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We identify a categorical structure of the set of all conformal field theories (CFTs). In particular, we
show that the set of all CFTs has a natural monoidal strict 2-category structure with the 1-morphisms being
sequences of deformations and 2-morphisms determined by 0-form symmetries of the CFTs.
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I. INTRODUCTION

Conformal field theories (CFTs) are basic mathematical
structures in the study of a wide range of physical
phenomena. A plethora of different CFTs arises when
one studies physical systems in various dimensions and in
various contexts. CFTs are also a fruitful ground to study
general mathematical properties of quantum physics. An
interesting question is to understand whether one can
classify all possible CFTs and their properties; in other
words, what is the ‘space’ of all CFTs and does it have a
natural mathematical structure?
One can approach this question in different ways. One

such approach, based on assuming some properties
of a theory of interest and fully exploiting constraints
following from conformal symmetry to deduce additional
properties, is called the conformal bootstrap. This
approach focuses on a single given CFT and has received
a lot of attention in recent years [1,2]. One of the basic
properties defining a CFT [and a quantum field theory
(QFT) in more generality] is the notion of symmetry. We
can think of symmetry as a collection of topological
extended operators a given theory admits [3]. This turns
out to be a very rich structure associating mathematically
a higher fusion category to a given theory. For an
elementary introduction to categories see e.g., [4].
The higher fusion category generalizes the familiar notion
of a group one associates to a 0-form symmetry. The
generalized structure incorporates anomalies, higher-form
symmetries, higher-group structures, and noninvertible

topological defects into a single rich structure. Under-
standing and fully exploiting such structures also has
received a lot of attention recently (see e.g., [5,6]).
Studying symmetries of a theory, in principle, also
focuses on properties of a given theory of interest.
However, the symmetry structure of a theory obtained
as a deformation of another one is constrained by the
latter through the ideas of matching anomalies following
the seminal work of ‘t Hooft [7]. (See e.g., [8,9] for more
modern applications of these ideas.)
In this note, we want to consider a connection between

deformations and higher fusion categories of topological
defects. In particular, we will discuss how one can
understand more mathematically the set of all CFTs,
either in a given dimension or in any dimension, as a
category. More precisely we will discuss a 2-category
structure of the set of CFTs.1 For an extensive intro-
duction to 2-categories see e.g., [20,21].2 The 2-category
will have objects given by the CFTs, 1-morphisms related
to sequences of deformations taking one CFT to another,
and finally 2-morphisms related to 0-form symmetry.
Once this is done, one can, in principle, add to the
discussion the higher-form symmetries, and more gen-
erally higher-categorical structures, though we will refrain
from doing that explicitly here. The category structure of
the set of CFTs would, in principle, impose certain
mathematical relations on the space of QFTs. The
primary motivation for this note is to define a strict
monoidal 2-category on the set of CFTs motivated by
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1Categorical structure of the space of CFTs was discussed
before, see e.g., [10]. There, the morphisms are taken to be
interfaces of two CFTs. One might try and relate the picture of
RG domain walls of [11,12] to the one we present here (We thank
C. Beem and Y. Tachikawa for stressing this to us.). Moreover,
TQFTs (and CFTs) themselves can be defined as functors
between various categories [13–16]. Categorical language to
organize various conjectures about class S [17,18] theories were
discussed in [19].

2A rigorous definition of 2-categories with monoidal structure
can be found in [22,23]. See also [24,25].
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field theoretic operations that map CFTs to each other.3

This provides us with a language familiar to many
mathematicians and some physicists hoping that we
might gain new insights with this aerial view of the
space of CFTs. We cast many of the known results and
conjectures about CFTs into this language.
Before we begin let us stress the general philosophy of

the construction. We will start with the set of CFTs and will
study relations between these given by various deforma-
tions. Importantly, we will not study all deformations of a
given CFT. A general deformation can lead to a variety of
behaviors at low energy (IR); for example, one can obtain
free vector fields in the IR. The study of general structure of
renormalization group (RG) flows is an interesting prob-
lem, see e.g., [26]; we will only consider deformations
which take a CFT to a CFT (possibly a trivial one).
The outline of the note is as follows. We will first discuss

the 1- and 2-category structure of set of CFTs in given
dimensionD. Then we will discuss the categorical structure
of the set of CFTs in any dimension. Finally, we will make
several comments and translate some of the physical
statements and conjectures about the space of all possible
CFTs to this categorical language.

