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We extend previous efforts to quantify the entanglement generated in Hawking’s evaporation process by
including rotation and thermal environments (e.g. the cosmic microwave background). Both extensions are
needed to describe real black holes in our Universe. Leveraging techniques from Gaussian quantum
information, we find that the black hole’s ergoregion is an active source of quantum entanglement and that
thermal environments drastically degrade entanglement generation. Our predictions are suitable to be tested
in the lab using analog platforms and also provide tools to assess the fate of quantum information for black
holes in more generic settings.
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I. INTRODUCTION

In 1974, Stephen Hawking showed that black holes emit
radiation as hot bodies [1,2], providing an unforeseen
relation between relativity, thermodynamics, and quantum
mechanics. The quantum nature of this process becomes
manifest by noticing that the emitted Hawking radiation is
entangled with modes that fall into the interior of the
black hole.
A milestone in the characterization of entanglement

generated by nonrotating black holes was achieved by
D. Page in Refs. [3,4] (see also Ref. [5]). Page considered
quantum fields initially prepared in the vacuum state. Since
this is a pure quantum state, the von Neumann entropy of
the radiation emitted to infinity quantifies the entanglement
with the radiation falling inside the black hole. These
calculations generated great interest; specifically because
they provide the tools to discuss the information loss
paradox [6–10] in quantitative terms [3,4].
The goal of this article is to extend Page’s calculations in

two important directions: (i) incorporating rotation and
(ii) accounting for thermal environments. Both generaliza-
tions are essential for a comprehensive description of
realistic black holes in our universe. For instance, rota-
tion—prevalent for black holes of astrophysical origin—
gives rise to an ergoregion encompassing the black hole
horizon. It is well understood that the ergoregion

contributes to Hawking radiation by amplifying its intensity
via the phenomenon of superradiance [2,11–13].
In this article, we elucidate that entanglement generated

by a rotating black hole contains two contributions of
different physical origin—a thermal contribution from the
horizon and a nonthermal part from the ergoregion. Both
contributions are described mathematically in similar
terms, by two-mode squeezers. A notable distinction is
that the ergoregion is seeded by the thermal Hawking
radiation from the horizon. The total entanglement results
from the interplay of these two phenomena. To the best of
our knowledge, there has been no previous investigation
into characterizing the entanglement generated by the
ergoregion.
That the evolution of field modes across the ergoregion is

formally described by a two-mode squeezer was first
noticed in [14]. This implies that the vacuum state under-
goes a transformation into a two-mode squeezed vacuum
made of entangled pairs of particles—this is a vacuum
instability, first pointed out by Starobinski [12] and con-
firmed by Unruh [13] (see also [15] for a discussion on a
related instability of rotating compact stars that feature an
ergoregion.).
The scenario considered in this article differs from the

Starobinski-Unruh framework in that, if the black hole
originates from gravitational collapse, quantum fields in the
vicinity of the ergoregion are not in the vacuum state, but
instead contain a thermal flux of particles (Hawking
radiation) emanating from the outer horizon. The ergore-
gion amplifies these thermal Hawking quanta by the
process of superradiance, imprinting additional entangle-
ment in the radiation. This contribution to entanglement
differs from the one that the ergoregion would create if
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Hawking radiation were not present, as in the idealized
Starobinski-Unruh scenario. Although the total radiation
emitted by rotating black holes has been extensively studied,
including the combined contribution of the horizon and the
ergoregion [2,11,16], no analysis of entanglement—further
decoupling each contribution—has been explored so far.
We furthermore demonstrate that, for black holes

immersed in thermal baths, the exterior thermal radiation
alters the entanglement generated by the black hole, appre-
ciably degrading entanglement if the temperature of the
environment is larger than the Hawking temperature. This
fact has been recently pointed out by us in the context of
analog horizons created in the lab [17,18] (and qualitatively
discussed for nonrotating black holes in the essay [19]), and
is of obvious physical interest for astrophysical black holes,
considering that all of them are immersed in the cosmic
background radiation. Furthermore, thermal environments
are ubiquitous in analog black holes created in laboratory
settings.
The quantitative analysis of these effects requires other

tools than the ones used by Page. In particular, thermal
environments are described by mixed quantum states and,
consequently, the von Neumann entropy of the outgoing
radiation is no longer a quantifier of entanglement. We use
a novel way of deriving the Hawking process based on
general techniques used to describe Gaussian bosonic
quantum systems. These tools make it possible to derive
the Hawking effect in a remarkably simple yet powerful
manner, allowing us to isolate and quantify the contribution
of the ergoregion.
On the other hand, our tools only apply to states of the

fields that are Gaussian (either pure or mixed). Although
this is an intrinsic limitation, the formalism includes many
of the states that are physically interesting: vacuum,
coherent, squeezed, and thermal states. Hence, the limita-
tion is not significant in practice.
In what follows, we neglect contributions from particle

species with rest-mass energies greater than the thermal
energy of Hawking radiation, which, for solar-mass black
holes or heavier, practically restricts our calculations to
the known massless particles, namely photons and grav-
itons [4]. We use units in which ℏ ¼ c ¼ kB ¼ 1.

II. MODES AND THEIR EVOLUTION

Figure 1 shows the Penrose diagram of the formation of a
rotating, axisymmetric black hole (only the region exterior
to the outer horizon is shown). Following Hawking’s
original derivation, the evolution of quantum fields can
be obtained by solving the classical wave scattering. Let us
first identify the wave modes, describing either electro-
magnetic or gravitational waves, involved in the Hawking
effect (see Fig. 1).
Consider an “out” mode at future null infinity (Iþ). This

is described by a wave packet sharply centered around a
frequency ω, angular momentum numbers l and m, and

helicity s, and supportedmostly at late values of the retarded

time u along Iþ. We will denote this mode by φðoutÞ
Q , where

Q ¼ ω;l; m; s, and we have suppressed vectorial and
tensorial indices in the modes. The evolution of this mode
backward in time to past null infinity (I−) produces a
combination of three modes, which, following [20], we

denote asφðinÞ
Q ,φðpÞ

Q andφðdÞ
Q . ThemodeφðinÞ

Q is awave packet
with support centered at late values of the advanced time v in
I−, in the region where the spacetime is described by Kerr’s
metric. Due to the stationary and axisymmetric character of

the underlying geometry in this region of the spacetime,φðinÞ
Q

has the same frequency and angular momentum numbers

as φðoutÞ
Q .

The modes φðpÞ
Q and φðdÞ

Q have support only around the
time vH at which the horizon forms. Although they have the

same l and m numbers as φðoutÞ
Q , they do not have a well-

defined frequency at I−. Due to the blueshift induced by
the horizon, these modes have support on exponentially
large frequencies. Hence, the label ω of these modes should
not be confused with their physical frequency at I−. The
explicit expression of these modes can be found in
Appendix A. These modes in I−, which describe the
progenitors of the “out” mode, were introduced in [11],

FIG. 1. Spacetime representation of the Hawking process (only
the region exterior to the outer horizon is shown). For each choice
of ω, l, m, s, the Hawking effect results from the evolution of
three modes at the Cauchy hypersurface Σi to three modes at the
Cauchy hypersurface Σf . The intermediary mode “up” is intro-
duced to describe the evolution through the Cauchy hypersurface
Σint and to separate the total evolution in two steps.
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and are known as Wald basis modes (see Ref. [20] for a
detailed account). The use of Wald basis introduces a
drastic simplification—factorizing the evolution of infi-
nitely many modes into decoupled Q-sectors and reducing
the analysis to evolving three modes at a time.

