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In this paper, we utilize the effective corrections of the μ̄ scheme in loop quantum black holes to obtain a
four-dimensional spherically symmetric metric with a cosmological constant. By imposing the areal gauge
on the components of Ashtekar variables in the classical theory and applying the holonomy corrections, we
derive the equations of motion, which can be solved to obtain the expression for the effective metric in the
Painlevé-Gullstrand coordinates. Compared to the classical de Sitter (anti–de Sitter) spacetime, the loop
quantum gravity (LQG) correction sets an upper bound on the cosmological constant as Λ < 3

γ2Δ. The

thermodynamic properties of black holes have also been calculated. We interestingly found that for a small
black hole, the temperature of the LQG black hole decreases as the mass decreases, which is quite different
with the classical scenario. Moreover, our result shows that a logarithmic term appeared as the leading order
correction to the Beikenstein-Hawking entropy. Furthermore, the LQG corrections also introduce an extra
phase transition in the black hole’s heat capacity at smaller radius.
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I. INTRODUCTION

The prediction of the singularity at the center of black
holes by classical general relativity (GR) has led to the
widespread belief that classical theory has limitations and
that quantum gravity effects need to be introduced to cure
this type of spacetime singularity. Pursuing a consistent
quantum gravity theory becomes one of the greatest
challenges since the twentieth century.
One approach to investigating how quantum gravity

affects the spacetime of black holes is to start with a specific
quantum gravity theory and determine its model corre-
sponding to spherically symmetric spacetime, and then
make physical predictions based on the model. Loop
quantum gravity (LQG) is currently one of the candidates
for a theory of quantum gravity. As a background inde-
pendent and nonperturbative theory, it has considerable
appeal in this regard (see, e.g., [1–4]). Since the late 1980s,
LQG based on Ashtekar variables has seen significant
development up to the present day. This includes natural
predictions for discrete geometrical spectrum [5–10] and
successful generalizations to metric fðRÞ theories, higher-
dimensional gravity and so on [11–13]. It preserves two
fundamental principles of general relativity: diffeomor-
phism invariance and background independence. The con-
struction of LQG adheres to mathematical rigor and
physical self-consistency. In situations where current exper-
imental conditions cannot be satisfied, it is necessary to

theoretically consider whether the classical limit of quan-
tum theory is correct.
The application of LQG to cosmology, known as loop

quantum cosmology (LQC), has been established as an
appropriate semiclassical state [14], and the expectation
values of the quantum operators in this state match well
with their corresponding classical values. It has also led to
the conclusion that the “big bounce” replaces the big bang,
successfully resolving the problem of the cosmological
singularity of the big bang [15–17]. LQC is the symmetry-
reduced model of LQG [18]. In the classical scenario,
before quantization, we can utilize the symmetries of
spatial homogeneity and isotropy to reduce the phase space
of gravitational degrees of freedom from infinite dimen-
sions to finite dimensions. Then, by using the methods and
techniques of LQG, it is able to proceed with its quantiza-
tion. For a detailed review of LQC, see, e.g., [19,20].
Due to the success of LQC in resolving classical cosmo-

logical puzzles, the attempt to apply this technique to black
holes to address the issue of black hole singularity is a very
intriguing idea. As the simplest black hole solution, the
Schwarzschild black hole then serves as an ideal arena to
implement these ideas. Note that the interior of
Schwarzschild black hole is isometric to the Kantowski-
Sachs model [17,21], thus allowing for the potential adap-
tation of techniques and ideas from LQC. Therefore, in the
past decade or so, the exploration of loop quantum black
hole models has been a popular direction [17,21–25].
Since the success of LQC is based on its unique μ̄

quantization scheme. It is therefore great interest to also*Contact author: scxdzhang@scut.edu.cn
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implement the μ̄ scheme in loop quantum black hole
models. In the quantum effective Hamiltonian constraint,
the holonomy correction is simplified by replacing the
components of the Ashtekar connection with quantum
corrections, which are controlled by the quantum regulari-
zation parameters due to the fundamental discreteness of
LQG. In the μ̄ scheme, the quantum parameters are chosen
as adaptive discreteness variables. However, the μ̄-scheme
encounters an issue of excessive quantum corrections at the
event horizon [26]. In the classical regime, excessive
quantum corrections are generally considered unaccept-
able. Moreover, in [27], the unimodular formulation of
general relativity is proposed to study the full quantum
dynamics of the LQC and the unimodular representation is
applied to the homogeneous black hole interior spacetime
such that we can test the various regularization schemes. It
is showed that in μ̄ scheme, the area of the 2-sphere is
smaller than the area gap in LQG, which violates the very
construction of the μ̄ scheme. Fortunately, recently, as
suggested by some authors [28], the reason of traditional μ̄
scheme cannot be implemented is simply because we
choose the wrong set of coordinates which becomes null
at the horizon. Hence they suggested to implement the μ̄
scheme in terms of another set of coordinates which will
not become null at the horizon. The use of everywhere
spacelike Painlevé-Gullstrand coordinates can be employed
for the μ̄ scheme and avoid the aforementioned problem,
leading to an effective framework for spherically symmetric
vacuum solutions with holonomy corrections from loop
quantum gravity [28].
On the other hand, up to now, most of the studies on

loop quantum black hole models are limited to the
Schwarzschild case. Note that our current Universe is
undergoing an accelerating expansion and leading to the
famous dark energy issue. The origin of dark energy
remains as one of the biggest challenges to modern physics.
Many possible mechanisms have been proposed to account
for this issue, such as the phenomenological models [29],
modified gravity [30–33], higher dimensions [34] and so
on. Among them, the cosmological constant is generally
believed as the most simplest explanation [33,35]. Though
people may argue that the observed cosmological constant
Λ ≈ 10−52 m−2 is so small and hence its effects can be
safely ignored. However, the existence of a cosmological
constant, regardless its value, will dramatically changed the
asymptotic structure of the spacetime [36]. In addition,
inspired by AdS/CFT correspondence, the black hole
solutions with a negative cosmological constant also
should be considered. Moreover, in Schwarzschild-AdS
(anti–de Sitter) case, we have more richer physics such as
Hawking-Page phase transition and the extended phase
space thermodynamics can be established. Hence, the
inclusion of a cosmological constant in a black hole
solution is important both in the practical and the theo-
retical sense.