II. CATEGORY OF CFTS

Let us define the set CðDÞ
0 to be the set of all CFTs in D

space-time dimensions. By a CFT we mean a unitary
quantum field theory which has conformal symmetry.4

The action of the conformal symmetry on various structures
in the theory can be nontrivial (faithful) if the theory is a
proper CFT, or can be nonfaithful in the degenerate,
topological quantum field theory (TQFT) case. One can
further specialize in various ways. For example, we can
consider only CFTs with particular amount of supersym-
metry, or CFTs residing on the same conformal manifold.
We will do so later on but for now, we shall keep the
discussion more generic.
We define a 1-category CðDÞ so that its objects are given

by CðDÞ
0 . A morphism connecting two objects X; Y ∈ CðDÞ

0 ,
f∶X → Y, corresponds to a field theoretic operation on
CFT Xwhich results in CFT Y in the IR. Wewill refer to the
UV theory as the source and the IR CFTas the target of the
deformation. An example of such is performing a

deformation corresponding to operator deformation O.
That is the correlation functions of the source and the
target CFT are related schematically as

h…iY ¼ h…eiλ
R

dDxOiX; ð1Þ

where on the right, we take the proper low energy limit
of the correlators. If X ≠ Y the deformation will be either
relevant or exactly marginal by definition. If X ¼ Y we
can have nontrivial morphisms which correspond to
irrelevant deformations. The parameter λ is the coupling.
Note that in case of exactly marginal deformations
different values of coupling are different morphisms with
target objects being different. In the case of relevant and
irrelevant deformation the precise magnitude of λ is
inessential (as long as it is of definite sign and is small
enough) as this sets an RG scale while we are only
interested in the CFT endpoints of the flow. Another type
of morphism that we will consider is taking a CFT and
gauging part of its (generalized) global symmetry.5

Finally, one, in principle, can also consider deforming
a CFT by turning on vacuum expectation value (VEV) to
an operator, but we will only discuss operator and
gauging deformations in what follows. Let us refer to
these deformations as being the basic ones. We will soon
define the morphisms more rigorously.
We immediately deduce that the above definition of

morphisms has to be extended for the structure to define a
category. The issue is completeness under composition of
morphisms. Given objects X, Y, and Z corresponding to
CFTs, if we have two morphisms,

f∶X → Y; g∶Y → Z; ð2Þ

what is the morphism g ∘ f∶X → Z corresponding to the
composition of the two? Naively we might be tempted to
construct this morphism by searching for an appropriate
deformation of one of the two types discussed above;
deforming the CFT X, say, by an operator or gauging,
leading to CFT Z. However, these are not enough to cover
all the possibilities. Imagine that we go from X to Y using
one of the deformations above (f) and the global symmetry
of Y is larger than that of X: some of the symmetry emerges
in the IR. Then, as deformation g, we gauge a subgroup of
this emergent symmetry. We cannot perform this operation
directly on X without first performing f, flowing to the IR
and then gauging. Thus, in order for the structure we
discuss to be a well defined category we need also to

3In particular, we make a choice of field theoretic operations
between CFTs to define 1-morphisms. One can try to consider a
larger set of such operations as additional 1-morphisms with new
possible 2-morphisms between them. However, then one needs to
make sure the consistency conditions we check are still satisfied.

4We will not distinguish here between relative and absolute
CFTs [27]. In principle we can also consider the CFTs to be
defined with the corresponding symmetry TFT [6,27–29].
Moreover, one in principle could also consider direct sums of
theories [30] (e.g., these naturally seem to arise in some
compactification scenarios [31]): we will not explicitly consider
these here.

5The gauging, again, might depend on inessential continuous
coupling constants or on consequential discrete parameters, such
as the level of a Chern-Simons term in 3d. We can also gauge
discrete subgroups of the global symmetry though we will focus
the discussion on continuous ones.
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consider deformations of X which are defined by any
sequence of the basic deformations.6 See Fig. 1.
Let us be more precise and define the following. We

consider, for concreteness, the set of morphisms between
two CFTs corresponding to operator deformations. Since
the source theory is a CFT, we can classify all Lorentz
scalar deformations by their scaling dimensions. Let us
then wconsider the collection of all deformations of given
scaling dimension Δ, Oα.