If we start with an arbitrary combination of φðpÞ
Q , φðdÞ

Q and

φðinÞ
Q at Σi ¼ I−, the evolution produces, at the final Cauchy

hypersurface Σf ¼ Iþ ∪ H (H denotes the event horizon),

a combination of three modes, φðoutÞ
Q and two extra modes

which we denote by φðdnÞ
Q and φðdownÞ

Q (see Fig. 1). The
evolution is made of two contributions of distinct physical
origin, which we discuss separately. The first contribution
corresponds to the evolution from Σi to Σint (the form of the
Cauchy hypersurface Σint is depicted in Fig. 1; “int” stands
for “intermediate”). This part of the evolution occurs in the
region of spacetime that is time-dependent, in which the
horizon is formed. The evolution from Σint to Σf takes place
in the stationary Kerr geometry.
For the free field theories we consider in this paper, the

evolution is linear and can be written as matrix multipli-
cation as follows. Let

A⃗ðiÞ
Q ≡ �

aðinÞQ ; aðpÞQ ; aðdÞQ ; aðinÞ†Q ; aðpÞ†Q ; aðdÞ†Q

�⊤ ð1Þ

be the column vector of annihilation and creation operator
associated with the modes defined in Σi, and let

A⃗ðintÞ
Q ≡ �

aðinÞQ ; aðupÞQ ; aðdnÞQ ; aðinÞ†Q ; aðupÞ†Q ; aðdnÞ†Q

�⊤ ð2Þ

be a similarly defined vector associated with the modes
at Σint. The modes “dn” and “up” are depicted in Fig. 1,
and their explicit form is written in Appendix A 6.
Let us consider a black hole with mass M and angular
momentum J. The surface gravity is κ¼ðrþ− r−Þ=
½2ðr2þþa2Þ�, where r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, a≡ J=M

and ΩH ¼ aðr2þ þ a2Þ−1 is the “angular velocity” of the
horizon.
The Heisenberg evolution from Σi to Σint is encoded in

the relation A⃗ðintÞ
Q ¼ SðHÞ

Q · A⃗ðiÞ
Q , where SðHÞ

Q ¼ ðAQ
BQ

BQ
AQ
Þ and

AQ ¼
�
1 0

0 cosh zHI2

�
; ð3Þ

BQ ¼
�
0 0

0 sinh zH Ī2

�
; ð4Þ

The label H in SðHÞ stands for horizon. Here,
zHðω; mÞ ¼ tanh−1e−2πjω̃j=ð2κÞ, and ω̃≡ ω −mΩH. These
expressions are valid for both photons and gravitons. We
have denoted by In and Īn the diagonal and antidiagonal
unit matrices in n dimensions, respectively. We note that
cosh zH → ∞ as ω̃ → 0; however, this mathematical

divergence is tamed by the evolution across the ergoregion
because the transmission probability across the ergoregion

vanishes in the limit ω̃ → 0. The elements of SðHÞ
Q , as well

as those of other evolution matrices written below, are
called Bogoluibov coefficients. These coefficients are
derived by solving the classical equations of motion, as
detailed in the Appendix A.

Interestingly, the form of SðHÞ
Q reveals that this operation

precisely corresponds to a two-mode squeezing process
between modes “p” and “d”, to produce “dn” and “up” (and
the identity operation for “in”). A two-mode squeezer
converts the vacuum state into a “two-mode squeezed
vacuum”, which is an entangled Gaussian state such that
the reduced state of each individual mode is a mixed
thermal state. The occupation number of either mode is
equal to n̄ ¼ sinh2zH ¼ ðe2πjω̃j=κ − 1Þ−1, corresponding to
a black body spectrum at temperature κ=2π.
The evolution from Σint to Σf describes modes

propagating across the ergoregion encompassing the
horizon. This evolution is starkly different for modes
with ω̃ > 0 (nonsuperradiant modes, NSRM) versus
modes with ω̃ < 0 (superradiant modes, SRM). For

NSRM, we have A⃗ðfÞ
Q ¼ SðNSRÞ

Q · A⃗ðintÞ
Q , where

A⃗ðfÞ
Q ≡ �

aðoutÞQ ; aðdownÞQ ; aðdnÞQ ; aðoutÞ†Q ; aðdownÞ†Q ; aðdnÞ†Q

�⊤ ð5Þ

and SðNSRÞ
Q ¼

�
CQ
0

0
CQ

�
, with

CQ ¼

0
B@

sin θQ cos θQ 0

cos θQ − sin θQ 0

0 0 1

1
CA: ð6Þ

The term cos2 θQ represents the transmission coefficient of
the potential barrier (i.e., the “graybody” factor) and
depends onω, l,m and the spin s. Hence, these coefficients
differ for electromagnetic and gravitational waves.
The transformation (6) corresponds to a beam splitter.

Beam splitters are passive transformations, meaning they
do not amplify waves (no particle creation). Their role is
simply to divide the incoming waves in transmitted and
reflected portions.
For SRM, the evolution across the ergoregion has a

completely different character, and is described by SðSRÞ
Q ¼�

ASR
Q

BSR
Q

BSR
Q

ASR
Q

�
with

ASR
Q ¼

�
cosh zergI2 0

0 1

�
; ð7Þ

BSR
Q ¼

�
sinh zerg Ī2 0

0 0

�
: ð8Þ
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This is a two-mode squeezing process between modes “in”
and “up” to produce “out” and “down” [14]. The squeezing
intensity zerg (“erg” stands for ergoregion) depends on ω, l,
m, and s. This implies that, for SRM, the ergoregion acts
like a quantum amplifier—able to create entangled pairs of
particles—very much like the horizon does. Note that the
evolution matrices are real; this is possible by exploiting
the freedom to introduce a time-independent phase to the
aforementioned creation and annihilation operators.
The transition of the ergoregion—from acting like a

beam splitter for NSRM to a two-mode squeezer for
SRM—is of vital importance for most results presented
in this article. From a physical perspective, this transition
arises from the fact that the Killing field describing time
translations at infinity becomes spacelike within the ergo-
region. Consequently, the modes labeled “down” having
ω̃ < 0 (although ω > 0) carry negative energy across the
horizon from the standpoint of inertial observers at infinity.
The appearance of these negative energy modes within the
ergoregion provides a mechanism for energy extraction,
effectively transforming the ergoregion into an amplifier.
This line of reasoning builds upon the ideas of Penrose
and Zeldovich [21–24]. Our goal is to extend their
implications into the quantum realm by demonstrating that
this mechanism for energy extraction also acts as a source
of entanglement.
The complete evolution, from Σi to Σf , is described

by the matrix SðtotÞ
Q , obtained by simply multiplying the

evolution matrices of the two processes. For NSRM,

SðtotÞ
Q ¼ SðNSRÞ

Q · SðHÞ
Q ; while for SRM, SðtotÞ

Q ¼ SðSRÞ
Q · SðHÞ

Q .
Given a quantum state for electromagnetic and gravitational
perturbations at Σi, SðtotÞ is all we need to compute
observable quantities at Σf . We have calculated both θQ

and zerg (thereby characterizing SðtotÞQ ) by numerically
solving Teukolsky’s equation in the Kerr geometry for
electromagnetic and gravitational waves, following
Teukolsky-Press [25] and Page [16,26]. Some details
of our numerical calculations can be found in the
Appendix A 6. This is the only place where numerics
enters in our analysis (which includes the computation of
the angular eigenvalues). The rest, including calculations of
entanglement, are obtained from analytic formulas.

III. GAUSSIAN STATE EVOLUTION

The advantage of restricting to Gaussian states is that
they can be described using vectors and matrices in the
classical phase space, which are significantly more ame-
nable than density matrices in the (infinite dimensional)
Hilbert space. The reason is that Gaussian states are
uniquely determined by their first and second moments,
since higher order moments can all be derived from them.
In field theory, the phase space is infinite dimensional.

Though, for our problem, the evolution factorizes in
decoupled Q-sectors, reducing the analysis to an effective
six-dimensional phase space.
Let us fix a value of Q. Given a Gaussian state (pure or

mixed) at Σi, the information in its density matrix ρQ is

encoded in the vector of first moments μ⃗ðiÞQ ≡ Tr½ρQA⃗ðiÞ
Q � and

the covariance matrix σðiÞQ ≡ Tr½ρQfA⃗ðiÞ
Q − μ⃗ðiÞQ ; A⃗ðiÞ

Q − μ⃗ðiÞQ g�,
where the curly brackets denote anticommutators. The
covariance matrix contains the symmetric part of the second
moments, after subtracting the first moments; the antisym-
metric part is state independent and fully determined by the
canonical commutation relations. For Gaussian states, the

pair ðμ⃗ðiÞQ ; σðiÞQ Þ completely specifies the density matrix ρQ.
Linear evolution preserves the Gaussian character of the
state and, at Σf , the state is a Gaussian state fully described

by μ⃗ðfÞQ ¼ SðtotÞ
Q · μ⃗ðiÞQ and σðfÞQ ¼ SðtotÞ

Q · σðiÞQ · SðtotÞ
Q

⊤. From the

pair ðμ⃗ðfÞQ ; σðfÞQ Þ we can obtain particle number, entropies,
entanglement, etc. in a simple manner. These techniques are
well known (see, e.g., [27,28]) but a summary is included in
Appendix B.
For the initial state, we consider populating the “in”

mode with thermal quanta. The “p” and “d” are set in
vacuum because they are supported on ultra-high frequen-
cies and, for temperatures well below the Planck scale, it is
an excellent approximation to consider them unpopulated.

