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We discuss general momentum-dependent field redefinitions in the context of quantum-gravitational
scattering amplitudes in general, and asymptotic safety in particular. Implementing such redefinitions at the
lowest curvature order, we can bring the graviton propagator into tree-level form, avoiding issues of fiducial
ghost poles and their associated violations of unitarity. We compute the beta function for Newton’s
constant, and find an asymptotically safe fixed point whose critical exponent changes by 0.4% compared to
not resolving the momentum-dependent field redefinition. This provides a strong indication that this fixed
point does not feature extra degrees of freedom related to ghostly modes, and has a good chance of being
related to a unitary theory.
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I. INTRODUCTION

One of the biggest open problems in theoretical physics
is that of finding a single consistent description of all
fundamental forces—gravity on the one hand, and the
electroweak and strong interactions on the other—together
with the observed matter like electrons. The two theories
that we use to describe them, respectively—general rela-
tivity (GR) and the Standard Model of particle physics—
cannot be easily extended to include the interactions they
are missing. In particular, the perturbative quantization of
GR is plagued by difficulties [1–4], while the Standard
Model is formulated in Minkowski space.
Progress is hindered by the general expectation that

quantum gravity effects are suppressed by the Planck scale,
and correspondingly they are experimentally hard to probe.
In such a situation with little experimental guidance,
consistency conditions play a central role on the route to
an all-encompassing theory. For example, one can require
the theory to be unitary and (macroscopically) causal.
Beyond such theoretical constraints, the theory should also
satisfy a version of the correspondence principle: if the
putative quantum theory of gravity and matter is not
compatible with Standard Model data (e.g., if it would
predict that the Higgs boson has the same mass as the
electron), it is ruled out, even though the latter is not directly
related to quantum gravity.

In this work, we assume that such a successful theory of
quantum gravity and matter can be a quantum field theory
(QFT). The necessary ultraviolet (UV) completion is
assumed to come from an asymptotically safe fixed point
of the renormalization group (RG) flow [5]. In this setup,
one has access to standard QFT notions like scattering
amplitudes and the effective action, allowing a straightfor-
ward connection to both theoretical consistency conditions
like unitarity and causality in the form of bounds [6–9], and
to experimental data via e.g., scattering cross sections.
A key long-term goal to test the asymptotic safety

conjecture beyond the already significant evidence for the
existence of the fixed point (see Refs. [10–17] for a
collection of recent book chapters on the topic) is to
compute suitable scattering amplitudes and simultaneously
confront them with as many consistency conditions as
possible. While the main motivation for this is to connect
to the real world, it has been pointed out recently that
causality imposes nontrivial constraints between different
couplings at the fixed point [18].
Such a first-principle scattering amplitude programme

consists of several steps: first, for a given scattering event,
one has to characterize all relevant correlation functions in
the effective action that contribute. A significant amount of
work has already gone into this aspect for two-to-two
scattering [10,18–21]. Second, the relevant momentum-
dependent correlation functions have to be computed. In
asymptotic safety, the graviton propagator [22–27], and the
three- [28] and four-graviton vertex [29] have been inves-
tigated, plus some matter propagators and gravity-matter
vertices [19,30–35]. Recent groundbreaking work also
paved the way toward Lorentzian-signature computations
[26,27] which is clearly crucial for scattering amplitudes.
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Finally, the resulting amplitudes have to be confronted with
the constraints of interest [18,20].
Not all parts of correlation functions are equally impor-

tant for scattering amplitudes. This is due to the fact that
we can perform field redefinitions without changing the
physics [36]. A trivial example of this is a rescaling of the
field by a positive constant. As a consequence, only specific
combinations of couplings will enter any observable. These
combinations are called essential couplings. Inessential
couplings in turn do not change the amplitude, and thus
can be changed (almost) arbitrarily by a field redefinition. It
is clear that with a suitable field redefinition, the task of
computing scattering amplitudes can be drastically simpli-
fied. This observation is also central for the very definition
of asymptotic safety: only essential couplings need to reach
a fixed point [37], and only their perturbations about a given
fixed point define proper critical exponents [38].
Most previous investigations of asymptotic safety did not

at all, or only partially, take into account field redefinitions.1

Only very recently, a modified nonperturbative flow equa-
tion has been derived that employs this freedom system-
atically [41], being based on earlier related work [42,43].
Since then, it has been applied to quantum gravity by
itself [44], and quantum gravity coupled to a shift-
symmetric scalar field [45].
From these considerations, the clear path forward toward

asymptotically safe scattering amplitudes is to employ the
modified flow equation to self-consistently compute the
essential parts of the necessary correlation functions. As a
first step in this endeavor, and to make contact to previous
computations in the standard scheme, in this work we will
compute the nonperturbative beta function of the Newton’s
constant while taking into account a momentum-dependent
field redefinition of the metric that removes any nontrivial
momentum dependence from the flat space graviton
propagator.
This paper is structured as follows: we start by a general

discussion of field redefinitions in the context of scattering
amplitudes in Sec. II, giving us the motivation to study such
redefinitions in asymptotic safety. In Sec. III, we introduce
the setup and some technical choices. Then, Sec. IV is
devoted to an in-depth discussion of the nonperturbative
flow equations and the resulting phase diagram. We con-
clude with a brief summary and outlook in Sec. V. The
present work illustrates how making use of field redefini-
tions significantly shifts the frontiers in terms of technical
feasibility, and we provide two appendices where a lot of the
underlying background material is collected. In appendix A,
we collect the necessary nonlocal heat kernel coefficients

and illustrate their efficient computation. In appendix B, we
display the complete step-by-step derivation of the flow.

II. SCATTERING AMPLITUDES AND FIELD
REDEFINITIONS

Before we treat the system under consideration itself, we
will provide a general discussion of field redefinitions at the
level of the effective action and gravity-mediated two-to-
two scattering amplitudes. Similar considerations carry
over to more general scattering events. For definiteness,
we consider the two-to-two scattering of a massive
Z2-symmetric scalar field ϕ into itself, that is ϕϕ → ϕϕ.
In a Minkowski background, the relevant part of the
effective action and the full scattering amplitude have been
derived in [20].2 The gravitational part of the effective
action that contributes to this scattering reads

Γgrav ≃
1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p ½−Rþ RfRRð□ÞR

þ SμνfSSð□ÞSμν�: ð1Þ
Here, Sμν is the trace-free part of the Ricci tensor and R is
the Ricci scalar of the metric g, GN is Newton’s constant,
□ ¼ −D2 is the covariant d’Alembertian, we have set the
cosmological constant to zero, and we neglected terms of
cubic order in the curvature as well as the Gauss-Bonnet
term since they do not contribute to the scattering event.
The functions fRR;SS are called form factors, and they
contain the information on the momentum dependence
of correlation functions in a diffeomorphism-invariant
way [19]. The relevant scalar part of the action is

Γϕ ≃
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ϕfϕϕð□Þϕþ fRϕϕð□1;□2;□3ÞRϕϕ

þ fSϕϕð□1;□2;□3ÞSμνðDμϕÞðDνϕÞ

þ fϕϕϕϕðf−Di ·Djg1≤i<j≤4Þϕϕϕϕ
�
: ð2Þ

In this, a subscript on an operator indicates the position of
the field that it acts upon, e.g.,

□1□
2
2□

3
3S

μνðDμϕÞðDνϕÞ ¼ ð□SμνÞð□2DμϕÞð□3DνϕÞ;
ð3Þ

and3

1In fluctuation computations, momentum-dependent but field-
independent field redefinitions have been taken into account
since the beginning, see e.g., [22,23,28,29,39], in contrast to what
has been claimed recently [40].

2Here, we have chosen a slightly different basis that is more
useful for our discussion, and that is in line with [45].

3There is an order ambiguity for the form factor fϕϕϕϕ since its
arguments do not commute. However, any difference in the
ordering is proportional to a commutator of covariant derivatives,
thus all choices lead to the same contribution for our two-to-two
scattering process. We can thus safely ignore this subtlety for the
present work.
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Di ·Dj ¼ DiαDα
j : ð4Þ

So far, no field redefinitions have been performed, and
the ϕϕ → ϕϕ scattering amplitude in Minkowski space
derived from this action is fully general.
Before we perform field redefinitions to simplify the

action, and as a result the scattering amplitude, let us briefly
discuss some subtleties. By definition, a field redefinition
should be invertible. More concretely, no physical modes
should be added to, or subtracted from, the spectrum. A
clear example for an inadmissible redefinition in the case of
a free massive scalar field is

ϕ ↦
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

□ −m2
p ϕ: ð5Þ

This maps the action to that of a nondynamical field, clearly
removing the propagating mode.4

From this example, it is clear that if the goal is a maximal
simplification of all correlation functions, one has to make
certain assumptions on the spectrum of the theory that one
aims to investigate, which should be verified a posteriori.
One is thus bound to a subset of theories connected to a
specific universality class.5 For example, in this work (and
in all previous works on the topic [44,45]), we will
investigate what we shall call the universality class of
GR (in short [GR]), which has two massless propagating
graviton polarizations in Minkowski space, and no other
degrees of freedom. By contrast, one could call a gravity
theory with an action that is field-redefinition-equivalent to
Stelle’s action [4,46] the Stelle universality class, described
by an additional massive spin two ghost, and a regular spin
zero mode.6

Specifying the universality class does not completely fix
the inessential couplings yet—there are still different
schemes, that is different choices for the inessential
couplings within the same universality class. For example,

the class of nonlocal higher-derivative gravity theories is in
[GR], but has a nonminimal momentum dependence for the
graviton propagator [50]. In the following, we will focus
on what has been called the minimal essential scheme
(MES) [41,44]—this means that all couplings that can be
set to zero within the universality class will be set to zero.
There are clearly other physically equally-good choices,
but anticipating the complexity of amplitude computations,
the minimal scheme seems to be preferred.
Let us now come back to the action (1) and (2) and

perform a field redefinition. Assuming that there are no
additional modes means that the form factors fRR; fSS and
fϕϕ do not introduce any additional poles in the propagator,
and can thus be removed. To be explicit, the scalar
propagator in flat spacetime with momentum p computed
from (2) reads

Gϕðp2Þ ¼ 1

fϕϕðp2Þ ; ð6Þ

so that fϕϕðp2Þ needs to have a unique zero at p2 ¼ m2:

fðm2Þ ¼ 0; fðz ≠ m2Þ ≠ 0; z∈R∶
fðzÞ
z −m2

> 0: ð7Þ

Likewise, the flat spacetime graviton propagator computed
from (1) reads

Ghðp2Þ ¼ 1

p2ð1þ p2fSSðp2ÞÞΠ2

−
1

p2ð1 − 6p2fRRðp2Þ − p2

2
fSSðp2ÞÞ

Π0; ð8Þ

where Π0;2 are the projectors onto the spin zero and spin
two part [25], and we suppressed the spin one component
which is pure gauge. The conditions for the form factors to
not introduce extra poles in this case read

1þ zfSSðzÞ ≠ 0;

z∈R∶ 1þ zfSSðzÞ > 0; ð9Þ

and

1 − 6zfRRðzÞ −
z
2
fSSðzÞ ≠ 0;

z∈R∶ 1 − 6zfRRðzÞ −
z
2
fSSðzÞ > 0: ð10Þ

The inequalities follow from requiring that the physical
modes do not turn into ghosts for real squared momenta.
Having settled these conditions, we can now remove the

inessential form factors by making the field redefinitions

gμν ↦ gμν þ aRð□ÞRgμν þ aSð□ÞSμν; ð11Þ

4We hasten to add that in a more realistic scenario with
interactions, the total scattering amplitude will still be the same
under this redefinition. However, the standard QFT interpretation
of propagators and vertices, as well as the meaning of on-
shellness, get obscured in this way. In the following, we will not
consider these redefinitions to avoid such pathologies.

5Strictly speaking, within such a subspace of the theory space
with fixed spectrum, there can still be multiple fixed points
defining different universality classes in the usual sense. Here we
are using this generalized notion of universality class, referring to
theories with a fixed spectrum.

6Let us mention that some authors have argued that the extra
degrees of freedom in Stelle gravity are shifted to the complex
plane when quantum fluctuations are included, and thus they
would not correspond to asymptotic states, see e.g., [47–49].
Such complex poles would have to be explicitly included in our
setup, since they affect the analytic structure of the propagator
and the allowed field redefinitions. In particular, these extra poles
should not be removed to describe the above scenario.
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ϕ ↦ aϕð□Þϕ: ð12Þ

With the choice

aRð□Þ ¼ −
1

2□

 
1 −

1

3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ□fSSð□Þp

−
2

3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6□fRRð□Þ − 1

2
□fSSð□Þ

q
!
;

aSð□Þ ¼ 2

□

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ□fSSð□Þp − 1

�
;

aϕð□Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
□ −m2

fϕϕð□Þ

s
; ð13Þ

we can remove fRR and fSS from the action and put the
scalar kinetic term into a standard form. Note that by
assumption, this field redefinition is well-defined due
to (7). Likewise, the combinations in the denominators of
the metric field redefinitions are positive if no other poles
are introduced by the form factors fRR and fSS, see (9)
and (10). We emphasize that the aR;S are both regular at
the origin7:

aRðzÞ ∼ fRRð0Þ; z → 0;

aSðzÞ ∼ −fSSð0Þ; z → 0: ð14Þ

As a side note, we emphasise that the field redefinitions
(13) circumvent the issue of fiducial ghosts that unavoid-
ably appear in a derivative expansion of the effective
action [51,52]. The viewpoint that we take here is that of
performing the field redefinition at the exact level,
preserving properties like unitarity while keeping compu-
tations simple, and only at the end we perform a derivative
expansion if needed.
As a matter of fact, also the form factors fRϕϕ and fSϕϕ

can be completely removed, and fϕϕϕϕ can be simplified,
but wewill not show the details here. The general rule is that
whenever a given operator in the effective action is propor-
tional to the equation of motion (or can be completed to it by
shifting some couplings), it is inessential. In practice, this
gives rise to a bootstrap: one starts with the action that
defines the underlying dynamics, i.e., the universality class.
Then, new operators are added. If they are proportional to
the equations of motion, they are inessential. If not, we add
them to the original action, and use the new equations of
motion that include the new operators. In a derivative or
curvature expansion, this will generally not render formerly
inessential operators essential. As an example, for [GR], this

means that any operator involving the Ricci scalar or the
trace-free Ricci tensor is inessential.
Coming back to our scattering example, via a suitable

field redefinition and within [GR], we can map

Γgrav ↦
1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p ½−RþOðR3Þ�; ð15Þ

and

Γϕ ↦
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ϕð□−m2Þϕ

þ f̃ϕϕϕϕð−D1 ·D2;−D1 ·D3ÞϕϕϕϕþOðϕ6Þ
�
: ð16Þ

Let us now come to the scattering amplitude for the
theory after field redefinition. The full ϕϕ → ϕϕ amplitude
can be split into s-, t- and u-channel for the gravity-
mediated diagram, and the dressed vertex,

A ¼ As þAt þAu þA4: ð17Þ

Here, s, t, u denote the standard Mandelstam variables, and
we follow the convention of [20]. For the gravity-mediated
contribution, after the field redefinition we get

