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A dipolar fixed point introduced byAharony and Fisher is a physical example of interacting scale-invariant
but nonconformal field theories. We find that the perturbative critical exponents computed in ϵ expansions
violate the conformal bootstrap bound. We formulate the functional renormalization group equations à la
Wetterich and Polchinski to study the fixed point. We present some results in three dimensions within
(uncontrolled) local potential approximations (with or without perturbative anomalous dimensions).
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I. INTRODUCTION

Conformal invariance has played a central role in under-
standing critical phenomena not only in two dimensions but
also in higher dimensions. For instance, conformal invari-
ance is powerful enough to determine the critical exponents
of the three-dimensional Isingmodel in six digits by using the
recently developed numerical conformal bootstrap method
[1–5]. There are many other critical phenomena studied by
using the conformal bootstrap (see, e.g., [6] for a review).
While powerful enough, it seems mysterious that the

critical phenomena show enhanced conformal symmetry
rather than mere scale invariance. It is indeed quite
challenging to prove that the Ising model at criticality
shows conformal invariance. On the other hand, it is
surprisingly hard to find examples of scale-invariant but
not conformal field theories in theory [7–9], let alone in
physical examples (see, e.g., [10] for a review).
In [11], it was discussed that an (isotropic) dipolar

magnet [12] is one of the rare examples of an interacting
scale but not conformal field theory.1 Because it is not
conformal invariant, we cannot use the numerical con-
formal bootstrap method to investigate its critical expo-
nents. Indeed, in this paper, we will show that the
perturbative critical exponents computed in ϵ expansions
violate the conformal bootstrap bound.

With this situation in mind, we investigate the functional
renormalization group approaches to the dipolar fixed
point. The functional renormalization group is regarded
as a nonperturbative method to study the renormalization
group flow and its fixed point (see, e.g., [14–16] for
reviews). Since it does not rely on the conformal symmetry,
unlike the conformal bootstrap method, it can be applied to
the dipolar magnet. In this paper, we use the Wetterich
equation [17] as well as the Polchinski equation [18] to
investigate the dipolar fixed point. We first show that both
approaches reproduce the lowest order ϵ expansions in the
local potential approximation with the perturbative trunca-
tion. We then present some (nonperturbative) results in
three dimensions within (uncontrolled) local potential
approximations.

II. FUNCTIONAL RENORMALIZATTION GROUP
APPOACHES TO DIPOLAR FIXED POINT

A. Dipolar fixed point and violation of bootstrap bound

In the Landau-Ginzburg description, the Heisenberg
magnet in d dimensions is described by the effective action

S ¼
Z

ddx

�
1

2
∂μϕi∂μϕi þ tϕ2

i þ λðϕ2
i Þ2

�
; ð1Þ

where i ¼ 1;…; d. It has the global OðdÞ symmetry [as
well as the OðdÞ spatial rotational symmetry] since the
exchange interaction relevant to the Heisenberg magnet
acts only on internal spin, not on the orbital spin.2

The renormalization group fixed point of this effective
Published by the American Physical Society under the terms of
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1Subsequently, the details of this theory, including the non-
renormalization property of the virial current from the (hidden)
shift symmetry, was developed in [13].

2Strictly speaking, the magnetization is not a “vector” in d ≠ 3
dimensions (rather it is a two-form), but we will continue the
dimensionality here in order to set up a simple ϵ expansion.
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action describes the critical behavior of the Heisenberg
magnet.
A dipolar interaction breaks the separation of the spin

rotation and the orbital rotation, resulting in the explicit
symmetry breaking of OðdÞ ×OðdÞ down to OðdÞ. In the
Landau-Ginzburg description, it is described by the effec-
tive action

S¼
Z

ddx

�
1

2
∂μϕν∂μϕν þ ξð∂μϕμÞ2 þ tϕ2

μ þ λðϕ2
μÞ2

�
: ð2Þ

We will assume ξ ¼ ∞ so that the vector ϕμ is purely
transverse.3 Alternatively, one may use the Lagrange
multiplier formulation