Additionally, thermodynamic properties of black holes
have been studied for many years. Corresponding to the
standard laws of thermodynamics, black hole thermo-
dynamics also has four laws. Just like the standard laws
of thermodynamics, black hole thermodynamics also fol-
lows four fundamental laws [37]. The first law, for
example, establishes an energy conservation equation that
connects the entropy of a black hole to its mass, charge,
rotation, and other parameters [38]. As a thermodynamic
system, black holes can be assessed for their thermody-
namic stability. For instance, the Schwarzschild black hole,
has a negative heat capacity, indicating that it is thermo-
dynamically unstable. Also, it was discovered that the
spacetime of black holes can exhibits a rich phase structure
and critical phenomena (see, e.g., [39–41]), which are
entirely similar to those found in other known thermody-
namic systems. Within this context, if we aim to explore
whether black holes exhibit phase transition behavior
similar to that of a van der Waals fluid, we need to extend
the metric to include a cosmological constant. This is
because, in the extended phase space, the pressure is linked
to the cosmological constant, which is no longer treated as a
constant [39]. Therefore, to calculate the possible phase
transition behavior of black holes in LQG, we must extend
the effective metric to include a cosmological constant.
Therefore, in this paper, we will follow the line of [28] by
utilizing μ̄ scheme in Painlevé-Gullstrand coordinates to
study the loop quantization of Schwarzschild–de Sitter
(anti–de Sitter) black holes.
This paper will be organized as follows: We will start

from the classical Hamiltonian framework and, in Sec. II,
present the specific form of the metric using the compo-
nents of connection and densitized triad as dynamical
variables. In Sec. III, the LQG holonomy corrections are
employed and obtain corresponding metric solutions.
Additionally, a discussion of the physical properties of
the solutions is provided in Sec. IV. Having obtained the
effective metric with a cosmological constant, in Sec. V, we
investigate the phase transitions behavior of AdS black
holes in LQG. Finally, Sec. VI concludes the article with a
summary.
Our conventions are the following: spacetime indices are

denoted by μ; ν; ρ; σ;…; spatial indices are denoted by
a; b; c;…; and internal indices are denoted by i; j; k; :: We
only set c ¼ 1 but keep G and ℏ explicit.

II. CLASSICAL THEORY

The metric of a four-dimensional spherically symmetric
spacetime can be expressed in Painlevé-Gullstrand coor-
dinates as

ds2 ¼ −N2dt2 þ f2ðdxþ NxdtÞ2 þ y2dΩ2; ð1Þ

where the lapse N, shift vector Nx and f, y all are the
function of time t and the radial coordinate x, while dΩ,
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given by dΩ2 ¼ dθ2 þ sin2 θdϕ2, is the line element on the
unit sphere.
As the foundation of LQG, connection dynamics is a

theory based on the Hamiltonian formulation of GR,
described by Ashtekar-Barbero connections and their con-
jugate momentum in terms of triads. In loop quantum black
hole models, we also inherit this feature and use them as
basic variables. In this context, the basic variables are
consistent with [28], which, respectively, are the Ashtekar-
Barbero connection components given by cðxÞ, pðxÞ, and
the densitized triad components given by EcðxÞ, EpðxÞ. The
following represent the densitized triads in terms of metric
components [28]

Ex
1 ¼ y2 sin θ ¼ Ec sin θ; Eθ

2 ¼ fy sin θ ¼ Ep sin θ;

Eϕ
3 ¼ fy ¼ Ep: ð2Þ

Moreover, the Ashtekar-Barbero connection are written
as Ai

a ¼ Γi
a þ γKi

a, where both the spin-connection Γi
a

and the extrinsic curvature Ki
a only have three nonzero

components [28]

K1
x¼

c
γ
; K2

θ¼
p
γ
; K3

ϕ¼
psinθ
γ

;

Γ3
θ¼−

∂xEc

2Ep ; Γ1
ϕ¼−cosθ; Γ2

ϕ¼
∂xEc sinθ

2Ep ; ð3Þ

where γ is the Barbero-Immirzi parameter (a dimensionless
constant that labels various inequivalent kinematic quan-
tizations of LQG). The determinant of the spatial metric
is q ¼ EcðEp sin θÞ2.

A. Actions and constraints

The action of GR plus a cosmological constant reads

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ: ð4Þ

After performing canonical analysis, the gravitational
action becomes

S ¼
Z

dt
Z
Σ

�
Ȧi
aEa

i

8πGγ
− NHΛ − NaHa

�
; ð5Þ

where the dot means the derivative with respect to time t;
the Hamiltonian constraint HΛ and the diffeomorphism
constraints read, respectively, as

HΛ ¼ −
Ea
i E

b
j

16πGγ2
ffiffiffi
q

p ϵijkðFab
k − ð1þ γ2ÞΩab

kÞÞ −
ffiffiffi
q

p
N

8πG
Λ;

ð6Þ

Ha ¼
1

8πGγ
Eb
kFab

k: ð7Þ

Here the field strength is given by Fab
k ¼ 2∂½aAk

b� þ
ϵij

kAi
aA

j
b and the spatial curvature denotesΩab

k ¼ 2∂½aΓk
b� þ

ϵij
kΓi

aΓ
j
b. Due to the spherical symmetry, we can integrate

over dΩ and use Eq. (2), then obtain the following expression

S ¼
Z

dt
Z

dx

�
ċEc þ 2ṗEp

2Gγ
− NHΛ − NxHx

�
; ð8Þ

where the Hamiltonian constraint reads

HΛ ¼ −
1

2Gγ

�
2cp

ffiffiffiffiffiffi
Ec

p

γ
þ Ep

γ
ffiffiffiffiffiffi
Ec

p ðp2 þ γ2Þ − γð∂xEcÞ2
4Ep

ffiffiffiffiffiffi
Ec

p

− γ
ffiffiffiffiffiffi
Ec

p
∂x

�
∂xEc

Ep

�
− γ

ffiffiffiffiffiffi
Ec

p
EpΛ

�
; ð9Þ

and the diffeomorphism constraint is

Hx ¼
1

2Gγ
ð2Ep

∂xp − c∂xEcÞ: ð10Þ

Here straightforward calculations show only that Hx is
nonzero and Hθ;Hϕ both vanish. Moreover, from Eq. (8),
the symplectic structure of the symmetry-reduced black hole
models is given by

fcðx1Þ; Ecðx2Þg ¼ 2Gγδðx1 − x2Þ; ð11Þ

fpðx1Þ; Epðx2Þg ¼ Gγδðx1 − x2Þ; ð12Þ

with δ being the Dirac delta function. We now consider the
smeared constraint function C½N� ¼ R

dxNHΛ and
D½Nx� ¼ R

dxNxHx. Through lengthy but straightforward
calculations, the Poission brackets between constraints alge-
bra read

fC½N1�; C½N2�g ¼ D
�

Ec

ðEpÞ2 ðN1∂xN2 − N2∂xN1Þ
�
; ð13Þ

fD½Nx
1�;D½Nx

2�g ¼ D½ðNx
2∂xN

x
1 − Nx

1∂xN
x
2Þ�; ð14Þ

fC½N�;D½Nx�g ¼ −C½Nx
∂xN�: ð15Þ

As compared to the case without the cosmological
constant [28], the symplectic structure and the constraint
algebra have not changed. Using the Hamilton evolution
equations ẏ ¼ fy; C½N� þD½Nx�g, the equations of motion
for each component with respect to time are determined by

