
Final burst of the moving mirror is unrelated to the partner mode
of analog Hawking radiation

Yuki Osawa,1,* Kuan-Nan Lin ,2,3,† Yasusada Nambu ,1,‡ Masahiro Hotta,4,2,§ and Pisin Chen2,3,5,∥
1Department of Physics, Nagoya University, Nagoya 464-8602, Japan

2Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,
Taipei 10617, Taiwan, Republic of China

3Department of Physics and Center for Theoretical Sciences, National Taiwan University,
Taipei 10617, Taiwan, Republic of China

4Department of Physics, Tohoku University, Sendai 980-8578, Japan
5Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory,

Stanford University, Stanford, California 94305, USA

(Received 16 April 2024; accepted 2 July 2024; published 29 July 2024)

Flying mirrors with appropriate trajectories have been recognized as an analog system that mimics black
hole Hawking evaporation and have been widely investigated. It has recently been suggested that the
partner mode of the analog Hawking radiation emitted from a moving mirror would manifest itself through
a final burst when the mirror executes a sudden stop. Here we argue the opposite via the partner formula for
the moving mirror model. By expanding the theoretical foundation of the partner formula and augmenting
it with numerical analysis, we demonstrate that the supposed final burst is induced by a shock that requires
the input of external energy, whereas the Hawking radiation partner mode, which is associated with the
zero-point vacuum fluctuations, is not responsible for the burst.

DOI: 10.1103/PhysRevD.110.025023

I. INTRODUCTION

Approximately five decades have passed since Stephen
Hawking first proposed the concept of black hole evapo-
ration [1,2]. However, the enduring challenge of the
information loss paradox [3,4] persists in the context of
Hawking radiation. According to Hawking’s model of
black hole evolution, these black holes are formed through
the gravitational collapse of massive objects and sub-
sequently undergo evaporation, emitting thermal Hawking
radiation. The crux of the issue lies in the fact that even
when the initial state is prepared as a pure state before
gravitational collapse, the final state evolves to a mixed
state, thus violating the principle of unitarity when the
black hole experiences complete evaporation. From the
perspective of quantum information theory, this violation of
unitarity can be understood as the absence of the purifi-
cation partner of Hawking radiation in spacetime. One of
the most straightforward conjectures to address the infor-
mation loss paradox is the burst scenario, which posits that
the black hole returns the partner of Hawking radiation
through some quantum gravitational mechanism once the

black hole’s mass reaches the Planck scale. However, this
scenario implies the emission of vast amount of informa-
tion at the Planck energy scale, a seemingly implausible
proposition. Numerous researchers have proposed potential
candidates for the partner of Hawking radiation that do
not entail the energy cost. These candidates include
black hole remnants [5,6], Hawking radiation itself as
the partner [7,8], vacuum fluctuations [9–12], the soft hair
of black holes [13–15], and, intriguingly, some researchers
have explored scenarios that accept information loss at the
Planck scale [16,17].
In the standard (1þ 1)-dimensional moving mirror

model, a mirror undergoing a certain period of acceleration
emits radiation that mimics the information-less Hawking
radiation by a black hole during the late time of its
formation process. This is the period during which the
semiclassical quantum field theory in curved spacetime is
valid, and it is also the period where the outgoing energy
flux is roughly constant in time with the frequency
spectrum being roughly Planckian. If the mirror sub-
sequently undergoes a sudden stop, i.e., an abrupt decel-
eration to rest, then a sudden extreme burst of outgoing
energy flux will be emitted by the mirror.
Since unitarity is guaranteed in the moving mirror model,

onepossible interpretation is that (1) this extremeenergy burst
carries all the information. It is then natural to identify this
sudden burst as the purification partners of the previously
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emitted Hawking radiation. This interpretation appears to be
analogous to a black hole emitting Hawking radiation with
negligible backreaction (since quantum field theory in curved
spacetime is employed) for a period of time, and then
suddenly all the information is released via the extreme
energy burst, which evaporates away all the black hole mass
within a short period of time. This corresponds to the scenario
of the sudden and complete explosion of a black hole.
Another possible interpretation is that (2) the purification

partners of the Hawking radiation are vacuum fluctuations.
In this view, the energy burst carries no information. Then
what would be the physical origin of this burst? There are
two possible answers (2.a) and (2.b) for this question.
According toWald [18], (2.a) this burst should correspond

to an additionally introduced flipped mode (and its super-
position with the partner mode) emerging as real particles,
assuming theHawking radiation is entangledwith thevacuum
fluctuation partner and the monogamy of entanglement
between these two is obeyed. Wald concludes, therefore,
that even if the Hawking radiation is entangled with the
vacuum fluctuation partner, an indirect extreme energy cost is
still required before the purification takes place.
From the viewpoint of the moving mirror model, (2.b)

the energy burst should originate from an external agent
that supplies the energy to the mirror to execute the
prescribed motion. In this case, (2.b.i) if the burst is also
the manifestation of the real particles as asserted by Wald,
then there seems no correspondence of such external agent
in the case of the black hole. That is, what external
mechanism triggers a semiclassical black hole, whose mass
loss due to the Hawking radiation is negligible, to suddenly
spit out a significant amount of energy?
On the other hand, one can also simply regard (2.b.ii) the

energy burst as an artifact in the moving mirror model.
Then the appearance of this extreme energy burst should
not be carried over to a true black hole evaporation picture,
and therefore the issue raised in (2.b.i) vanishes. This
means that the analogy between the moving mirror and the
black hole need not be one-to-one correspondent. It is
therefore still possible to purify the Hawking radiation via
its vacuum fluctuation partners without the cost of extreme
energy. In fact, since the moving mirror model is basically
the dynamical Casimir effect, it is not necessary that every
trajectory must have a black hole correspondence.
The main purpose of this paper is to investigate whether

Wald’s consideration (2.a) or the viewpoint (2.b.ii) is more
reasonable. For this purpose, we analyze two types of
mirror trajectories. The first trajectory begins with an
inertial motion, undergoes an accelerating phase until it
closely approaches the null ray and then suddenly decel-
erates to rest. This is the same as the first trajectory
considered in Wald [18]. The other trajectory that we
consider also begins with an inertial motion, undergoes an
acceleration, transitions to a uniform velocity motion, and
finally suddenly decelerates to rest. This is similar to