S ¼
Z

ddx

�
1

2
∂μϕν∂μϕν þU∂μϕμ þ tϕ2

μ þ λðϕ2
μÞ2

�
; ð3Þ

where U is the Lagrange multiplier. In this picture, it is
easier to see that the transverse condition is not renormal-
ized because of the shift symmetry of U. The critical
behavior of the dipolar magnet is described by the
renormalization group fixed point of this action.
Aharony and Fisher did the perturbative studies of the

renormalization group flow in d ¼ 4 − ϵ dimensions. We
quote their results [12,19,20] (see also [21] for three-loop
results directly in three dimensions). The scaling dimension
of the lowest nontrivial singlet operator Δt is given by

Δt ¼ 2 −
8

17
ϵ: ð4Þ

The scaling dimension of the lowest vector operator Δϕ is
given by

Δϕ ¼ 2 − ϵ

2
þ 10

867
ϵ2: ð5Þ

In comparison, let us also quote the scaling dimensions of
the corresponding operator in the critical OðNÞ model

Δt ¼ 2 −
6

N þ 8
ϵ;

Δϕ ¼ 2 − ϵ

2
þ ðN þ 2Þ
4ðN þ 8Þ2 ϵ

2: ð6Þ

We can also systematically investigate the scaling
dimensions as well as the unitarity bound of the critical
OðNÞ models by using the numerical conformal bootstrap.
We show the bound of the scaling dimensions of Δt as a
function ofΔϕ in anOðdÞmodel in d ¼ 3.98 dimensions in

Fig. 1 by dimensionally continuing the parameters d and
N.4 It is interesting to observe that within ϵ expansions, the
scaling dimensions of the dipolar fixed point computed by
Aharony and Fisher violate the bootstrap bound. Of course,
this is not a contradiction, because the dipolar fixed point
does not possess conformal invariance or reflection pos-
itivity, but it is indicative that, in a real experiment, we
might obtain the number that violates the conformal
bootstrap bound, which could result from scale but non-
conformal interactions.
A couple of comments are in order. In Fig. 1, we find an

interesting kink whose location is numerically very close to
theOð3.98Þ fixed point located at ðΔϕ;ΔtÞ ¼ ð0.99000416;
1.98998Þ, which is computed at the leading order in the ϵ
expansions. Strictly speaking, the OðNÞ fixed point in
noninteger dimensions and noninteger N is not reflection
positive, and the conformal bootstrap bound based on the
unitaritymay not apply. In practice, however, the violation of
the unitarity is extremely weak (see, e.g., [24] for detailed
discussions), and the numerical conformal bootstrap has not
yet seen any indication of the violation of the unitarity. It
should be contrasted with the dipolar fixed point, where the
large violation is seen.
In Fig. 1, we observe that, above the kink, the bound on

Δt changes much less than below the kink. This persists
whenever ϵ is sufficiently small. With this observation, we
can argue that for sufficiently small ϵ, where the higher
loop correction to the ϵ expansion is negligible, the dipolar
fixed point from the ϵ expansion violates the numerical
conformal bootstrap bound. To argue this, we first note

Δdipolar
ϕ > ΔOðdÞ

ϕ when ϵ is small [see (5) and (6)]. Then,
assuming that the numerical conformal bootstrap bound is
saturated by the OðdÞ fixed point at the kink and that the
bound on Δt does not change above the kink, we see that

FIG. 1. Unitarity bound for Δt in OðdÞ symmetric conformal
field theory in d ¼ 3.98 dimensions. The red dot represents the
dipolar fixed point (in ϵ expansion).

3Within perturbative ϵ expansions, it turns out that ξ ¼ ∞ is an
unstable IR fixed point, but there is a (hidden) symmetry that
makes it possible to set ξ ¼ ∞ under the renormalization group
flow. See [13] for a complete analysis of the story. 4We used CBOOT [22] with SDPB [23] to generate the plot.
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the numerical bootstrap bound is indeed violated because

Δdipolar
t > ΔOðdÞ

t at one loop [see (4) and (6)].
After investigating the functional renormalization group

approach to the dipolar fixed point, in Sec. 2.3 we will
come back to the comparison with a bootstrap bond for the
Heisenberg model in three dimensions.