Ėc ¼ 2Np
γ

ffiffiffiffiffiffi
Ec

p
þ Nx

∂xEc; ð16Þ

Ėp ¼ N

γ
ffiffiffiffiffiffi
Ec

p ðcEc þ pEpÞ þ ∂xðNxEpÞ; ð17Þ
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ċ ¼ N

2γ
ffiffiffiffiffiffi
Ec

p
�
Ep

Ec ðp2 þ γ2Þ − 2cp

�
þ γ∂x

�
∂xðN

ffiffiffiffiffiffi
Ec

p Þ
Ep

�

þ Nγ

2
ffiffiffiffiffiffi
Ec

p
�
∂x

�
∂xEc

Ep

�
−
ð∂xEcÞ2
4EcEp

�
þ ∂xðNxcÞ

−
γ

2
∂x

�
N

∂xEc

Ep
ffiffiffiffiffiffi
Ec

p
�
þ NγEpΛ

2
ffiffiffiffiffiffi
Ec

p ; ð18Þ

ṗ ¼ −
N

2γ
ffiffiffiffiffiffi
Ec

p ðp2 þ γ2Þ − γ

2

�
Nffiffiffiffiffiffi
Ec

p
�
∂xEc

2Ep

�
2

− ∂xðN
ffiffiffiffiffiffi
Ec

p
Þ ∂xEc

ðEpÞ2 þ Nx
∂xc

�
þ Nγ

ffiffiffiffiffiffi
Ec

p
Λ

2
: ð19Þ

Once the lapse and shift vector are chosen, by solving the
above equations ofmotion and the diffeomorphismconstraint
together with the Hamiltonian constraint, one can obtain the
vacuum spherically symmetric metric with the cosmological
constant.

B. Classical solutions

Following the same approach in [28], we also adapt the
areal gauge for Ec as follows:

Ec ¼ x2: ð20Þ

Once the areal gauge is imposed, the diffeomorphism
constraint (10) then in turn implies

c ¼ Ep

x
∂xp: ð21Þ

The gauge-fixing condition ζ ¼ Ec − x2 is second class
with the diffeomorphism constraint Hx, which should be
preserved by the equations of motion. That is to say, ζ̇ ¼ 0.
Using the condition Ėc ¼ 0, we can obtain the expression

Nx ¼ −
Np
γ

; ð22Þ

which implies that Nx is no longer a Lagrange multiplier.
After choosing the areal gauge, Nx is determined by the
lapse function N. Through this process, the action can be
simplified and given by

SGF ¼
Z

dt
Z

dx

�
ṗEp

Gγ
− NHΛ

�
; ð23Þ

with

HΛ ¼ 1

2Gγ

�
3γx
Ep −

2γx2

ðEpÞ2 ∂xE
p −

Ep

γx
∂x½xðp2 þ γ2Þ�

�

þ xEp

2G
Λ: ð24Þ

Since the Ec is fixed by the areal gauge, the remaining
symplectic structure of the symmetry-reduced theory reads

fpðx1Þ; Epðx2Þg ¼ Gγδðx1 − x2Þ; ð25Þ

and similarly, the remaining constraint algebra is

fC½N1�; C½N2�g ¼ C

�
−
1

γ
ðN1∂xN2 − N2∂xN1Þp

�
;

¼ C½Nx
1∂xN2 − Nx

2∂xN1�; ð26Þ

where the second step utilizes Eq. (22), which corresponds
to the Painlevé-Gullstrand coordinates. The equations of
motion can also be simplified to

Ėp ¼ p
γx

ðNEp − x∂xðNEpÞÞ; ð27Þ

ṗ ¼ γNx
2ðEpÞ2 þ

γx2

ðEpÞ2 ∂xN −
N
2xγ

∂xðxp2 þ γ2xÞ þ γNx
2

Λ;

ð28Þ

which can be obtained by substituting areal gauge (20) and
the expression (22) into the equations of motion (17)
and (19). Now we set N ¼ 1, and take into account the
Hamiltonian constraint HΛ ¼ 0. Then, Ėp ¼ 0 and ṗ ¼ 0
can be solved to obtain

Ep ¼ C1x; ð29Þ

p2 ¼ γ2
�

1

C2
1

− 1

�
þ γ2x2Λ

3
þ C2

x
; ð30Þ

where C1 and C2 are two constants of integration.
Furthermore, these solutions (29) and (30) satisfy the
Hamiltonian constraint equation HΛ ¼ 0 identically.
From Eq. (2), it is worthy noting that both f and y can
be expressed in terms of Ec and Ep with

f2 ¼ ðEpÞ2
Ec ; ð31Þ

y2 ¼ Ec: ð32Þ

Using the Eqs. (22), (31), (32) and N ¼ 1, by inserting the
solutions (29) and (30) into the metric (1), we obtain

ds2 ¼ −
�
1 −

2GM
x

−
x2Λ
3

�
dt2

þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM
x

þ x2Λ
3

r
dxdtþ dx2 þ x2dΩ2; ð33Þ

where we can determine the integration constants C1 ¼ 1

and C2 ¼ 2GMγ2 by comparing with the standard
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Schwarzschild–de Sitter (anti–de Sitter) solution and M is
the mass of the black hole. Moreover, we can also confirm
that the square root of p is negative. Finally, the solutions to
the equations of motion are given by

Ep ¼ x; ð34Þ

p ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2GMγ2

x
þ γ2x2Λ

3

r
: ð35Þ

III. EFFECTIVE CORRECTION OF LQG

We adopt the standard LQC treatment for Schwarzschild
black holes, which requires to introduce holonomy correc-
tions. The holonomy of an SUð2Þ connection Ai

a is a path-
ordering exponential integral along an edge ea

hðAÞ ¼ P exp
Z
ei

dtAj
aτjea; ð36Þ

with P labeling path ordering. Although it is not yet fully
clear whether the LQG dynamics of a loop quantum
Schwarzschild black hole can also provide a good approxi-
mation for the full LQG dynamics of the Schwarzschild
black hole spacetime, the success of LQC has led people to
believe that the effective dynamics of the loop quantum
Schwarzschild black hole model can serve as a good
approximation for the semiclassical quantum dynamics
of observable objects with physical length scales much
larger than the Planck scale. As the basic operators in LQG
are the holonomies and triads, it is necessary to use the
holonomies instead of the Ashtekar-Barbero components in
the present paper. Note that we use the areal gauge
classically, the components c and Ec is fixed at the classical
level. Hence, we only need to replace Ashtekar connection
component p with the corresponding holonomy. In the
μ̄ scheme, this can be realized as p → 1