Wald’s second trajectory, but with an additional sudden
stop after a long period of uniform motion. The introduc-
tion of this sudden stop enables us to demonstrate that,
according to the partner formula [12], the spatial profile of
the partner and its mirror-flipped mode at the future null
infinity are not only distinct from the small energy burst (if
it exists) emitted upon the transition to uniform motion, but
they are also distinct from the location of the extreme
energy burst induced by the sudden stop. This helps to
stress that the overlap of these entities in the first trajectory
is merely a coincidence. The viewpoint (2.a) is therefore no
longer valid, whereas the viewpoint (2.b.ii) remains appli-
cable. In this sense, our second trajectory serves as an
explicit counter example to demonstrate that the viewpoint
(2.b.ii) may be more reasonable.
Indeed, a peculiar situation may arise if one applies

viewpoint (2.a) to our second trajectory. That is, if all the
vacuum fluctuation partners are to be reflected by the
mirror during its uniform motion period, then the energy
emitted upon the transition from the acceleration phase to
the uniform motion can be made arbitrarily small (even
exactly zero), provided the constant motion phase lasts
sufficiently long. By making analogy to the curved space-
time, this depicts the case that a semiclassical black
hole initially emits Hawking radiation without backreaction
for a period of time, and then releases a minute energy flux
with long wavelength, which carries all the informa
tion (probably from a Planck-size region). This leads to
Wald’s [18] dismissal of a mirror with acceleration-turned-
uniform-motion as a feasible scenario for black hole
evaporation. Actually, such a trajectory corresponds to
the scenario of black hole evaporation followed by the
release of the information, and finally turns into a black
hole remnant [6,19,20] without emitting further radiation,
since the mirror only induces an inertial Doppler redshift to
the field modes during its uniform motion period.
The organization of this paper is as follows. In Sec. II we

study the Rindler mode and its partner, and visualize them as
wave packets in the past null infinity. The wave packets of
Hawking radiation and its partner at themovingmirrormodel
are depicted, and the vacuum fluctuation scenario is reviewed
in Sec. III. In Sec. IV we briefly review and comment on
Wald’s consideration. Section V is devoted to the conclusion.

II. RINDLER MODE AND ITS PARTNER
IN THE FLAT SPACETIME

A. Rindler mode and its partner

In this section, we briefly review Rindler mode and its
partner in the flat spacetime. This part is mainly based on
[12,18,21–23]. Let us consider a massless scalar field in the
(1þ 1)-dimensional Minkowski spacetime. The scalar field
ϕ obeys the Klein-Gordon equation□ϕ ¼ 0. The metric is

ds2 ¼ −dt2 þ dx2: ð1Þ
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For later use, we introduce null coordinates,

U ¼ t − x; V ¼ tþ x: ð2Þ

The metric can be expressed as

ds2 ¼ −dUdV: ð3Þ

As suggested by the equivalence principle, the accelerated
observer feels gravitational force, and the spacetime is no
longer Minkowskian for him. Let ðη; ξÞ be the comoving
coordinates for the accelerating observer (Rindler coordi-
nate) where η is the time coordinate and ξ is the spatial
coordinate; then the Minkowski coordinates and Rindler
coordinates are related as

t ¼ 1

a
eaξ sinh aη; x ¼ 1

a
eaξ coshaη;

−∞ < η < þ∞; −∞ < ξ < þ∞: ð4Þ

The metric with the Rindler coordinates is given by

ds2 ¼ −e2aξðdη2 − dξ2Þ: ð5Þ

The important property of the Rindler coordinates is that
these coordinates cover only region I of the Minkowski
spacetime (see Fig. 1). Thus, the accelerating observer can
only see part of the spacetime, and the Minkowski vacuum
state is not the vacuum state for the accelerating observer.
This property is related to the Unruh effect. We introduce
null coordinates for the Rindler coordinates.

u ¼ η − ξ; v ¼ ηþ ξ: ð6Þ

The metric can be expressed as

ds2 ¼ −e2aξdudv: ð7Þ

The null coordinates of the Minkowski spacetime and the
Rindler coordinates are related as

U ¼ −
1

a
e−au; V ¼ 1

a
eav: ð8Þ

Using the null coordinates, the field equation can be written
as ∂U∂VϕðU;VÞ ¼ 0 in the Minkowski coordinates and
∂u∂vϕðu; vÞ ¼ 0 in the Rindler coordinates. In the Rinder
coordinates, the left-moving mode function in region I is
defined by

ϕI
ωðVÞ ≔ expð−iωvðVÞÞθðVÞ;

¼ exp

�
−i

ω

a
logðaVÞ

�
θðVÞ; ω > 0; ð9Þ

where we multiplied the step function θðxÞ to ensure the
Rindler coordinates cover only region I and the mode
function ϕI

ω has a support only in region I. This plane
wave in the Rindler coordinates is the superposition of
plane waves in the Minkowski coordinates with different
frequencies:

ϕI
ωðVÞ ¼

Z
∞

0

dσffiffiffiffiffiffi
2π

p �
ϕ̃I
ωðσÞe−iσV þ ϕ̃I

ωð−σÞeiσV
�
; ð10Þ

where ϕ̃I
ω is the Fourier component of ϕI

ωðVÞ with respect
to V. The Fourier component corresponding to the positive
frequency mode can be calculated as

ϕ̃I
ωðσÞ ¼

Z
∞

−∞

dVffiffiffiffiffiffi
2π

p exp

�
−i

ω

a
logðaVÞ

�
eiσVθðVÞ;

¼ i
Z

∞

0

dVffiffiffiffiffiffi
2π

p exp

�
−i

ω

a
log aV

�
eπω=2ae−σV; ð11Þ

where we have deformed the integral contour on the real
axis V into the integral contour on the imaginary axis, and
used the relation i ¼ eiπ=2. Performing the similar calcu-
lation we obtain the Fourier component corresponding to
the negative frequency mode as

ϕ̃I
ωð−σÞ ¼ −i

Z
∞

0

dVffiffiffiffiffiffi
2π

p exp

�
−i

ω

a
logaV

�
e−πω=2ae−σV;

¼ −e−πω=aϕ̃I
ωðσÞ: ð12Þ

Substituting this relation into Eq. (10), we obtain

FIG. 1. Penrose Diagram of the half of the Minkowski
spacetime: solid lines in region I represent ξ ¼ const, lines
and dashed lines are η ¼ const lines.

FINAL BURST OF THE MOVING MIRROR IS UNRELATED TO … PHYS. REV. D 110, 025023 (2024)

025023-3



ϕI
ωðVÞ ¼

Z
∞

0

dσffiffiffiffiffiffi
2π

p �
ϕ̃I
ωðσÞe−iσV − e−πω=aϕ̃I

ωðσÞeiσV
�
:

ð13Þ

Since e−πω=a < 1 holds for ω > 0, ϕI
ωðVÞ is a positive norm

mode ðϕI
ω;ϕI

ωÞ > 0 with respect to the Klein-Gordon inner
product.1 Let us consider the analytic continuation of
ϕI
ωðVÞ for V > 0 to the negative real line V < 0 while

avoiding the singularity at V ¼ 0 by a small semicircle in
the lower half plane:

ϕI→II
ω ðVÞ ≔ e−πω=a exp

�
−i

ω

a
logð−aVÞ

�
θð−VÞ;

¼ e−πω=aϕI
ωð−VÞ: ð15Þ

This function has support in the region V < 0. The Fourier
decomposition of ϕI→II

ω ðVÞ is

ϕI→II
ω ðVÞ ¼ −e−πω=a

Z
∞

0

dσffiffiffiffiffiffi
2π

p

×
�
e−πω=aϕ̃I

ωðσÞe−iσV − ϕ̃I
ωðσÞeiσV

�
: ð16Þ

Since e−πω=a < 1 holds for ω > 0, ϕII
ωðVÞ is a negative

norm mode, i.e., ðϕII
ω;ϕII

ωÞ < 0 with respect to the Klein-
Gordon inner product. From Eqs. (13) and (16), we can see
that the following combination of the functions contains
purely positive frequency contribution with respect to the
coordinate V:

ΦωðVÞ ≔ ϕI
ωðVÞ þ ϕI→II

ω ðVÞ; ð17Þ

¼ ϕI
ωðVÞ þ e−πω=aϕII

ωðVÞ; ð18Þ

¼ ϕI
ωðVÞ þ e−πω=aðϕII

−ωðVÞÞ�; ð19Þ

where ϕII
ωðVÞ ≔ eπω=aϕI→II

ω ðVÞ. ΦωðVÞ is called the Unruh
mode function defined throughout the whole Minkowski
spacetime. We use ϕII

−ωðVÞ in the last line, since they are
positive norm modes. The mode ϕI

ω is called Rindler mode
and themodeϕII

−ω is calledMilnemode. Themode defined by

Ψ−ωðVÞ ≔ ðϕI
ωðVÞÞ� þ eπω=aϕII

−ωðVÞ ð20Þ

is orthogonal to themodeΦωðVÞ andhas a positive normwith
respect to the Klein-Gordon inner product. By normalizing
these mode functions, the Bogoliubov transformation

between the Rindler/Milne mode functions ðϕI
ω;ϕII

−ωÞ and
the Unruh mode functions ðΦω;Ψ−ωÞ is given by

ΦωðVÞ ¼
eπω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh ðπω=aÞp ϕI
ωðVÞ

þ e−πω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh ðπω=aÞp ðϕII

−ωðVÞÞ�; ð21Þ

Ψ−ωðVÞ ¼
e−πω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh ðπω=aÞp ðϕI
ωðVÞÞ�

þ eπω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh ðπω=aÞp ϕII

−ωðVÞ; ð22Þ

where we redefined ϕI;II
ω so that they are normalized as

ϕI;II
ω →

1ffiffiffiffiffiffiffiffiffiffiffi
4πjωjp ϕI;II

ω : ð23Þ

By inverting this relation, we obtain

ϕI
ωðVÞ ¼

eπω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh ðπω=aÞp ΦωðVÞ

−
e−πω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh ðπω=aÞp ðΨ−ωðVÞÞ�; ð24Þ

ϕII
−ωðVÞ ¼ −

e−πω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh ðπω=aÞp ðΦωðVÞÞ�

þ eπω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh ðπω=aÞp Ψ−ωðVÞ: ð25Þ

Now, we introduce annihilation operators by using the Klein-
Gordon inner products between field operator ϕ̂ and mode
functions:

âIω ¼ ðϕ̂;ϕI
ωÞ; âIIω ¼ ðϕ̂;ϕII

−ωÞ; ð26Þ

âΦω ¼ ðϕ̂;ΦωÞ; âΨω ¼ ðϕ̂;Ψ−ωÞ: ð27Þ

Using (24) and (25), these annihilation operators can be
related as

âIω ¼ eπω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh ðπω=aÞp âΦω þ eπω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh ðπω=aÞp ðâΨωÞ†; ð28Þ

âIIω ¼ eπω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinh ðπω=aÞp âΨω þ eπω=2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh ðπω=aÞp ðâΦωÞ†: ð29Þ

From the orthogonality of the mode functions

1In this article, Klein-Gordon inner product of two functions
f, g on a constant U surface is defined by

ðf; gÞ ≔ −i
Z þ∞

−∞
dV

�
f∂Vg� − g�∂Vf

�
: ð14Þ
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ðϕI
ω;ϕII

−ωÞ ¼ ðϕI
ω; ðϕII

−ωÞ�Þ ¼ 0; ð30Þ

ðΦω;Ψ−ωÞ ¼ ðΦω; ðΨ−ωÞ�Þ ¼ 0; ð31Þ

we can show the independency of the annihilation operators:

½âIω; âIIω� ¼ ½âIω; ðâIIωÞ†� ¼ 0; ð32Þ

½âΦω ; âΨω � ¼ ½âΦω ; ðâΨωÞ†� ¼ 0: ð33Þ

The independence of annihilation operators implies the
existence of two different particle modes. Since there are
two pairs fâIω; âIIωg and fâΦω ; âΨωg of independent annihilation
operators, we have two different vacuum states j00iI II and
j00iΦΨ satisfying

0 ¼ âIωj00iI II ¼ âIIωj00iI II; ð34Þ

0 ¼ âΦω j00iΦΨ ¼ âΨω j00iΦΨ: ð35Þ

These vacuum states are related as

j00iΦΨ ¼
X∞
n¼0

e−nπω=affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p jnniI II: ð36Þ

Tracing out II degrees of freedom from the vacuum state
j00iΦΨ, we have the mixed density matrix

ρ̂I ¼
X∞
n¼0

e−2nπω=a

1 − e−2πω=a
jnihnjI: ð37Þ

In contrast, this mixed state for I can be purified by II degrees
of freedom to produce the pure vacuum state j00iΦΨ. In this
sense, the mode âII that appears as the counterpart of the
Bogoliubov transformation is called the partner mode of the
mode âI. Indeed, Eq. (29) is a one example of the partner
formula given by Hotta-Schützhold-Unruh [12]. See
Appendix A for a general discussion of the partner formula.

B. Profile of the Rindler mode and its partner

It is well known that the notion of particle is ambiguous in
quantum field theory in curved spacetime or when accel-
eration is involved. For example, according to Eq. (36), the
Unruh modes see no particles in the vacuum state j00iΦΨ,
while the Rindler/Milne modes see nonvanishing particles in
the same state. To resolve this ambiguity, Unruh [22] and
DeWitt [24] proposed the idea that a particle is what a
detector detects. Following this prescription, the mode
that an Unruh-DeWitt detector in the past null infinity
ðU → −∞; V > 0Þ detects, which we called the detector
mode of the Rindler observer, can be constructed by
superposing the Rindler mode function according to

φDðVÞ ≔
Z

∞

0

dωFðωÞϕI
ωðVÞ; ð38Þ

where FðωÞ is a weighting function [12]. Using the repre-
sentation of the field operator with the left-moving mode

ϕ̂ðVÞ ¼
Z

∞

0

dωðâIωϕI
ωðVÞ þ H:c:Þ; ð39Þ

and its canonical conjugate operator Π̂ðVÞ ≔ ϕ̂0ðVÞ, the
annihilation operator associated with the detector mode is
defined by the Klein-Gordon inner product with the field
operator

âD ≔ ðϕ̂ðVÞ;φDðVÞÞ;

¼
Z

∞

0

dωFðωÞðϕ̂ðVÞ;ϕI
ωðVÞÞ;

¼
Z

∞

0

dωFðωÞâIω; ð40Þ

where FðωÞ should satisfy the normalization condition

1 ¼ ½âD; â†D� ¼
Z

∞

0

dωjFðωÞj2: ð41Þ

We can relate the superposition of the mode functions to the
spatial profile of the detector mode. We define the canonical
pair for the detector mode by

Q̂D¼ âDþ â†Dffiffiffi
2

p ; P̂D¼ âD− â†Dffiffiffi
2

p
i

; ½Q̂D;P̂D�¼ i: ð42Þ

These local operators defined from the quantum field ϕ̂ðVÞ
can be expressed using spatial profile functions qDðyÞ and
pDðyÞ as follows2:

Q̂D ¼
Z

∞

−∞
dV qDðVÞ

Z
∞

0

dω
�
∂tϕ

I
ωðVÞâIω þ H:c:

�
; ð43Þ

P̂D ¼
Z

∞

−∞
dV pDðVÞ

Z
∞

0

dω
�
∂tϕ

I
ωðVÞâIω þ H:c:

�
: ð44Þ

By using Eqs. (40) and (42), profile functions qDðyÞ, pDðyÞ
and the weighting function FðωÞ are related as

Z
dV qDðVÞ∂tϕI

ωðVÞ ¼
FðωÞffiffiffi

2
p ;

Z
dV pDðVÞ∂tϕI

ωðVÞ ¼
FðωÞffiffiffi

2
p

i
: ð45Þ

2For a chiral scalar field, we use a gauge invariant field
operator Π̂ðVÞ ≔ ∂Vϕ̂ðVÞ to define a local operator Q̂PðVÞ ¼R
dVqPðVÞΠ̂ðVÞ where qPðVÞ is a profile function for the local

operator.
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The canonical commutation relation for the left-moving mode is

½ϕ̂ðVÞ; Π̂ðV 0Þ� ¼
Z

∞

0

dωfϕI
ωðVÞð∂tϕI

ωðV 0ÞÞ� − ∂tϕ
I
ωðVÞðϕI

ωðV 0ÞÞ�g

þ
Z

∞

0

dωfϕII
−ωðVÞð∂tϕII

−ωðV 0ÞÞ� − ∂tϕ
II
−ωðVÞðϕII

−ωðV 0ÞÞ�g;

≡ i
2
δðV − V 0Þ: ð46Þ

Since the mode functions ϕI
ω and ϕII

−ω are restricted to V > 0 and V < 0, respectively, the following normalization conditions
hold:

i
2
δðV − V 0Þ ¼

Z
∞

0

dωfϕI
ωðVÞð∂tϕI

ωðV 0ÞÞ� − ∂tϕ
I
ωðVÞðϕI

ωðV 0ÞÞ�g ðV; V 0 > 0Þ; ð47Þ

i
2
δðV − V 0Þ ¼

Z
∞

0

dωfϕII
−ωðVÞð∂tϕII

−ωðV 0ÞÞ� − ∂tϕ
II
−ωðVÞðϕII

−ωðV 0ÞÞ�g ðV; V 0 < 0Þ: ð48Þ

By using these identities we can express the spatial profile
of the detector mode in terms of the weighting function of
the detector mode:

qDðVÞ ¼ −
ffiffiffi
2

p
i
Z

∞

0

dωfFðωÞðϕI
ωðVÞÞ� − F�ðωÞϕI

ωðVÞg;

¼ 2
ffiffiffi
2

p
Im

�Z
∞

0

dωFðωÞðϕI
ωðVÞÞ�

�
; ð49Þ

pDðVÞ ¼ −
ffiffiffi
2

p Z
∞

0

dωfFðωÞðϕI
ωðVÞÞ� þ F�ðωÞϕI

ωðVÞg;

¼ −2
ffiffiffi
2

p
Re

�Z
∞

0

dωFðωÞðϕI
ωðVÞÞ�

�
: ð50Þ

The profile for the partner mode âP is slightly complicated
in general. However, if the weighting function FðωÞ of the
detector mode has a sharp peak at some ω, we can
approximate the partner mode as

âP ≈
Z

∞

0

dωFðωÞâIIω; ð51Þ

where âIIω is an annihilation operator associated with the
Rindler mode ϕII

−ω. See Appendix B for the derivation of
this approximation. Then the partner mode is expressed
using its profile function qPðyÞ and pPðyÞ as

Q̂P ¼
Z

dV qPðVÞ
Z

∞

0

dωf∂tϕII
−ωðVÞâIIω þ H:c:g; ð52Þ

P̂P ¼
Z

dV pPðVÞ
Z

∞

0

dωf∂tϕII
−ωðVÞâIIω þ H:c:g; ð53Þ

with

qPðVÞ ¼ 2
ffiffiffi
2

p
Im

�Z
∞

0

dωFðωÞðϕII
−ωðVÞÞ�

�
; ð54Þ

pPðVÞ ¼ −2
ffiffiffi
2

p
Re

�Z
∞

0

dωFðωÞðϕII
−ωðVÞÞ�

�
: ð55Þ

We show the profiles of the Rindler mode and its partner
mode in Fig. 2. These profiles correspond to the in-vacuum
state at the past null infinity of the moving mirror model
presented in the next section. They are mirror-reversed
images about V ¼ 0 and they do not have any overlap as
expected.

III. PARTNER IN MOVING MIRROR MODEL AND
VACUUM FLUCTUATION SCENARIO

The moving mirror model involves a massless scalar
field in the (1þ 1)-dimensional Minkowski spacetime. The
scalar field is subject to a Dirichlet boundary at the
perfectly reflecting mirror. We define the worldline of
the mirror as x ¼ zðtÞ. Therefore, we consider the scalar
field with the boundary condition ϕðt; zðtÞÞ ¼ 0. Using the
null coordinates ðU;VÞ, the general solution of the scalar
field is

ϕðU;VÞ ¼ fðUÞ þ gðVÞ; ð56Þ

where f, g are arbitrary functions. Note that the right-
moving solution and the left-moving solution decouple. To
ensure that our solution satisfies the boundary condition,
we express the boundary in the null coordinates. A constant
U line intersects with the worldline of the mirror at a single
point, which can be represented as ðτU; zðτUÞÞ satisfying
τU − zðτUÞ ¼ U. Thus, the V coordinate of the intersection
point for a given U is given by
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VU ¼ τU þ zðτUÞ≡ pðUÞ; ð57Þ

and we refer to pðUÞ as the ray tracing function. The
boundary condition can then be rewritten as
ϕðU;pðUÞÞ ¼ 0. Consequently, arbitrary functions in
Eq. (56) must be related by means of equation
fðUÞ ¼ −gðpðUÞÞ. Thus, the solution of the wave equation
with the required boundary condition is

ϕðU;VÞ ¼ −gðpðUÞÞ þ gðVÞ: ð58Þ
The left-moving wave gðVÞ is reflected in the right-moving
wave gðpðUÞÞ at the moving boundary V ¼ pðUÞ.
For a mirror trajectory which asymptotically approaches

the null line V ¼ 0, the ray-tracing function is given by

pðUÞ ¼ −
1

a
e−aU; ð59Þ

where a is the proper acceleration of the mirror. By
reflection at the moving mirror, the left-moving Milne
mode ϕII

−ωðVÞ becomes the following right-moving wave:

1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωU ¼ ϕII
−ωðpðUÞÞ: ð60Þ

Therefore, Milne particles appear if we measure the plane
wave-type Minkowski mode at the future null infinity
V ¼ ∞, assuming that the mirror trajectory has the portion
that approaches a null line asymptotically (Fig. 3). For a
suddenly stopping moving mirror trajectory, considered by
R. Wald [18], the trajectory is given by

zðtÞ ¼

8>><
>>:

0 ðt < 0Þ
−t − e−2κt=2κ þ 1=2κ ð0 ≤ t ≤ t� − εÞ
zðt�Þ ðt ≥ t� þ εÞ

: ð61Þ

Here, we determine the values of zðt�Þ and z0ðt�Þ based on
the behavior of z when z ≤ z�. ε is a small parameter, and
when we perform numerical simulations, zðtÞ in t < t� − ε
and zðtÞ in t > t� þ ε are smoothly connected by inter-
polation. The ray tracing function pðUÞ for this trajectory is
given by

pðUÞ¼

8>><
>>:
U ðU≤0Þ
Wð−e−κU−1=2=2Þ=κþ1=2κ ð0≤U≤ t�−zðt�Þ−εÞ
Uþ2zðt�Þ ðU≥ t�−zðt�ÞþεÞ

; ð62Þ

where WðxÞ is the Lambert W function defined as the
solution y to the equation yey ¼ x. This trajectory has an
asymptotic null line V ¼ 1=2κ for U ≫ 1 and the ray
tracing function is approximated by pðUÞ ∼ e−κU=2κ þ
1=2κ in this region. Since this type of mirror trajectory
experiences a large deceleration for t� − zðt�Þ − ε ≤
U ≤ t� − zðt�Þ þ ε, a huge amount of energy flux (burst)
is emitted in this region. Following the discussion in the

previous sections [Eq. (51) of Sec. II B], we know that the
partner mode for the superposition of ϕII

−ω is the super-
position of ϕI

ω with the same superposition coefficients. To
obtain the partner mode at the future null infinity, all we
have to consider is the image of modes reflected by the
moving mirror. A schematic diagram of Hawking mode, its
partner and the burst is depicted in the left panel of Fig. 4.
The profiles of the Hawking mode and partner mode

FIG. 2. Left panel: profiles of the Rindler mode qDðVÞ and its partner qPðVÞ (we call it the Milne mode). They are symmetric about the
vertical axis. Right panel: profiles of Rindler mode pDðVÞ and its partner pPðVÞ. They are symmetric about the origin. We have chosen
the Gaussian weighting function FðωÞ ∝ e−10ðω−1Þ2 for this plot.
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(smearing functions qDðUÞ and qPðUÞ) at the future null
infinity are also plotted in the right panel of Fig. 4. At the
past null infinity, the partner mode and the Hawking mode
appear on opposite sides of the past Rindler horizon. At the
future null infinity, they appear on opposite sides of the null
line U ¼ 1=2κ − 2zðt�Þ that intersects at the point where
the horizon and the mirror trajectory cross. It is worth
noting that the burst appears on the Hawking mode sides
[i.e., U ≤ 1=2κ − 2zðt�Þ] at the future null infinity and it
can be regarded as late-time Hawking radiation. This is

because the horizon and the worldline of the mirror
intersect after the mirror stops. We can estimate the energy
of the emitted partner mode by the expectation value
EP ≔ hâP†âP þ 1=2iin, and this can be evaluated as (see
Appendix C for a detailed calculation)

EP ¼ 1

2

Z
dUdU0

	
hT̂UUiren þ

1

ðU −U0 − iεÞ2



× ðqPðUÞqPðU0Þ þ pPðUÞpPðU0ÞÞ þ 1

2
: ð63Þ

The first term in the curly bracket is the expectation value of
the renormalized energy-momentum tensor, which corre-
sponds to the energy flux radiated from the mirror, and the
other terms correspond to the contributions of vacuum
fluctuations. As we have observed in the left panel in Fig. 4,
the energy momentum tensor hT̂UUiren takes nonzero value
only on the Hawking mode side (U ≤ 1=2κ − 2zðt�Þ). Thus
the renormalized energy momentum tensor does not
contribute to EP. Therefore, the cost of energy to emit
the partner can only be contribution from the vacuum
fluctuations.

IV. WALD’S ARGUMENT AND ITS DEFICIENCY

A. Consideration by Wald

In this section, we briefly review the argument of
R. Wald on Hawking particles and their partners [18].
He considered that the emission of the burst can be
explained by entanglement of Hawking radiation and
vacuum fluctuations. If we accept his statement, then to
recover information, the emission of the burst is necessary
to return the partner of Hawking radiation, and the energy
of the burst should be regarded as an indirect energy cost of

FIG. 3. Relation between modes at the future null infinity and at
the past null infinity.

FIG. 4. Mode structures for the suddenly stopping mirror case. Schematic picture of Hawking particles and partner particles (left
panel). Shape of the partner mode qPðUÞ(red) for a given Hawking mode qDðUÞ(blue) (right panel). The green line denotes the location
where the burst appears. We have chosen the weighting function FðωÞ ∝ e−10ðω−1Þ2 .
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purification. Let us focus on the mirror trajectory Eq. (61)
described in the previous section for a moment. We prepare
a wave packet h, which consists of plane waves at the future
null infinity that correspond to Hawking radiation (Fig. 5).
By propagating the wave packet backward in time, it is
reflected off by the mirror during the mirror’s accelerating
phase, and then further propagating it backward, we obtain
the wave packet h̃, which consists of Milne waves at the
past null infinity. As discussed in Sec. II, the partner of this
Milne wave packet h̃ is the Rindler wave packet f̃1, which
is the flipped image of h̃ with respect to the asymptotic line
V ¼ VH. Taking into account the evolution of the wave
packet f̃1, we obtain the partner wave packet f1 of
Hawking radiation h at the future null infinity.
Up to this point, there is no deviation from the standard

vacuum fluctuation scenario discussed in the previous
sections. Wald’s consideration is as follows: the partner
wave packet f1 consists of Milne waves, since it is obtained
by a reflection off the mirror at rest. Since the Milne wave
packet can be purified by the Rindler wave packet, the
Rindler wave packet f2 also purifies the Milne wave packet
f1. The Rindler wave packet f2 is obtained by flipping f1
at U ¼ UH, corresponding to the coordinate U of the
intersecting point of V ¼ VH and the mirror’s worldline.
However, since the vacuum fluctuation f1 is already
entangled with Hawking radiation h, f2 cannot be in a
state that is also entangled with f1 according to the
monogamy property of quantum entanglement. Therefore,
we conclude that f2 should not be in the state of vacuum
fluctuation entangled with f1 but rather be real particles.
The energy cost of these real particles can be estimated by
the typical Milne frequency of the Milne wave packet f1

or f2. The Milne wave packet f1 or f2 is strongly
blueshifted compared to the wave packet h, with an
extremely high Milne frequency compared to the typical
frequency of Hawking radiation and with a pointlike
support. Therefore, the radiation is burst wavelike, with
energy that easily exceeds the Planckian mass scale. Since
the emission of the burst is necessary to return the partner of
Hawking radiation, the energy of the burst should be
considered as the indirect cost of purification.
The natural extension of Wald’s consideration is what

happens if we consider a long-propagating mirror, which is
analogous to the remnant scenario [19,25]. By considering
a mirror trajectory with a mild deceleration phase, or a
mirror trajectory without a deceleration phase, we will
obtain a long propagating mirror trajectory. For this long-
propagating mirror trajectory, the partner wave packet f1 is
not strongly blueshifted compared to Hawking radiation h.
Therefore, the real particle radiation is not burstlike, and its
energy does not exceed the Planckian mass energy. Wald
has already prepared the answer to this question. For a
long-propagating mirror trajectory, the width of the partner
wave packet is much larger than the Planck mass scale, due
to the strong redshift by the mirror reflection. However, if
we consider a real black hole in the semiclassical evapo-
ration scenario, the returned partner wave packet must have
a width which is smaller than the Planck mass scale because
of causality. Consequently, the long-propagating mirror
trajectory would not adequately describe the real black hole
evaporation process. Thus, the mirror trajectory should be
of sudden stopping type. However, for this trajectory, we
encounter the problem of an indirect energy cost for
purification. Consequently, the vacuum fluctuation sce-
nario should be associated with the burst with a huge
amount of energy.