B. Wetterich version

In the following, we would like to study the functional
renormalization group approaches to study the dipolar fixed
point. We begin our studies with the local potential
approximation of the Wetterich equation. The schematic
form of the Wetterich equation is

k∂kΓ ¼ 1

2
Trð∂kRkð∂2ϕΓþ RkÞ−1Þ; ð7Þ

where Rk is the regularization functional and we will often
use the Litim (or optimal) regulator Rk ¼ ðk2 − p2Þθðk2 −
p2Þ [25].
Within the local potential approximation, the effective

action for the dipolar magnet is truncated as

Γ ¼
Z

ddx

�
1

2
∂μϕν∂μϕν þ ξð∂μϕμÞ2 þ Vðϕ2

μÞ
�
: ð8Þ

We assume that ξ ¼ ∞ is a fixed point under the renorm-
alization group flow and we do not consider its renorm-
alization, as can be justified in the Lagrange multiplier
formulation.
Noting that the inverse of the kinetic term ðp2δμν þ

2ξpμpνÞ−1 at ξ ¼ ∞ is formally given by the Landau gauge

propagator
δμν−

pμpν

p2

p2 ¼ 1
p2 Pμν with the projector Pμν, the

Wetterich equation with the local potential approximation
becomes

k∂kV¼
Z

ddp
ð2πÞd ∂kRkPμνðp2δνμþ2ðV 0δνρþ2V 00ϕνϕρÞPρμÞ

þRkPνμÞ−1: ð9Þ

With the Litim type regulator, the integration over p can be
formerly performed,

k∂kV¼ kdþ1μdhPμνðk2δνμþ2ðV 0δνρþ2V 00ϕνϕρÞPρμÞÞ−1in;
ð10Þ

where we still have to evaluate the angular average of the
projectors Pμ ¼ δμν −

pμpν

p2 . For example,

�
pμpν

p2

�
n
¼ 1

d
δμν;

�
pμpνpρpσ

p4

�
n
¼ 1

dðdþ 2Þ ðδμνδρσ þ δμρδνσ þ δμσδνρÞ;
�
pμpνpρpσpαpβ

p6

�
¼ 1

dðdþ 2Þðdþ 4Þ
× ðδμνδρσδαβ þ 14 termsÞ: ð11Þ

Since it is in the denominator with a noncommuting matrix
ϕμϕν, the explicit evaluation is nontrivial. We can, however,
always expand the denominator in perturbation theory, as
we will see.
As our first study, we show how to reproduce the earlier

results in ϵ expansions in d ¼ 4 − ϵ dimensions. For this
purpose, we truncate the effective action

V ¼ tϕ2
μ þ λðϕ2

μÞ2 ð12Þ

and work in perturbation theory with respect to λ (and t).
Within the perturbation theory, one can expand the

matrix in the denominator and evaluate the angular average
up to ϕ4. The beta function is obtained as

ṫ¼−2t−
�
2ðd−1Þþ4−

4

d

�
μd2λ

þ2

�
2ðd−1Þþ4−

4

d

�
μd4λtþ��� ;

λ̇¼−ϵλþ4 ·4λ2μd

�
dþ7−

12

d
þ 12

dðdþ2Þ
�
þ�� � ; ð13Þ

with the fixed point λ� ¼ ϵ
4·34μd

þOðϵÞ2. The critical
exponent yt ¼ d − Δt can be computed as

yt ¼ 2 −
9

17
ϵþOðϵ2Þ ð14Þ

by linearizing the beta functions at the fixed point and
diagonalizing the Hessian matrix ∂aβb. This reproduces the
result by Fisher and Aharony [12].
In principle, we may study nonperturbative fixed points

in d ¼ 3 dimensions within the local potential approxima-
tion. Here, we present just one example of (uncontrolled)
truncation at the next order in the space of coupling
constants. We truncate the effective action

