeared Fermi surface

At finite temperatures, the Fermi surface is smeared, so
we can no longer define sharp Fermi momentum kF.
However, we can still define an analog of kF from
the “pole” of the retarded Green’s function there.5 In
normal isotropic metals, kF satisfies EðkFÞ ¼ μ, where
EðkÞ denotes the dispersion relation. The spectral function
in the noninteracting theory should have a delta function
peak at the Fermi momentum, and the Green’s function has
a pole there.
At finite temperatures of our interacting theory, the

spectral function is smeared, and we assume that the pole
is located on the lower half complex ω plane with a finite
distance from the real axis so that the Green’s function has
the following structure:

FIG. 3. Top: spectral functions Ãðω̃; k̃Þ for two setups. We set m ¼ 0.2. Bottom: brane embeddings corresponding to the top panels,
respectively. The black circle shows the location of the black-hole horizon.

5Another possible definition of the smeared Fermi momentum
is using local maximum of the spectral function. It will be
expressed by

fk0Fg ¼ argk max Aðω ¼ 0; kÞ:
It determines only k0F. The width will be measured from the peak.
However, we do not use this definition of the smeared Fermi
surface in this study.
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trGRðω; kÞ ¼ ZΓ

ω − kþ k0F þ iΓ=2
þ � � � ; ð31Þ

where Γ is the width, i.e., the decay constant. ZΓ is a
constant residue. k0F is also a positive real constant
which can be understood as a center of smeared Fermi
momentum. Taking the inverse of trGR and evaluating it at
ðω; kFÞ ¼ ð−iΓ=2; k0FÞ, we obtain the equation

1

trGRðω ¼ −iΓ=2; k ¼ k0FÞ
¼ 0: ð32Þ

We can determine k0F and Γ by solving this complex-valued
equation. In the following, we will study the behavior of Γ
by using Eq. (32).

C. T dependence of the decay rate

From Eq. (32), we compute Γ for various temperatures.
We define the scaled width by Γ̃≡ Γ=mq. Figure 4 shows
the width Γ as functions of the temperature T for various

values of scaled density and chemical potential, d̃ and μ̃.
In both cases, we find that Γ is linear in T at high
temperatures. For sufficiently low density, the curves have
a small multivalued region around T ¼ 0.35mq corre-
sponding to the multivalued results shown in Fig. 1(a).
When T is taken to be sufficiently small, Γ depends on T as
Γ ≈ γe−α=T with a positive constant α near zero temper-
ature. These behaviors along the temperature may appear in
various holographic models; e.g., see Ref. [17].
Figure 4(c) shows an enlarged view of Fig. 4(a) around

the phase transition point for d̃ ¼ 0.001. The dotted
vertical dashed line shows the transition point at
T ¼ Tc ¼ 0.34440. In adiabatic measurements, it is antici-
pated that the results will exhibit a discontinuity between
points B and C, with the intermediate S-shaped branch
being omitted. We show the brane embeddings for the
points labeled by A–D in Fig. 4(d). The points A and B
belong to the BH-I phase, and C and D belong to the
BH-II phase.
In passing, we point out that our result in decay rate

showing the first order transition from a black-hole

(a) (b)

(c) (d)

FIG. 4. (a) Γ vs T for various densities. (b) Resistivity data in a heavy fermion material. Curiously, both (a) and (b) show the jump from
a linear T to another linear in T. In (c), the vertical dashed line denotes the Tc. The points labeled by A–D correspond to the embeddings
in the right panel, respectively. In (d), the gray circles denote the black-hole horizon at each temperature. The embeddings B and C have
a common temperature T̃ ¼ T̃c. (b) is from [29].
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embedding phase to another black-hole embedding phase
exhibits a qualitative similarity to the experimental meas-
urement of the resistivity in a Kondo compound [29,30],
some of which is captured in Fig. 4(b) showing the
experimental result of Ref. [29]. The Kondo compound also
exhibit a drop of the first order phase transition in the
resistivity, and the data certainly suggest that there is a first
order phase transition from a strangemetal to another strange
metal with different slope, although at the present time the
microscopic reason for such a transition is not known.
However, we need to make a caution. In weakly interacting
cases, comparing the resistivity and the decay rate is justified
by theDrude theory, but here there is no established reason to
do so. Therefore, understanding the similarity is left as a
futurework of the community. The presence of the first order
transition is common in the brane system and material
system, and there is a further similarities list below.
(1) The first is the specific heat whose data are in the

inset in Fig. 4(b). One sees that there is a sharp peak
at the position of the phase transition. It is well
consistent with our calculation, because from Figs. 5

(left) and 6 (left), the free energy has slope difference
around the phase transition point. Since the
specific heat is second derivative the free energy,
CV ¼ −T ∂

2F
∂T2, our free energy calculation shown in

the Appendix implies the delta function peak in CV

vs T. Notice that the figure is for F=T4 vs d=T3 with
fixed T=mq, so that the same first order nature
appears for fixed density with varying T. Such a
peak is the main feature of the data in the figure inset
in Fig. 4(b).

(2) We also find that the presence of the hysteresis at
zero magnetic field is also consistent with our
calculation presented in Fig. 4(c).

These indicate that the similarity of the brane embedding and
the dynamics of the heavy fermion is something we might
utilize in the future study. But we should not consider our
present theory as a serious explanation of the phenomena at
all. It is not the purpose of this paper but an observation of
similarity.
We have to make a few remarks: First, our model of

the probe fermion is a simplified model where the extra

FIG. 6. Left: grand potential vs chemical potential at T̃ ¼ 0.343737. The dotted line shows the first order phase transition point at
μ̃ ≈ 0.018. The red and blue curves show results in the BH and the Minkowski embedding, respectively. Right: d̃ vs μ̃. The vertical
dotted line shows the phase transition point.