The initial state is mixed and described by μ⃗ðiÞQ ¼ 0⃗ and

σð iÞQ ¼
�

0 DQ

DQ 0

�
, where

DQ ¼
� ð1þ 2nenvω Þ 0

0 I2

�
; ð9Þ

and nenvω ¼ ðeω=Tenv − 1Þ−1is the mean number of quanta in
the mode “in” for environment temperature Tenv.

Particle emission. It is straightforward to read from σðfÞQ

the mean particle number on each of the modes. We discuss
NSRM and SRM separately. For NSRM modes, the
number of “out” quanta is encoded in the component

(1, 4) of the matrix σðfÞQ and given as

n̄ðoutÞQ ¼ sin2θQnenvω þ cos2θQsinh2zH: ð10Þ

The second term accounts for the Hawking quanta, where
sinh2 zH is the thermal part of the spectrum and cos2 θQ is
the graybody factor. The first term corresponds to the
portion of the thermal radiation approaching the black hole
from outside that is reflected back to Iþ.
For SRM, expression (10) is replaced by

n̄ðoutÞQ ¼ nenvω þ sinh z2ergð1þ nenvω þ sinh z2HÞ: ð11Þ
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The first term corresponds to the quanta already present in
the initial state, while the second terms is proportional to
the quanta generated by the ergoregion-squeezer, sinh z2erg.
The last contribution describes the interplay of the two
squeezing processes. We find that NSRM dominate the
emission for a≲ 0.9M.

IV. ENTROPY AND ENTANGLEMENT
GENERATION

The von Neumann entropy of the “out” modes can easily

be obtained from the covariancematrix σðfÞQ (seeAppendixB)

SðoutÞQ ¼ðn̄ðoutÞQ þ1Þ lnðn̄ðoutÞQ þ1Þ− n̄ðoutÞQ ln n̄ðoutÞQ : ð12Þ

If we restrict to a ¼ 0 and to vacuum input (Tenv ¼ 0),
Eq. (12) reproduces Page’s results [4]. For SRM, the
entropy of the Hawking radiation is again given by

expression (12), using now Eq. (11) for n̄ðoutÞQ . These
expressions extend Page’s entropy calculations [4] to the
rotating case and for Tenv ≠ 0.
For mixed quantum states, the entropy of the outgoing

radiation is no longer adequate for quantifying entanglement.
Instead, we employ the logarithmic negativity [29–31], since
it is a measure of entanglement that is applicable to both pure
and mixed states. Let ρ be the density matrix of a quantum
system made of two subsystems, A and B. The logarithmic
negativity with respect to the partition AjB is defined as

LNðρÞ ¼ log2kρ⊤Bk1; ð13Þ

whereρ⊤B represents the partial transpose of ρ̂with respect to
subsystem B, and k · k1 denotes the trace norm. A nonzero
LN value indicates a violation of the positivity of the partial
transpose criterion for quantum states [32]. For Gaussian
states, and when one subsystem contains a single mode, LN

is nonzero if and only if the state is entangled. Furthermore,
LN is as a faithful quantifier of entanglement, signifying that
a higher LN value corresponds to a greater degree of
entanglement.

From the covariance matrix σðfÞQ , it is a simple task to
compute the logarithmic negativity between any bipartition
AjB of the three modes (see Appendix B). An interesting
partition is the interior-exterior one, where subsystem A is
made of the “out”mode and subsystem B of the two modes
falling in the horizon (“dn” and “down”). Figure 2 shows
the entanglement rate (measured via the Logarithmic
Negativity generated per unit of retarded time u). This
plot communicates two important messages: (i) rotation
enhances the entanglement of the black hole with the
exterior; (ii) ambient thermal radiation inhibits the gen-
eration of entanglement, reducing entanglement by ∼90%.
Intuitively, this is because thermal fluctuations can over-
whelm quantum coherence within the system, leading to

FIG. 2. Entanglement rate for the partition separating the
interior and exterior modes of the black hole. TH ≡ κ=ð2πÞ is
the Hawking temperature.

FIG. 3. (a) Entanglement rate (quantified by LN per unit time) for the partition between the interior and exterior of the
black hole, separated into SRM and NSRM contributions for Tenv ¼ 0. (b) Entanglement rate for outjdown modes
(a “superradiant pair”) for various Tenv.
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reduced entanglement. The degradation of entanglement, in
turn, illustrates that the entropy of theHawkingmode is very
different from entanglement: entropy grows with the envi-
ronment temperature, while entanglement decreases. It is
also interesting to note that,whenTenv ≫ TH, evenwhen the
black hole does not evaporate, it keeps creating entangle-
ment, although at a much slower rate than that in isolation.
Next, we want to understand how much of the entangle-

ment is contained in SRM and NSRM. The answer is
revealed in Fig. 3. Figure 3(a) shows the entanglement rate
for the interior-exterior partition, for Tenv ¼ 0, together
with the contribution from SRM and NSRM. We observe
that, as for energy and angular momentum, NSRM domi-
nates for black holes with a ≲ 0.9M. In other words, for
a≲ 0.9M, most of the entanglement generated can be
attributed to the horizon.
Finally, we want to know what portion of the entangle-

ment in SRM can be attributed to the ergoregion squeezer.
This is not obvious a priori because SRM experience both
squeezers. For this, we compute the entanglement between
the “out” mode at Iþ and the “down” mode at H. This
entanglement cannot be generated by the horizon-squeezer;
hence, it is a measure of the contribution of the ergoregion to
the final entanglement. Figure 3(b) shows that entanglement
between “out” and “down” modes is very small for
a≲ 0.9M. On the contrary, for a > 0.9M, the entanglement
between the “out” and “down” pair is of the sameorder as the
total entanglement between exterior and interior of the black
hole, confirming that the ergoregion plays a significant role
in generating entanglement. Notice that the previous plots
report entanglement carried out by both photons and
gravitons together. We find that gravitons dominate the
generation of entanglement for a > 0.7M (see Fig. 4). This
aligns with the findings on energy emission in [16].

V. DISCUSSION

When the initial state of the quantum fields is assumed to
be the vacuum, it suffices to look at the outgoing Hawking
radiation to understand the entanglement generated by an
evaporating black hole. For the goals of this article,
however, a detailed characterization of the final state of
modes that fall inside the horizon—and their individual
correlation with Hawking modes—is desired. The
Gaussian formalism employed here provides a remarkably
good balance between simplicity and power, from which
we have been able to quantify the impact of ambient
thermal radiation and the contribution of the ergoregion to
the process of Hawking radiation and entanglement
generation.
The input to the horizon squeezer is vacuum fluctuations,

whereas the ergoregion is seeded by the thermal Hawking
quanta emanating from the horizon. This input stimulates
the creation of quanta at the ergoregion, in a similar vein to
“classical” superradiant phenomena. However, the thermal
character of the input from the horizon partially inhibits the
generation of entanglement by the ergoregion alone. It is
only for rapidly spinning black holes (a > 0.9M) that the
ergoregion is able to contribute significantly to the entan-
glement between the black hole and its exterior, completely
dominating the emission in the extremal limit (a → 1M).
The results of this article have significant ramifications.

In the realm of black hole physics, our results emphasize
that radiation enhancement by the ergoregion of a Kerr
black hole is not a purely classical effect, even when the
ergoregion is stimulated with classical thermal radiation.
We have proven this by showing that the ergoregion is an
active source of entanglement.
Our findings are also important in addressing informa-

tion-related questions, such as those pertaining to gener-
alized Page curves for rotating black holes in thermal baths.
For instance, by employing the techniques outlined here,
one can monitor the entanglement between the escaping
radiation and the interior of the rotating hole during the
course of the black hole’s lifetime.
Furthermore, our results can be extended to other types

of ergoregions, broadening the implications beyond black
hole physics. This presents an exciting opportunity for
validating our predictions in analog models, where radia-
tion from ergoregions can actually be observed [33]. These
controllable systems are appealing because they grant
access to all modes, in contrast to real black holes.
Quantum fluid analogs [34,35] are particularly promising
platforms that provide a low-noise environment amenable
to correlation measurements.
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APPENDIX A: MODES IN KERR GEOMETRY