δb
sin ðδbpÞ with

δb ¼
ffiffiffiffi
Δ
Ec

q
[21]. In the resulting quantum effective

Hamiltonian constraints, the holonomy correction is sim-
plified by replacing the components of Ashtekar connec-
tion p with [28]

p →
xffiffiffiffi
Δ

p sin

� ffiffiffiffi
Δ

p

x
p

�
ð37Þ

after the areal gauge is imposed, where Δ is the smallest
nonzero eigenvalue of the area operator [1], satisfying the
equation Δ ¼ 4

ffiffiffi
3

p
πγl2

Pl, and lPl represents the Planck
length. The effective Hamiltonian can be constructed by
replacing all the instances of p in (24) with (37) and the
result is

HðLQGÞ
Λ ¼ −

1

2Gγ

�
Ep

γx
∂x

�
x3

Δ
sin2

ffiffiffiffi
Δ

p
p

x
þ γ2x

�

−
3γx
Ep þ 2γx2

ðEpÞ2 ∂xE
p − xγEpΛ

�
: ð38Þ

And we can obtain the Poisson brackets between CðLQGÞ

fCðLQGÞ½N1�;CðLQGÞ½N2�g

¼CðLQGÞ
�
−

x

γ
ffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
p

x
cos

ffiffiffiffi
Δ

p
p

x
ðN1∂xN2−N2∂xN1Þ

�
:

ð39Þ

Equation (22) also needs to be changed, and at the same
time, in order to give desired constraint algebra (39),
Eq. (22) has been modified to read as

Nx ¼ −
Nx

γ
ffiffiffiffi
Δ

p sin

ffiffiffiffi
Δ

p
p

x
cos

ffiffiffiffi
Δ

p
p

x
: ð40Þ

Finally just like the classical case, once the effective
Hamiltonian (38) is in hand, the modified equations of
motion can be obtained

Ėp ¼ −
x2

2γ
ffiffiffiffi
Δ

p ∂x

�
NEp

x

�
sin

ffiffiffiffi
Δ

p
p

x
cos

ffiffiffiffi
Δ

p
p

x
; ð41Þ

ṗ ¼ γNx
2ðEpÞ2

�
1þ 2x

∂xN
N

�
−
γN
2x

−
N

2γΔx
∂x

�
x3 sin2

ffiffiffiffi
Δ

p
p

x

�
þ xγNΛ

2
: ð42Þ

We now turn to solve these equations of motion in the
Painlevé-Gullstrand coordinates and set N ¼ 1. Taking into

account the Hamiltonian constraint HðLQGÞ
Λ , the complete

set of equations is as follows:

Ėp ¼ 0; ṗ ¼ 0;

N ¼ 1; HðLQGÞ
Λ ¼ 0: ð43Þ

Then by relating Ėp ¼ 0 and N ¼ 1, Eq. (41) implies three
possibilities:

1; ∂x

�
Ep

x

�
¼ 0; ð44Þ

2; sin

ffiffiffiffi
Δ

p
p

x
¼ 0; ð45Þ

3; cos

ffiffiffiffi
Δ

p
p

x
¼ 0: ð46Þ
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For the case 1 we assuming the term ∂xðEp

x Þ in Eq. (41)
vanishes, the solutions is

Ep ¼ C3x; ð47Þ

then, by using Eq. (43), we have

p¼ xffiffiffiffi
Δ

p arcsin

��
1

C2
3

−1

�
γ2Δ

1

x2
þC4

x3
þγ2ΔΛ

3

�
1=2

; ð48Þ

where C3 and C4 are constants of integration. It is not hard
to confirm that the solutions (47) and (48) satisfy the

Hamiltonian constraint HðLQGÞ
Λ ¼ 0. For cases 2 and 3, we

use the same logic of [28] and, after careful calculations, it
is determined that neither of them satisfies the Hamiltonian
constraint. Therefore, the solution has only one form.
Next, we need to determine the values of these integra-

tion constants C3 and C4. Noticing Eqs. (31), (32), (47),
and N ¼ 1, the metric (1) can now be written in the
following form

ds2 ¼ −ð1 − ðC3NxÞ2Þdt2 þ 2C2
3N

xdxdt

þ C2
3dx

2 þ x2dΩ2; ð49Þ

where we should note that the LQG correction terms are
present in Nx. Because we want the target metric to recover
the classical case (33) when the LQG corrections are
removed, it is easy to know that C2

3 ¼ 1 in this case.
Substituting p (48) into Nx (40), we obtain the desired
result

Nx ¼
�
x2Λ
3

þ C4

γ2Δx

�
1=2

�
1 −

γ2ΔΛ
3

−
C4

x3

�
1=2

; ð50Þ

taking into account that

cos

ffiffiffiffi
Δ

p
p

x
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2

ffiffiffiffi
Δ

p
p

x

s

for consistency with the classical case. When Δ → 0, Nx

should revert to the classical case [which can be given by
using Eqs. (22) and (35)]. Hence, we can ascertain that
C4 ¼ 2GMγ2Δ. Then, the resulting LQG-corrected metric
with the cosmological constant reads

ds2 ¼ −FðxÞdt2 þ 2Nxdxdtþ dx2 þ x2dΩ2; ð51Þ

with

FðxÞ ¼ 1 − ðNxÞ2; ð52Þ

Nx¼
�
x2Λ
3

þ2GM
x

�
1=2

�
1−

2GMγ2Δ
x3

−
γ2ΔΛ
3

�
1=2

: ð53Þ

From the above result, it can be easily verified that, as
Δ → 0, the classical Schwarzschild–de Sitter(anti–de
Sitter) solutions are recovered. Another point worth men-
tioning is that when Λ is set to zero, the metric (51) can be
restored to the case without cosmological constant as that
in [28], which further demonstrates the correctness of the
results of the present paper. Moreover, the quantum
corrected metric obtained in current paper is coincide with
the metric from the quantum Oppenheimer-Snyder collapse
model [42,43], which also add confidence on our model.