As ¼ 8πGN
t u
s
: ð18Þ

The partial amplitudes for the t- and u-channel follow from
crossing symmetry. Clearly, this is just the expression for
the amplitude stemming from GR itself. All the nontrivial
momentum dependence is contained in the vertex diagram,

A4 ¼ A4ðs; tÞ: ð19Þ

The bottom line of this is that by the field redefinitions,
generally, (some of) the nontrivial momentum dependence
of low order correlation functions is moved into higher-
order correlation functions. For the two-to-two scattering,
all nontrivial information is contained in the contact term.
Clearly, no information is lost: after all, the full amplitude is
a function of two of the three Mandelstam variables, but so
is f̃ϕϕϕϕ which appears inA4. The key advantage is that the
lower order correlation functions are trivial. This is par-
ticularly beneficial for the propagator, since in an RG flow,
it needs regularization, which is much easier to achieve
consistently for a simple momentum dependence.
The observation that most nontrivial momentum depend-

ence in a two-to-two scattering process can be shifted into
the dressed four-point vertex is rather generic. The only
nonminimal contribution toward mediated diagrams can
come from essential three-field operators. For such a
correlator, we can always parametrize the corresponding
form factor by three □ operators [19]. Since equations of

7Here we note that terms like the one-loop logarithms deserve
an individual discussion that goes beyond what we want to
do here.
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motion are typically related to this operator acting on a
field, any nontrivial momentum dependence in a three-
point correlator can be removed by a field redefinition. The
only exception are purely local terms without □ operators.
Let us give two concrete examples.
First, for a four-photon scattering, γγ → γγ, there is one

such local essential interaction,

Γf3gess
γ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
cCFFCμν ρσFμνFρσ: ð20Þ

Here, C is the Weyl tensor, F is the field strength tensor of
the photon, and cCFF is a coupling constant. This inter-
action term cannot be removed by a field redefinition, and
clearly contributes to a photon-photon-graviton vertex. All
other possible contractions of one Weyl tensor, two field
strength tensors and any number of covariant derivatives
can either be removed by a field redefinition, or rewritten
by partial integration and Bianchi identities into terms that
then can be removed by a field redefinition [21].
The second example is that of four-graviton scattering.8

In this case and for [GR], the only extra essential term
contributing to the mediated diagrams in four dimensions9

is the well-known Goroff-Sagnotti term [2,3],

Γf3gess
grav ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
cC3Cμν

ρσCρσ
τωCτω

μν: ð21Þ

One can once again show that all other combinations of
three Weyl tensors and covariant derivatives can be reduced
to inessential terms. This is also due to the identity

DμD½μCνρ�αβ ¼ 0; ð22Þ

that relates □C to covariant derivatives of trace-free Ricci
tensors and Ricci scalars via the Bianchi identity.
Let us point out that the Goroff-Sagnotti term can also be

removed via a redefinition due to (22), but it is nonlocal
[54]. Here, by nonlocal we mean operators that have poles
at vanishing momentum when evaluated in Minkowski
space. Allowing for such redefinitions would also make it
possible to remove any higher order gravitational term, so
that graviton scattering would be described by just GR. We
however generally expect that such redefinitions interfere
with a standard interpretation of scattering amplitudes. To
see this, we construct a similar redefinition for a quartic
scalar field theory described by the action

ΓNLFR
ϕ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
ϕ□ϕ −

λ

4!
ϕ4

�
: ð23Þ

If we now introduce a new field Φ via the nonlocal
definition

ϕ¼Φþ λ

4!

1

□
Φ3 þ 7

2

�
λ

4!

�
2 1

□

�
Φ2

1

□
Φ3

�
þOðλ3Þ; ð24Þ

our theory is mapped to a free theory (up to higher order
terms in λ),

ΓNLFR
Φ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
Φ□ΦþOðλ3Þ

�
: ð25Þ

We can extend (24) order by order in λ to remove all higher
order terms. The formally resummed redefinition reads10

Φ ¼
�
1 −

λ

12

1

□
ϕ2

�
1=2

ϕ; ð26Þ

where we gave the inverse transformation of (24) since its
closed form is simpler. The new field Φ is noninteracting,
and thus scatters trivially. By contrast, we clearly have
nontrivial scattering for the field ϕ. As a consequence, all
scattering information must be contained within the redefi-
nition (26), likely in the boundary conditions needed to
appropriately define the inverse operator. For this reason,
we will not consider such nonlocal redefinitions in the
following. We stress again that the field redefinition (13) is
not of this form, since any apparent nonlocality is spurious,
and all functions are regular.
The lessons of this section are as follows:
(i) field redefinitions allow for significant simplifica-

tions in the computation of scattering amplitudes,
(ii) to perform a field redefinition to bring the amplitude

into the simplest form, one has to specify the
spectrum of the theory—not everything goes,

(iii) most or all of the nontrivial momentum dependence
of a two-to-two scattering amplitude is carried by the
dressed contact term.

This sets the stage for the rest of this paper. Controlling the
propagators is clearly the first important (and easiest) step
in the computation of scattering amplitudes. We will thus
set up a nonperturbative RG flow in gravity for the action
(15) (with a cosmological constant and the Euler term)
while taking into account running field redefinitions
mimicking (11). This entails that we can track the running
of the form factors aR and aS, and impose that the flat
graviton propagator is that of GR at every RG step. The
relevance of our study lies in explicitly checking whether

8There are clearly limitations on the validity of considering
such a process, at least at high energies, but this is beyond the
scope of this discussion.

9There is a second independent contraction of three Weyl
tensors in dimensions larger than 5 [53], giving rise to an extra
essential coupling.

10This expression should be understood as a power series in λ,
and in this expansion, all inverse operators act on everything to
their right.
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the asymptotically safe fixed point established so far
indeed falls into [GR], avoiding any spurious ghosts that
are unavoidable in a derivative expansion [51,52]. It also
paves the way toward resolving the three- and four-point
correlation functions that are needed to ultimately compute
the full amplitudes, and confront first principle predictions
from asymptotic safety with theoretical and experimental
constraints at the level of observables.

III. SETUP

A. Functional renormalization group

The main tool to investigate asymptotic safety is the
functional renormalization group (FRG), a nonperturbative
formulation of the RG. It is formulated in terms of the
effective average action Γk, which interpolates between the
microscopic action S for k → ∞, and the standard quantum
effective action Γ for k → 0. The dependence of Γk on the
fiducial momentum scale k is governed by [55–57]

Γ̇k ≡ k∂kΓk ¼
1

2
Tr½ðΓð2Þ

k þRkÞ−1Ṙk�: ð27Þ

Γð2Þ
k is the second functional derivative of the effective

average action with respect to the dynamical fields,Rk is a
regulator kernel, and the functional trace is a sum over
discrete and an integral over continuous variables. For an
up-to-date review of the FRG, see Ref. [58], and for
reviews of its application to asymptotic safety in particular,
see, e.g., [5,39] and the recent book chapters [10–17].
The FRG equation (27) can be used to derive the

nonperturbative beta functions of couplings. Given a
coupling Λk with mass dimension dΛ, we first make it
dimensionless by multiplying with the appropriate power
of k, so that Λk ¼ λkkdΛ . The beta function βλ ≡ λ̇k can
then be read off by a comparison of coefficients in a given
operator basis that spans Γk. A fixed point is then any
combination of couplings where all beta functions vanish,
β ¼ 0. The behavior of the flow about a fixed point is
determined by the critical exponents, which are minus the
eigenvalues of the stability matrix. For a single beta
function of a single coupling λk,

θ ¼ −
∂βλ
∂λk

����
λk∶βðλkÞ¼0

: ð28Þ

Relevant (irrelevant) operators have a positive (negative)
critical exponent, and have to be fixed by experiment (are
fixed by the flow).
To solve (27), in practice we have to make approxima-

tions, except in special cases [59]. With our goal of
computing (flat spacetime) scattering amplitudes in mind,
the most appropriate approximation scheme is the curvature
expansion. At order n, it retains all operators with up to n
curvature tensors, but arbitrary dependence on the covariant

derivative. This is the natural scheme since it keeps the full
momentum dependence of all flat correlation functions up
to order n. In curved spacetime, this information is carried
by form factors, and the techniques to work with them have
been refined recently [19,60].
Due to the gauge structure of gravity, we have to employ

the background field method, splitting the metric into an
arbitrary background and fluctuations about it,

gμν ¼ ḡμν þ hμν: ð29Þ

In this work, we will also restrict ourselves to the back-
ground field approximation, setting the fluctuation field h
to zero after the computing the second variation. For work
going beyond this, see, e.g., [39] for a recent review.

B. Essential scheme

As it stands, (27) does not take into account the freedom
to perform field redefinitions. Much more general flow
equations have been known for some time, see, e.g., [36,43],
and [42,61] for applications. Recently, these equations
have received renewed attention with a specific focus on
using field redefinitions to implement the MES [41].
Subsequently, asymptotic safety by itself [44] and coupled
to a shift-symmetric scalar field [45], as well as the
OðNÞ-model [62] have been investigated.
At the heart of the modified flow equation implementing

an essential scheme is the RG kernel Ψk, defined as (the
expectation value of) the flow of a field redefinition. With
this, the new flow reads

Γ̇k þΨkΓ
ð1Þ
k ¼ 1

2
Tr½ðΓð2Þ

k þRkÞ−1ðṘk þ 2Ψð1Þ
k RkÞ�: ð30Þ

Both sides receive an extra contribution. We can then adjust
the RG kernel to impose conditions on inessential cou-
plings. This is clear since, on the left-hand side, the RG
kernel multiplies the (full quantum) equations of motion.
The MES is then defined as that where all inessential
couplings are set to zero, or a value compatible with the
spectrum of the theory as discussed in Sec. II.
Since taking an expectation value is in general very

involved, in practice, an ansatz for Ψk is used to compute
the RG flow (30), assuming that it is related to a proper field
redefinition. A posteriori, one would then be able to verify
that this is indeed the case. So far, this has not been done in
practice, and thus remains one of the open questions about
this scheme.
Another open question is how to properly treat field

redefinitions in the form of gauge transformations. For
example, we can shift the metric by

gμν ↦ gμν þDμDνR; ð31Þ
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which is clearly a diffeomorphism along the vector DνR=2.
Such a field redefinition has no effect on the left-hand side
of (30), but in general it can contribute to the right-hand
side. This should clearly not be the case. A potential way
out of this conundrum is that an appropriate field redefi-
nition of the Faddeev-Popov ghost must be implemented so
that the total contribution from this gauge transformation
field redefinition drops out. In practice, this is complicated
by the facts that, first, the regularization of the graviton and
ghost sectors cannot be independently chosen, but must be
tuned to allow for this cancellation. Second, due to the use
of the background field method, the flow equation breaks
diffeomorphism symmetry by itself, making such a can-
cellation even more difficult. We leave this task for a future
investigation, and for now we simply do not consider field
redefinitions of this type. This is to prevent introducing
additional parameters that, due to the reasons explained
above, would artificially allow to impose more conditions
on the flow than one should be able to.

C. Ansatz

Let us now proceed by presenting our ansatz for the
effective average action and the RG kernel for which wewill
solve the flow equation. As mentioned earlier, our system-
atic expansion scheme is the curvature expansion, where
one retains the full dependence on the covariant derivatives
of individual correlation functions with up to a certain
number of curvatures. It is equivalent to an expansion
around a flat background that retains the momentum
dependence of the correlation functions. Concretely, we
will resolve all operators with up to two spacetime curva-
tures. From now on, we will restrict ourselves to Euclidean
signature—recent work established that a Wick rotation is
possible [26], and is consistent with a direct computation in
Lorentzian signature [27].
Implementing the MES, discarding boundary terms and

restricting ourselves to [GR], we find that all second order
curvature terms are inessential, except for the topological
Euler term. This entails that our ansatz for Γk reads

Γk ¼
Z

d4x
ffiffiffi
g

p �
1

16πGk
½2Λk − R� þ ΘkE

	
; ð32Þ

where E is the Euler density. This ansatz agrees with
previous work [44,45]. Where we differ is in the RG kernel,
which in our case captures the nontrivial momentum
dependence of the graviton propagator:

Ψk;μν ¼ γggμν þ γRðΔÞRgμν þ γSðΔ2ÞμνρσSρσ: ð33Þ

The operatorΔ2 includes a convenient endomorphism that is
spelled out in appendix B. In the language of an expansion
about a flat spacetime, this RG kernel is equivalent to a
rescaling of the metric fluctuation by a tensor-valued,
momentum-dependent wave function renormalization akin

to [22,25]. In this language, γS captures the nontrivial
momentum dependence of the spin two propagator, whereas
a combination of γR and γS encodes that of the (physical, off-
shell) spin zero part. By investigating the extra term on the
left-hand side of the flow equation stemming from the field
redefinition, see (B13) in the appendix, it is clear that we can
adjust γR;S to match terms on the right-hand side of the flow
so that no form factors fRR;SS are generated in the effective
average action during the flow, thus implementing the MES.
Note that both gamma functions γR;S depend on k, but we
omit indicating this for better readability.
At this point we note that to linear order in curvature,

there is a third independent term that we could add to the
RG kernel,

ΔΨdiff
k;μν ¼ DμDνγDDRðΔÞR: ð34Þ

However, this term is clearly related to the diffeomorphism
(31). Following our earlier discussion, we will discard this
term, as a proper treatment likely needs a careful study of
how to relate field redefinitions of the metric with those of
the corresponding Faddeev-Popov ghosts.
We will employ a harmonic (or Feynman-de-Donder)

gauge fixing, which brings the kinetic term into minimal
form, and a type II regulator with the natural endomor-
phism in all sectors [63]. In doing so, we follow the same
conventions as [45]. More details, including on our
notation, are collected in appendix B.
Finally, we introduce dimensionless couplings via

g ¼ Gkk2; λ ¼ Λkk−2; ð35Þ

and drop the subscript k everywhere in the following to
improve readability. Likewise, we introduce dimensionless
counterparts for γR;S, but since in the following we only talk
about the dimensionless versions, we do not introduce new
symbols for them.
Following [44], we fix the cosmological constant by

λ ¼ 8πg lim
g→0

F jR¼0; ð36Þ

whereF is the full right-hand side of the flow equation, and
we set all curvatures to zero. This makes it so that we flow
to Λ ¼ 0 for k → 0, thus implementing that the physical
cosmological constant vanishes.

IV. RESULTS

Putting together all the ingredients specified in the last
section, one can compute the beta functions for g and Θ as
well as the expressions for all gamma functions. Due to
the specific choices made in the setup, the whole compu-
tation can be carried out by hand (up to contractions
of large tensorial expressions for which it is convenient
to use computer tensor algebra; specifically we have
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used xAct [64–66]). We present all major steps of the
computation of the necessary heat kernel coefficients in
appendix A, and the computation of the RG flow in
appendix B. The result of this endeavor is collected in
Eqs. (B107), (B108), (B109), (B111), and (B112), which
represent one of the main results of this work. We also
want to highlight the computation of one specific nonlocal
heat kernel coefficient, given in (A46), that to our knowl-
edge has not been computed before.
Let us briefly collect the main results for the reader who

is not interested in the technical details of the analysis:
(i) The fixed point found previously in the MES persists

[44], and is extremely stable upon including the
gamma functions γR;S. The single critical exponent
in the system changes by 0.4%. This is because both
γR;S remain small over the whole momentum range.