1. Kerr geometry

We collect here a few expressions which have been used
in the manuscript. A detailed account of Kerr’s geometry
can be found, for instance, in [20,36,37].
The Kerr line element in Boyer-Lindquist coordinates

takes the form

ds2 ¼ −
Δ
ρ2

ðdt − asin2θdϕÞ2 þ sin2θ
ρ2

½ðr2 þ a2Þdϕ − adt�2

þ ρ2

Δ
dr2 þ ρdθ2; ðA1Þ

where a is the angular momentum of the black hole
(BH) per unit mass and ρ2ðrÞ ¼ r2 þ a2cos2θ, Δ ¼
ðrþ rþÞðr − r−Þ, where

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ðA2Þ

are the locations of the outer and inner horizons, respec-
tively. The surface gravity and angular velocity of the
horizon of a Kerr BH are

κ ¼ rþ − r−
2ðr2þ þ a2Þ and ΩH ¼ a

r2þ þ a2
: ðA3Þ

For a ¼ M we have an extremal BH, whose surface gravity
vanishes, and for a=M > 1 the Kerr line element contains a
naked singularity. For this reason, we restrict to a=M ≤ 1.
The line element (A1) is degenerate at r ¼ r�, but these are
unphysical coordinate singularities that can be resolved by
a change of coordinates.
The Kerr line element is stationary and axisymmetric,

meaning it has two independent Killing vector fields
(KVF), ∂t and ∂ϕ. The vector field ∂t is timelike for

r > r0ðθÞ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2cos2θ

p
, null at r ¼ r0ðθÞ and

spacelike in the interval r0ðθÞ > r > rþ. This latter region

is called the ergoregion, and it plays an important role in
this article since it gives rise to the phenomenon of
superradiance. From the point of view of a static observer
at infinity, this phenomenon is a result of the fact that ∂t is
not timelike inside the ergoregion. Indeed, the KVF that
becomes null at the horizon (at r ¼ rþ) is the combination
∂t þ ΩH∂ϕ. This vector field is timelike inside the ergo-
region, and it is also the generator of the event horizon.
Hence, this KVF can be use to define a natural notion of
frequency, ω̃, for modes propagating near the outer horizon.
Finally, some coordinates which are useful at some

points in our calculations are the tortoise coordinate r⋆,
and the angular coordinate ϕ̃ defined as

dr⋆ ¼ r2 þ a2

Δ
dr and ϕ̃ ¼ ϕ −ΩHt: ðA4Þ

The former has the effect of pushing the horizon to
r⋆ → −∞. The latter can be thought of as an angular
coordinate adapted to the rotation of the spacetime at the
event horizon.

2. Perturbations in a Kerr spacetime:
Some facts about Teukolsky equation

As shown by Teukolsky [38], perturbations of minimally
coupled massless fields of spin jsj in a Kerr geometry can
be described by a general scalar equation, known as
Teukolsky’s equation, which, quite remarkably, admits
separation of variables as

sϕðt; r;ϕ; θÞ ¼
X
l;m

Z
dωsRωlmðrÞe−iωtsZω

lmðθ;ϕÞ; ðA5Þ

where s¼ 0;�1=2;�1;�3=2;�2;…. The angular depend-
ence is described by spin-weighted spheroidal harmonics
sZω

lmðθ;ϕÞ (see e.g. [20]). They satisfy the orthogonality
relations

Z
dΩsZ̄ω

lmsZω
l0m0 ¼ δl0lδmm0 ; ðA6Þ

where dΩ is the standard integration measure on the sphere
and we use a bar to indicate complex conjugation. The
spheroidal harmonics can be defined to satisfy

sZ̄ω
lmðθ;ϕÞ ¼ ð−1ÞmsZ−ω

l−mðθ;ϕÞ: ðA7Þ

The ϕ dependence of sZω
l;mðθ;ϕÞ is given by a phase eimϕ,

and in the limit of zero rotation, sZω
l;mðθ;ϕÞ reduces to the

standard spin-weighted spherical harmonics (which reduce
to the spherical harmonics for s ¼ 0). The spin-weighted
spheroidal harmonics are solutions of a Sturm-Liouville
problem. The corresponding eigenvalues sEωlm are known
only numerically, although analytical approximations exist
in some regimes (see e.g. [39]).
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The radial part of Teukolsky equation can be written as
follows. Define a new radial variable

sχωlm ≡ ðr2 þ a2Þ1=2Δs=2
sRωlmðrÞ: ðA8Þ

In terms of this variable, the radial equation takes the form

d2

dr2⋆
sχωlm þ sVωlmðrÞsχωlm ¼ 0; ðA9Þ

where r⋆ is the tortoise coordinate defined in (A4), and the
effective potential sVωlm has the form

sVωlmðrÞ ¼
K2 − 2isðr −MÞK þ Δð4isωr − sλωlmÞ

ðr2 þ a2Þ2

−G2 −
dG
dr⋆

; ðA10Þ

where

K ¼ ðr2 þ a2Þω − am;

G ¼ rΔ
ðr2 þ a2Þ2 þ

sðr −MÞ
r2 þ a2

; ðA11Þ

sλωlm ¼ sEωlm − 2amωþ a2ω2 − sðsþ 1Þ: ðA12Þ

Although the form of this potential is complicated, it
simplifies in the asymptotic regimes

sVωlmðrÞ∼
	
ω2þ 2isω

r r⋆ →∞;

ω̃2−2isω̃κ−4s2κ2 r⋆ →−∞;
ðA13Þ

where ω̃≡ ω −mΩH and κ is the surface gravity given
in (A3). This implies that linearly independent solutions
behave asymptotically as r�se�iωr⋆ as r⋆ → ∞, and
Δ�s=2e�iω̃r⋆ in the near horizon region r⋆ → −∞.

3. Modes for scalar waves

The modes that are relevant to understand the Hawking
effect are similar for all spins. Hence, the discussion of
these modes and their properties can be done for scalar
fields, which simplifies some technicalities which are
inessential for our main purposes. Hence, for pedagogical
purposes, we discuss first scalar modes and their properties,
and discuss later how to generalise to higher spin. Most of
the material that is summarized in this section can be found
in greater detail in [20].
In the following, we write the explicit form of the modes

used in the main body of the paper in the vicinity of the
Cauchy hypersurface where they are defined. An important
aspect of these solutions is the sign of their norm, defined
from the so-called Klein-Gordon, or symplectic product.
This product can be defined on any Cauchy hypersurface,

and it is preserved in time for scalar fields satisfying the
Klein-Gordon equation □gϕ ¼ 0.
It is given by

hφ1;φ2i ¼ i
Z
Σ
dΣμðφ̄1∂μφ2 − φ2∂μφ̄1Þ ðA14Þ

where dΣμ is the oriented volume element of the Cauchy
hypersurface Σ.

a. The “out” modes

These are the modes carrying Hawking radiation to
future null infinity. At the Cauchy hypersurface Σf , these
modes have support only at Iþ, and oscillate as e−iωu.
More concretely, their form in the vicinity of Iþ is

φðoutÞ
Q jIþ ∼

1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p 0Z
ω
lmðθ;ϕÞ; ðA15Þ

where Q ¼ ðω;l; mÞ. These modes have positive norm for
ω > 0. The “out” modes used in the main text are wave
packets constructed from them, centered at late times
uκ ≫ 1, when Hawking radiation reaches Iþ. We can
define normalized wave packets following Hawking’s
original derivation [2]. For integers j ≥ 0 and n

φðoutÞ
jnlm ¼ 1ffiffiffi

ϵ
p

Z ðjþ1Þϵ

jϵ
e2πinω=ϵφðoutÞ

ωlmdω: ðA16Þ

These wave packets are composed of frequencies in the
interval ½jϵ; ðjþ 1Þϵ�, and are peaked at retarded time
u ¼ 2πn=ϵ with width 2π=ϵ. Wave packets for other modes
will be defined similarly. To avoid introducing new

notation, we will keep using the symbol φðoutÞ
Q to denote

these wave packets, where the label Q is now a shorthand
for Q ¼ ðj; n;l; mÞ.

b. The “down” modes

These are modes that enter the horizon at late times. In
the vicinity of the Cauchy hypersurface Σf , these modes are
defined to have support only at the horizon (no support at
Iþ), and to oscillate as e−iω̃v. In more detail, they are
defined as follows. First, consider the (normalized) plane
waves

fðdownÞQ





H
¼ 1ffiffiffiffiffiffiffiffiffi

4πω̃
p e−iω̃vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þ þ a2
p 0Z

ω
lmðθ; ϕ̃Þ; ðA17Þ

which have a norm with a sign given by signðω̃Þ. From
these functions, we define the “down” modes as
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φðdownÞ
Q