7 These deformations are in a
(possibly reducible) representation of the 0-form global

symmetry groupGðXÞ
0 of the source CFT X. Namely, given a

group element g∈GðXÞ
0 we have g ·Oα ¼ OgðαÞ, meaning

that acting on the deformation of given scaling dimension,
we obtain another deformation of the same scaling dimen-
sion. Some morphisms, the basic ones, thus correspond to
operators Oα. This is not the most general deformation; a
general morphism is defined by a sequence of basic
deformations, an ordered tuple

fO1;O2;…;Ong≡On ∘ � � � ∘O2 ∘O1;

such that we first flow withO1, then we deform the IR CFT
with O2, and so on. Although we defined the above with
operator deformation we can also consider gauging a

subgroup of GðXÞ
0 as one of the deformations. The order

of the deformations might matter. In particular, in some
cases the sequence of deformations only makes sense in a
particular order. For example, we might want to gauge a
symmetry which only emerges after we deform the source
theory.

III. HIGHER CATEGORY STRUCTURE

We can think of the group elements of GðXÞ
0 , or more

precisely certain equivalence classes to be defined soon, as
generating 2-morphisms connecting different 1-morphisms.
The sequence of the CFTs appearing in the definition of a
morphism has the following sequence of 0-form symmetries,

fGðX1Þ
0 ; GðX2Þ

0 ; � � �g:
We remind that the deformations can be operator deforma-
tions or gauging of symmetries. The symmetries in the
sequence do not have to be subgroups (or quotients) of
previous ones as someglobal symmetry can emerge in the IR.
Moreover, even if part of the global symmetry of the source
CFT is unbroken by the deformation, it can act trivially on
targetCFT.Given twodifferentmorphismsf¼ fO1;…;Ong∶
X1 → � � �→Xnþ1 and f0 ¼ fO0

1;…;O0
ng∶X1 → � � �→Xnþ1

corresponding to the same sequence of CFTs, we might be
able to define a 2-morphism between them, denoted by
α∶f ⇒ f0 in the following manner. A 2-morphism is an
ordered set of pairs, each consisting of a group element and a
source operator (see Fig. 2),

α≡ fðg1;O1Þ; ðg2;O2Þ;…; ðgn;OnÞg; ð3Þ
such that

gi∈GðXiÞ
0 and O0

i ¼ gi ·Oi for each i¼ 1;…; n; ð4Þ
i.e., in each pair the group element transforms a deformation inf
into the corresponding one in f0. This definition ensures that
every 2-morphism uniquely specifies the source and target
1-morphisms, as required by the axioms of 2-categories. Note
that we do not assume that any two 1-morphims connecting the
same objects are related by a 2-morphism; the corresponding
deformations might not be related by an action of the
0-form symmetry. As each deformation Oi might preserve

some subgroup Hi ⊂ GðXiÞ
0 ,8 to be more precise we should

replace each group element gi by the left coset giHi, i.e.,
α ¼ fðg1H1;O1Þ;…; ðgnHn;OnÞg. Note that the identity

FIG. 1. The category of CFTs and the morphisms as sequences
of deformations.

FIG. 2. The 2-morphism as a sequence of group elements.

6This is an important point. Since it is, in general, not
possible to obtain the result of a sequence of deformations only
as a field theoretic manipulation in the UV theory, one can
think about the construction as follows. Consider all CFTs that
can be connected to each other via a basic deformation and all
such basic deformations. This is a directed multigraph whose
vertices are CFTs and the edges are basic deformations. One
can define a category out of this by adding new arrows
corresponding to composition of deformations and impose
associativity.

7One can generalize this discussion by turning on deforma-
tions of different scaling dimensions.