(ii) Momentum locality [28], i.e., the requirement that
the high-energy flow of correlation functions in units
of itself goes to zero which is related to a well-
defined Wilsonian block spinning, is not fulfilled in
this setup. This emphasizes the need to take into
account the flow of fluctuation correlation functions.

(iii) The topological coupling Θ has a positive beta
function at the fixed point, in agreement with
previous findings [67]. This suggests that at this
fixed point, spacetimes with “complicated” topol-
ogies, i.e., with strongly negative Euler character-
istic, contribute most to the Euclidean path integral.

A. Consistency checks

We first make sure that we can reproduce earlier results.
This includes first the well-known one-loop running
induced by GR, coming (in a standard scheme) in the
form of a logarithmic running of the couplings multiplying
terms quadratic in curvature [1]. In the MES, the corre-
sponding divergences are accounted for in the leading term
of the gamma functions in an expansion about vanishing
Newton’s constant [44],

γRð0Þ ∼ −
23

120π
g;

γSð0Þ ∼
7

10π
g: ð37Þ

We find this result independent of the chosen regulator
function, as it must be. In turn, for the beta function of the
coupling of the Euler term, we have

Θ̇ ∼
1

16π2
53

45
: ð38Þ

All these expressions are in agreement with previous
results. Second, we checked that upon truncating the form
factors to constant terms, we reproduce the results reported
in [45], where the same setup was used.

B. Large momentum behavior

Let us next investigate the large momentum behavior of
the gamma functions γR;S. A term-by-term analysis reveals
that both of them fall off asymptotically,

γRðzÞ ∼
c∞R
z
; γSðzÞ ∼

c∞S
z
; z → ∞: ð39Þ

The precise form of the coefficients involves threshold
integrals including the gamma functions themselves over all
momenta. We thus have to assume that these are finite. Our
numerical analysis below however shows that this is indeed
the case, at least for the window of interesting values for g.
We can however find closed-form expressions for γR;S,

and as a consequence for c∞R;S, in a series expansion in
powers of g. Identifying the regulator shape functions of all
modes, the leading term reads

γRðzÞ ∼
g
π

Z
1
4

0

du μ

�
7

16
;
15

4
;−

1

4

����u
�
RðuzÞ − uzR0ðuzÞ

uzþRðuzÞ ;

γSðzÞ ∼
g
π

Z 1
4

0

du μð2; 8; 2juÞRðuzÞ − uzR0ðuzÞ
uzþRðuzÞ : ð40Þ

Letting z → 0, we reconfirm (37). On the other hand, taking
z large, we conclude

c∞R ∼ −
35g
12π

Z
∞

0

dz
RðzÞ − zR0ðzÞ

zþRðzÞ ;

c∞S ∼ −
11g
3π

Z
∞

0

dz
RðzÞ − zR0ðzÞ

zþRðzÞ : ð41Þ

Note that the threshold integral appearing in these expres-
sions is strictly positive since the numerator of the integrand
originates from the RG-derivative of the regulator, which
has to be positive for a well-defined coarse-graining.
Consequently, c∞R;S < 0, and thus both gamma functions
approach zero from below for small g. Taken together with
the behavior for small arguments (37), we conclude that γS
needs to cross zero at least once for small enough g.
Incidentally, the ratio of the gamma functions at large
arguments and small g goes to a regulator-independent
constant,

lim
z→∞

lim
g→0

γRðzÞ
γSðzÞ

¼ 35

44
: ð42Þ

It is not clear whether there is any physical meaning in this
observation, so for now we treat it as a mere curiosity.
An interesting notion that is intertwined with the flow of

correlation functions at large momenta is that of momentum
locality, introduced in [28]. In brief, momentum locality is
the condition that the flow of any n-point correlation
function, measured in units of itself, tends to zero as all
of the momenta go to infinity. For example, for a two-point
function with a suitable norm j · j,
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lim
p2=k2→∞

jΓ̇ð2Þðp2Þj
jΓð2Þðp2Þj ¼ 0: ð43Þ

This ensures that a coarse-graining step does not influence
the physics at momenta that are larger than the scale that is
integrated out [39]. For a perturbatively nonrenormalizable
theory like gravity, this is a nontrivial condition—counting
powers of momenta shows that, generically, momentum
locality is expected to be violated. Surprisingly, the property
has been found to hold for some nontrivial graviton
correlation functions in fluctuation computations [22,28].
Since the present investigation is the first complete

momentum-dependent analysis in the background field
approximation, it is an important question to ask whether
momentum locality is fulfilled. For this, we will investigate
the running of the background two-point function in a flat
background. Due to our general setup, we can disentangle
the momentum dependence of the spin two and zero parts
of the propagator. For simplicity, we focus on an expansion
in powers of g, and only keep the leading term. Moreover,
in interpreting (43) in the essential scheme, we include the
extra term proportional to the RG kernel in the numerator.
With this in mind, in the spin two sector, we find

lim
p2=k2→∞

jΓ̇ð2Þðp2Þj2
jΓð2Þðp2Þj2

∼
4g
π

Z
∞

0

dz
RðzÞ − zR0ðzÞ

zþRðzÞ ≠ 0: ð44Þ

In the spin zero sector, we have

lim
p2=k2→∞

jΓ̇ð2Þðp2Þj0
jΓð2Þðp2Þj0

∼
95g
6π

Z
∞

0

dz
RðzÞ−zR0ðzÞ

zþRðzÞ ≠0: ð45Þ

We conclude that, even in this simple limit, momentum
locality is not fulfilled in our setup. This highlights the
importance of going beyond the background field approxi-
mation, and gives a concrete motivation to extend the
essential scheme to fluctuation computations.

C. Numerical solutions

To investigate the phase diagram, the beta and gamma
functions have to be evaluated numerically. Note that the
general structure of the set of equations is

βg ¼ aβðgÞ þ bβðgÞβg þ cβðgÞγg
þ dβðgÞ½γR� þ eβðgÞ½γS�; ð46Þ

γg ¼ agðgÞ þ bgðgÞβg þ cgðgÞγg
þ dgðgÞ½γR� þ egðgÞ½γS�; ð47Þ

γRðzÞ ¼ aRðg; zÞ þ bRðg; zÞβg þ cRðg; zÞγg
þ dRðg; zÞ½γR� þ eRðg; zÞ½γS�; ð48Þ

γSðzÞ ¼ aSðg; zÞ þ bSðg; zÞβg þ cSðg; zÞγg
þ dSðg; zÞ½γR� þ eSðg; zÞ½γS�: ð49Þ

Here, ax, bx, cx are threshold integrals, and dx, ex are linear
integral operators (also in the form of threshold integrals).
This makes it clear that we are dealing with a linear system
of mixed algebraic and integral equations. By formally
solving the first two equations for βg and γg, we can set up
two integral equations for γR;S, whose solution can then be
fed back to compute βg and γg.
There are different strategies to solve this set of equa-

tions. The most straightforward way is to expand the
functions γR, γS in a suitable set of orthogonal functions,
and reducing the system to a purely algebraic one using
either the inner product related to the basis, or a collocation
method [68]. We will do so in the following. While this
comes with many benefits and has been well-tested [69,70],
it is a purely numerical approach. Alternatives that allow to
keep some formal generality, e.g., regulator dependence,
are a systematic expansion in powers of g,11 and the use of
the Liouville-Neumann series. Both these methods are
extremely tedious in the present case, so we refrain from
using them here.
To make our numerical setup concrete, we identify all

regulator shape functions, and specifically pick

RðzÞ ¼ e−z; ð50Þ

since it is numerically well-behaved. We will focus on the
fixed point with the smallest positive value for g. For all
numerical results, we will use pseudo-spectral methods,
using rational Chebyshev functions [71] as a basis in the
momentum argument to expand γR;S, together with a
collocation method. As a compactification parameter,
we chose L ¼ 10. Within a truncation of order 15, we
obtain the gamma functions numerically by using another
collocation grid in g of order 10 in the range g∈ ½0; 3=10�.
This gives us a high precision interpolation for both γR;S
for all z in the specified range for g.12 From that, we can
evaluate both γg and the actual beta function of g.

11In previous work [44,45], the fixed point was found to be at
rather small values of g so that one likely has to retain only a
small number of terms to obtain a satisfactory precision.

12We have used 32 digits in the computation, and used
Mathematica’s NIntegrate routine to evaluate integrals numeri-
cally. The results are quantitatively stable upon increasing the
pseudo-spectral truncation order to 18 in z-direction, to 24 in
g-direction, and the numerical precision to 48 digits. Differences
between these two choices do not exceed 4 × 10−7 for γR;S and
3 × 10−10 for βg and γg, and the digits given for all fixed point
quantities remain unchanged. Evaluating the defining integral
equations for γR;S using our pseudospectral solution at the lower
resolution, we find a maximal global error of about 2 × 10−8 in
the whole specified g-range and for all momenta.
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Finally, we can discuss the results. To set a benchmark,
we start with a truncation where we completely neglect
both γR;S. While this level of truncation has been done
before, our regulator choice differs, so we will get slightly
different numbers for the fixed point value and the critical
exponent. The fixed point values for g and γg read

g ¼ 0.2830; γg ¼ −0.9182; ð51Þ

the critical exponent being

θ ¼ 2.338: ð52Þ

Values of couplings and gamma functions at fixed points
are not universal, so we should not expect results that are
necessarily close to the ones in [44]. Indeed, our value for g
at the fixed point is about half of theirs. The gamma
function γg is about −1, but also there the difference is
roughly 20%. By contrast, the critical exponent is a
universal quantity, and indeed, our estimate is extremely
close to the one in [44] at the same level of truncation, with
a difference of 1%. This is despite significant differences in
the choice of the regulator.
Let us now include the momentum-dependent gamma

functions γR;S. In Fig. 1, we show the beta function βg as
well as the gamma function γg in the range g∈ ½0; 3=10�,
which includes the relevant fixed point. The fixed point is
now located at

g ¼ 0.2819; γg ¼ −0.9164; ð53Þ

with the critical exponent

θ ¼ 2.347: ð54Þ

This result is extremely remarkable: the inclusion of γR;S is
practically without effect, which means that these functions

are completely unimportant to obtain precision results. The
critical exponent changes by a mere 0.4%. To illustrate this
point even more, in Fig. 2, we show the difference of both
βg and γg upon including γR;S, that is

Δβg ¼ βg −


βg

���
γR;S¼0

�
; Δγg ¼ γg −



γg

���
γR;S¼0

�
: ð55Þ

The difference is at the low per mille level over the whole
range g∈ ½0; 3=10�.
Moving on to the gamma functions themselves, their

fixed point form is indicated in Fig. 3, for both small values
of the argument, and globally with the help of a compacti-
fication. We can see some of the features that we discussed
analytically earlier: for small momenta, γS is positive while
γR is negative, and both tend to zero from below at large
arguments. As another quality check of the numerics, we
checked that (42) is fulfilled. After subtracting a constant of
the order of 10−7 that is numerical noise due to the gamma
functions not going exactly to zero,13 we can reproduce
(42) at a level of 0.3%. This discrepancy is relatively large
(from the perspective of pseudospectral methods) since we
are probing sub-leading effects.
In Fig. 4 we also show the two gamma functions in the

full g-range that we investigated. As required, for g → 0,
both gamma functions vanish, and they slowly build up
upon increasing g. The largest absolute value is reached
around vanishing argument for γS, and at z ≈ 6 for γR, but
both of them stay rather small, not exceeding 0.06 in
absolute value. This is of course also consistent with our
earlier findings that the system is virtually unchanged under
the inclusion of these gamma functions.

FIG. 1. Beta function βg and gamma function γg as functions of
g, the effect of γR;S being included. The horizontal dashed line
indicates zero, and the vertical dashed line indicates the fixed
point value.

FIG. 2. Differences of the beta function Δβg and gamma
function Δγg as functions of g as defined in (55). The horizontal
dashed line indicates zero, and the vertical dashed line indicates
the fixed point value. The difference is at the per mille level in the
shown range for g.

13Here we have used a Gauss grid. By using a Lobatto grid
instead, one could impose that the gamma functions vanish
exactly asymptotically, but this makes practically no difference
for all other results.

BENJAMIN KNORR PHYS. REV. D 110, 026001 (2024)

026001-10



Finally, we briefly discuss the beta function for the
coupling of the Euler density. Its beta function is extremely
compact,

Θ̇¼ 1

32π2

�
19

18

2− βg−2g
g þ 2γg

1− 2λ
þ 11

90

�
2−

βg − 2g

2g

��
: ð56Þ

As noted in the appendix, there is no direct contribution
coming from the gamma functions γR;S, although they
contribute indirectly through βg and γg. We depict it in
Fig. 5. In the whole g-range, it is positive. This agrees with
the findings of [67] in the standard scheme, indicating that
“complicated” topologies (i.e., those with strongly negative
Euler characteristic) contribute most to the Euclidean path
integral at this fixed point.

FIG. 3. Gamma functions γR;S evaluated at the fixed point, for small momentum arguments (left panel) and globally (right panel). Both
functions are numerically small over the whole momentum range, and go to zero at infinity, as expected.

FIG. 4. Gamma functions γR;S in the range g∈ ½0; 3=10� and z∈ ½0; 30�. In the limit g → 0, both gamma functions vanish as required.
Increasing g they both increase approximately linearly in the whole displayed region, but remain small.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0075

0.0080

0.0085

0.0090

g

FIG. 5. Beta function of the coupling of the topological Euler
term as functions of g. The vertical dashed line indicates the fixed
point value. Over the whole g-range, it is positive.
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V. SUMMARY AND OUTLOOK

In this work, we investigated general momentum-
dependent field redefinition in quantum gravity. Such field
redefinitions are extremely useful to efficiently compute
quantum-gravitational scattering amplitudes from first
principles, but also play an important role in the definition
of critical exponents in the gravitational asymptotic safety
scenario.
In Sec. II, we first discussed some general aspects of field

redefinitions in the context of scattering amplitudes. We
have shown that for a two-to-two scattering event, we can
perform a field redefinition so that almost all nontrivial
information is contained in the contact diagram. We also
spelled out some requirements for the discussion of the
topic: the spectrum of the theory has to be fixed a priori,
and field redefinitions should not introduce or remove any
degrees of freedom, which has to be checked a posteriori.
Finally, we discussed a concrete example of a nonlocal field
redefinition, in analogy to a similar proposal arguing that
the Goroff-Sagnotti term can be removed [54]. In this
example, the interaction term in a scalar field theory could
be removed, leading to a trivial scattering amplitude for the
newly defined field. From this example we conclude that
such nonlocal field redefinitions should be used with
extreme care as they can significantly change the standard
physical interpretation of any computation.
In Sec. III, we briefly reviewed the FRG and spelled out

our setup. Many details were put into the appendices,
including the full derivation of all flow equations, and the
computation of a specific heat kernel coefficient. We point
out the remarkable fact that thanks to the MES, practically
all computations could be carried out by hand.
Following this, in section IV, we analyzed the flow

equations. We showed that the fixed point found previously
in the MES [44] is extremely stable upon taking the
momentum-dependent field redefinitions into account.
The single critical exponent of our system changed at the
subpercent level. This is a strong indication for the excellent
convergence of the fixed point in the MES, and suggests that
indeed the fixed point resides in [GR].
To progress further on the path to asymptotically safe

scattering amplitudes, the next step is to either include
operators with more than two curvatures (to resolve graviton
scattering), or to include nonminimal momentum-dependent
gravity-matter vertices (to resolve gravity-mediated scatter-
ing). Some open questions about the essential scheme also
have to be addressed, including how to properly treat field
redefinitions that are (partially) a gauge transformation, and
how to perform the a posteriori check that the field
redefinition itself, and not only the RG kernel, is well-
defined along the flow. Along a different direction, it would
be worthwhile, and extremely challenging, to repeat the
current computation in the standard scheme to understand
the differences between the standard and the MES, and the
phase diagram of quantum gravity more globally, not

restricted to [GR]. We hope to come back to these
interesting questions at a future point.
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APPENDIX A: HEAT KERNEL

In this appendix we collect the necessary heat kernel
formulas. To our knowledge, one of them, (A46), did not
appear in the literature before, so we use momentum space
techniques to compute it. To perform the contractions
of the tensors, we used the Mathematica package suite
xAct [64–66].