H
≡

8<
:

fðdownÞQ ω > 0; ω̃ > 0

f̄ðdownÞQ ω > 0; ω̃ < 0:
ðA18Þ

These have a positive norm for ω > 0. (This is due to
having defined them from the complex conjugate modes
f̄ðdownÞ when ω̃ < 0.) The “down” modes used in the main

text, and denoted also as φðdownÞ
Q , are normalized wave

packets constructed from (A18), peaked at late times.

c. The “in” modes

The “in” modes are modes that propagate on the
stationary part of the spacetime, once the BH geometry
is described by the Kerr metric. They represent radiation
approaching the BH from infinity. At Σi, they take the form

φðinÞ
Q





I−

∼
1ffiffiffiffiffiffiffiffiffi
4πω

p e−iωvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p 0Z
ω
lmðθ;ϕÞ: ðA19Þ

They have a positive norm for ω > 0. The “in” modes used
in the main text are normalized wave packets constructed
from (A19), peaked at late times vκ ≫ 1 along I−.

d. The “up” modes

The “up” modes represent outgoing radiation trying to
escape the BH. At Σint, these modes have support only at
the v ¼ constant part of Σint, i.e., they have no support at
the horizon or at the I− portions of Σint. They oscillate as
e−iω̃u, and can be defined as follows. First, we define plane
waves modes as

fðupÞQ





Σint

¼ 1ffiffiffiffiffiffiffiffiffi
4πω̃

p e−iω̃uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p 0Z
ω
lmðθ; ϕ̃Þ: ðA20Þ

These functions have a norm with a sign given by signðω̃Þ.
In analogy to “down” modes, using these plane waves we
define

φðupÞ
Q





Σint

≡
8<
:

fðupÞQ ω > 0; ω̃ > 0

f̄ðupÞQ ω > 0; ω̃ < 0;
ðA21Þ

which have a positive norm for ω > 0. The “up” modes

used in the main text, denoted also by φðupÞ
Q , are normalized

wave packets constructed from these modes, and supported
at late retarded times uκ ≫ 1 (close to the horizon).

e. The “dn” modes

These are the partner modes of the “up”modes. The term
“partner” refers to the following. In the spontaneous
Hawking radiation, “dn” modes are the modes that purify
the thermal Hawking radiation carried in the “up”modes, in
the sense that they are entangled with each other and with

nobody else. One can find the “dn” modes as follows.
Propagate the “up” modes until I−, and decompose the
result in its positive and negative frequency contributions
(frequency defined by the coordinate v along I−)

φðupÞ
Q





I−

¼ φðþÞ
Q þ φð−Þ

Q ; ðA22Þ

where we have denoted the positive and negative-frequency

parts as φð�Þ
Q , respectively. Let us denote by α2Q and −β2Q the

norms of φð�Þ
Q , and let us define from them positive-norm

modes

φðpÞ
Q ≡ φðþÞ

Q

αQ
and φðdÞ

Q ≡ φ̄ð−Þ
Q

βQ
; ðA23Þ

where αQ and βQ can be defined real. Bringing these

definitions to (A22), we obtain φðupÞ
Q ¼ αQφ

ðpÞ
Q þ βQφ̄

ðdÞ
Q .

From this, the partner modes of “up” is

φðdnÞ
Q ¼ αQφ

ðdÞ
Q þ βQφ̄

ðpÞ
Q : ðA24Þ

The form of this mode was first obtained in [11], by
reflecting the mode “up” about v ¼ vH at I−, followed by
complex conjugation (the name “dn” is chosen because it

is the reflection of “up”). The propagation of fðupÞQ to
I− produces

fðupÞQ





I−

∼−
1ffiffiffiffiffiffiffiffiffi
4πω̃

p e−iω̃½vH−1
κ lnκðvH−vÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þa2
p 0Z

ω
lmðθ; ϕ̃ÞΘðvH−vÞ;

ðA25Þ

where vH is the advanced time at which the horizon
forms and Θ is the Heaviside function. From this, one
finds [11,20]

fðdnÞQ





I−

∼−
1ffiffiffiffiffiffiffiffiffi
4πω̃

p eiω̃½vH−1
κ lnκðv−vHÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p 0Z̄
ω
l;mðθ; ϕ̃ÞΘðv−vHÞ:

ðA26Þ

From fðdnÞQ , we define the “dn” plane wave modes as

φðdnÞ
Q jΣint

¼
8<
:

fðdnÞQ ω > 0; ω̃ > 0

f̄ðdnÞQ ω > 0; ω̃ < 0:
; ðA27Þ

At the Cauchy hypersurface Σint, these modes have support
only at the horizon, and oscillate as e−iω̃v. They have a
positive norm for ω > 0. From these plane wave modes, we
define the “dn” normalized wave packets used in the main
text, which have support near vH.
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f. The “p” and “d” modes

These modes are the progenitors of the modes “up” and
“dn”, and can be defined from them inverting the expres-
sions written above

φðpÞ
Q ¼ αQφ

ðupÞ
Q þ βQφ̄

ðdnÞ
Q ;

φðdÞ
Q ¼ αQφ

ðdnÞ
Q þ βQφ̄

ðupÞ
Q ; ðA28Þ

where αQ ¼ ð1 − e2πjω̃j=κÞ−1=2 and βQ ¼ e−πjω̃j=κð1−
e2πjω̃j=κÞ−1=2. In the main text, we have written these
coefficients as αQ ¼ cosh zH and βQ ¼ sinh zH, with
zHðω; mÞ ¼ tanh−1 e−jω̃j=ð2κÞ. Both modes “p” and “d” have
positive unit norm for ω > 0. As mentioned above, both
are made of a combination of positive frequency modes
with respect to the coordinate v in I−, with no contri-
bution from negative frequency modes. This can be
checked directly by computing their Fourier transform
in the coordinate v [11,20]. This automatically implies that
these modes are unentangled when the field is in the
vacuum state at I−. In that case, the reduced quantum
state describing these two modes is a pure state. This, in
turn, proves that the state describing the pair “up” and
“dn” is also pure—when the initial state is the vacuum—
since evolution from “p” and “d” to produce “up” and
“dn” is unitary. Consequently, the “dn” modes are the
modes that purify “up”—i.e., these modes are the partners.
In summary, we have constructed an orthonormal wave

packet mode basis of the sector of the vector space of
solutions to the Klein-Gordon equation that is involved in
the Hawking process, at each of the relevant Cauchy
hypersurfaces: Σi, Σint, and Σf . These basis elements are
labeled by Q, with ω > 0, and can be collected together in
(row) vectors as

Ψ⃗ðiÞ
Q ¼ �

φðinÞ
Q ;φðpÞ

Q ;φðdÞ
Q ; φ̄ðinÞ

Q ; φ̄ðpÞ
Q ; φ̄ðdÞ

Q

�
;

Ψ⃗ðintÞ
Q ¼ �

φðinÞ
Q ;φðupÞ

Q ;φðdnÞ
Q ; φ̄ðinÞ

Q ; φ̄ðupÞ
Q ; φ̄ðdnÞ

Q

�
;

Ψ⃗ðfÞ
Q ¼ �

φðoutÞ
Q ;φðdownÞ

Q ;φðdnÞ
Q ; φ̄ðoutÞ

Q ; φ̄ðdownÞ
Q ; φ̄ðdnÞ

Q

�
:

These are called Wald bases [11,20]. For each Q, the
elements of these bases are the modes that are involved in
the Hawking effect. Evolution does not mix modes labeled
with different Q. It is straightforward to extend this set of
modes to have a complete basis in the space of solutions.
However, since such an extension is irrelevant to describe
the Hawking effect, we do not write it down.

4. Evolution matrices

In this section, we will implicitly exploit the freedom to
introduce a time-independent phase to the aforementioned
modes, to make the evolution matrices real.