IV. PHYSICAL PROPERTIES OF THE EFFECTIVE
METRIC

A. Geodesic and effective range

As stated in [28,43], the metric corrected by LQG is only
valid for x > xmin. This is because, in the LQC, there is an
upper limit to the energy density of any matter field.
Therefore, in order to generate a gravitational field with
massM, the corresponding matter field cannot be infinitely
small but will have a radius corresponding to the maximum
energy density. Now we will search for the lower
bound xmin.
Investigating geodesics provides a direct method for

understanding the structure of spacetime, hence it is
advisable to begin with them. To simplify the analysis,
we will focus solely on radial geodesics that satisfy the
following equation:

−κ ¼ −FðxÞ
�
dt
dτ

�
2

þ 2Nx

�
dx
dτ

��
dt
dτ

�
þ
�
dx
dτ

�
2

; ð54Þ

where τ represents the geodesic parameter. When κ ¼ 1, it
corresponds to timelike geodesics, and τ represents proper
time. On the other hand, if κ ¼ 0, it refers to null geodesics,
and τ represents a chosen affine parameter. It is important to
note that in this case of a stationary spherically symmetric
spacetime, Tμ ¼ ð∂=∂tÞμ is a Killing vector. Setting the
tangent vector of the geodesic as ξμ ¼ ð∂=∂τÞμ, then Tμξμ is
constant along the geodesic, which we refer to as the
conserved energy written as

E ¼ Tμξμ ¼ −FðxÞ dt
dτ

þ Nx dx
dτ

: ð55Þ

For timelike geodesics (κ ¼ 1) and considering E ¼ 1, it
corresponds to a stationary particle starting its motion from
infinity. The geodesic equation (54) can be further sim-
plified as follows:

dx
dτ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − FðxÞ

p
; ð56Þ

where it can be observed that xmin is at dx=dτ ¼ 0 and the
solution is
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xmin ¼
�
6GMγ2Δ
3 − γ2ΔΛ

�
1=3

: ð57Þ

Compared with the Schwarzschild case [28], it is easy to
see that the term involving the cosmological constant
causes a slight variation on xmin. However, when this term
is neglected, we obtain exactly the same value of xmin as
discussed in [28,44]. Moreover, since the xmin should be
greater than zero, then the denominator of Eq. (57) implies
an upper bound on the cosmological constant as Λ < 3

γ2Δ.

Besides, for null geodesic, the situation will be much
simpler. Since κ ¼ 0, Eq. (54) can be divided by dt=dτ and
written as

dx
dt

¼ −Nx � 1: ð58Þ

A nontrivial case arises when the outgoing null rays with
dx=dt ¼ −Nx þ 1 have zeros at x > 0. However, the
ingoing rays with dx=dt ¼ −Nx − 1 are always less than
zero. One point worth mentioning here is that it is
previously stated that Ta represents a Killing vector field,
and its corresponding Killing horizon is given by
TaTa ¼ 0, which can be simplified as FðxÞ ¼ 0. But in
fact, since FðxÞ ¼ 0 and dx=dt ¼ 0 are equivalent to each
other, the zeros of dx=dt also represent the Killing horizon.
According to [28], M� ¼ 8γ

ffiffiffiffi
Δ

p
=

ffiffiffiffiffi
27

p
G corresponding

to the critical mass means that when Λ ¼ 0 and there is
only one Killing horizon. More precisely, as the mass is
greater than M�, there exist two Killing horizons, while if
the mass is smaller than M�, there are no Killing horizons.
The detailed situation can be visualized in the Fig. 1.
From Fig. 2, in the case of the LQG-corrected AdS black

hole, the mass exceedsM�, resulting in the presence of both

inner and outer horizons. For LQG-corrected metric, the
left end point of the red curve correspond to the minimum
value of x, where dx=dt ¼ 1, as can be easily verified by
Eqs. (52), (56), and (58). Conversely, the classical AdS
black hole exhibits only one horizon, and dx=dt diverges
rapidly as x → 0, indicating the presence of the spacetime
singularity. In the case of dS black hole, the LQG correction
also results in the existence of two Killing horizons,
avoiding the singularity issue. Additionally, the cosmo-
logical horizon can be observed from the curves.

B. Curvature scalars and surface gravity

Investigating the curvature of can provide us with a
deeper understanding of the geometric structure of this
spacetime. Furthermore, it allows for a more straightfor-
ward comparison to be made with the scenario where the
cosmological constant is not present. With the corrected
metric (51), various curvature scalars can be straightfor-
wardly calculated. The results are summarized as follows:

R ¼ 4Λ −
4

3
γ2ΔΛ2 −

24ðGMγÞ2Δ
x6

; ð59Þ

FIG. 1. For outgoing null geodesics, we have plotted the case of
the black hole with mass M� and compared three different
spacetimes. AdS spacetime is taken to have Λ ¼ −0.1, while
dS spacetime has Λ ¼ 0.1. It can be observed that the three
spacetimes exhibit little difference near the Killing horizon, and
only significant differences arise far from the horizon. The
remaining parameters are taken as fγ ¼ 1;Δ ¼ 0.01; G ¼ 1g.

FIG. 2. For outgoing null geodesics, we have separately plotted
the cases of the AdS black holes (first figure) and the dS black
holes (second figure) with the mass of 3M�. In both figures, the
red curve represents the LQG-corrected metric, while the blue
curve means the classical metric. For AdS black holes, we
consider Λ ¼ −0.1, whereas for dS black holes, Λ ¼ 0.1. All
the remaining parameters are taken as fγ ¼ 1; G ¼ 1g.
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RμνRμν ¼ 4

9
Λ2ð−3þ γ2ΔΛÞ2 þ 1440ðGMγÞ4Δ2

x12

þ 16ðGMγÞ2ð−3þ γ2ÞΔΛ
x6

; ð60Þ

RμνρσRμνρσ ¼ 8

27
Λ2ð−3þ γ2ΔΛÞ2

þ 320ðGMÞ3γ2ð−3þ 2γ2ΔΛÞΔ
x9

þ 32ðGMγÞ2ð−3þ γ2ΔΛÞΔΛ
x6

þ 7488ðGMγÞ4Δ2

x12
: ð61Þ

For physical reasons, the absolute value of curvature scalars
should correspond to a maximum when x approaches xmin
in vacuum. By substituting xmin into various curvature
scalars, we obtain the following results

lim
x→xmin

R ¼ −
6

γ2Δ
þ 8Λ − 2γ2ΔΛ2; ð62Þ

lim
x→xmin

RμνRμν ¼ 2ð−3þ γ2ΔΛÞ2ð5 − 4γ2ΔΛþ γ4Δ2Λ2Þ
γ4Δ2

;

ð63Þ

lim
x→xmin

RμνρσRμνρσ ¼4ð−3þγ2ΔΛÞ2ð10−6γ2ΔΛþγ4Δ2Λ2Þ
γ4Δ2

:

ð64Þ

These are also constants independent of the black hole
mass. Unsurprisingly, when the terms containing the
cosmological constant are discarded, these curvature sca-
lars align with those in [28,44].
In addition, exploring the trapped surface can further

verify the results of the effective metric (51) we have
obtained. Considering the null geodesic congruence, due to
the spherical symmetry, on a two-dimensional sphere S, the
radial coordinate x and the time coordinate t are constant.
Therefore, there are two independent null tangent vectors
orthogonal to S, referred to as outgoing null geodesics and
ingoing null geodesics. These two geodesics correspond to
the outgoing expansion parameter θþ and ingoing expan-
sion parameter θ−, respectively. By definition, the trapped
surface corresponds to the region where both θþ and θ− are
negative. Here, we define the tangent vectors of the
outgoing null geodesics and the ingoing null geodesics
to be the same as [28], denoted by

lμ ¼
�
∂

∂t

�
μ

þ ð1 − NxÞ
�
∂

∂x

�
μ

; ð65Þ

and

kμ ¼
�
∂

∂t

�
μ

þ ð−1 − NxÞ
�
∂

∂x

�
μ

: ð66Þ

Normalize these two vector fields such that lμkμ ¼ −2 and
the hypersurface metric for S is

hμν ¼ gμν þ
1

2
ðlμkνþ kμlνÞ: ð67Þ

Based on the definition of the expansions θþ and θ−, the
simple expression can be obtained through straightforward
calculations and the results are

θþ ¼ hμν∇μlν ¼
2

x
ð1 − NxÞ; ð68Þ

θ− ¼ hμν∇μkν ¼ −
2

x
ð1þ NxÞ: ð69Þ

Here, θ− remains negative within the range of x, so
considering θþ alone is sufficient. The main results are
displayed in Figs. 3 and 4. Besides, the trapped surface
tends to increase with the increase of mass. From the
expression of the expansion (68) and the null geodesic (58),
it can be observed that they differ only by a factor of 2=x.
Therefore, it is conceivable that the zero points of the null
geodesics align with the outgoing expansion and the
physical interpretation is consistent with the null geodesics.
When a black hole possesses an outer horizon, it

becomes straightforward to calculate the surface gravity
by employing

FIG. 3. The expansions of the outgoing null geodesics are
compared for different cosmological constants. In this case, the
mass is chosen as M�, indicating that when Λ ¼ 0, there is
only one event horizon. More detailed calculations reveal
when Λ ¼ −0.1, there is no event horizon and the curve’s end
point cannot extend indefinitely but reaches a certain point.
This also implies the maximum value that x can take. When
Λ ¼ 0.1, there are two close inner and outer horizons, and a
cosmological horizon can be clearly observed at the end of the
curve. These properties are analogous to those of the outgoing
null geodesics. The remaining parameters are taken as
fγ ¼ 1;Δ ¼ 0.01; G ¼ 1g.
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κ ¼ 1

2

∂FðxÞ
∂x

����
x¼xh

; ð70Þ

where x ¼ xh represents the position of the outer horizon.
Due to the complexity of the expression of FðxÞ, it is not
practical to calculate the analytical solution of the surface
gravity directly. Moreover, if we adopt a first-order
approximation for Δ, the distinctions between the three
types of spacetime will not be apparent and the result of the
expression will be the same. Therefore, we adopt a
numerical approach to solve the problem. The detailed
results are shown in Fig. 5. The green curve corresponds to
the AdS black hole, and the red curve represents the dS
black hole. At smaller masses, due to the LQG correction,

they behave almost identically and both exhibit a peak.
However, as the mass increases, due to the distinct
characteristics of the spacetime, the surface gravity of
the dS black hole rapidly tends to zero and eventually
reaches an upper mass limit, whereas the surface gravity of
the AdS black hole first decreases and then slowly
increases.

V. THERMODYNAMICS

In LQG, the detailed study of thermodynamics is a
highly active research area. Ones have successfully not
only derived fundamental thermodynamic relations within
the framework of effective LQC [45,46] but also obtained
the Bekenstein-Hawking formula from the first principles
for the Schwarzschild and other black holes [47–49].
Specifically, by applying the formalism of LQG to the
statistical treatment of the microscopic degrees of freedom
of black holes, an explanation for the microscopic degrees
of freedom corresponding to black hole entropy has been
obtained [50,51]. Unlike their approach of studying
thermodynamics from the fundamental LQG formalism,
we conduct a conventional analysis based on the derived
effective metric.
Within this subsection, it is specified that we are adopting

the natural units exclusively ðG ¼ ℏ ¼ c ¼ kB ¼ 1Þ. From
Eqs. (52) and (53), the mass of black holes can be expressed
in terms of the outer horizon xh,

M ¼ x3hð3 − 2γ2ΔΛÞ − 3x2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h − 4γ2Δ

p
12γ2Δ

: ð71Þ

The Hawking temperature of the black holes can be easily
obtained by requiring the absence of conical singularity at
the horizon in theEuclidean sector of the black hole solution,

T ¼ 1

4π

∂FðxÞ
∂x

����
x¼xh

;

¼ −3x2h þ xh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h − 4γ2Δ

p
ð3 − 2γ2ΔΛÞ þ 8γ2Δ

8πxhγ2Δ
; ð72Þ

and the corresponding Fig. 6 is plotted. Interestingly, we
observed that for a small black hole, the temperature of the
LQG black hole decreases as the radius decreases, which is
quite different with the classical scenario. However, in some
modified gravity theories, the corresponding Hawking
temperature also exhibits the similar behavior [52]. The
heat capacity of black holes reads [53]

C ¼
�
∂M
∂xh

�
=

�
∂T
∂xh

�
; ð73Þ

and the corresponding Fig. 7 is also plotted. Figure 7 reveals
that the LQG black hole exhibits an extra phase transition
compared to the classical black hole.

FIG. 4. Comparison of the null expansion θþ for the LQG-
corrected metric with different values of the cosmological
constant. The mass is 2M�, compared to the case with mass
M�, the most notable difference is that regardless of the value of
the cosmological constant, the black hole exhibits both inner and
outer event horizons. The influence of the cosmological constant
is only evident at the end point of the curve. The remaining
parameters are taken as fγ ¼ 1;Δ ¼ 0.01; G ¼ 1g.