1. Definitions and useful formulas

We start by recalling some definitions. The general heat
kernel integral kernel is defined as

fðzÞ ¼
Z

1

0

dξ e−zξð1−ξÞ ¼
X
j≥0

1

ð3
2
Þj

�
−
z
4

�
j
; ðA1Þ

where

ðaÞb ¼
Γðaþ 1Þ

Γða − bþ 1Þ ; ðA2Þ

is the Pochhammer symbol. Next, we are often working
with the inverse Laplace transform, denoted by L−1:

gðzÞ ¼
Z

∞

0

dsL−1½gðzÞ�ðsÞe−sz: ðA3Þ

Generally, we only use L−1 in a formal way, that is in
intermediate steps of computations. We will assume that all
such transformations are, or can be made, well-defined.
Some well-known formulas [72] areZ

∞

0

dsL−1½gðzÞ�ðsÞs−n ¼ 1

ΓðnÞ
Z

∞

0

dz zn−1gðzÞ; ðA4Þ
Z

∞

0

dsL−1½gðzÞ�ðsÞ ¼ gð0Þ; ðA5Þ
Z

∞

0

dsL−1½gðzÞ�ðsÞsn ¼ ð−1ÞngðnÞð0Þ; ðA6Þ

where n ≥ 1. The first relation can be proven by inserting
the inverse Laplace transform on the right-hand side and
integrating over z, whereas the other two formulas follow
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directly from the definition of the inverse Laplace transform.
Next, we have the following formula:

Z
∞

0

dsL−1½gðzÞ�ðsÞ
fðsΔÞ −Pn

k¼0
1

ð3
2
Þk
ð− sΔ

4
Þk

ðsΔÞnþ1
¼ −

1

ð3
2
Þn

�
−
1

4

�
n
Z 1

4

0

ð1 − 4uÞnþ1
2gðuΔÞ; n ≥ −1: ðA7Þ

Note how in the numerator on the left-hand side, we subtract the first n terms of the Taylor series of the integral kernel f, so
that there are no poles for small Δ. This gives a natural way of grouping specific terms of the nonlocal heat kernel. The
formula can be proven by inserting the inverse Laplace transform on the right-hand side and performing the integration over
u. Concretely, the first few cases read

Z
∞

0

dsL−1½gðzÞ�ðsÞfðsΔÞ ¼ 2

Z
1
4

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4u

p gðuΔÞ;
Z

∞

0

dsL−1½gðzÞ�ðsÞ fðsΔÞ − 1

sΔ
¼ −

Z
1
4

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4u

p
gðuΔÞ;

Z
∞

0

dsL−1½gðzÞ�ðsÞ fðsΔÞ − 1þ sΔ
6

ðsΔÞ2 ¼ 1

6

Z
1
4

0

ð1 − 4uÞ3=2gðuΔÞ;
Z

∞

0

dsL−1½gðzÞ�ðsÞ fðsΔÞ − 1þ sΔ
6
− ðsΔÞ2

60

ðsΔÞ3 ¼ −
1

60

Z
1
4

0

ð1 − 4uÞ5=2gðuΔÞ: ðA8Þ

As a useful generalization to (A7), we can derive

Z
∞

0

dsL−1½gðzÞ�ðsÞ 1
sj
fðsΔÞ −Pn

k¼0
1

ð3
2
Þk
ð− sΔ

4
Þk

ðsΔÞnþ1

¼ −
1

ð3
2
Þnþj

�
−
1

4

�
nþj

Δj

Z 1
4

0

ð1 − 4uÞðnþjÞþ1
2gðuΔÞ

þ 1

ð3
2
Þnþ1

�
−
1

4

�
nþ1 1

ΓðjÞ
Z

∞

0

dz zj−12F1

�
1; 1 − j; nþ 5

2

���� Δ4z
�
gðzÞ; n ≥ −1; j ≥ 0: ðA9Þ

This can be proven by adding zero to the numerator on the left-hand side in the form of adding and subtracting additional
terms of the Taylor series, then using (A4) and (A7), and finally performing a sum. We emphasize the difference in the
factors in front of the integrals in the two terms. As a matter of fact, the formula (A9) includes (A4), (A5) and (A7) as
special cases.
Finally, (A7) motivates the introduction of the short-hand

ffc0;…; cnggz ¼
Xn
j¼0

cj
fðzÞ −Pn−1

k¼0
1

ð3
2
Þk
ð− z

4
Þk

zn
¼ c0fðzÞ þ c1

fðzÞ − 1

z
þ…; ðA10Þ

and the integral measure

μðc0;…; cnjuÞ ¼
Xn
j¼0

4cj
ð3
2
Þj−1

�
−
1

4

�
j
ð1 − 4uÞj−1

2 ¼ 2c0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4u

p − c1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4u

p
þ c2

6
ð1 − 4uÞ3=2 þ…: ðA11Þ

This allows us to easily express the nonlocal heat kernel coefficients, and to perform the inverse Laplace transform,

Z
∞

0

dsL−1½gðzÞ�ðsÞffc0;…; cnggsΔ ¼
Z

1
4

0

duμðc0;…; cnjuÞgðuΔÞ; ðA12Þ

in a compact fashion. Note that μ is homogeneous of degree one in the cj, so that
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μðαc0;…; αcnjuÞ ¼ αμðc0;…; cnjuÞ: ðA13Þ

We will sometimes use this property to normalize the
arguments in such a fashion that the measure is 1 at u ¼ 0.

2. Momentum space techniques

Let us briefly describe how to compute nonlocal heat
kernel coefficients with the help of momentum space
techniques. To set the stage, we follow the notation of
[73] and start out with a Laplace-type operator Δ ¼ −D2

that shall include a general connection within the covariant
derivative D. The bundle curvature corresponding to this
general connection is defined via

F μν ¼ −½Dμ; Dν�: ðA14Þ

To keep some generality, we will also allow for an
endomorphism E to be added to this operator.
The heat kernel H of the operator Δþ E solves the heat

equation for some fiducial heat kernel “time” s,

ð∂sþΔþEÞHðx;y;sÞ¼0; Hðx;y;0Þ¼δðx−yÞ1: ðA15Þ

Inspired by the solution for a flat manifold, we make the
general ansatz

Hðx; y; sÞ ¼
�

1

4πs

�d
2

e−
σðx;yÞ
2s Ωðx; y; sÞ: ðA16Þ

Here, σðx; yÞ is one half of the geodesic distance, andΩ has
to be computed. The connection to the trace of the

exponential of our differential operator then comes in
the form of taking the coincidence limit of the heat kernel,

Tr½e−sðΔþEÞ� ¼ tr
Z

ddx
ffiffiffi
g

p
Hðx; x; sÞ

¼
�

1

4πs

�d
2

tr
Z

ddx
ffiffiffi
g

p
Ω̄ðsÞ: ðA17Þ

Here, Tr indicates a functional trace and tr a trace over
bundle indices, and we introduced the short-hand for the
coincidence limit Ω̄ðsÞ ¼ Ωðx; x; sÞ.
From previous computations [74–77] as well as sym-

metry considerations, we know that Ω̄ðsÞ has an asymptotic
expansion in powers of the curvature of the form

Ω̄ðsÞ ∼ 1þ s a1ðsΔÞR1þ s a2ðsΔÞEþ…: ðA18Þ

An efficient way to compute the coefficients ai is to
expand both the trace and the general form in an expansion
about a flat background metric as well as a vanishing
endomorphism and gauge connection, and then to compute
the trace in momentum space. Concretely, we use an
expansion of the Laplacian of the form

Δþ E ¼ □þ ðΔþ E −□Þ≡□þ
X
i≥1

di; ðA19Þ

where □ ¼ −∂2 is the flat background Laplacian and di is
an operator with exactly i fluctuation fields. To expand the
exponential of this operator, we then use [19]

e−sðΔþEÞ ¼
"
1þ

X
j≥0

ð−sÞjþ1

ðjþ 1Þ! ½□;d1�j þ
X
j≥0

ð−sÞjþ1

ðjþ 1Þ! ½□;d2�j

þ 1

2

 X
j;k≥0

ð−sÞjþkþ2

ðjþ 1Þ!ðkþ 1Þ! ½□;d1�j½□;d1�k þ
X
j≥0

X
k≥1

ð−sÞjþkþ2

ðjþ kþ 2Þ! ½□; ½d1; ½□;d1�k��j
!
þ…

#
e−s□: ðA20Þ

Here, we have introduced the multicommutator defined by

½X; Y�n ¼ ½X; ½X; Y�n−1�; ½X; Y�1 ¼ ½X; Y� ¼ XY − YX; ½X; Y�0 ¼ Y: ðA21Þ

In the final step, we assign momenta pj to the fluctuation
fields contained in the di, and we call the traced-over
momentum q. The functional trace then boils down to a
momentum integral,

Tr ¼
Z

ddx
ffiffiffi
η

p
tr
Z

ddq
ð2πÞd : ðA22Þ

Here, η is the flat metric. Clearly, the first term in the
expansion (A20) then gives the flat term in (A18) via

Z
ddq
ð2πÞd e

−sq2 ¼
�

1

4πs

�d
2

: ðA23Þ

Let us now briefly illustrate how the curvature terms can
be computed in practice. For this, we compute the nonlocal
diagonal heat kernel to linear order in curvature, that is the
coefficients a1 and a2. To this effect, we consider a general
field ΦA where A is any collection of bundle or spacetime
indices. To first order in fluctuations, we then have
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½ðΔþ EÞΦ�A ≃□ΦA þ d1
A
BΦB; ðA24Þ

with

d1
A
B ¼ hμν∂μ∂νδBA þ

�
∂αhαμδBA −

1

2
∂
μhδBA − 2AAμ

B

�
∂μ − ∂μAAμ

B þ EA
B: ðA25Þ

Here A is the connection in the bundle that ΦA lives in. Calling the momentum of each of the fluctuation fields p, we have

Tr
X
j≥0

ð−sÞjþ1

ðjþ 1Þ! ½□;d1�je−s□ ¼
Z

ddx
ffiffiffi
η

p
tr
Z

ddq
ð2πÞd

X
j≥0

ð−sÞjþ1

ðjþ 1Þ! ðp
2 þ 2pqxÞj

×

�
−hμνqμqνδBA −

�
pαhαμδBA −

1

2
pμhδBA þ 2iAAμ

B

�
qμ − ipμAAμ

B þEA
B

�
e−sq

2

: ðA26Þ

In this, x is the cosine of the angle between p and q, so that pμqμ ¼ pqx. We now need the integral relations

Z
ddq fðp; q; xÞqμ ¼ pμ

Z
ddq fðp; q; xÞpqx

p2
; ðA27Þ

Z
ddq fðp; q; xÞqμqν ¼

�
ημν −

pμpν

p2

�Z
ddq fðp; q; xÞ 1

d − 1
ð1 − x2Þq2 þ pμpν

p2

Z
ddq fðp; q; xÞq2x2: ðA28Þ

These can be derived by contracting both sides with either momenta or metrics. We also note that the sum together with the
exponential can be written in the following way:

X
j≥0

ð−sÞjþ1

ðjþ 1Þ! ðp
2 þ 2pqxÞje−sq2 ¼ −s

Z
1

0

da e−sðaðp2þ2pqxÞþq2Þ: ðA29Þ

This rewriting as an integral over an exponential is generally helpful to perform the momentum integral over q. Inserting all
expressions and rewritings, exchanging integrals in a convenient way (assuming without proof that this is valid) and
performing them, we get

Tr
X
j≥0

ð−sÞjþ1

ðjþ 1Þ! ½□;d1�j e−s□ ¼
�

1

4πs

�d
2

Z
ddx

ffiffiffi
η

p
tr

��
1

2
hþ

�
1

4
fðsp2Þ þ 1

2

fðsp2Þ− 1

sp2

�
ðhp2 − hμνpμpνÞ

�
1− sfðsp2ÞE

�
:

ðA30Þ

Here f is the general heat kernel function introduced in (A1). This expression can now be compared to the expansion of the
covariant expression (A18) to fix a1 and a2. The first term comes from the expansion of the determinant of the metric and
the identity operator, the second term is the linearized Ricci scalar, and the last term clearly corresponds to the
endomorphism. We thus read off

a1ðzÞ ¼
��

1
4
;
1
2

		
z
; ðA31Þ

a2ðzÞ ¼ ff−1ggz; ðA32Þ

reconfirming earlier computations, see e.g., [77].
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To compute higher orders of the heat kernel, it is also useful to note the relation

1

2

 X
j;k≥0

ð−sÞjþkþ2ð−1Þj
ðjþ 1Þ!ðkþ 1Þ! ðp

2 þ 2pqxÞjþk þ
X
k≥1

ð−sÞkþ2

ðkþ 2Þ! ð1 − ð−1ÞkÞðp2 þ 2pqxÞk
!
e−sq

2

¼ s2
Z

1

0

da
Z

a

0

db e−sðbðp2þ2pqxÞþq2Þ; ðA33Þ

which is similar to (A29).

Before we collect the heat kernel formulas that we need,
let us finally note that in this way, one cannot compute
topological terms at the lowest possible order. Concretely,
the four-dimensional Euler density is quadratic in curva-
ture, but the first nonvanishing flat-space correlation
function in any dimension is cubic in h. Since we already
know its heat kernel coefficient, we will simply take it from
the literature and not compute the heat kernel to order h3.