The relation between wave packets Ψ⃗ðiÞ
Q and Ψ⃗ðintÞ

Q

encodes the dynamics from Σi to Σint, and is given by

Ψ⃗ðiÞ
Q ¼ Ψ⃗ðintÞ

Q ·SðHÞ
Q ; where SðHÞ

Q ¼
�
AQ BQ

BQ AQ

�
; ðA29Þ

with

AQ ¼

0
B@

1 0 0

0 cosh zH 0

0 0 cosh zH

1
CA

and BQ ¼

0
B@

0 0 0

0 0 sinh zH
0 sinh zH 0

1
CA;

where zHðω; mÞ ¼ tanh−1e−πjω̃j=κ. These matrices can be
read off from the definitions of “up” and “dn” modes in
terms of p and d modes, Eq. (A28), adding the identity
transformation for the “in” modes. Subsequently, the
evolution from Σint to Σf describes modes propagating
across the ergoregion surrounding the horizon. This
evolution is qualitatively different for modes with ω̃>0
(nonsuperradiant modes, NSRM) and modes with ω̃ < 0
(superradiant modes, SRM). For NSRM, the evolution is
given by,

Ψ⃗ðintÞ
Q ¼ Ψ⃗ðfÞ

Q ·SðNSRÞ
Q ; where SðNSRÞ

Q ¼
�
CQ 0

0 CQ

�
; ðA30Þ

with

CQ ¼

0
B@

sin θQ cos θQ 0

cos θQ − sin θQ 0

0 0 1

1
CA; ðA31Þ

where cos2 θQ is the transmission coefficient of the
potential barrier (the graybody factor), and is obta-
ined by solving numerically the radial Teukolsky
equation (A9). θQ depends on ω, l, m, and the spin of
the perturbation jsj. Therefore, it is different for photons
and gravitons. For SRM, the evolution across the ergo-
region has a completely different character and is
described by

Ψ⃗ðintÞ
Q ¼ Ψ⃗ðfÞ

Q ·SðSRÞ
Q ; where SðSRÞ

Q ¼
�ASR

Q BSR
Q

BSR
Q ASR

Q

�
; ðA32Þ

with
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ASR
J ¼

0
B@

cosh zerg 0 0

0 cosh zerg 0

0 0 1

1
CA

and BSR
J ¼

0
B@

0 sinh zerg 0

sinh zerg 0 0

0 0 0

1
CA: ðA33Þ

The matrix SðSRÞ
Q represents a two-mode squeezer between

modes “in” and “up” to produce “out” and “down”, and
the identity evolution for the mode “dn”. The squeezing
intensity zerg depends on ω, l, m, and the spin of the
perturbation jsj, and is also obtained by solving numeri-
cally the radial Teukolsky equation (A9). This implies
that, for SRM, the ergoregion acts like a quantum
amplifier, creating entangled pairs of particles, very much
like the horizon does.
Mathematically, the distinction between the evolution

matrix for SRM and NSRM arises from the fact that the
Killing field describing time translations at infinity
becomes spacelike within the ergoregion. For superradiant
modes with ω̃ < 0 but ω > 0, the change in the character of
∂t reverses the sign of the norm of the modes labeled as
“up” and “down” that interact with modes “in” and “out”.
The latter two modes always have positive norm for ω > 0.
This, in turn, implies that, for superradiant frequencies, the
evolution from Σint to Σf mixes modes with different signs
of their norm. At the quantum level, this translates into
Bogoliubov transformations that mix creation and annihi-
lation operators, corresponding to a quantum amplifier.
This phenomenon does not occur for NSRM, as all modes
with ω > 0 have positive norm.
This fact is also reflected in that, while both evolution

matrices SðSRÞ
Q and SðNSRÞ

Q belong to the symplectic group,

only SðNSRÞ
Q belongs to the orthogonal subgroup of the

symplectic group; i.e. SðNSRÞ
Q · SðNSRÞ

Q
⊤ ¼ I6. This automati-

cally implies that the transformation SðNSRÞ
Q leaves the

vacuum and the particle number invariant. This is not the

case for the scattering matrix of superradiant modes SðSRÞ
Q .

We can now write the total evolution matrix describing
the evolution from Σi to Σf . It is given by

Ψ⃗ðiÞ
Q ¼ Ψ⃗ðfÞ

Q · SðtotÞ
Q ; ðA34Þ

where, for nonsuperradiant modes

SðtotÞ
Q ¼ SðNSRÞ

Q · SðHÞ
Q ; ðA35Þ

while for SRM

SðtotÞ
Q ¼ SðSRÞ

Q · SðHÞ
Q : ðA36Þ

Since evolution factorizes in decoupled Q sectors, this is
enough to compute the evolution for the field. As a
consistency check, one can verify that the total evolution
matrices are both linear canonical transformations, mean-
ing that they leave invariant the symplectic structure of the
phase space:

SðtotÞ
Q ·Ω6 ·S

ðtotÞ
Q

⊤ ¼Ω6; whereΩ6¼
�

03 I3
−I3 03:

�
: ðA37Þ

This is equivalent to saying that SðtotÞ
Q belongs to the

symplectic group SpðC; 6Þ. Symplectic matrices have the
general form

SðtotÞ
Q ¼

�
A B

B̄ Ā

�
; ðA38Þ

where A and B are 3 × 3 matrices and the bar denotes
complex conjugation of their elements. The condition (A37)
imposes the following constraints on the components of
these matrices

A · B⊤ − B · A⊤ ¼ 03; ðA39Þ

A · A† − B · B† ¼ I3: ðA40Þ

The components of A and B are usually called Bogoliubov
coefficients, and these two equations are the familiar
constraints satisfied by them.
In the quantum theory, we canwrite the evolution in terms

of creation and annihilation operators. First, let us define the
column vectors of creation and annihilation operators

defined from modes Ψ⃗ðiÞ
Q , Ψ⃗ðintÞ

Q and Ψ⃗ðfÞ
Q , respectively

A⃗ðiÞ
Q ¼ �

aðinÞQ ; aðpÞQ ; aðdÞQ ; aðinÞ†Q ; aðpÞ†Q ; aðdÞ†J

�⊤;
A⃗ðintÞ
Q ¼ �

aðinÞQ ; aðupÞQ ; aðdnÞQ ; aðinÞ†Q ; aðupÞ†Q ; aðdnÞ†Q

�⊤;
A⃗ðfÞ
Q ¼ �

aðoutÞQ ; aðdownÞQ ; aðdnÞQ ; aðoutÞ†Q ; aðdownÞ†Q ; aðdnÞ†Q

�⊤:
The relation between “i” and “f” creation and annihila-

tion operators, can be derived from the relation between the

basis modes Ψ⃗ðiÞ
Q and Ψ⃗ðfÞ

Q using the following argument.
The field operator ϕðxÞ can be expanded in any of these two
sets of modes

ϕðxÞ ¼
X
Q

Ψ⃗ðiÞ
Q ðxÞ · A⃗ðiÞ

Q ¼
X
Q

Ψ⃗ðfÞ
Q ðxÞ · A⃗ðfÞ

Q : ðA41Þ

If we start from the “i” representation, ϕðxÞ ¼P
Q Ψ⃗ðiÞ

Q ðxÞ · A⃗ðiÞ
Q and replace Ψ⃗ðiÞ

Q ¼ Ψ⃗ðfÞ
Q ðxÞ · SðtotÞ

Q , we find

ϕðxÞ ¼
X
Q

Ψ⃗ðfÞ
Q ðxÞ · SðtotÞ

Q · A⃗ðiÞ
Q :
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Comparing this result with the last part of (A41), we
conclude

A⃗ðfÞ
Q ¼ SðtotÞ

Q · A⃗ðiÞ
Q :

The commutation relation satisfied by A⃗ðiÞ
Q can be com-

pactly written in vector notation as

h
A⃗ðiÞ
Q ; A⃗ðiÞ

Q

i
¼ Ω6: ðA42Þ

The fact that SðtotÞ
Q is a symplectic transformation, guaran-

tees that the operators A⃗ðfÞ
Q satisfy the same commutation

relations:

h
A⃗ðfÞ
Q ; A⃗ðfÞ

Q

i
¼

h
SðtotÞ
J · A⃗ðiÞ

Q ;SðtotÞ
Q · A⃗ðiÞ

Q

i

¼ SðtotÞ
Q ·

h
A⃗ðiÞ
Q ; A⃗ðiÞ

Q

i
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼Ω6

· SðtotÞ
Q

⊤ ¼ Ω6 ðA43Þ

5. Electromagnetic and gravitational waves

The strategy to construct the Wald basis at each of the
Cauchy hypersurfaces for massless higher spin fields is
conceptually similar to the scalar case. The technical details
are, however, more involved, in part due to the presence of
polarization tensors and gauge redundancies. Fortunately,
this problem was solved already in the seventies and early
eighties in [40–45]. A complete summary, containing many
useful details, can be found in Appendix G of [20].
Electromagnetic and gravitational perturbations are also

described by the Teukolsky equation for jsj ¼ 1 and
jsj ¼ 2, respectively. A basis of solutions to this equation
can again be labeled by ω;l; m; s, where the sign of s
denotes the two possible polarization states (helicity).
These modes are described by covariant vectors
aμðω;l; m; s; xÞ for electromagnetic fields, and symmetric
covariant tensors hμνðω;l; m; s; xÞ for gravitational linear
perturbations. In an analogous way as done in the previous
section, one defines modes “out”, “in”, “down”, “up”,
“dn”, “p”, and “d”. In Kerr geometry, explicit expressions
for these modes are known. These expressions are, how-
ever, complicated and not very illuminating. Furthermore,
they are not necessary for our goals. Rather, the important
aspect of these solutions is that their u, v and ϕ dependence
on the three Cauchy hypersurfaces Σf , Σint and Σi is the
same as for the scalar case. In particular, the evolution
matrix describing the propagation from Σi to Σint, is
precisely the same for electromagnetic and gravitational
perturbations as for scalar fields. Heuristically, this can be
understood as a consequence of the exponentially large
blueshift near the event horizon, which makes conformal
invariance to emerge in the near horizon region [46].