V ¼ tϕ2
μ þ λðϕ2

μÞ2 þ gðϕ2
μÞ3 ð15Þ

and demand vanishing of beta functions of t, λ, and g. We
also neglect the anomalous dimensions of ϕ.5 Explicitly we
have

5In ϵ expansion, it is fixed by the momentum-dependent wave
function renormalization of Oðϵ2Þ.
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ṫ ¼ −2t −
ð2ðd − 1Þ þ 4 − 4

dÞμd2λ
ð1þ 2tÞ2 ;

λ̇ ¼ −ð4 − dÞλþ
4 · 4λ2μdðdþ 7 − 12

d þ 12
dðdþ2ÞÞ

ð1þ 2tÞ3 − μd
ðd − 1Þ þ ð4 − 4

dÞ
ð1þ 2tÞ2 6g;

ġ ¼ −ð6 − 2dÞgþ 48μdgλ
d − 1þ 6ð1 − 1

dÞ þ 8ð1 − 2
d þ 3

dðdþ2ÞÞ
ð1þ 2tÞ3 ;

− 64μdλ
3
d − 1þ 6ð1 − 1

dÞ þ 12ð1 − 2
d þ 3

dðdþ2ÞÞ þ 8ð1 − 3
d þ 9

dðdþ2Þ −
15

dðdþ2Þðdþ4ÞÞÞ
ð1þ 2tÞ4 : ð16Þ

(Here we have omitted some terms that are at higher orders
in ϵ expansions.) Substituting d ¼ 3 and linearizing the
renormalization group equation around the fixed point, we
obtain the lowest renormalization group eigenvalue as

yt ¼ 1.529: ð17Þ

In comparison, let us quote the lowest renormalization
group eigenvalue in the Oð3Þ model in d ¼ 3 dimensions
with the same local potential approximation. It is given by

yt ¼ 1.553: ð18Þ

Note that the scaling dimensionΔt obtained here is larger in
the dipolar fixed point than in the Heisenberg fixed point,
which seems consistent with the perturbation theory.6

We could actually write down the full functional form of
the renormalization group equation in d ¼ 3 dimensions.7

We first evaluate the effective propagator in the Wetterich
equation:

Gμν ¼ ÃPμν þ C̃PμαϕαPνβϕβ; ð19Þ

where

Ã ¼ 1

p2 þ 2V0 ¼
1

p̄2
;

C̃ ¼ −
p2

p̄2

4V 00

p2ðp̄2 þ 4V 00ϕ2
μÞ − 4V 00ðpμϕμÞ2

: ð20Þ

Let us now perform the angular average of p integration on
the right-hand side of the Wetterich equation in d ¼ 3. It is
effectively given by

2

p̄2
þ1

2

Z
1

−1
dðcosθÞ−p

2

p̄2

4V 00ϕ2
μð1− cosθ2Þ

p2ðp̄2þ4V 00ϕ2
μÞ−4V 00p2ϕ2

μcos2θ

¼ 2

p̄2
−
p2

p̄2

2V 00ϕ2
μ

p2p̄2þ4V 00p2ϕ2
μ

Z
1

−1
dx

1−x2

1− 4V 00p2ϕ2
μ

p2p2þ4V 00p2ϕ2
μ

x2

¼ 2

p̄2
−
p2

p̄2

2V 00ϕ2
μ

p2p̄2þ4V 00p2ϕ2
μ

2aþ−1þa2
2

logð1þa
1−aÞ2

a3
; ð21Þ

where a2 ¼ 4V 00p2ϕ2
μ

p2p2þ4V 00p2ϕ2
μ

. By performing the polar integra-

tion with the optimal regulator, we get

k∂kV ¼ 2

k̄2
−
k2

k̄2
2V 00ϕ2

μ

k2k̄2 þ 4V 00k2ϕ2
μ

2āþ −1þā2
2

log ð1þā
1−āÞ2

ā3

¼ 2

k̄2
−
k2

k̄2
2V 00ϕ2

μ

k2k̄2 þ 4V 00k2ϕ2
μ

X
n¼1

4ā2n−2

4n2 − 1
; ð22Þ

with k̄2 ¼ k2 þ 2V 0 and ā2 ¼ 4V 00k2ϕ2
μ

k2k2þ4V 00k2ϕ2
μ

. One can verify

that it reproduces the beta functions we obtained perturba-
tively above.