FIG. 5. By taking the mass of the black hole as the independent
variable, we compared the surface gravity under different values
of the cosmological constant. The mass is measured in units of
M�. The minimum value of the mass is set at M� because when
the mass is less than M�, there is no horizon, and any discussion
concerning surface gravity becomes meaningless. The remaining
parameters are taken as fγ ¼ 1;Δ ¼ 0.01; G ¼ 1g.
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Classical black holes generally satisfy the so-called area
law, which states that the entropy of a black hole is equal to
one-quarter of the horizon area. However, in the presence of
quantum corrections, the area-entropy law no longer holds.
In recent years, research within the framework of LQG has

shown that black hole entropy, compared to the classical
result, includes an additional logarithmic correction
term [54,55]. We now assume that the thermodynamic
first law in the extended phase space holds for our model,
and thus we have [39]

dM ¼ TdSþ VdP: ð74Þ

The entropy of a black hole is

S ¼
Z

ðT−1dMÞP ¼
Z

xh

xt

�
T−1

�
∂M
∂xh

��
P
dxh;

¼ πx2h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4γ2Δ
x2h

s

− 2πγ2Δ ln

�
−xh þ xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4γ2Δ
x2h

s �2

þ S0;

¼ A
4
þ 2πγ2Δ ln

�
A

16πγ4Δ2

�
þ S1 þO

�
1

xh

�
; ð75Þ

where S0, S1 are constants and A ¼ 4πx2h. Since the entropy
should approach zero as temperature nears zero, we set the
lower limit of the integral to xt, which represents the
horizon radius of the black hole when the temperature
vanishes. The final result employs the large black approxi-
mation such that xh ≫ 4γ2Δ holds, so the square root term
can be rewritten as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4γ2Δ
x2h

s
¼ 1 −

2γ2Δ
x2h

þO

�
1

xh

�
3

: ð76Þ

Therefore, the final expression for the entropy for the large
black holes can be approximately considered as being the
area law plus a quantum logarithmic correction term. This
is also the case for the full theories of LQG [51].
In AdS black holes, the variation of Λ can be incorpo-

rated into the first law of thermodynamics, and it is no
longer treated as a constant. The pressure is understood to
be a quantity related to Λ [56]:

P ¼ −
Λ
8π

: ð77Þ

Therefore, Λ in Eq. (71) can be expressed as −8πP, and by
calculating the partial derivative ∂M=∂P, the thermo-
dynamic volume of the black hole can be obtained by

V ¼ 4πx3h
3

: ð78Þ

Utilizing Eqs. (77) and (78), the temperature (72) can be
expressed in terms of variables P and V, and after
rearrangement, the equation of state can be obtained by

FIG. 7. C − xh diagram of two types of AdS black holes. The
green vertical lines ðx ≈ 0.38; x ≈ 3.18Þ mark the heat capacity
divergence for LQG black holes, and the vertical blue dashed line
(x ≈ 3.18) does the same for classical black holes. The left green
vertical line (x ≈ 0.38), being so close to the heat capacity curve
of the LQG black hole that they appear as a single vertical line.
Both LQG and classical black holes exhibit a divergence in heat
capacity near x ≈ 3.18, suggesting the occurrence of a phase
transition. This transition signifies a shift in thermodynamic
stability from instability (C < 0) to stability (C > 0). Addition-
ally, the magnified view in the figure reveals that the LQG black
hole exhibits an extra phase transition compared to the classical
black hole. At smaller horizon radius (x < 0.38), contrary to the
classical case, the LQG black hole is stable. The parameters are
taken as fγ ¼ 1;Δ ¼ 0.01;Λ ¼ −0.1g.

FIG. 6. T − xh diagram of two types of AdS black holes. The
green solid line represents the LQG case, while the blue dashed
line signifies the classical case. It indicates that when the radius is
extremely small, the modification introduced by LQG does not
lead to temperature divergence. The parameters are taken as
fγ ¼ 1;Δ ¼ 0.01;Λ ¼ −0.1g.
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PðT; VÞ ¼ Q1 þQ2

Q3

; ð79Þ

Q1 ¼ 9
ffiffiffiffiffiffiffiffi
6V23

p
− 16

ffiffiffiffiffiffi
6π3

p
γ2Δ; ð80Þ

Q2¼3
ffiffiffiffi
V3

p
ð16π4=3γ2ΔT−3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6VÞ2=3−16π2=3γ2Δ

q
Þ; ð81Þ

Q3 ¼ 48πγ2Δ
ffiffiffiffi
V3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6VÞ2=3 − 16π2=3γ2Δ

q
: ð82Þ

We can search for the critical point through the following
conditions:

�
∂P
∂V

�
T
¼ 0; and

�
∂
2P
∂V2

�
T
¼ 0: ð83Þ

The critical values of temperature Tc, volume Vc, and
pressure Pc are given, respectively, by

Tc ¼
1

6πγ
ffiffiffiffiffiffi
6Δ

p ; ð84Þ

Vc ¼ 64
ffiffiffi
6

p
πγ3

ffiffiffiffiffiffi
Δ3

p
; ð85Þ

Pc ¼
−27þ 5

ffiffiffiffiffi
30

p

144πγ2Δ
; ð86Þ

and we show Fig. 8 representing pressure as a function of
volume. The solution has isotherms similar to the Van der
Walls fluids. Having the equation of state PðT; VÞ, we can
define the compressibility factor [57],

ZðT; VÞ ¼ PV
T

; ð87Þ

which indicates how much a gas deviates from ideal gases.
When Z ¼ 1, it implies that there is no interaction between
particles. At the critical point,

Zc ¼
PcVc

Tc
¼ 16ð−27þ 5

ffiffiffiffiffi
30

p
Þπγ2Δ; ð88Þ

which indicates that the value of Zc is dependent on γ.
Moreover, in the extended phase space, we consider that the
function M play the role of enthalpy H. So, the Gibbs free
energy is written as

G ¼ M − TS; ð89Þ

and the behavior of G is shown in Fig. 9.
Critical exponents describe the behaviour of physical

quantities near the critical point. It is believed that they are
universal. To obtain them, we use the so-called reduced
variables

t̃ ¼ T − Tc

Tc
; ṽ ¼ V − Vc

Vc
; p̃ ¼ P

Pc
: ð90Þ

We define the critical exponents as α, β, λ, and χ. They are
specified by the following equations,

CV ¼ T

�
∂S
∂T

�
∝ jt̃j−α; ð91Þ

η ¼ V1 − V2 ∝ jt̃jβ; ð92Þ

kT ¼ −
1

V
∂V
∂P

∝ jt̃j−λ; ð93Þ

jP − Pcj ∝ jV − Vcjχ ; ð94Þ

where CV , η, kT are, respectively, the heat capacity at
constant volume, the difference in volume between two
phases and the isothermal compressibility. Clearly, the
entropy S is a function that does not explicitly depend

FIG. 8. Graphic representation of the state equation with the
values fγ ¼ 1;Δ ¼ 0.01;Λ ¼ −0.1g.