The evolution from Σint to Σf , in contrast, depends on the
spin of the field, and is dictated by the Teukolsky equation.
Following Teukolsky and Press [25], as well as Page’s

calculations [16], we have obtained the evolution matrix by
solving numerically the radial Teukolsky equation for spin
jsj ¼ 1 and jsj ¼ 2 for different values of the black hole
spin a. As explained by Page, the dependence of the matrix
elements on the BH parameters is through the dimension-
less quantities Mω and a⋆ ¼ a=M. Also, for massless
particles, their dependence on the particle species, spin, and
helicity is only through jsj and the number of polarizations,
which is 2 for both photons and gravitons. Aside from that,
the matrix elements also depend on the angular momentum
labels l and m of the modes. We have solved Teukolsky
equation and obtained the evolution matrix for a range of
frequencies ω∈ ½0;ωmax� and within each frequency for
l∈ ½jsj;lmax� ⊂ N, and for m∈ ½−l;l� ⊂ Z. We have
chosen ωmax and lmax in such a way that the contribution
of larger frequencies or l to the energy, angular momentum
and entanglement radiated away by the BH is negligible
within the precision of our numerical calculation. Such
maximum values depend on the spin parameter a⋆. In
particular, we have make sure that the upper value of the
frequency is high enough as to explore the SR to NSR
transition for each of the modes that are solved.

6. Our numerical methods

The evolution matrix that relates modes “up” and “in”
with modes “out” and “down” (corresponding to evolution
from the Cauchy hypersurfaces Σint to Σout) is not analyti-
cally solvable. We briefly summarize in this subsection the
numerical methods we use to obtain the evolution matrix
and provide references to earlier work upon which we have
built our calculations.
The goal is to solve the radial Teukolsky equation, which

is solved numerically with purely ingoing boundary con-
ditions at the horizon. This equation depends on eigenval-
ues of the spin-weigthed spheroidal harmonics, which are
obtained through the small-c expansion method in Sec. II.
C of [39], taking up to the 5th order term in an expansion in
ωa. In our calculations, we have checked that the first term
being neglected in the expansion—the 6th order term—
would lead to negligible corrections to our results for total
entanglement radiated even in the worst case scenario when
the black hole spin approaches a ¼ 1. The sources of error
in our calculations and their estimated contribution are
provided below.
To solve the radial equation, we use standard integra-

tion algorithms included in the software Mathematica
through the built-in function NDSolve, with specifi-
cations AccuracyGoal ¼ 10, PrecisionGoal ¼ 10 and
MaxStepSize ¼ 0.1. This function uses an adaptative
method, which might make use of different numerical
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integrator algorithms in each interval, based on the
problem to solve.
In order to avoid that numerical errors in the initial

conditions excite unphysical outgoing modes at the hori-
zon, we follow Teukolsky and Press (Sec. VII [25]). Thus,
we use a modified radial coordinate which vanishes at the
horizon, and is defined by x≡ ðr − rþÞ=rþ, and a modified
radial function that differs from the original variable sRω;l;m

in a polynomial in the variable x of order jsj þ 1, where jsj
is the spin of the field. This spin-dependent polynomial is
computed by requiring that the “up” (outgoing) modes
approach zero asymptotically faster than the “down”
(ingoing) modes when approaching the horizon. This
guarantees the numerical stability when integrating out-
ward for ingoing boundary conditions, which are provided
near the horizon, at x ¼ 10−15, following [25]. In this way
we obtain the sought modes of the system, from which the
graybody factors can be computed by requiring conserva-
tion of the flux(particle numbers and entanglement remain
independent of the phases of the transmission and reflection
coefficients, requiring us only to compute their ampli-
tudes). This calculation was carried out in [25] as outlined
in section VII, leading to formulas A.17 of that work, which
relate the graybody factors and the amplitudes of the modes
far from the black hole. We extract these numbers at x ¼
700 (i.e. r ¼ 701rþ). Although we have created our own
code [47], publicly available resources exist to do this
calculation [48].
We have solved the Teukolsky equation and obtained

the evolution matrix for a range of frequencies
ω∈ ½0.01M−1;ωl

max�, where ωl
max is an l-dependent cutoff

frequency, and l’s within the interval l∈ ½jsj;lmax� ⊂ Z.
We have chosen lmax ¼ 5 for photons and lmax ¼ 6 for

gravitons. The cutoff frequencies ωl
max used in our

calculations are shown in Table I. The contribution above
these cutoffs as well as the error in the angular eigenvalues
are the main sources of error in our calculations. For these
choices of lmax and ωl

max, the error introduced in the
determination of the angular eigenvalues is at the percent
level at most. Concretely, for a ¼ 0.99, we have checked
that the correction of the first term ignored in the small-c
expansion, namely the 6th order term, corrects the eigen-
values below the 0.25%. Furthermore, this error decreases
for lower values of a and ω. Since errors are smaller for the
low frequencies—which carrymost of the energy radiated—
the actual error in the determination of the angular eigen-
valuesweakly impacts integrated quantities. In particular, we
have verified that the relative errors in the total power emitted
in each angular multipole by frequencies above ωl

max are
below 10−5% with respect to the total energy radiated by
modes with that value of l.
To quantify the total error in the integrated spectrum we

would have to take into account the contribution of the
missing modes. In particular, the missing higher multipoles
l > lmax will be the main source of errors, since ω > ωl

max
contribute well below the 0.17% contribution of the l ¼ 5
photon modes to total emission (the lowest of the consid-
ered contributions). This is difficult to compute exactly, but
taking into account the exponential decay of the emitted
power with the value of the angular multipole, both for
gravitons and photons, we estimate that the corrections to
total entanglement radiated are below the percent level.

APPENDIX B: GAUSSIAN STATES
AND THEIR EVOLUTION

We summarize some general properties of Gaussian
bosonic systems.

TABLE I. These tables contain information about the emission in each multipole for a ¼ 0.99. The second row in
each table shows the l-dependent cutoff frequency ωl

max, in units of M−1, for photons and gravitons. The third row
provides the power radiated in modes lying in the interval ω∈ ½0.01;ωl

max�. The fourth row shows the contribution to
the total power radiated in each multipole l—summed for all allowed m’s and for photons and gravitons—
normalized to a 100% (the large relative contribution of gravitons is due to the large value of a used in this table).
Note that the contribution to the total power decays exponentially with l, so the contribution of higher l’s is
negligible. For smaller black hole spin a the main contribution to the power radiated is further shifted toward
small l.