C. LPA0 and more results

One may incorporate the effect of the anomalous
dimensions within the functional renormalization group
approach. We do not attempt the evaluation of the wave
function renormalization in a self-consistent manner, which
is technically more involved. Here we take an approach
called local potential approximation′ (LPA0) and get the
effect of the wave function renormalization “by hand.” In
this approach, the net effect of the wave function renorm-
alization is given by replacing (9) with

k∂kV ¼ ∂kðkdþ2ZkÞμdhPμνðZkk2δνμ

þ ð2V 0δνρ þ 2V 00ϕνϕρÞPρμÞÞ−1in; ð23Þ

where we assume that Zk ∼ k−2γϕ , with γϕ being the
anomalous dimension of ϕi that can be computed sepa-
rately. Within the LPA0 approach, where we determine the

6We cannot trust the actual number very much. For example,
the conformal bootstrap suggests that yt ¼ 1.406 for the Oð3Þ
model in d ¼ 3 dimensions.

7The followingobservationwas first suggestedbyK.Fukushima.
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value of γϕ by hand, the resulting renormalization group
equations are almost the same as (16), except that the
coefficient of the first term is modified: for gnϕn coupling,
we replace −ðn − dn

2
þ dÞgn with −ðn − dn

2
þ d − nγϕÞgn.

The values of γϕ can be taken from the perturbative
computations based on the epsilon expansions (or any other
methods). At d ¼ 3, we have γϕ ∼ 0.01ð1Þ, which gives
only a tiny modification of the (lowest) renormalization
group eigenvalues yt (of order γϕ; see Fig. 2).
We report the evaluation of Δt ¼ 3 − yt as a function of

Δϕ ¼ 1
2
þ γϕ in the Aharony-Fisher model (in d ¼ 3)

within the LPA0 approximation by changing the truncation
of the potential in Fig. 2. To quote some numbers here, if
we truncate the potential up to ϕ6, we obtain yt ¼ 1.508 or,
if we truncate the potential up to ϕ16, we obtain yt ¼ 1.33
(at γϕ ¼ 0.02). The small dependence on γϕ can be
extrapolated from Fig. 2.
The prediction from yt by increasing the truncation order

of the potential seems to converge rapidly, but this does not
mean that we can trust the actual number that we have
obtained. While we cannot estimate the systematic error in
the Ahanorny-Fisher fixed point, with the same truncation,
we obtain yt ¼ 1.31 in the Oð3Þ model, whose accurate
value should be yt ¼ 1.406. It is therefore expected that the
systematic error of our prediction of yt could be as large as
0.1 irrespective of the convergence of the polynomial
truncations within the LPA0. See also [16,28] for similar
comparisons in OðNÞ models. Note that the effect of the
truncation (of the other terms that we neglect in LPA0)
seems much more severe than the effect of the anomalous
dimensions γϕ.
Let us finally quote the predictions of yt (or Δt ¼ 3 − yt)

from various other approaches. The three-loop computa-
tions of the renormalization group directly in three dimen-
sions [21] gave Δϕ ¼ 0.5165ð40Þ and Δ0 ¼ 1.576ð10Þ.
The experimental values (more than 40 years ago) in EuO
and EuS gave Δ0 ¼ 1.58ð5Þ and 1.59(5), respectively [29].