3. Nonlocal heat kernel coefficients

In this section we collect all heat kernel formulas that we
will need. Wherever we spell out the traces that we need
specifically for our system, we will restrict to the case
d ¼ 4. We will eventually use the completely trace-free

basis, with the trace-free Ricci tensor S defined by

Sμν ¼ Rμν −
1

d
gμνR; ðA34Þ

and the Weyl tensor C defined in the usual way.
Additionally, wherever we have a choice, we will use
the option with fewer indices. For example, due to

DαD½αCμν�ρσ ¼ 0; ðA35Þ

we can use the Bianchi identity to remove any occurrence
of ΔC and replace it by derivatives acting on S or the Ricci
scalar, and higher order curvature terms. As a consequence,
we have that

Z
ddx

ffiffiffi
g

p �
CμνρσΔnCμνρσ − 4

d − 3

d − 2
SμνΔnSμν þ

ðd − 2Þðd − 3Þ
dðd − 1Þ RΔnR

�
¼ OðR3Þ; n ≥ 1: ðA36Þ

For n ¼ 0, we just have the integral over the four-dimensional Euler density E on the left-hand side, which cannot be
eliminated from our basis in this way. For the form factors, we will keep R and S in our basis, and use the above equation to
remove any occurrence of C.

a. Zero derivatives

We will start with the standard heat kernel for an operator of Laplace type with endomorphism E. It reads

Tr½e−sðΔþEÞ� ≃
�

1

4πs

�d
2

Z
ddx

ffiffiffi
g

p
tr

�
1þ

��
1
4
;
1
2

		
sΔ
sR1þ ff−1ggsΔsEþ s2

180
E1

þ s2R

��
1
32

;
1
8
;−

1
8

		
sΔ
R1þ s2Rμνff0; 0; 1ggsΔRμν1

þ s2R

��
−
1
4
;−

1
2

		
sΔ
Eþ s2E

��
1
2

		
sΔ
Eþ s2F μν

��
0;−

1
2

		
sΔ
F μν

�
: ðA37Þ

Here, tr indicates the remaining trace over bundle indices. This result agrees with previous work, see e.g., [77].
We will now present the traced heat kernel coefficients for the individual modes in d ¼ 4 that appear in our computation,

transformed into our basis.
(i) Trace mode For the trace mode of the graviton, we have E ¼ 0 and F ¼ 0, so that

Tr0½e−sΔ� ≃
�

1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
1þ 1

6
s Rþ s2

180
Eþ s2R

��
1
32

;
1
8
;
1
8

		
sΔ
Rþ s2 Sμνff0; 0; 1ggsΔSμν

�
: ðA38Þ
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(ii) Ghost For the ghost (see (B3) below), we have E ¼ −Ric and trcF 2 ¼ −Riem2, so that

Trc½e−sðΔ−RicÞ� ≃
�

1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
4þ 5

3
sR −

11

180
s2Eþ s2R

��
1
2
; 1;

1
2

		
sΔ
Rþ s2 Sμν

��
1
2
; 2; 4

		
sΔ
Sμν

�
:

ðA39Þ

(iii) Traceless mode For the traceless mode of the graviton (see (B5) below), E ¼ 2
3
RΠTL − 2C, trTLE2 ¼ 3Riem2 −

6Ric2 þ 5R2 and trTLF 2 ¼ −6Riem2. This gives

TrTL½e−sðΔþEÞ� ≃
�

1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
9 −

9

2
sRþ 21

20
s2Eþs2R

��
17
32

;−
15
8
;
9
8

		
sΔ
Rþ s2 Sμνff3; 12; 9ggsΔSμν

�
:

ðA40Þ

b. One derivative

For our setup, the heat kernel with one derivative has to be computed only up to linear order in curvature. This is because
all curvature tensors and the metric have an even number of indices, so that there is at least one other derivative in the
insertion in the functional trace, which can only act on a curvature tensor. To this order, and up to total derivatives, one can
easily derive the relation

Tr½XμDμ e−sðΔþEÞ� ≃ −
1

2
Tr½ðDμXμÞe−sðΔþEÞ� þ

�
1

4πs

�d
2

Z
ddx

ffiffiffi
g

p
tr½XμDνff0; 1ggsΔsF μν�: ðA41Þ

c. Two derivatives I

We will furthermore need the heat kernel with two derivatives up to linear order, with a curvature insertion. Concretely,
we need

Tr½XαβDðαDβÞe−sðΔþEÞ�; ðA42Þ

where X is a tensor which is symmetric in the index pair ðαβÞ. Note that X in general also has bundle indices that we
suppress, and we assume that it is linear in curvature. For this trace, we find

Tr
�
XαβDðαDβÞe−sðΔþEÞ ≃ � 1

4πs

�d
2

Z
ddx

ffiffiffi
g

p
trXαβ

�
−

1

2s
gαβ1 −

1

2
gαβ

��
1
4
;
1
2

		
sΔ
R1

þ 1

2
gαβff1ggsΔEþ ff0;−1ggsΔRαβ1þ s

��
1
16

; 0;−
3
4

		
sΔ
DðαDβÞR1

þs

��
−
1
4
;
1
2

		
sΔ
DðαDβÞEþ sff0; 1ggsΔDðαDγF βÞγ

�
: ðA43Þ

d. Two derivatives II

Finally, we need the heat kernel with two derivatives up
to quadratic order in curvature. For this, we consider

Tr½XαβDðαDβÞe−sðΔþEÞ�; ðA44Þ

where X is a covariantly constant tensor (that is, con-
structed from metrics and deltas only) that is symmetric in

the index pair ðαβÞ. Note that X in general also has bundle
indices. The condition of covariant constancy simplifies the
computation of the necessary quadratic heat kernel coef-
ficients tremendously.
This trace splits into two contributions, since the two

derivatives can either act both on the exponential of the
world function, or on Ω—the cross-term vanishes in the
coincidence limit due to the properties of the world
function. This readily gives
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Tr½XαβDðαDβÞe−sðΔþEÞ� ¼ −
1

2s
Tr½Xαβgαβ e−sðΔþEÞ� þ

�
1

4πs

�d
2

tr½XαβDðαDβÞΩðsÞ�: ðA45Þ

The first term only needs the standard diagonal heat kernel coefficients. The second is the most complicated heat kernel
coefficient needed, and to our knowledge has not been reported previously in the literature. Neglecting total derivatives,
it reads

tr½XαβDðαDβÞΩðsÞ� ¼
Z

ddx
ffiffiffi
g

p
trXαβ

�
1

6
Rαβ1þ s R

�
−

1

15
þ
��

1
8
;
1
4

		
sΔ

�
Rαβ1þ s Rðαγð0ÞRβÞγ1þ s Rγδ

�
1

30

�
RðαγβÞ

δ1

þ s cE½RðαγδκRβÞγδκ − 2RγδRðαγβÞ
δ − 2RðαγRβÞγ þ RRαβ�1

þ s Rαβ

�
1

3
−
��

1
2

		
sΔ

�
Eþ s Rðαγ

�
1

6
þ ff0; 1ggsΔ

�
F βÞγ þ sF ðαγff0;−1ggsΔF βÞγ

þ s2R

��
1

128
;
7
64

;
5
32

;−
1
16

		
sΔ
DðαDβÞR1þ s2Rγδ

��
0; 0;

1
4
;
1
2

		
sΔ
DðαDβÞRγδ1

þ s2R

��
−

1
16

;−
1
2
;−

1
4

		
sΔ
DðαDβÞEþ s2E

��
1
8
;
1
4

		
sΔ
DðαDβÞE

þ s2Rff0; 0; 1ggsΔDðαDγF βÞγ þ s2E

��
0;
1
2
; 1

		
sΔ
DðαDγF βÞγ

þ s2DðαDγF βÞγ

��
0;−

1
2
;−1

		
sΔ
Eþ s2F γδ

��
0;−

1
8
;−

3
4

		
sΔ
DðαDβÞF γδ

�
: ðA46Þ

To construct the basis, we used that ΔRαβγδ can be written
in terms of Ricci tensors and scalars so that no form factor
can appear with any term involving a Riemann tensor.
Moreover, we used the Bianchi identity for the gauge field
strength, D½αF βγ� ¼ 0.
The coefficient cE cannot be computed via a direct

comparison with the flat expansion, since the expansion of
the tensor structure to second order in h around a flat
background vanishes. This is related to the fact that the
contraction of this tensor structure with the metric gives the
four-dimensional Euler density, which even in general
dimension only contributes at order h3 around a flat
background. We can however fix it by requiring consis-
tency of the formula for a specific choice of Xαβ.
Concretely, if we choose

Xαβ ¼ gαβ1; ðA47Þ

the total heat kernel (A44) reduces to a diagonal heat
kernel,

Tr
�
gαβ1DðαDβÞe−sðΔþEÞ¼Tr

�
−Δe−sðΔþEÞ

¼∂sTr
�
e−sðΔþEÞþTr

�
Ee−sðΔþEÞ:

ðA48Þ

Since we only need to compare a pure curvature term, we
can set E ¼ 0. We can clearly also restrict to local terms
with exactly four derivatives, and to d ¼ 4. Let us call this
trace T . This entails on the one hand

T ¼ −
4

2s
Tr½e−sΔ� þ 1

ð4πsÞ2 tr½−ΔΩðsÞ�jR2

¼ −
4

2s
1

ð4πsÞ2
Z ffiffiffi

g
p

tr

�
s2
�
1

80
R2 þ 1

60
SμνSμν þ

1

180
E

�
1

�
þ 1

ð4πsÞ2
Z ffiffiffi

g
p

tr

�
s

�
1

60
R2 þ 1

30
RμνRμν þ cEE

�
1

�

¼ s
ð4πsÞ2

Z ffiffiffi
g

p
tr

��
cE −

1

90

�
E1

�
: ðA49Þ

On the other hand, since the local four-derivative terms come with a power of s0 in d ¼ 4, we directly have

T ¼ ∂sTr½e−sΔ�jR2 ¼ 0: ðA50Þ
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This implies that the final coefficient is

cE ¼ 1

90
: ðA51Þ

One can easily check that the coefficient cE is independent
of the dimension by repeating the comparison for arbitrary
d. As an additional check, a direct comparison with the
local heat kernel with two derivatives in arbitrary dimen-
sion gives the same result.
The complete result (A46) was cross-checked with the

local heat kernel up to six derivatives, and we also checked
(A48) by comparing with the diagonal nonlocal heat
kernel (A37).

APPENDIX B: COMPUTATION
OF THE FUNCTIONAL TRACE

In this appendix we display the computation of the full
trace. Let us collect the main ingredients of our setup first.
Our starting action is

Γk ¼
Z

d4x
ffiffiffi
g

p �
1

16πGk
½2Λk − R� þ ΘkE

	
; ðB1Þ

together with a harmonic gauge fixing condition,

Γgf ¼ 1

32πGk

Z
d4x

ffiffiffī
g

p
ḡμνF μF ν; F μ ¼ D̄αhμα−

1

2
D̄μh:

ðB2Þ

An overbar indicates background quantities built from the
background metric ḡ. The resulting ghost action reads

Γc ¼ 1ffiffiffiffiffiffi
Gk

p
Z

d4x
ffiffiffī
g

p
c̄μΔ̄cμ

νcν; Δ̄cμ
ν¼ Δ̄δμν− R̄μ

ν: ðB3Þ

Following [45], we pick a regulator that is fully adapted to
this action and of type II [63]. Suppressing indices, we have

Rh ¼ 1

32πGk

�
RTLðΔ̄2ÞΠTL −RTrðΔ̄ÞΠTr


;

Rc ¼ 1ffiffiffiffiffiffi
Gk

p RcðΔ̄cÞ1; ðB4Þ

with

Δ̄2 ¼
�
Δ̄þ 2

3
R̄

�
ΠTL − 2C̄: ðB5Þ

In this, we have used the projectors

ΠTrμν
ρσ ¼

1

4
ḡμνḡρσ;

ΠTLμν
ρσ ¼ 1μνρσ −ΠTrμν

ρσ ¼
1

2
ðδμρδνσ þ δμσδ

ν
ρÞ−

1

4
ḡμνḡρσ;

ðB6Þ

and the symmetrized Weyl tensor

C̄μ
ρ
ν
σ ¼

1

2
ðC̄μ

ρ
ν
σ þ C̄ν

ρ
μ
σÞ: ðB7Þ

From this, we obtain the propagator

Gh ¼ 32πGk

�
GTLðΔ̄2ÞΠTL − GTrðΔ̄ÞΠTr


;

Gc ¼
ffiffiffiffiffiffi
Gk

p
GcðΔ̄cÞ1; ðB8Þ

with

GTL;TrðxÞ ¼ 1

xþRTL;TrðxÞ− 2Λk
; GcðxÞ ¼ 1

xþRcðxÞ :

ðB9Þ

Since the prefactor of the regulator (B4) includes Newton’s
constant, it is convenient to introduce

R̊TL;TrðzÞ ¼
�
2 −

ġ − 2g
g

�
RTL;TrðzÞ − 2zRTL;Tr0ðzÞ; R̊cðzÞ ¼

�
2 −

ġ − 2g
2g

�
RcðzÞ − 2zRc0ðzÞ; ðB10Þ

where ġ is the beta function of the dimensionless Newton’s constant. This takes into account the cancellation of the same
inverse prefactors in the propagators (B8).
To take into account the propagator form factors in the MES, we define the RG kernel

Ψμν ¼ γggμν þ gμνγRðΔÞRþ γSðΔ2ÞμναβSαβ: ðB11Þ

The modified flow equation reads

Γ̇k þ Ψμν
δΓk

δgμν
¼ 1

2
Tr

�
Gh

μνρσ

�
1ρστωk∂k þ 2

δΨτω

δgρσ

	
Rhτωκλ

�
− Tr½Gc

μνṘ
c νρ�: ðB12Þ
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The extra term on the left-hand side reads explicitly

Ψμν
δΓk

δgμν
¼ 1

16πGN

Z
d4x

ffiffiffi
g

p �ð4Λ − RÞðγg þ γRðΔÞRÞ þ SμνγSðΔ2ÞμναβSαβ


¼ 1

16πGN

Z
d4x

ffiffiffi
g

p �f2γgg2Λ − fγg − 4ΛγRð0ÞgR − RγRðΔÞRþ SμνγSðΔ2ÞμναβSαβ

: ðB13Þ

To project onto γS, we note that in a curvature expansion, it
is enough to compute the full momentum dependence of
terms quadratic in curvature. We thus can neglect the
endomorphism for the projection, SγSðΔ2ÞS ≃ SγSðΔÞS.
In the following, we will need an expression for the

variation of a form factor. Such a general variation reads

ðδfðOÞÞX ¼ −
Z

∞

0

dsL−1½fðOÞ�ðsÞs

×
Z

1

0

dα e−sαOðδOÞe−sð1−αÞOX: ðB14Þ

To perform some of the tensor contractions, we used the
Mathematica package suite xAct [64–66]. From now on, we

will suppress overbars, since all quantities below are
background quantities.