FIG. 5. Left: free energy vs density at T̃ ¼ 0.343737. The dotted lines shows the first order phase transition point at d̃ ≈ 0.003. Right:
μ̃ vs d̃. The vertical dotted line shows the phase transition point.
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dimension of the three-sphere is neglected. The treatment
of the extra dimensions in the brane should be improved in
the future if one truly wants a top-down theory.

IV. DISCUSSIONS

In this paper, we study the fermionic spectral function in
the D3-D7 model by considering the toy model of the probe
spinor field. From the spectral function, we investigate the
behavior of the decay rate for varying temperature. Most of
the quantity we calculated shows a remnant of the first
order phase transition. We find that the decay rate also
shows the dropping behavior corresponding to the first
order phase transition between the BH-I and BH-II phases.
We also mentioned the similarity of the decay rate to the
transport data, although its ground is unclear to us from the
strongly coupled system point of view.
It may be partially related to the puzzle in the holog-

raphy: While the transport coefficients calculated with
holographic method are too sensitive to the details of the
background, those in the metallic phase of real condensed
matter with strong correlations are universal which exhibit
the linear in T resistivity. It may be useful to remind that the
fermion width is shown to be universal [19].
The first order phase transition is one of the characteristic

behaviors in the brane models. While the holographic
superconductors exhibit only the second order phase tran-
sition, the brane models often show the first order phase
transition. Our original motivation was to understand the
physical meaning of the first order phase transition between
the two black-hole phases using the probe fermion.
We expect that there is a common mechanism existing for

the first order transition between two dissipative phases in
both the D3-D7 model and those Kondo compounds. As far
as we know, the physical meaning of the low-temperature
phase and the first order phase transition is still not under-
stood in the material science point of view. It would be very
interesting if we can reveal the above point by further
investigation.
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APPENDIX: THE FREE ENERGY AND PHASE
TRANSITION POINTS

In this section, we discuss the free energy of the probe
brane and the phase transitions. The phase transition points

can be determined from the thermodynamics of the probe
brane. We interpret the on-shell action of Eq. (12) as a
Helmholtz free energy [6]:

F0ðdÞ ¼
Z

ϵ

uh

L̃ðdÞdu: ðA1Þ

Since this integral is still divergent, we have to regularize it.
According to [31], which is equivalent to the procedure in
[5,6], the counterterms are given by

L1 ¼
1

4
N

ffiffiffiffiffiffi
−γ

p
; L2 ¼ −

1

2
N

ffiffiffiffiffiffi
−γ

p
θðϵÞ2;

Lf ¼ N
5

12

ffiffiffiffiffiffi
−γ

p
θðϵÞ4; ðA2Þ

where γ is the induced metric at z ¼ ϵ near the AdS
boundary and

ffiffiffiffiffiffi−γp ¼ ϵ−4. Substituting θðuÞ ¼ θ0uþ
θ2u2 þ � � �, we obtain

L1 ¼
N
4

1

ϵ4
; L2 ¼ −N

�
1

2

θ20
ϵ2

þ θ0θ2

�
; Lf ¼ N

5

12
θ40:

ðA3Þ

The coefficients θ0 and θ2 are related to the quark mass mq

and the quark condensate c by

θ0 ¼ mq; θ2 ¼ cþ 1

6
m3

q; ðA4Þ

respectively. We write

Lct ¼ L1 þ L2 þ Lf

¼ N
�
1

4ϵ4
−
m2

q

2ϵ2
−mq

�
cþ 1

6
m3

q

�
þ 5

12
m4

q

�

¼ N
Z

ϵ

uh

�
−

1

u5
þm2

q

u3

�
duþN

�
1

4u4h
−

m2
q

2u2h

�

þN
�
m4

q

4
−mqc

�
: ðA5Þ

Then, the regularized free energy can be computed by

F ¼
Z

ϵ

uh

L̃duþ Lct ¼
Z

ϵ

uh

�
L̃þN

�
−

1

u5
þm2

q

u3

��
du

þN
�

1

4u4h
−

m2
q

2u2h
þm4

q

4
−mqc

�
: ðA6Þ

In the multivalued region, FðdÞ has swallowtail structure
as a function of d, as shown in Fig. 5. In such cases, the
intersection of the two branches of FðdÞ is considered as a
phase transition point.
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The free energy is a thermodynamic potential in the
canonical ensemble. In this case, d is treated as a control-
ling parameter. On the other hand, we can also consider the
grand canonical ensemble setup when we treat μ as a
controlling parameter. In the grand canonical ensemble, the
thermodynamic potential is given by the grand potential

ΩðμÞ ¼ F − μd: ðA7Þ

Figure 6 shows Ω=T4 as a function of μ̃ at T̃ ¼ 0.343737.
Note that there is the branch of the Minkowski embedding

with vanishing density but finite μ. Considering both the
Minkowski and BH embeddings, we can find swallowtail
structure inΩðμÞ. The intersection point of the swallowtail
in ΩðμÞ is the first order phase transition point. At low
temperatures, the multivalued region of d̃ as a function of
μ̃ disappears. Then, d̃ goes zero at finite μ̃ without the
multivaluedness. It means the second order phase tran-
sition from the BH embedding to the Minkowski
embedding.
The phase diagrams of the grand canonical and the

canonical ensemble setups are shown in Fig. 2.
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