Photons l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

ωl
max 1 1.5 2 2.3 2.7

dP=dtðω < ωl
maxÞ 9.2 × 10−4 6.4 × 10−4 3.3 × 10−4 1.5 × 10−4 6.4 × 10−5

% of total dP=dt 2.44% 1.71% 0.87% 0.40% 0.17%

Gravitons l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5 l ¼ 6

ωl
max 1.2 1.5 2 2.4 2.8

dP=dtðω < ωl
maxÞ 2.59 × 10−2 6.88 × 10−3 1.96 × 10−3 5.95 × 10−4 1.90 × 10−4

% of total dP=dt 68.84% 18.28% 5.21% 1.58% 0.50%
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1. Gaussian states

Let us consider a dynamical system containing N
classical degrees of freedom. Quantum mechanically, the
system is described by N pairs of canonically conjugate
operators ðxI; pIÞ with I ¼ 1;…; N or, equivalently, by N
pairs of creation and annihilation operators ðaI; a†I Þ. The
creation and annihilation operators are related to the
canonical variables x and p by

�
aI
a†I

�
¼ 1ffiffiffi

2
p

�
1 i

1 −i

��
xI
pI

�

and

�
xI
pI

�
¼ 1ffiffiffi

2
p

�
1 1

−i i

��
aI
a†I

�
: ðB1Þ

The discussion below can be made using either sets
of variables. We will use creation and annihilation
operators. Let us define a vector A⃗ by putting together
all creation and annihilation operators in the following
order

A⃗ ¼ ða1;…; aN; a
†
1; � � � a†NÞ⊤; ðB2Þ

where the transposition symbol indicates we define this as
a column vector (in the literature, other orderings can be
found, such as ða1; a†1;…; aN; a

†
NÞ⊤. It is straightforward

to translate expressions written below from one choice of
order to another.)
Gaussian states ρ, either pure or mixed, are states for

which the quantum moments hAi1 � � �Aini satisfy the same
relations as the statistical moments of a Gaussian multi-
variable probability distribution. In particular, all moments
can be determined from the first and second moments. In
other words, the first and the second moments contain
complete information about the state, and they can be used to
describe a quantumGaussian state. The firstmoments can be
encoded in a 2N dimensional vector μ⃗ ¼ hA⃗i, while the
second moments are conveniently encoded in the so-called
covariance matrix, defined as σij¼hfAi−μi;Aj−μjÞi,
where i; j ¼ 1;…; 2N and the curly bracket denotes the
anticommutator. We use the symbol h·; ·i to indicate expect-
ation value, for both pure and mixed states. In the definition
of the covariancematrix, the subtraction of μ⃗ guarantees that
the result is independent of the first moments. The anti-
commutator selects the symmetric part of the second
moments, since the antisymmetric part, i.e., the commutator,
is state-independent and completely determined from the
canonical commutation relations.
Many properties of a Gaussian state can be easily

extracted only from its covariance matrix σ. As an example,
one such property is the purity P of the state, which is
completely independent of the first moments. For a
Gaussian state, it is obtained from its covariance matrix
as PðσÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
det σ

p
(it is one for pure states and smaller

than one for mixed states). Another quantity that is
completely determined only by the covariance matrix is
the logarithmic negativity, which serves as a faithful
entanglement quantifier in some cases (see below).
For classical systems, if the Hamiltonian dictating the

dynamics is a quadratic function of the canonical variables,
the evolution is a linear canonical transformation S. Linear
evolution preserves the Gaussianity of states. If ðμ⃗ðinÞ; σðinÞÞ
describes a quantum Gaussian state, evolution under a
quadratic Hamiltonian maps it to another Gaussian state,
described by

μ⃗ðoutÞ ¼ S · μ⃗ðinÞ; ðB3Þ

σðoutÞ ¼ S · σðinÞ · S⊤; ðB4Þ

where S agrees with the evolution matrix describing the
classical dynamics.

a. Entropy of Gaussian states

The von Neumann entropy of a Gaussian state ðμ⃗; σÞ
describing a system with N degrees of freedom can be
easily computed from the N symplectic eigenvalues of σ.
These areN real numbers, denoted by νI, with I ¼ 1;…; N,
defined as the absolute value of the eigenvalues of the
matrix σ ·Ω−1 where Ω−1 is the inverse of the symplectic
form. [Note there are technically 2N eigenvalues, since
σ ·Ω−1 is a 2N × 2N matrix, but the eigenvalues come in
pairs �νI.] In terms of νI , the von Neuman entropy of a
Gaussian state reads

S½σ� ¼
XN
I

��
νIþ1

2

�
ln

�
νIþ1

2

�
−
�
νI −1

2

�
ln

�
νI −1

2

�

:

ðB5Þ

As an example, for a Gaussian state with μ⃗ ¼ 0⃗ and
σ ¼ ⨁Ið1þ 2n̄IÞĪ2—which holds for outgoing radiation
of an evaporating black hole (even with thermal inputs)—
we have νI ¼ ð1þ 2n̄IÞ, and we can write the entropy as
S½σ� ¼ P

N
I¼1ðn̄I þ 1Þ lnðn̄I þ 1Þ − n̄I lnðn̄IÞ, which is just

the standard thermal entropy.

b. Entanglement in Gaussian states

Consider a partition of the system of N modes into two
subsystems A and B, defined by two disjoint subsets of
pairs of creation and annihilation operators ðaI; a†I Þ. If the
total state of the system is Gaussian ðμ⃗AB; σABÞ, the reduced
states describing each subsystem are also Gaussian. The
vector of first moments and the covariance matrices
describing each of the Gaussian subsystems can be
obtained from ðμ⃗AB; σABÞ by simply restricting to the
components associated with each subsystem.
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If the total state ðμ⃗AB; σABÞ is pure, then the von
Neumann entropies of the reduced systems satisfy
S½σA� ¼ S½σB�. Moreover, the entropy in this case quantifies
the entanglement between A and B—i.e., the von Neumann
entropy is the entanglement entropy. On the other hand, if
the total state is mixed, the von Neuman entropy of the
subsystems can be different, and the entropy does not
quantify entanglement.
A convenient entanglement measure, useful for pure and

mixed states alike, is the logarithmic negativity, LN. It is
defined as

LNðρÞ ¼ log2kρ⊤Bk1; ðB6Þ

where ρ is the density matrix of the system, ρ⊤B is its partial
transpose with respect to subsystem B (the same result is
obtained if we partial transpose in subsystem A instead),
and k · k1 is the trace norm. The logarithmic negativity
quantifies the violation of the positivity of partial transpose
(PPT) criterion for quantum states [30,32,49]. This cri-
terion is satisfied by all separable states and, as a conse-
quence, its violation signals the existence of entanglement.
For a Gaussian state made of two Gaussian subsystems A
and B, Eq. (B6) can be rewritten in terms of the covariance
matrix σAB as [28]

LN½σAB� ¼
X
I

Max½0;−log2ν̃I�; ðB7Þ

where ν̃I are the symplectic eigenvalues of the partially
transposed state. The eigenvalues ν̃I are computed as
follows.
Let NA and NB denote the number of modes within

subsystems A and B, respectively. Hence, σAB is a 2 ×
ðNA þ NBÞ matrix. It is not difficult to notice that the
covariance matrix of ρ⊤B can be obtained from the
covariance matrix of ρ by interchanging creation and
annihilation operators in each mode within subsystem B.
Furthermore, this interchange can be operationally imple-
mented via

σ̃AB ¼ TσABT ðB8Þ

where

T ¼

0
BBBB@

INA
0NANB

0NA
0NANB

0NBNA 0NB
0NBNA

INB

0NA
0NANB

INA
0NANB

0NBNA
INB

0NBNA
0NB

1
CCCCA: ðB9Þ

In this expression, IN is the N-dimensional identity matrix,
0N is the N-dimensional zero matrix, and 0NANB

is a
NA × NB matrix with all components equal zero.
With this, the NA þ NB positive real numbers ν̃I featur-

ing in the expression for LN½σAB� are the absolute values of
the eigenvalues of the matrix σ̃AB ·Ω−1.
With this information, the calculation of logarithmic

negativity generated in Hawking’s process is performed
as follows: Starting from the covariance matrix of the
initial state σin for each wave packet mode Q ¼
ðj; n;l; m; sÞ, we obtain the “out” covariance matrix as

σout ¼ SðtotÞQ · σin · S
ðtotÞ
Q

⊤, where SðtotÞQ is the scattering
matrix containing the scattering coefficients for the mode
Q. From σout, we compute the reduced covariance matrix of
the set of modes we are interested in (e.g., mode “out” and
“dn”), then compute the partial transpose with respect to
one of the subsystems (e.g., mode “out”), evaluate its
symplectic eigenvalues, and substitute them into (B7).
For a Gaussian state, nonvanishing LN is a sufficient

condition for entanglement, but it is not necessary in
general. Therefore, there exist Gaussian states which are
entangled but have vanishing LN. However, if either of the
Gaussian subsystems is made of a single degree of freedom,
(e.g. NA ¼ 1), LN > 0 is also a necessary condition for the
presence of entanglement, regardless of the size of the other
subsystem. LN is also an entanglement monotone and,
therefore, can be used to quantify entanglement (see [28]
for further details). In the main body of this article we have
used LN only for Gaussian states in which one of the
subsystems has a single mode, so that it is a legitimate
entanglement quantifier for our purposes. As a last remark,
logarithmic negativity has an operational meaning for
Gaussian states: it is the exact cost (measured in Bell pairs
or entangled bits, ebits) that is required to prepare or
simulate the quantum state under consideration [50,51]. It
is also an upper bound for distillable entanglement.
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