D. Polchinski version

Next, let us study the local potential approximation of the
Polchinski equation as another functional renormalization
group approach to the dipolar fixed point. The schematic
form of the Polchinski equation for the Aharony-Fisher
model is given by

Ṡ¼−
δS

δϕμðpÞ
Pμν

δS
δϕνð−pÞ

þTrPμν
δ2S

δϕμðpÞϕνð−pÞ
: ð24Þ

One apparent advantage of the Polchinski equation (com-
pared with the Wetterich equation) is the absence of the
denominator.
The important difference compared with the standard

scalar ϕ4 theory is to keep the projector Pμν ¼ δμν −
pμpν

p2 in
the interaction vertex even in the local potential approxi-
mation. We also perform the angular average when we take
the trace in the second term of (24), but we do not perform
the average in the first term. This makes the solution of the
Polchinski equation much more complicated, but it is
necessary even in the perturbation theory.
As our first application, let us study a perturbative fixed

point in d ¼ 4 − ϵ dimensions. In order to make the
renormalization group equation closed within the pertur-
bation theory, we make the ansatz8

VðϕÞ ¼ tϕμPμνϕν þ λϕμϕμϕνϕν þ gϕμϕμϕνPνσϕσϕρϕρ:

ð25Þ

Note that the six-point vertex has a specific projector.9 The
fixed point equation for g at the lowest order becomes

0 ¼ −16λ2ϕμϕμϕνPνσϕσϕρϕρ − 2gϕμϕμϕνPνσϕσϕρϕρ;

ð26Þ
which indeed shows the necessity of the projector.
Similarly, for t, we have

0 ¼ 2tϕμϕμ þ
�
2ðd − 1Þ þ 4

�
1 −

1

d

��
λϕμϕμ

− 4t2ϕμPμνϕν; ð27Þ

We should note that for the two-point vertex, there is no
distinction between ϕμϕμ and ϕμPμνϕν, so we can combine
all these terms and demand the vanishing of the coefficient.
The fixed point equation for λ has two contributions. One

is the one-particle reducible one

FIG. 2. Critical exponents obtained from LPA0 truncation of the
functional renormalization group in three dimensions. For com-
parison, we showed the conformal bootstrap bound on the
Heisenberg model as a black curve.

8We need the six-point vertex to reproduce the standard ϵ
expansions in the standard Wilson-Fisher fixed point from the
Polchinski equation.

9Note that if the projector is connected to only one ϕ (i.e., in
the t term), it does nothing because the external line is always
transverse. On the other hand, if the projector connects more
fields (i.e., in the g term), then it makes a difference.
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− 16tλðϕμϕμϕνÞPνσϕσ þ
�
2gðd − 1Þ þ 4g

�
1 −

1

d

��

× ðϕμϕμϕνÞPνσϕσ ð28Þ
and the other is the one-particle irreducible one

g
�
dþ 7 −

12

d
þ 12

dðdþ 1Þ
�
ϕμϕμϕρϕρ: ð29Þ

At the fixed point, we see that the one-particle reducible
contributions sum up to zero and only the one-particle
irreducible one remains. The fixed point equation for λ
becomes

λ̇ ¼ ϵλ − 8λ2
�
dþ 7 −

12

d
þ 12

dðdþ 2Þ
�
; ð30Þ

with the fixed point value of λ� ¼ ϵ
4·17 (and g� ¼ −8λ2� and

t� ¼ − 9
2
λ�). We can compute the renormalization group

eigenvalues, and we correctly obtain yt ¼ 2 − 9
17
ϵ.

Our original hope was that the Polchinski equation may
work better to study the nonperturbative renormalization
group fixed point in the Aharony-Fisher model (at least
within the local potential approximation) because of the
absence of the denominator. Unfortunately, it may not be
that simple. Owing to the existence of the projector, we
may have to introduce more and more terms,

V ¼ tϕ2 þ λ0ϕ
2ϕ2 þ λ1ϕϕPϕϕþ g0ϕ2ϕ2ϕ2

þ g1ϕ2ϕPϕϕ2 þ g2ϕϕPϕϕPϕϕþ � � � ; ð31Þ
to write the effective action. It is not obvious how to
truncate such potentials or make any nonperturbative ansatz
that is closed under the renormalization group flow.