1. Flow overview

We will start with an overview of the different contri-
butions to the trace, i.e., the right-hand side of (B12). The
first part consists of the “standard” term and a specific part
of the RG kernel, namely that where the variation hits the
explicit metric factors, which gives an identity. Concretely,
this reads

F 1 ¼
1

2
Tr
�
Gh

μνρσfk∂kþ 2γgþ 2ðγRðΔÞRÞgRhρσκλ

: ðB15Þ

Inserting the explicit expressions for the propagator and
regulator, (B8) and (B4), we find

F 1 ¼
1

2
Tr

�
ðR̊TLðΔ2Þ þ 2ðγg þ ðγRðΔÞRÞÞRTLðΔ2ÞÞGTLðΔ2ÞΠTL

þ ðR̊TrðΔÞ þ 2ðγg þ ðγRðΔÞRÞÞRTrðΔÞÞGTrðΔÞΠTr

�
: ðB16Þ

Using the inverse Laplace transform L−1 w.r.t. Δ2 or Δ, we split this further into individual contributions where we simply
can insert the heat kernel coefficients. Concretely,

FTL;1
1 ¼ 1

2

Z
∞

0

dsL−1½ðR̊TLðΔ2Þ þ 2γgRTLðΔ2ÞÞGTLðΔ2Þ�ðsÞTrTL½e−sΔ2 �; ðB17Þ

FTL;2
1 ¼

Z
∞

0

dsL−1½RTLðΔ2ÞGTLðΔ2Þ�ðsÞTrTL½ðγRðΔÞRÞe−sΔ2 �; ðB18Þ

FTr;1
1 ¼ 1

2

Z
∞

0

dsL−1½ðR̊TrðΔÞ þ 2γgRTrðΔÞÞGTrðΔÞ�ðsÞTr0½e−sΔ�; ðB19Þ

FTr;2
1 ¼

Z
∞

0

dsL−1½RTrðΔÞGTrðΔÞ�ðsÞTr0½ðγRðΔÞRÞe−sΔ�: ðB20Þ

Here, the label on the trace indicates the type of trace that has to be performed: the label 0 indicates a scalar trace, whereas
the label TL indicates a traceless trace, that is

TrTLX ¼ TrΠTLX: ðB21Þ

Moving on to the other contributions, we next discuss the variation of the Ricci scalar (without the variation of the form
factor which will be dealt with next) in the RG kernel. This reads
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F 2 ¼ Tr

�
Gh

μνρσgτω
δR
δgρσ

γRðΔÞRh τωκλ

�
: ðB22Þ

Due to the appearance of the explicit metric factor, this
reduces to

F 2 ¼ Tr0

�
gρσ

δR
δgρσ

γRðΔÞRTrðΔÞGTrðΔÞ
�
: ðB23Þ

The necessary variation can be computed easily:

gρσ
δR
δgρσ

¼ 3Δ − R: ðB24Þ

Splitting the resulting trace into two parts again, we
have

F 1
2 ¼ 3

Z
∞

0

dsL−1½ΔγRðΔÞRTrðΔÞGTrðΔÞ�ðsÞTr0½e−sΔ�;

ðB25Þ

F 2
2 ¼ −

Z
∞

0

dsL−1½γRðΔÞRTrðΔÞGTrðΔÞ�ðsÞTr0½Re−sΔ�:

ðB26Þ

To finish off the contribution stemming from γR, we
now discuss the variation of the gamma function itself.
Following the general formula (B14), we have

F 3 ¼ −Tr
�
Gh

μνρσgτω

Z
∞

0

dtL−1½γRðΔÞ�ðtÞt

×
Z

1

0

dα

�
e−tαΔ

δΔ
δgρσ

e−tð1−αÞΔR
	
Rh τωκλ

�
: ðB27Þ

Once again the appearance of the explicit metric factor
restricts this contribution to the trace component. With the
variation

gρσ

�
δΔ
δgρσ

R

�
¼ gρσ

�
ðDρDσRÞ −DðρðDσÞRÞ þ 1

2
gρσDκðDκRÞ

�

¼ ðDκRÞDκ − 2ðΔRÞ; ðB28Þ

we find

F 3 ¼ −
Z

∞

0

dtL−1½γRðΔÞ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔRTrðΔÞGTrðΔÞ�ðsÞ

× Tr0
�fDκe−tð1−αÞΔRgDκe−sΔ − 2fΔe−tð1−αÞΔRge−sΔ: ðB29Þ

For this contribution in particular, there is a further simplification. Here we are only interested in the scalar heat kernel to
linear order in the curvature. To this order, we have the identity

Tr0½XμDμe−sΔ� ≃ −
1

2
Tr0½ðDμXμÞe−sΔ�: ðB30Þ

This entails that

F 3 ¼
3

2

Z
∞

0

dtL−1½γRðΔÞ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1
�
e−tαΔRTrðΔÞGTrðΔÞðsÞTr0�fΔe−tð1−αÞΔRge−sΔ: ðB31Þ

Now we are moving on to the contribution stemming from γS. We will first discuss the contribution stemming from the
variation of S only. For this, we find

F 4 ¼ Tr

�
Gh

μνρσ
δSαβ
δgρσ

γSðΔ2ÞτωαβRhτωκλ

�
: ðB32Þ

Due to the projector property of γS, this receives contributions only from the traceless sector. Moreover, the explicit
variation reads
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ΠTL
μνρσ

δSαβ
δgρσ

ΠTLαβγδ ¼ 1

4
ð2Δ − RÞΠTL

μν
γδ þ ΠTL

μν
κλ½Dκδλ

τDω�ΠTL
τω

γδ

≡
�
1

2
Δ2 −

7

12
Rþ C

�
ΠTL

μν
γδ þ ½X̃αβ�μνγδDαDβ

≡
�
1

2
Δ2 −

5

12
Rþ 1

2
Cþ S

�
ΠTL

μν
γδ þ ½Xαβ�μνγδDðαDβÞ: ðB33Þ

Here we collected terms into an explicit Δ2, and introduced the covariantly constant tensor

½Xαβ�μνγδ ¼ ΠTL
μν

κðaΠTLβÞ
κ
γδ: ðB34Þ

Furthermore, we introduced the traceless tensor

Sμ
ρ
ν
σ ¼

1

2

�
Sμρδνσ þ Sνρδμσ −

1

2
Sμνgρσ −

1

2
gμνSρσ

�
: ðB35Þ

With this, we can split the trace into

F 1
4 ¼

1

2

Z
∞

0

dsL−1½Δ2γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞTrTL½e−sΔ2 �; ðB36Þ

F 2
4 ¼ −

5

12

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞTrTL½Re−sΔ2 �; ðB37Þ

F 3
4 ¼

1

2

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞTrTL½Ce−sΔ2 �; ðB38Þ

F 4
4 ¼

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞTrTL½Se−sΔ2 �; ðB39Þ

F 5
4 ¼

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞTrTL½XαβDðαDβÞe−sΔ2 �: ðB40Þ

The contribution F 5
4 is the most difficult to compute since it needs the complete nonlocal heat kernel with two derivatives.

The final piece is the variation of γS. Once again following the general variation (B14), we first have

F 5 ¼ −Tr
�
Gh

μνρσ

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα

�
e−tαΔ2

δΔ2τω
αβ

δgρσ
e−tð1−αÞΔ2Sαβ

	
Rh τωκλ

�
: ðB41Þ

Once again due to the projector properties of all objects involved, this expression only involves the traceless sector. We can
thus write it as

F 5 ¼ −TrTL
�Z

∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα

�
δΔ2τω

αβ

δgρσ
e−tð1−αÞΔ2Sαβ

	
e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ

�
: ðB42Þ

The necessary variation reads

ΠTL
ρσ

κλ

�
δΔ2τω

αβ

δgρσ
Sαβ

�
¼ ½A1

αβ�τωκλSαβ þ ½A2
αβγδ�τωκλðDðγDδÞSαβÞ

þ ½A3
αβγδ�τωκλðDγSαβÞDδ þ ½A4

αβγδ�τωκλSαβDðγDδÞ: ðB43Þ

Here A1 is linear in curvature and A2;3;4 are constructed from metrics alone. The explicit expressions for the Ai is rather
lengthy, but straightforward to compute. By construction, they are all traceless in the index pairs ðαβÞ, ðτωÞ and ðκλÞ. With
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this, we can split the final trace contribution into

F 1
5 ¼ −

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1
�
e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ

ðsÞ
× TrTL

��
e−tð1−αÞΔ2Sαβ

�
Aαβ
1 e−sΔ2


; ðB44Þ

F 2
5 ¼ −

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

× TrTL½
�
DðγDδÞe−tð1−αÞΔ2Sαβ

�
Aαβγδ
2 e−sΔ2


; ðB45Þ

F 3
5 ¼ −

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1
�
e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ

ðsÞ
× TrTL

��
Dγe−tð1−αÞΔ2Sαβ

�
Aαβγδ
3 Dδe−sΔ2


; ðB46Þ

F 4
5 ¼ −

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1
�
e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ

ðsÞ
× TrTL

��
e−tð1−αÞΔ2Sαβ

�
Aαβγδ
4 DðγDδÞe−sΔ2


: ðB47Þ

Note that since A1 is linear in curvature, F 1
5 only needs the flat heat kernel. As a matter of fact, one finds

F 1
5 ∝ ½A1

αβ�τωκλΠTL
κλ
τω ¼ 0: ðB48Þ

We also note that for the other contributions, we only need the heat kernel linear in curvature. The flat part drops out,
because S is traceless, and we are not interested in total derivatives which could result from contractions of the form
DμSμν ¼ 1

2
DνR. For F 4

5 one might expect that there could be a contribution from the flat heat kernel since Δ2 also has
curvature terms. It turns however out that the corresponding contraction vanishes.
Besides the gravitational contribution, there is also the ghost contribution F c, which we display in Sec. B 3.

2. Graviton contribution

We now compute the gravitational contribution to the RG flow term by term, showing all intermediate steps.

a. F 1

(i) FTL;1
1 The first contribution is simply given by the trace of the operator Δ2:

FTL;1
1 ¼ 1

2

Z
∞

0

dsL−1½ðR̊TLðΔ2Þ þ 2γgRTLðΔ2ÞÞGTLðΔ2Þ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
9−

9

2
sRþ 21

20
s2Eþ s2R

��
17
32

;−
15
8
;
9
8

		
sΔ
Rþ s2 Sμνff3; 12; 9ggsΔSμν

�
: ðB49Þ

With the formulas for the inverse Laplace transform collected in the previous appendix, we can rewrite this as

FTL;1
1 ¼ 1

32π2

Z
d4x

ffiffiffi
g

p �
9

Z
∞

0

dz zðR̊TLðzÞ þ 2γgRTLðzÞÞGTLðzÞ

−
9

2
R
Z

∞

0

dzðR̊TLðzÞ þ 2γgRTLðzÞÞGTLðzÞ þ 21

20
ðR̊TLð0Þ þ 2γgRTLð0ÞÞGTLð0ÞE

þ 1

32
R
Z

1
4

0

du μð17;−60; 36juÞðR̊TLðuΔÞ þ 2γgRTLðuΔÞÞGTLðuΔÞR

þ 3 Sμν
Z 1

4

0

du μð1; 4; 3juÞðR̊TLðuΔÞ þ 2γgRTLðuΔÞÞGTLðuΔÞSμν
�
: ðB50Þ
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Here we pulled out factors so that the measure has integer arguments which are relatively prime and as small as
possible.

(ii) FTL;2
1 The second contribution reads

FTL;2
1 ¼

Z
∞

0

dsL−1½RTLðΔ2ÞGTLðΔ2Þ�ðsÞ
�

1

4πs

�
2
Z

d4x
ffiffiffi
g

p ðγRðΔÞRÞ
�
9þ 9s

��
−

5
12

;
1
2

		
sΔ
R

�
: ðB51Þ

This reduces to

FTL;2
1 ¼ 1

16π2

Z
d4x

ffiffiffi
g

p �
9 γRð0ÞR

Z
∞

0

dz zRTLðzÞGTLðzÞ

þ 9

2
ðγRðΔÞRÞ

�Z 1
4

0

du μ

�
0;−

5

6
; 1

����u
�
ΔRTLðuΔÞGTLðuΔÞ −

Z
∞

0

dzRTLðzÞGTLðzÞ
�
R

�
: ðB52Þ

Here we pulled out a factor so that the integrals in the last line have a unit prefactor within the brackets.
(iii) FTr;1

1 The third contribution is

FTr;1
1 ¼ 1

2

Z
∞

0

dsL−1½ðR̊TrðΔÞ þ 2γgRTrðΔÞÞGTrðΔÞ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
1þ 1

6
sRþ s2

180
Eþ s2R

��
1
32

;
1
8
;
1
8

		
sΔ
Rþ s2 Sμνff0; 0; 1ggsΔSμν

�
: ðB53Þ

This simplifies into

FTr;1
1 ¼ 1

32π2

Z
d4x

ffiffiffi
g

p �Z
∞

0

dz zðR̊TrðzÞ þ 2γgRTrðzÞÞGTrðzÞ

þ 1

6
R
Z

∞

0

dzðR̊TrðzÞ þ 2γgRTrðzÞÞGTrðzÞ þ 1

180
ðR̊Trð0Þ þ 2γgRTrð0ÞÞGTrð0ÞE

þ 1

32
R
Z

1
4

0

du μð1; 4; 4juÞðR̊TrðuΔÞ þ 2γgRTrðuΔÞÞGTrðuΔÞR

þ Sμν
Z

1
4

0

du μð0; 0; 1juÞðR̊TrðuΔÞ þ 2γgRTrðuΔÞÞGTrðuΔÞSμν
�
: ðB54Þ

(iv) FTr;2
1 Finally, the last contribution to F 1 is

FTr;2
1 ¼

Z
∞

0

dsL−1½RTrðΔ2ÞGTrðΔ2Þ�ðsÞ
�

1

4πs

�
2
Z

d4x
ffiffiffi
g

p ðγRðΔÞRÞ
�
1þ s

��
1
4
;
1
2

		
sΔ
R

�
: ðB55Þ

This gives

FTr;2
1 ¼ 1

16π2

Z
d4x

ffiffiffi
g

p �
γRð0ÞR

Z
∞

0

dz zRTrðzÞGTrðzÞ

þ 1

6
ðγRðΔÞRÞ

�Z
1
4

0

du μ

�
0;
3

2
; 3

����u
�
ΔRTrðuΔÞGTrðuΔÞ þ

Z
∞

0

dzRTrðzÞGTrðzÞ
�
R

�
: ðB56Þ
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b. F 2

(i) F 1
2 This contribution can be computed analogously to FTr;1

1 . With an obvious substitution, we directly get

F 1
2 ¼

3

16π2

Z
d4x

ffiffiffi
g

p �Z
∞

0

dz z2γRðzÞRTrðzÞGTrðzÞ þ 1

6
R
Z

∞

0

dz z γRðzÞRTrðzÞGTrðzÞ

þ 1

32
R
Z 1

4

0

du μð1; 4; 4juÞuΔγRðuΔÞRTrðuΔÞGTrðuΔÞR

þ Sμν
Z 1

4

0

du μð0; 0; 1juÞuΔγRðuΔÞRTrðuΔÞGTrðuΔÞSμν
�
: ðB57Þ

(ii) F 2
2 Similarly, this contribution is directly related to FTr;2

1 , and we get

F 2
2 ¼ −

1

16π2

Z
d4x

ffiffiffi
g

p �
R
Z

∞

0

dz z γRðzÞRTrðzÞGTrðzÞ

þ 1

6
R

�Z 1
4

0

du μ

�
0;
3

2
; 3ju

�
ΔγRðuΔÞRTrðuΔÞGTrðuΔÞ þ

Z
∞

0

dz γRðzÞRTrðzÞGTrðzÞ
�
R

�
: ðB58Þ

c. F 3

This contribution is again related toFTr;2
1 , but the transformations are slightly more complicated due to the double inverse