FIG. 9. This picture shows the characteristic swallowtail
behavior of the Gibbs free energy as a function of temperature.
It is observed that when P < Pc, a first-order phase transition
occurs, and, at each temperature, there can be up to three values of
free energy, each representing a different phase of the black hole.
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on T, so it can be determined that α ¼ 0. If we rewrite the
equation of state (79) by using Eq. (90) and expand it for
small values of t̃ and ṽ, we get

p̃ ¼ 1þ ðB1 − B2ṽÞt̃ − B3ṽ3 þOðṽ4; t̃ṽ2Þ; ð95Þ

where B1, B2, and B3 are positive constants. If we consider
t̃ as constant and derive p̃ to ṽ, then we obtain

dp̃ ¼ −ðB2t̃þ 3B3ṽ2Þdṽ: ð96Þ

This relation is important to apply Maxwell’s area law,
which states [40,41] Z

VdP ¼ 0: ð97Þ

Thus, when considering Maxwell’s area law and the fact
that the pressure is constant at the phase transition, we get

p̃ ¼ 1þ ðB1 − B2ṽ1Þt̃ − B3ṽ31;

¼ 1þ ðB1 − B2ṽ2Þt̃ − B3ṽ32; ð98Þ

0 ¼
Z

ṽ2

ṽ1

ðṽþ 1ÞðB2 t̃þ 3B3ṽ2Þdṽ: ð99Þ

Solving these equations yields the nontrivial solution as
follows:

ṽ1 ¼ −ṽ2 ¼
B2

B3

ffiffiffiffiffi
−t̃

p
and thus η ∝

ffiffiffiffiffi
−t̃

p
; ð100Þ

which means that one of the critical exponents is β ¼ 1=2.
We can also use Eqs. (93) and (95) to calculate the
isothermal compressibility and we find that

kT ∝ 1=t̃; ð101Þ

such that λ ¼ 1. To obtain the final critical exponents,
we rewrite the condition jP − Pcj ∝ jV − Vcjχ as
jp̃ − 1j ∝ jṽjχ . From Eq. (95), we get

p̃ − 1 ∝ ðB1 − B2ṽÞt̃ − B3ṽ3: ð102Þ

It is worth reminding that in the critical isotherm we have
t̃ ¼ 0, so that,

p̃ − 1 ∝ ṽ3: ð103Þ

In general, the critical exponents are α ¼ 0; β ¼ 1=2;
λ ¼ 1, and χ ¼ 3.
In general, the modifications from LQG endow vacuum

spherically symmetric black holes with rich thermody-
namic properties. For a small black hole, the temperature of
the LQG black hole would not diverge. Moreover, the LQG

corrections also introduce an extra phase transition in the
black hole’s heat capacity at smaller radius, suggesting that
the thermodynamic properties of small black holes in LQG
might be stable. The entropy of the AdS black holes in
LQG shows that a logarithmic term appeared as the leading
order correction to the Beikenstein-Hawking entropy.
Under the premise of the first law of thermodynamics in
an extended phase space (74) being valid, the P − V
diagram shows that AdS black holes in LQG, like
Reissner-Nordström (RN)-AdS black holes [39], undergo
phase transition.

VI. CONCLUSIONS AND DISCUSSIONS

The main result in this paper is obtained based on the
Painlevé-Gullstrand coordinate system and utilizes the
components of the Ashtekar-Barbero connection and den-
sity-triad to describe a four-dimensional spherically sym-
metric spacetime with a cosmological constant. We first
perform calculations in the classical scenario. Starting from
the gravitational action, after symmetry reduction, we
consider the constrained system to consist of Hamiltonian
constraint (scalar constraint) and the diffeomorphism con-
straint (vector constraint) due to the constrained nature of
the system. By exploiting the spherical symmetry, further
simplification of the constraints can be achieved. The
equations of motion can then be obtained.
Then we impose a gauge fixing on the area. As a result,

the number of dynamical variables is reduced from
four to two, and the equations of motion are also reduced
to two. By directly solving the equations, the classical
Schwarzschild–de Sitter (anti–de Sitter) solutions are
obtained as expected.
Next, we proceed to obtain the LQG effective dynamics

for vacuum spherically symmetric spacetimes. We modi-
fied the variable p of the connection by incorporating
holonomy corrections and adjusted the Hamiltonian con-
straint, symplectic structure, and shift vector accordingly.
Similarly, by solving the modified effective equations of
motion, we obtained the LQG-corrected spherically sym-
metric metric with a cosmological constant. In comparison
with the previous treatments of LQG black hole models,
our treatment leads to a significant difference. In [27], the
authors investigated the quantum dynamics of the black
hole interior with the cosmological constant in the unim-
odular gravity framework. While in our current paper, our
start point is GR plus cosmological constant, we do not
view the cosmological constant as a dynamical variable. As
a result, analytical solutions for Schwarzschild–de Sitter
(anti–de Sitter) black hole with LQG correction are
obtained.
Due to the LQG correction, the variable x has a restricted

range of values. For AdS and dS spacetimes, we calculated
their common minimum value xmin using timelike geo-
desics. The dS spacetime exhibits the expected cosmo-
logical horizon. Compared to Λ ¼ 0, the effect of the
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cosmological constant is not only noticeable at distances far
from the event horizon but also alter the geometry near the
singularity. Moreover, there exist an upper bound on the
cosmological constant as Λ < 3

γ2Δ obtained by Eq. (57).

We also investigated the curvature scalars
R;RμνRμν; RμνρσRμνρσ of the LQG-corrected metric, which
are bounded at xmin due to quantum gravity effects and are
constants that only depend on Λ and Δ. Moreover, when
setting Λ ¼ 0, all the curvature scalars can be recovered in
the form presented in the article [28].
It is worth mentioning that the computation of

xmin can also be directly obtained from FðxÞ. Since
FðxÞ ¼ 1 − ðNxÞ2, it can be observed that FðxÞ ≤ 1, and
when FðxÞ ¼ 1, it represents the boundary of applicability
for FðxÞ. And xmin is one of the solutions to FðxÞ ¼ 1.
The investigation of the thermodynamic properties of

LQG black holes generally requires the premise that the
first law of thermodynamics (74) holds. The quantum
corrections lead to an additional logarithmic term in the
entropy for large black holes, which is consistent with

current results. These results are discussed within the
context of a four-dimensional effective metric, but how
the thermodynamic properties might change in other LQG
black hole models, or whether the entropy correction also
takes a logarithmic term, remains an open question worthy
of further investigation.
Last but not least, for the general covariance issue, for

Schwarzschild case, the quantum framework of [28] is
equivalent to that in [44], and the latter is showing
to be general covariance [58]. The framework of [58]
can be generalized to include a cosmological constant
in principle. However, since even in Schwarzschild
case, the general covariance issue is still under debating
[59,60], we would like to leave this topic for future
study.
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