B. Critiques on Wald’s consideration

In the previous section, we discussed Wald’s examina-
tion on the vacuum fluctuation scenario. The central
aspect of Wald’s analysis is the connection between the
burst and the entanglement among vacuum fluctuations.
Consequently, the burst must be viewed as an indirect
energy cost of the purification process because of this
relation. By examining the outcome illustrated in Fig. 4 of
Sec. III, an overlap is evident between the burst’s location
and the profile of the wave packet linked to f2 from Sec. IV,
thereby supporting Wald’s argument. If Wald’s consider-
ation regarding the origin of the burst holds true, then the
overlap between the burst’s location and the profile of the
wave packet linked to f2 should be observed for any mirror
trajectory accompanied by the burst emission. However, as
we will demonstrate below using a counterexample, there
exists no overlap between the burst’s location and the
profile of the wave packet linked to f2 for the following
long-propagating mirror trajectory:

FIG. 5. Schematic picture of modes of the suddenly stopping
mirror.
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zðtÞ ¼

8>>>><
>>>>:

0 ðt ≤ 0Þ
−t − e−2κt=2κ þ 1=2κ ð0 ≤ t ≤ t�Þ
z0ðt�Þðt − t�Þ þ zðt�Þ ðt� ≤ t ≤ t��Þ
zðt��Þ ðt ≥ t��Þ

: ð64Þ

For this trajectory, we calculate zðt�Þ and z0ðt�Þ according
to the behavior of z when t ≤ t�, and we ascertain zðt��Þ
based on the behavior of z when t� ≤ t ≤ t��. Without the

final static phase, it is nothing but a long-propagating
mirror that ends with uniform motion. As both trajectories
represent asymptotic inertial motions, we cannot distin-
guish them from the behavior of Hawking radiation and its
partner, as long as the mirror undergoes a sufficiently long
period of uniform motion. The only difference lies in the
emission of the burst during the transition from uniform to
static motion. The ray tracing function for this trajectory is
as follows

pðUÞ ¼

8>>>>><
>>>>>:

U ðU ≤ 0Þ
Wð−e−κU−1=2=2Þ=κ þ 1=2κ ð0 ≤ U ≤ t� − zðt�ÞÞ
2ðU þ zðt�Þ − z0ðt�Þt�Þ=ð1 − z0ðt�ÞÞ − U ðt� − zðt�Þ ≤ U ≤ t�� − zðt��ÞÞ
U þ 2zðt��Þ ðt�� − zðt��Þ ≥ tÞ

: ð65Þ

In the numerical simulation, the interpolation functions are
incorporated around t ¼ 0, t ¼ t�, and t ¼ t�� to ensure the
smoothness of zðtÞ and pðUÞ. In the left panel of Fig. 6, we
present a schematic representation of Hawking radiation, its
partner, and the burst. Additionally, the right panel of Fig. 6
presents profiles of the Hawking mode and the partner
mode [smearing functions qDðUÞ and qPðUÞ] at the future
null infinity. At the past null infinity, the partner mode and
the Hawking mode lie on opposite sides of the horizon, and
at the future null infinity, they also lie on opposite sides of
U ¼ UH ≡ 1=2κ − 2zðt�Þ where the horizon and mirror
trajectory intersect. Note that the burst emerges on the side
of the partner mode at the future null infinity. This happens
because the horizon and worldline of the mirror intersect

during the mirror’s uniform motion phase. It should be
noted that there is no overlap between the profile of
the flipped image of the partner of Hawking radiation at
U ¼ UH and the location of burst. Furthermore, assuming
that the mirror trajectory undergoes a sufficiently long
period of uniform motion, the overlap between the profile
of the partner of Hawking radiation and the burst becomes
negligible. If the burst originates from vacuum fluctuation
f2, which is entangled with the partner of Hawking
radiation as proposed by Wald, then there should be an
overlap between the location of the burst wave and the
profile of vacuum fluctuation f2. However, our example
demonstrates that, in general, there is no overlap between
the location of the burst and the support of the vacuum

FIG. 6. Mode structures for the long-propagating mirror. Schematic picture of the Hawking particle and the partner particle (left
panel). Shape of the partner mode qPðUÞ(red) for given Hawking mode qDðUÞ(blue) (right panel). The green line corresponds to the
location of the burst. We have chosen the weighting function FðωÞ ∝ e−10ðω−1Þ2 .
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fluctuation f2. Thus, the relationship between the burst and
vacuum fluctuations is not as what Wald suggested, and
there is no need to regard the energy of the burst as an
indirect energy cost of purification.
The moving mirror model that ends with a constant

motion is known as a model for black hole remnants
[10,25]. If one introduces the stoppage of the mirror after it
undergoes a uniform velocity motion for a sufficiently long
time, as in [19] or in our trajectory Eq. (64), then that
trajectory corresponds to a remnant that remains in space-
time for some finite time, before it eventually evaporates
completely. We have considered such a mirror trajectory
corresponding to the evaporating remnant to explore the
relationship between the partner, its flipped mode, and
the burst. However, since the remnant is protected by the
generalized uncertainty principles, the black hole does not
evaporate completely in the realistic situation [20].
Nevertheless, the purification procedure should not be
affected by the addition of the final evaporation phase of
the remnant as long as its lifetime is sufficiently long,
during which all the partner modes would hit the mirror and
return as vacuum fluctuations. Therefore, our consideration
of the relationship between the purification and the burst is
not affected even in the realistic scenario.
Before concluding this section, let us briefly explore the

entanglement monogamy between Hawking radiation h, its
partner f1, and the flipped image f2 of f1. It is not always
possible to uniquely determine the purification partner for
some mixed quantum states. In the case of the moving
mirror, purifying f1 with h results in the in-vacuum state,
whereas purifying f1 with f2 results in the out-vacuum
state. If the in-vacuum state and the out-vacuum state
coincide, then h and f2 must be identical, or one of them
must abandon quantum entanglement with f1 due to the
monogamy relation. However, this is not the case for the
moving mirror with an accelerating phase, and f2 is still in
the state of the vacuum fluctuation.