Laplace transform. Note first that there is no contribution to R, since there is always at least one Laplacian acting on R
already. We thus have

F 3 ¼
3

2

Z
∞

0

dtL−1½γRðΔÞ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔRTrðΔÞGTrðΔÞ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p fΔe−tð1−αÞΔRgs
��

1
4
;
1
2

		
sΔ
R: ðB59Þ

To bring this into a useful form, we first perform the integral over s and get

F 3 ¼
3

32π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dtL−1½γRðΔÞ�ðtÞt
Z

1

0

dαfΔe−tð1−αÞΔRg

×
1

6

�Z
1
4

0

du μ

�
0;
3

2
; 3

����u
�
e−tαuΔΔRTrðuΔÞGTrðuΔÞ þ

Z
∞

0

dz e−tαzRTrðzÞGTrðzÞ
�
R: ðB60Þ

We can now do a partial integration on Δe−tð1−αÞΔ and perform the integral over α. This results in

F 3 ¼ −
1

64π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dtL−1½γRðΔÞ�ðtÞR

×

�Z
1
4

0

du μ

�
0;
3

2
; 3

����u
�
e−tΔ − e−tuΔ

1 − u
RTrðuΔÞGTrðuΔÞ þ

Z
∞

0

dz
e−tΔ − e−tz

Δ − z
RTrðzÞGTrðzÞ

�
ΔR: ðB61Þ

Note that the extra factor of t has canceled, and we have pulled out a factor of −1=6. We can finally do the integral over t,
which is trivial, to get the result

F 3 ¼ −
1

64π2

Z
d4x

ffiffiffi
g

p
R

�Z
1
4

0

du μ

�
0;
3

2
; 3

����u
�
γRðΔÞ − γRðuΔÞ

1 − u
RTrðuΔÞGTrðuΔÞ

þ
Z

∞

0

dz
γRðΔÞ − γRðzÞ

Δ − z
RTrðzÞGTrðzÞ

�
ΔR: ðB62Þ
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d. F 4

(i) F 1
4 This contribution is similar to FTL;1

1 , and we can directly infer

F 1
4 ¼

1

32π2

Z
d4x

ffiffiffi
g

p �
9

Z
∞

0

dz z2γSðzÞRTLðzÞGTLðzÞ − 9

2
R
Z

∞

0

dz z γSðzÞRTLðzÞGTLðzÞ

þ 1

32
R
Z

1
4

0

du μð17;−60; 36juÞuΔγSðuΔÞRTLðuΔÞGTLðuΔÞR

þ 3 Sμν
Z

1
4

0

du μð1; 4; 3juÞuΔγSðuΔÞRTLðuΔÞGTLðuΔÞSμν
�
: ðB63Þ

(ii) F 2
4 The computation of this contribution is analogous to that of FTL;2

1 , and we find

F 2
4 ¼ −

5

192π2

Z
d4x

ffiffiffi
g

p �
9R
Z

∞

0

dz z γSðzÞRTLðzÞGTLðzÞ

þ 9

2
R

�Z 1
4

0

du μ

�
0;−

5

6
; 1

����u
�
ΔγSðuΔÞRTLðuΔÞGTLðuΔÞ −

Z
∞

0

dz γSðzÞRTLðzÞGTLðzÞ
�
R

�
: ðB64Þ

(iii) F 3
4 This contribution is different from previous contributions. The only contribution to the order considered comes

from the endomorphism:

F 3
4 ¼

1

2

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞ
�

1

4πs

�
2
Z

d4x
ffiffiffi
g

p
C2sfðsΔÞC

¼ 1

16π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞ
3

4s
CμνρσfðsΔÞCμνρσ

¼ 3

64π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞ
�
1

s
E −

1

6s
RfðsΔÞRþ 2

s
SμνfðsΔÞSμν

�
: ðB65Þ

Using the standard rules, this can be written as

F 3
4 ¼

3

64π2

Z
d4x

ffiffiffi
g

p �
E
Z

∞

0

dz γSðzÞRTLðzÞGTLðzÞ

−
1

6
R

�Z 1
4

0

du μð0; 1juÞΔγSðuΔÞRTLðuΔÞGTLðuΔÞ þ
Z

∞

0

dz γSðzÞRTLðzÞGTLðzÞ
�
R

þ 2Sμν
�Z

1
4

0

du μð0; 1juÞΔγSðuΔÞRTLðuΔÞGTLðuΔÞ þ
Z

∞

0

dz γSðzÞRTLðzÞGTLðzÞ
�
Sμν

�
: ðB66Þ

(iv) F 4
4 It turns out that the traces for this contribution vanish identically,

F 4
4 ¼ 0: ðB67Þ

(v) F 5
4 This contribution can be split into two parts. The first comes from the derivatives acting on the exponential of the

world function, and gives

F 5;1
4 ¼

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞTrTL
�
Xαβ

�
−

1

2s
gαβ

�
e−sΔ2

�

¼ −
1

2

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞ
1

s
TrTL½e−sΔ2 �: ðB68Þ

This follows from

Xαβgαβ ¼ ΠTL: ðB69Þ
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This contribution is very similar to FTL;1
1 . We have

F 5;1
4 ¼ −

1

2

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×
1

s

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
9 −

9

2
sRþ 21

20
s2Eþ s2R

��
17
32

;−
15
8
;
9
8

		
sΔ
Rþ s2 Sμνff3; 12; 9ggsΔSμν

�
: ðB70Þ

This converts into

F 5;1
4 ¼−

1

32π2

Z
d4x

ffiffiffi
g

p �
9

2

Z
∞

0

dz z2 γSðzÞRTLðzÞGTLðzÞ

−
9

2
R
Z

∞

0

dz z γSðzÞRTLðzÞGTLðzÞþ 21

20
E
Z

∞

0

dzγSðzÞRTLðzÞGTLðzÞ

þ 69

80
R

�Z
1
4

0

du μ

�
0;

85

138
;−

50

23
;
30

23

����u
�
ΔγSðuΔÞRTLðuΔÞGTLðuΔÞþ

Z
∞

0

dz γSðzÞRTLðzÞGTLðzÞ
	
R

þ 23

20
Sμν
�Z 1

4

0

duμ

�
0;
60

23
;
240

23
;
180

23

����u
�
ΔγSðuΔÞRTLðuΔÞGTLðuΔÞþ

Z
∞

0

dzγSðzÞRTLðzÞGTLðzÞ
	
Sμν

�
:

ðB71Þ

For the second part, inserting the trace and simplifying gives

F 5;2
4 ¼

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞ
�

1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
3

8
R −

133

480
sR2 −

151

120
sSμνSμν −

9

40
sE

þ sR sΔ
��

−
17
512

;−
47
256

;
121
128

;−
9
64

		
sΔ
Rþ s Sμν sΔ

��
−

3
16

;−
13
8
;−

1
16

;−
9
8

		
sΔ
Sμν

�

¼ 1

16π2

Z
∞

0

dsL−1½γSðΔ2ÞRTLðΔ2ÞGTLðΔ2Þ�ðsÞ
Z

d4x
ffiffiffi
g

p �
3

8s2
R −

133

480s
R2 −

151

120s
SμνSμν −

9

40s
E

þ RΔ
��

−
17
512

;−
47
256

;
121
128

;−
9
64

		
sΔ
Rþ SμνΔ

��
−

3
16

;−
13
8
;−

1
16

;−
9
8

		
sΔ
Sμν

�
: ðB72Þ

With the standard formulas, this gives the contribution

F 5;2
4 ¼ 1

16π2

Z
d4x

ffiffiffi
g

p �
3

8
R
Z

∞

0

dz z γSðzÞRTLðzÞGTLðzÞ − 133

480
R2

Z
∞

0

dz γSðzÞRTLðzÞGTLðzÞ

−
151

120
SμνSμν

Z
∞

0

dz γSðzÞRTLðzÞGTLðzÞ − 9

40
E
Z

∞

0

dz γSðzÞRTLðzÞGTLðzÞ

þ R
Z 1

4

0

du μ

�
−

17

512
;−

47

256
;
121

128
;−

9

64

����u
�
ΔγSðuΔÞRTLðuΔÞGTLðuΔÞR

þ Sμν
Z

1
4

0

du μ

�
−

3

16
;−

13

8
;−

1

16
;−

9

8

����u
�
ΔγSðuΔÞRTLðuΔÞGTLðuΔÞSμν

�
: ðB73Þ

e. F 5

(i) F 1
5 As previously noted, this contribution vanishes,

F 1
5 ¼ 0: ðB74Þ
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(ii) F 2
5 For this contribution, we find

F 2
5 ¼−

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p fDðγDδÞe−tð1−αÞΔ2Sαβg
�
trfAαβγδ

2 ΠTLgs
��

−
5
12

;
1
2

		
sΔ
Rþ sff2ggsΔtrfAαβγδ

2 Cg
�
: ðB75Þ

The two needed contractions are

�
DðγDδÞe−tð1−αÞΔ2Sαβ

�
tr
�
Aαβγδ
2 ΠTL

�
≃ −

3

2
Δe−tð1−αÞΔR; ðB76Þ

�
DðγDδÞe−tð1−αÞΔ2Sαβ

�
fðsΔÞtr�Aαβγδ

2 C
�
≃ −

3

2
SμνΔfðsΔÞe−tð1−αÞΔSμν þ

1

8
RfðsΔÞΔe−tð1−αÞΔR; ðB77Þ

where we commuted derivatives and integrated them by parts freely. With this, we find

F 2
5 ¼ −

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
Sμν sΔff−3ggsΔe−tð1−αÞΔSμν þ R sΔ

��
7
8
;−

3
4

		
sΔ
e−tð1−αÞΔR

�
: ðB78Þ

Next, we perform the integral over s and get

F 2
5 ¼ −

1

16π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα

�
−3SμνΔ

�Z 1
4

0

du μð0; 1juÞΔe−tαuΔRTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz e−tαzRTLðzÞGTLðzÞ
	
e−tð1−αÞΔSμν þ RΔ

�Z
1
4

0

du μ

�
0;
7

8
;−

3

4

����u
�
Δe−tαuΔRTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz e−tαzRTLðzÞGTLðzÞ
	
e−tð1−αÞΔR

�
: ðB79Þ

Next, we perform the integral over α:

F 2
5 ¼

1

16π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞ
�
−3SμνΔ

�Z
1
4

0

du μð0; 1juÞ e
−tΔ − e−tuΔ

1 − u
RTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz
e−tΔ − e−tz

Δ − z
RTLðzÞGTLðzÞ

	
Sμν þ RΔ

�Z
1
4

0

du μ

�
0;
7

8
;−

3

4

����u
�
e−tΔ − e−tuΔ

1 − u
RTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz
e−tΔ − e−tz

Δ − z
RTLðzÞGTLðzÞ

	
R

�
: ðB80Þ

Finally, performing the integral over t, we find

F 2
5 ¼

1

16π2

Z
d4x

ffiffiffi
g

p �
−3SμνΔ

�Z 1
4

0

duμð0; 1juÞ γSðΔÞ − γSðuΔÞ
1− u

RTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz
γSðΔÞ− γSðzÞ

Δ− z
RTLðzÞGTLðzÞ

	
Sμν þRΔ

�Z
1
4

0

duμ

�
0;
7

8
;−

3

4

����u
�
γSðΔÞ− γSðuΔÞ

1− u
RTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz
γSðΔÞ− γSðzÞ

Δ− z
RTLðzÞGTLðzÞ

	
R

�
: ðB81Þ
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(iii) F 3
5 The heat kernel splits this contribution into two. The first is related to F 2

5, and reads

F 3;1
5 ¼

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
DδDγe−tð1−αÞΔ2Sαβ

��
tr
�
Aαβγδ
3 ΠTL

�
s

��
−

5
24

;
1
4

		
sΔ
Rþ s

��
1
��

sΔtr
�
Aαβγδ
3 C

��
:

ðB82Þ

The second part reads

F 3;2
5 ¼

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
DκDγe−tð1−αÞΔ2Sαβ

�
s
��

0; 1
��

sΔtr
�
Aαβγδ
3 F δκ

�
: ðB83Þ

We need the following contractions:

�
DδDγe−tð1−αÞΔ2Sαβ

�
tr
�
Aαβγδ
3 ΠTL

�
≃ −

7

4
Δe−tð1−αÞΔR; ðB84Þ

�
DδDγe−tð1−αÞΔ2Sαβ

�
fðsΔÞtr�Aαβγδ

3 C
�
≃ −2SμνΔfðsΔÞe−tð1−αÞΔSμν

þ 1

6
RΔfðsΔÞe−tð1−αÞΔR; ðB85Þ

�
DκDγe−tð1−αÞΔ2Sαβ

� fðsΔÞ − 1

sΔ
tr
�
Aαβγδ
3 ΠTLF δκΠTL

�
≃ 4SμνΔ

fðsΔÞ − 1

sΔ
e−tð1−αÞΔSμν

−
1

2
RΔ

fðsΔÞ − 1

sΔ
e−tð1−αÞΔR: ðB86Þ

where once again we have freely integrated by parts and commuted derivatives. Inserting these traces gives

F 3
5 ¼ −

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
SμνsΔff2;−4ggsΔe−tð1−αÞΔSμν þ R sΔ

��
−
17
32

;
15
16

		
sΔ
e−tð1−αÞΔR

�
: ðB87Þ

Once again we perform the different integrals step by step. The integral over s gives

F 3
5 ¼ −

1

16π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dt L−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα

�
8

3
SμνΔ

�Z 1
4

0

du μ

�
0;
3

4
;−

3

2

����u
�
Δe−tαuΔRTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz e−tαzRTLðzÞGTLðzÞ
	
e−tð1−αÞΔSμν þ

11

16
RΔ
�Z

1
4

0

du μ

�
0;−

17

22
;
15

11

����u
�
Δe−tαuΔRTLðuΔÞGTLðuΔÞ

−
Z

∞

0

dz e−tαzRTLðzÞGTLðzÞ
	
e−tð1−αÞΔ R

�
: ðB88Þ

Performing the integral over α then gives
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F 3
5 ¼

1

16π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞ
�
8

3
SμνΔ

�Z 1
4

0

du μ

�
0;
3

4
;−

3

2

����u
�
e−tΔ − e−tuΔ

1 − u
RTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz
e−tΔ − e−tz

Δ − z
RTLðzÞGTLðzÞ

	
Sμν þ

11

16
RΔ
�Z 1

4

0

du μ

�
0;−

17

22
;
15

11

����u
�
e−tΔ − e−tuΔ

1 − u
RTLðuΔÞGTLðuΔÞ

−
Z

∞

0

dz
e−tΔ − e−tz

Δ − z
RTLðzÞGTLðzÞ

	
R

�
: ðB89Þ

Finally, with the integral over t, we arrive at

F 3
5 ¼

1

16π2

Z
d4x

ffiffiffi
g

p �
8

3
SμνΔ

�Z
1
4

0

duμ

�
0;
3

4
;−

3

2

����u
�
γSðΔÞ − γSðuΔÞ

1 − u
RTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ

	
Sμν

þ 11

16
RΔ
�Z

1
4

0

du μ

�
0;−

17

22
;
15

11
ju
�
γSðΔÞ − γSðuΔÞ

1 − u
RTLðuΔÞGTLðuΔÞ

−
Z

∞

0

dz
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ

	
R

�
: ðB90Þ

(iv) F 4
5 The final trace gets two contributions. The first is from the term where the covariant derivatives of the heat kernel

act on the exponential of the world function, which actually vanishes:

F 4;1
5 ¼

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×
1

2s
TrTL½

�
e−tð1−αÞΔ2Sαβ

�
Aαβγδ
4 gγδe−sΔ2 � ¼ 0: ðB91Þ

The second contribution reads

F 4;2
5 ¼ −

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
e−tð1−αÞΔ2Sαβ

����
0;−1

��
sΔtr
�
Aαβγδ
4 RγδΠTL

�
þ s

��
−

5
48

;
1
3
;−

3
4

		
sΔ
tr
�
Aαβγδ
4 DðγDδÞRΠTL

�þ s

��
1
2
;−1

		
sΔ
tr
�
Aαβγδ
4 DðγDδÞC

�
þ s
��

0; 1
��

sΔtr
�
Aαβγδ
4 DðγDκF δÞκ

��
: ðB92Þ

For this, we need to compute the traces

�
e−tð1−αÞΔ2Sαβ

��
−
fðsΔÞ − 1

sΔ

�
tr
�
Aαβγδ
4 RγδΠTL

�
≃ −2Sμν

fðsΔÞ − 1

sΔ
e−tð1−αÞΔSμν; ðB93Þ

�
e−tð1−αÞΔ2Sαβ

�
BðsΔÞtr�Aαβγδ

4 DðγDδÞRΠTL
�
≃ −

1

2
RΔBðsΔÞe−tð1−αÞΔR; ðB94Þ

�
e−tð1−αÞΔ2Sαβ

�
CðsΔÞtr�Aαβγδ

4 DðγDδÞC
�
≃

1

12
RΔCðsΔÞe−tð1−αÞΔR − SμνΔCðsΔÞe−tð1−αÞΔSμν; ðB95Þ

�
e−tð1−αÞΔ2Sαβ

� fðsΔÞ − 1

sΔ
tr
�
Aαβγδ
4 DðγDκF δÞκ

�
≃ 0: ðB96Þ
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Due to the different structure in s and Δ, we will discuss the first term individually. It reads

F 4;2;1
5 ¼ −

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
−2Sμνff0; 1ggsΔe−tð1−αÞΔSμν

�
: ðB97Þ

Performing the integral over s gives

F 4;2;1
5 ¼ 1

8π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα

Sμν
�
Δ2

Z
1
4

0

du μð0; 0; 0; 1juÞe−tαuΔRTLðuΔÞGTLðuΔÞ

−
1

6

Z
∞

0

dz z e−tαzRTLðzÞGTLðzÞ þ Δ
60

Z
∞

0

dz e−tαzRTLðzÞGTLðzÞ
	
e−tð1−αÞΔSμν: ðB98Þ

Next, with the integration over α, we get

F 4;2;1
5 ¼ −

1

8π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞ

Sμν
�
Δ
Z

1
4

0

du μð0; 0; 0; 1juÞ e
−tΔ − e−tuΔ

1 − u
RTLðuΔÞGTLðuΔÞ

−
1

6

Z
∞

0

dz z
e−tΔ − e−tz

Δ − z
RTLðzÞGTLðzÞ þ Δ

60

Z
∞

0

dz
e−tΔ − e−tz

Δ − z
RTLðzÞGTLðzÞ

	
Sμν: ðB99Þ

Finally, the integral over t yields

F 4;2;1
5 ¼ −

1

8π2

Z
d4x

ffiffiffi
g

p
Sμν
�
Δ
Z 1

4

0

du μð0; 0; 0; 1juÞ γSðΔÞ − γSðuΔÞ
1 − u

RTLðuΔÞGTLðuΔÞ

−
1

6

Z
∞

0

dz z
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ þ Δ

60

Z
∞

0

dz
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ

	
Sμν: ðB100Þ

The remaining contributions can be easily combined. Inserting the traces,

F 4;2;2
5 ¼ −

Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα
Z

∞

0

dsL−1½e−tαΔ2RTLðΔ2ÞGTLðΔ2Þ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p ½SμνsΔ
��

−
1
2
; 1

		
sΔ
e−tð1−αÞΔSμν þ RsΔ

��
3
32

;−
1
4
;
3
8

		
sΔ
e−tð1−αÞΔR

�
: ðB101Þ

The integration over s gives then

F 4;2;2
5 ¼−

1

16π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞt
Z

1

0

dα

�
2

3
SμνΔ

�Z
1
4

0

duμ

�
0;−

3

4
;
3

2

����u
�
Δe−tαuΔRTLðuΔÞGTLðuΔÞ

−
Z

∞

0

dze−tαzRTLðzÞGTLðzÞge−tð1−αÞΔSμνþ
17

120
RΔ
�Z

1
4

0

duμ

�
0;
45

68
;−

30

17
;
45

17

����u
�
Δe−tαuΔRTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dze−tαzRTLðzÞGTLðzÞ
	
e−tð1−αÞΔR

�
: ðB102Þ

Integrating over α, we arrive at
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F 4;2;2
5 ¼ 1

16π2

Z
d4x

ffiffiffi
g

p Z
∞

0

dtL−1½γSðΔ2Þ�ðtÞ
�
2

3
SμνΔ

�Z 1
4

0

du μ

�
0;−

3

4
;
3

2

����u
�
e−tΔ − e−tuΔ

1 − u
RTLðuΔÞGTLðuΔÞ

−
Z

∞

0

dz
e−tΔ − e−tz

Δ − z
RTLðzÞGTLðzÞ

	
Sμν þ

17

120
RΔ
�Z 1

4

0

du μ

�
0;
45

68
;−

30

17
;
45

17

����u
�

×
e−tΔ − e−tuΔ

1 − u
RTLðuΔÞGTLðuΔÞ þ

Z
∞

0

dz
e−tΔ − e−tz

Δ − z
RTLðzÞGTLðzÞ

	
R

�
: ðB103Þ

Finally, the integral over t gives

F 4;2;2
5 ¼ 1

16π2

Z
d4x

ffiffiffi
g

p �
2

3
SμνΔ

�Z
1
4

0

du μ

�
0;−

3

4
;
3

2

����u
�
γSðΔÞ − γSðuΔÞ

1 − u
RTLðuΔÞGTLðuΔÞ

−
Z

∞

0

dz
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ

	
Sμν

þ 17

120
RΔ
�Z

1
4

0

du μ

�
0;
45

68
;−

30

17
;
45

17

����u
�
γSðΔÞ − γSðuΔÞ

1 − u
RTLðuΔÞGTLðuΔÞ

þ
Z

∞

0

dz
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ

	
R

�
: ðB104Þ

3. Ghost contribution

The computation of the ghost trace is straightforward, as we only need the diagonal part of the nonlocal heat kernel in our
setup, (A39). We find

F c ¼ −
Z

∞

0

dsL−1½R̊cðΔcÞGcðΔcÞ�ðsÞ

×

�
1

4πs

�
2
Z

d4x
ffiffiffi
g

p �
4þ 5

3
sR −

11

180
s2Eþ s2R

��
1
2
; 1;

1
2

		
sΔ
Rþ s2Sμν

��
1
2
; 2; 4

		
sΔ
Sμν

�
: ðB105Þ

This can be transformed in the standard way to yield

F c ¼ −
1

16π2

Z
d4x

ffiffiffi
g

p �
4

Z
∞

0

dz zR̊cðzÞGcðzÞ þ 5

3
R
Z

∞

0

dz R̊cðzÞGcðzÞ − 11

180
R̊cð0ÞGcð0ÞE

þ 1

2
R
Z 1

4

0

du μð1; 2; 1juÞR̊cðuΔÞGcðuΔÞRþ 1

2
Sμν
Z 1

4

0

du μð1; 4; 8juÞR̊cðuΔÞGcðuΔÞSμν
�
: ðB106Þ

4. Grand total

We now collect the complete expression for the trace, operator by operator. The volume term of the trace reads

F 1 ¼
1

2

1

16π2

Z
d4x

ffiffiffi
g

p �
9

Z
∞

0

dz z

�
R̊TLðzÞ þ

�
2γg þ

z
2
γSðzÞ

�
RTLðzÞ

�
GTLðzÞ

þ
Z

∞

0

dz zðR̊TrðzÞ þ 2ðγg þ 3zγRðzÞÞRTrðzÞÞGTrðzÞ − 8

Z
∞

0

dz zR̊cðzÞGcðzÞ
�
: ðB107Þ

For the Einstein-Hilbert term, we find
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FR ¼ 1

2

1

16π2

Z
d4x

ffiffiffi
g

p �
−
9

2

Z
∞

0

dz

�
R̊TLðzÞ þ

�
2γg − 4zγRð0Þ þ

3

2
zγSðzÞ

�
RTLðzÞ

�
GTLðzÞ

þ 1

6

Z
∞

0

dzðR̊TrðzÞ þ 2ðγg þ 6zð2γRð0Þ − γRðzÞÞÞRTrðzÞÞGTrðzÞ − 10

3

Z
∞

0

dzR̊cðzÞGcðzÞ
�
R: ðB108Þ

Moving on to the Ricci scalar form factor, we have

FR2 ¼ 1

2

1

16π2

Z
d4x

ffiffiffi
g

p
R

�Z
1
4

0

du μ

�
17

32
;−

15

8
;
9

8

����u
�
ðR̊TLðuΔÞ þ 2γgRTLðuΔÞÞGTLðuΔÞ

þ 9ΔγRðΔÞ
Z

1
4

0

du μ
�
0;−

5

6
; 1

����u
�
RTLðuΔÞGTLðuΔÞ − 9γRðΔÞ

Z
∞

0

dzRTLðzÞGTLðzÞ

þ 25

12
Δ
Z

1
4

0

du μ

�
51

1600
;
681

800
;−

483

400
;
27

40

����u
�
γSðuΔÞRTLðuΔÞGTLðuΔÞ þ 25

12

Z
∞

0

dz γSðzÞRTLðzÞGTLðzÞ

þ 109

120
Δ
Z

1
4

0

du μ

�
0;
105

109
;−

15

109
;
90

109

����u
�
γSðΔÞ − γSðuΔÞ

1 − u
RTLðuΔÞGTLðuΔÞ

þ 109

120
Δ
Z

∞

0

dz
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ þ

Z 1
4

0

duμ

�
1

32
;
1

8
;
1

8

����u
�
ðR̊TrðuΔÞ þ 2γgRTrðuΔÞÞGTrðuΔÞ

þ 1

3
ΔγRðΔÞ

Z 1
4

0

du μ

�
0;
3

2
; 3

����u
�
RTrðuΔÞGTrðuΔÞ þ 1

3
γRðΔÞ

Z
∞

0

dzRTrðzÞGTrðzÞ

þ 1

3
Δ
Z 1

4

0

du μ

�
9

64
;−

21

32
;
15

16
;
45

8

����u
�
γRðuΔÞRTrðuΔÞGTrðuΔÞ − 1

3

Z
∞

0

dz γRðzÞRTrðzÞGTrðzÞ

þ 1

2
Δ
Z

1
4

0

du μ

�
0;−

3

2
;−3

����u
�
γRðΔÞ − γRðuΔÞ

1 − u
RTrðuΔÞGTrðuΔÞ

−
1

2
Δ
Z

∞

0

dz
γRðΔÞ − γRðzÞ

Δ − z
RTrðzÞGTrðzÞ þ

Z
1
4

0

du μð−1;−2;−1juÞR̊cðuΔÞGcðuΔÞ
�
R: ðB109Þ

Here we used that we can absorb extra factors of u in the measure, μðfaig; uÞu ¼ μðfbig; uÞ for suitably chosen bi, to bring
all integrals into a uniform form. Similarly, for the tracefree Ricci tensor, we have

F S2 ¼
1

2

1

16π2

Z
d4x

ffiffiffi
g

p
Sμν
�Z

1
4

0

du μð3; 12; 9juÞðR̊TLðuΔÞ þ 2γgRTLðuΔÞÞGTLðuΔÞ

þ 2

3
Δ
Z 1

4

0

du μ

�
9

16
;
15

8
;
195

16
;
135

8

����u
�
γSðuΔÞRTLðuΔÞGTLðuΔÞ − 2

3

Z
∞

0

dz γSðzÞRTLðzÞGTLðzÞ

−
31

15
Δ
Z 1

4

0

du μ

�
0;
45

31
;
90

31
;
60

31

����u
�
γSðΔÞ − γSðuΔÞ

1 − u
RTLðuΔÞGTLðuΔÞ

−
31

15
Δ
Z

∞

0

dz
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ þ 2

3

Z
∞

0

dz z
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ

þ
Z

1
4

0

du μð0; 0; 1juÞðR̊TrðuΔÞ þ 2γgRTrðuΔÞÞGTrðuΔÞ þ Δ
Z

1
4

0

du μ

�
0; 0;

3

2
; 15

����u
�
γRðuΔÞRTrðuΔÞGTrðuΔÞ

þ
Z

1
4

0

du μð−1;−4;−8juÞR̊cðuΔÞGcðuΔÞ
�
Sμν: ðB110Þ

This can be rewritten in the following form:
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F S2 ¼
1

2

1

16π2

Z
d4x

ffiffiffi
g

p
Sμν
�Z

1
4

0

du μð3; 12; 9juÞðR̊TLðuΔÞ þ 2γgRTLðuΔÞÞGTLðuΔÞ

þ 2

3
Δ
Z

1
4

0

du μ

�
9

16
;
15

8
;
195

16
;
135

8

����u
�
γSðuΔÞRTLðuΔÞGTLðuΔÞ

−
31

15
Δ
Z 1

4

0

du μ

�
0;
45

31
;
90

31
;
60

31

����u
�
γSðΔÞ − γSðuΔÞ

1 − u
RTLðuΔÞGTLðuΔÞ

−
7

5
Δ
Z

∞

0

dz
γSðΔÞ − γSðzÞ

Δ − z
RTLðzÞGTLðzÞ − 2

3
γSðΔÞ

Z
∞

0

dzRTLðzÞGTLðzÞ

þ
Z

1
4

0

du μð0; 0; 1juÞðR̊TrðuΔÞ þ 2γgRTrðuΔÞÞGTrðuΔÞ þ Δ
Z

1
4

0

du μ

�
0; 0;

3

2
; 15

����u
�
γRðuΔÞRTrðuΔÞGTrðuΔÞ

þ
Z

1
4

0

du μð−1;−4;−8juÞR̊cðuΔÞGcðuΔÞ
�
Sμν: ðB111Þ

Finally, for the Euler density, we find

FE ¼ 1

32π2

Z
d4x

ffiffiffi
g

p �
21

20
ðR̊TLð0Þþ 2γgRTLð0ÞÞGTLð0Þþ 1

180
ðR̊Trð0Þþ 2γgRTrð0ÞÞGTrð0Þþ 11

90
R̊cð0ÞGcð0Þ

�
E: ðB112Þ

Remarkably, all integral contributions to this vanish, as do all contributions from γR and γS.
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