III. d = 2 AND MULTICRITICAL POINTS

The physical motivation of the dipolar fixed point resides
mainly in d ¼ 3 dimensions, but we may also be able to
find a nontrivial fixed point in d ¼ 2 dimensions. Note that
the ordinary Oð2Þ model does not show spontaneous
symmetry breaking in d ¼ 2 dimensions, due to the
Coleman-Mermin-Wagner theorem, but it does not apply
to the Aharony-Fisher model, because the global symmetry
is mixed with the rotational symmetry.
In two dimensions, the transverse vector can be replaced

by a scalar with a (gauged) shift symmetry,

ϕμ ¼ ϵμν∂νφ; ð32Þ

where φ, the Landau-Ginzburg effective action for the
Aharony-Fisher model, can be represented as

S ¼
Z

d2xð∂2φ∂2φþ Vð∂μφ∂μφÞ þ � � �Þ: ð33Þ

When V ¼ 0, the theory is globally conformal invariant but
not Virasoro invariant [26,27]. It is not obvious if nontrivial
multicritical fixed points with V ≠ 0 admit (global) con-
formal invariance. Presumably, they do not,10 but in either
case, we may find these nontrivial renormalization group
fixed points.
While we may study nontrivial fixed points from the

functional renormalization group directly in the original
variable ϕμ which is transverse, we may also study them
from the new variable φwithout any constraint. In the local
potential approximation with the optimal regulator, the
Wetterich equation of this model is given by

k∂kV ¼ kdþ1

�
1

k2 þ 2V 0ð∂μϕ∂μϕÞ þ 4k−2V 00ð∂μϕ∂μϕÞ∂ρϕ∂σϕkρkσ

�
n
: ð34Þ

This is similar, but slightly different from, the equations
discussed before in terms of ϕμ. Since the truncation we are
using here is equally uncontrolled, we cannot say which
would give a more reasonable result. Note that here again
we have to expand the denominator to evaluate the angular
average, and the computational difficulty has not been
alleviated.
Actually, we can perform the angular average in d ¼ 2. It

is given by

k∂kV ¼ k3
1

2π

Z
π

−π
dθ

1

k2 þ 2V 0 þ 4ð∂μφÞ2V 00cos2θ

¼ k3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ 2V 0p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2V 0 þ 4ð∂μφÞ2V 00

q : ð35Þ

This may give a starting point to study the functional
analysis of the fixed point potential V.
As in conformal minimal models in d ¼ 2 dimensions,

we expect that the model admits (infinitely many) multi-
critical fixed points by fine-tuning V. They can be regarded
as scale but nonconformal analogs of minimal models. It
would be very interesting to study their properties and the
renormalization group flow among them.

IV. DISCUSSION

In this paper, we have presented our first attempt to use
the functional renormalization group method to study the

10In [13], it is conjectured that an interacting fixed point with
shift symmetry (like the one here) is scale invariant only without
conformal invariance, based on the genericity argument.
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critical exponents of the dipolar fixed point. There are a
couple of directions to be explored. One is to conduct a
systematic search for the nonperturbative fixed point with-
out doing a brute-force truncation of the potential even
within the local potential approximation.
Another important direction is to introduce the effect of

the wave function renormalization to compute the critical
exponent η. Even in perturbation theory, it is nontrivial to
compute η in the functional renormalization group
approach [30–32], and it requires the field-dependent wave
function renormalization to be computed at the dipolar
fixed point. In the perturbative functional renormalization
group, η can be related to terms such as Zϕ2ðϕ2Þ∂μϕν∂μϕν

in the one-loop effective action. Now Zϕ2 itself is of order
λ2 in the one-loop integral of the bare Lagrangian, so η is of
order λ2 corresponding to the effective two-loop integral. It
is crucial to obtain η nonperturbatively in d ¼ 3 dimensions

in order to see if the dipolar fixed point really violates the
conformal bootstrap bound for the Oð3Þ models in d ¼ 3
dimensions.
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