V. CONCLUSION

We have reconsidered Wald’s critique on the vacuum
fluctuation scenario for black hole evaporation, particularly
focused on his argument relating to the burst scenario. Wald
argues that the emission of the burst at the final stage of
black hole evaporation can be explained from the viewpoint
of monogamy, suggesting that the burst emission is
inevitable for the purification of Hawking radiation with
vacuum fluctuations. However, it should be noted that
Wald’s consideration is based on a specific mirror trajectory
Eq. (61). For this trajectory, the location of the partner
mode’s flipped mode f2 happens to be close to that of the
burst, so it may be intuitive at first sight to identify
the flipped mode as the burst. Since the burst carries
energy, the flipped mode must also carry energy if the two
are indeed identical. To make the flipped mode carry
energy, Wald came up with the notion of entanglement

monogamy to support the argument for the identity
between the flipped mode and the burst. In addition, since
the flipped mode arrives at the future null infinity earlier
than the partner mode, one is tempted to conclude that the
purification (return of the partner) would cost energy
(carried by the flipped mode), provided the flipped mode
is identical to the burst.
In our study, instead of using the sudden-stopping

trajectory Eq. (61) that mimics a possible black hole
evaporation scenario, we considered a long-propagating
trajectory Eq. (64), which corresponds to the scenario of
black hole evaporation that in the end results in a non-
evaporating black hole remnant [6,19,20], which clearly
distinguishes the identities between the flipped mode and
the burst, since their locations obviously do not overlap for
this trajectory. This indicates that the overlapping of the
flipped mode and the burst in Wald’s trajectory Eq. (61) is
merely a coincidence, and the burst should not be inter-
preted as the manifestation of the flipped mode but,
perhaps, as an artifact originated from the external agent
that drives the mirror’s motion. It is therefore no longer
necessary to invoke the monogamy argument. Whether the
burst is an artifact or not, it is a separate entity from the
Hawking mode, the partner mode, and the flipped mode,
where the latter two remain as vacuum fluctuations that
carry no energy. That is, purification through vacuum
fluctuations would in general cost no energy.
In the moving mirror model, the mirror’s velocity

increases as long as the acceleration continues. Therefore,
numerous particles must be emitted from the mirror in order
to bring it to a complete stop. However, this burst emission is
associated with the deceleration to stop the moving mirror,
which does notmimic any phenomenon of the evaporation of
a real black hole. Sincewe have shown that the partner mode
of Hawking radiation is not responsible for this burst, the
vacuum fluctuation scenario without the cost of energy
remains a promising framework.
Although we did not address in this paper, we are

interested in the following two issues; the first is the
single-mode approximation adopted to obtain Eq. (51).
In general, the partner is characterized by the general
partner formula [26,27], which is the relation between
different modes of wave number and is nonlinear. This
approximation becomes invalid when the weighting func-
tion FðωÞ is not well localized. In such a case, there is an
overlap between the profile of Hawking mode and the
profile of the partner mode, and we would not be able to
discard Wald’s argument based solely on the behavior of
the profile of involved modes. The second is the behavior of
the renormalized entropy [11] in the vacuum fluctuation
scenario. For the long-propagating mirror trajectory fol-
lowed by a uniform motion, the partner particle is returned
as the vacuum fluctuation without energy gain from the
mirror. However, following the Bianchi-Smerlak formula
for entanglement entropy [28],
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SðUÞ ≔ −
1

12
lnp0ðUÞ; ð66Þ

we see that the entanglement entropy does not decrease
during the period of the inertial motion of the mirror. Some
researchers have also suggested improved definitions to
recover unitarity by adding a constant to the renormalized
entropy [25]. However, it is difficult to achieve the recovery
of unitarity using these formulas. This is because the
renormalization of the entropy involves the subtraction
of the entanglement entropy associated with the static
mirror trajectory, but this operation may also eliminate
the contribution of vacuum fluctuations. Other approaches
to renormalizing the entanglement entropy may be required
to tackle this problem.
Last but not least, it would be interesting to make contact

of our notions with experimentation. In particular, the
international AnaBHEL (Analog Black Hole Evaporation
via Lasers) collaboration [29] based on the Chen-Mourou
proposal [30] intends to generate a relativistic flying mirror
through laser-plasma interaction. In this pursuit, the mir-
ror’s trajectory is determined by the variation of the
background plasma density. A mirror trajectory that ena-
bles the emission of analog Hawking radiation can be
designed via a proper density profile [31]. However, due to
the complex nature of laser-plasma interaction, only a
flying mirror with low and nontrivial reflectivity, in the
sense of time and frequency dependence, can be feasibly
generated, which deviates from the standard setup of a
perfectly reflecting moving point mirror in (1þ 1) dimen-
sions. For a given trajectory, such a low reflectivity setup
results in the deviation of the particle number spectrum in
comparison with that of a perfectly reflecting mirror
[32–35]. In addition, the energy flux emitted by the low-
reflectivity moving mirror also deviates from that of the
standard Fulling-Davies formula for two reasons: One is
due to the nontrivial reflectivity effect for a given mode,
and the other is due to the mixing of the reflected mode and
the transmitted mode. Nevertheless, the total system can
still be described in terms of a pure two-mode squeezed
vacuum state [35]. Therefore, the formal construction of the
detector/partner modes and their corresponding spatial
profiles introduced in this paper should still be applicable
to the setup in the AnaBHEL experiment.
While more detailed investigations are left for future

work, it may be intuitively fair at this point to expect that, in
the case of a suddenly stopping low-reflectivity mirror, the
burst wave should exist. However, since the mirror has a
low reflectivity, and since the partner mode of the Hawking
mode is more energetic than the Hawking mode, it is highly
possible that the partner mode will penetrate to the other
side of the moving mirror. The AnaBHEL experiment may
serve as a demonstration of the separate identity between
the burst wave and the partner mode of the Hawking mode,
since the burst and the partner are now on opposite sides of

the moving mirror. Furthermore, since the partner mode is
on the other side of the mirror, its flipped profile should
also be on the other side of the burst wave, which again
invalidates the entanglement monogamy viewpoint for the
origin of the burst wave. To conclude, from either the
viewpoints of the partner formula or the scenario of a low-
reflective mirror, the final burst of the moving mirror seems
to be disentangled from both the Hawking mode’s partner
mode and the partner mode’s flipped mode, therefore
saving the vacuum fluctuation purification scenario from
the extreme energy cost, i.e., quantum purity at a small
price is secured.
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APPENDIX A: PURIFICATION PARTNER OF
THE QUANTUM FIELD

In the standard approach to quantum field theory in
Minkowski spacetime [36], we typically expand the field
operator in terms of plane-wave modes. The choice of the
plane-wave mode function is motivated by maintaining
Lorentz invariance in the quantum field. However, when
acceleration is invoked, a plane-wave mode with respect to
an inertial observer is no longer a plane-wave mode with
respect to an accelerated observer since there is no Lorentz
transformation relating these two frames. In this case, the
mode functions with respect to an accelerating observer
fψΩg and those with respect to an inertial observer fφωg
are related through the Bogoliubov transformation:

ψΩ ¼
Z

dωfα�Ωωφω − βΩωφ
�
ωg: ðA1Þ

OSAWA, LIN, NAMBU, HOTTA, and CHEN PHYS. REV. D 110, 025023 (2024)

025023-12



The coefficients αΩω and βΩω are the Bogoliubov coef-
ficients satisfying the following relation for each Ω:

Z
dωfα�ΩωαΩ0ω − βΩωβ

�
Ω0ωg ¼ δΩΩ0 : ðA2Þ

Recall the expansion of the field operator

ϕ̂ðxÞ ¼
Z

dΩfÂΩψΩðxÞ þ Â†
Ωψ

�
ΩðxÞg

¼
Z

dωfâωφωðxÞ þ âω†φ�
ωðxÞg; ðA3Þ

where ÂΩ and âω are annihilation operator with respect to
fψΩg and fφωg, respectively, we can rewrite the
Bogoliubov transformation by using creation and annihi-
lation operators:

ÂΩ ¼
Z

dωfαΩωâω þ βΩω
�âω†g: ðA4Þ

Because the Bogoliubov transformation forms a group, we
can also consider transformations between different accel-
erating observers. Let us consider the case where the
Bogoliubov transformation mixes only two different modes
for simplicity; that is, we assume that αΩω and βΩω have
narrow peaks about ω ¼ ω1 and ω ¼ ω2, respectively.
Then

Â ≔ αâ1 þ β�â2†; ðA5Þ

where α, β satisfy jαj2 − jβj2 ¼ 1. Since â1 and â2 are
independent ½â1; â2� ¼ ½â1; â2†� ¼ 0, the following com-
mutation relation holds:

½Â; Â†� ¼ 1: ðA6Þ

General Bogoliubov transformations can be transformed
into this form using mode transformations that do not alter
the vacuum state and by redefining the local mode [12]. The
following discussion does not lose generality under this
assumption. Since the Bogoliubov transformation does not
change the number of modes, we have another counterpart
to the Bogoliubov transformation:

B̂ ≔ αâ2 þ β�â†1; ðA7Þ

and this operator satisfies the commutation relation

½B̂; B̂†� ¼ 1: ðA8Þ

From their construction, two operators Â and B̂ are
independent.

½Â; B̂� ¼ ½Â; B̂†� ¼ 0; ðA9Þ

and these operators Â, B̂ annihilate different particle
modes. Since there are two pairs of the annihilation operators,
we have two different vacuum states j00i12 and j00iAB
satisfying

0 ¼ â1j00i12 ¼ â2j00i12; ðA10Þ

0 ¼ Âj00iAB ¼ B̂j00iAB: ðA11Þ

These vacuum states are related as

j00i12 ¼
X∞
n¼0

ðtanh rÞneinφ
cosh r

jnniAB; ðA12Þ

where the parameters r;φ are introduced by tanh r ¼ jβ=αj,
φ ¼ argðβ�=αÞ. Tracing out B degrees of freedom from the
vacuum state j00i12, we have the mixed density matrix

ρ̂A ¼
X∞
n¼0

ðtanh2rÞn
cosh2r

jnihnjA: ðA13Þ

On the contrary, this mixed state for A can be purified by B
degrees of freedom to produce the pure vacuum state j00i12.
In this sense, themode B̂ that appears as the counterpart of the
Bogoliubov transformation is called the partner mode of the
mode Â, and Eq. (A7) is called the partner formula.

APPENDIX B: NONLINEARITY OF THE
PARTNER FORMULA AND THE SINGLE

MODE APPROXIMATION

For a mode defined by independent annihilation oper-
ators â1; â2,

Â1 ≔ α1â1 þ β�1â
†
2; jα1j2 − jβ1j2 ¼ 1; ðB1Þ

its partner is given by

Â1P ≔ α1â2 þ β�1â
†
1: ðB2Þ

A set of annihilation operators ðÂ1; Â1PÞ constitutes a two
mode pure state. Now let us consider another set of modes
defined by the following Bogoliubov transformation using
independent annihilation operators b̂1; b̂2:

Â2 ≔ α2b̂1 þ β�2b̂
†
2; jα2j2 − jβ2j2 ¼ 1: ðB3Þ

Then the partner mode for this mode is given by

Â2P ≔ α2b̂2 þ β�2b̂
†
1: ðB4Þ

We assume that (â1, â2) and (b̂1, b̂2) are independent of
each other. From two annihilation operators Â1 and Â2, we
can define a new annihilation operator by

Â ¼ cos θÂ1 þ sin θÂ2: ðB5Þ
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The annihilation operator Â can be rewritten as

Â≡ αâk þ β�â†⊥; ðB6Þ

where

α ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θjα1j2 þ sin2θjα2j2

q
;

β ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θjβ1j2 þ sin2θjβ2j2

q
; ðB7Þ

âk ≔
1

α
ððcos θÞα1â1 þ ðsin θÞα2b̂1Þ;

â⊥ ≔
1

β
ððcos θÞβ1â2 þ ðsin θÞβ2b̂2Þ; ðB8Þ

and its partner is given by

ÂP ≔ αâ⊥ þ β�âk: ðB9Þ

Since the square of cos θ, and sin θ appear in the formula of
ÂP, the relationship between these partners is generally
nonlinear:

ÂP ≠ cos θÂ1P þ sin θÂ2P: ðB10Þ

However, if the two modes Â1 and Â2 share almost the same
Bogoliubov coefficients (i.e., β1 ≃ β2), that is applicable for
the single mode approximation, we obtain the following
linear relationship between partners:

ÂP ¼ cos θÂ1P þ sin θÂ2P: ðB11Þ

For a mode defined by the linear combination of more than
three independent annihilation operators,

Â ≔
X
i

fiÂi;
X
i

jfij2 ¼ 1; ðB12Þ

by repeating the above procedure within the single mode
approximation, we obtain the partner mode,

ÂP ≔
X
i

fiÂiP: ðB13Þ

For the case of Rindler mode, the Bogoliubov coefficients
are given as functions of frequency ω, and if the weighting
function FðωÞ has a sharp peak at some frequency, the
relationship between partners becomes a linear one.
Recalling that the partner mode of the Rindler mode âIω
is the Milne mode âIIω, the partner mode of the Eq. (40) can
be approximated as

âP ¼
Z

dω fðωÞâIIω: ðB14Þ

This is the meaning of the single mode approximation
adopted in Eq. (51).

APPENDIX C: ENERGY OF THE PARTNER
MODE

Let us consider the energy of the partner particles. We
can estimate the energy of the partner particles by

EP ≔
�
â†PâP þ 1

2

�
in
: ðC1Þ

Rewriting this formula using canonical modes,

EP ¼
�
Q̂2

P þ P̂2
P

2

�
þ 1

2
;

¼ 1

2

Z
dUdU0ðqPðUÞqPðU0Þ þ pPðUÞpPðU0ÞÞhΠ̂RðUÞΠ̂RðU0Þiin þ

1

2
;

¼ 1

2

Z
dUdU0 p

0ðUÞp0ðU0ÞðqPðUÞqPðU0Þ þ pPðUÞpPðU0ÞÞ
ðpðUÞ − pðU0Þ − iεÞ2 þ 1

2
;

¼ 1

2

Z
dUdU0

	�
p0ðUÞp0ðU0Þ

ðpðUÞ − pðU0Þ − iεÞ2 −
1

ðU −U0 − iεÞ2
�
þ 1

ðU − U0 − iεÞ2


ðqPðUÞqPðU0Þ þ pPðUÞpPðU0ÞÞ þ 1

2
:

The first term in the curly bracket equals to the Fulling-Davies flux formula and this corresponds to the renormalized energy
flux hT̂UUiren radiated from moving mirror, and the second term corresponds to the contribution from vacuum fluctuation of
the quantum field. The energy flux radiated from the mirror is zero during the inertial motion of the mirror, and we can
choose detector mode so that the profile of the partner mode is approximately compactified in the region where the energy
flux of the mirror vanishes for suddenly stopping and long-propagating mirror trajectories. Therefore, the energy of the
partner mode is nothing more than the energy of the vacuum fluctuation, as we have expected.
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