8The subgroup Hi ¼ Stab
G

ðXiÞ
0

ðOiÞ preserves a deformation

ðOiÞα if for every h∈Hi ⇒ ðOiÞhðαÞ ¼ ðOiÞα.
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2-morphism Idf on f is just Idf ¼ fðH1;O1Þ;…;
ðHn;OnÞg.9 In order not to clutter notations, we will keep
labeling the equivalence classes by representative group
elements.
The definition of 2-category requires the presence

of two different compositions (vertical and horizontal) for
2-morphisms, satisfying a constraint called interchange law.
In our construction, they are defined as follows. Given two
2-morphisms α1 and α2

α1 ¼ fðg1H1;O1Þ;…; ðgnHn;OnÞg;
α2 ¼ fðh1K1;O0

1Þ;…; ðhnKn;O0
nÞg; ð5Þ

the vertical composition is given naturally using the group
multiplication,10

α2 • α1 ¼ fðh1K1g1H1;O1Þ;…; ðhnKngnHn;OnÞg
¼ fðh1g1H1;O1Þ;…; ðhngnHn;OnÞg; ð6Þ

where the last line follows since we have the relation
Ki ¼ giHig−1i between the stabilizer subgroups of the
deformations.11 The horizontal composition of two
2-morphisms α1 and β1 is naturally defined as follows. Let

α1 ¼ fðg1H1;O1Þ;…; ðgnHn;OnÞg;
β1 ¼ fðk1L1;U1Þ;…; ðkmLm;UmÞg; ð7Þ

the horizontal composition then is12

β1 ∘ α1 ¼ fðg1;O1Þ;…; ðgn;OnÞ;
ðk1;U1Þ;…; ðkm;UmÞg; ð8Þ

as we concatenate two sequences of deformation. This
implies that any 2-morphismof the form (3) can be expressed
as the horizontal composition of a sequence of basic
2-morphisms αi ¼ ðgi;OiÞ, which act on basic deforma-
tions. Let us now verify that the interchange law is satisfied
(see Fig. 3). First,13

ðβ2 • β1Þ ∘ ðα2 • α1Þ ¼ fðp1k1;U1Þ;…; ðpkhk;UmÞg
∘ fðh1g1;O1Þ;…; ðhngn;OnÞg

¼ fðh1g1;O1Þ;…; ðhngn;OnÞ;
ðp1k1;U1Þ;…; ðpmkm;UmÞg; ð9Þ

whereas,

ðβ2 ∘ α2Þ • ðβ1 ∘ α1Þ
¼ fðh1;O0

1Þ;…; ðhn;O0
nÞ; ðp1;U 0

1Þ;…; ðpm;U 0
mÞg

• fðg1;O1Þ;…; ðgn;OnÞ; ðk1;U1Þ;…; ðkm;UmÞg
¼ fðh1g1;O1Þ;…; ðhngn;OnÞ;
ðp1k1;U1Þ;…; ðpmkm;UmÞg: ð10Þ

We thus see that,

ðβ2 • β1Þ ∘ ðα2 • α1Þ ¼ ðβ2 ∘ α2Þ • ðβ1 ∘ α1Þ; ð11Þ
and the interchange law holds true. The category of CFTs
together with the action of the 0-form symmetry thus forms a
strict 2-category structure.
Note that gauging can be incorporated in the same struc-

ture. We take a subgroup of GðXÞ
0 for a CFT X and gauge it.

This breaksGðXÞ
0 to a smaller group. To gauge a symmetrywe

choose an embeddingof thegauge group inGðXÞ
0 .We thus can

discuss different equivalentways to do sowhich are related by
an action of the global symmetry leading to 2-morphisms.
Similarly we can discuss irrelevant deformations being
morphism from an object to itself and exactly marginal
deformations which take us between different objects but
with no flow involved. We will discuss the latter next.

IV. CONFORMAL MANIFOLD 2-CATEGORY

Let us consider the special case of exactly marginal
deformations. Most of the concrete examples of theories
with exactly marginal operators involve supersymmetric
CFTs,14 though special degenerate cases of theories without
supersymmetry are known to exist. See e.g., the discussion
in [41]. Exactly marginal deformations of supersymmetric
theories parametrize what is called the conformal manifold

FIG. 3. The interchange law.

9Here, we do the following identification. If for some i,
we have Xi ¼ Xiþ1 and Oi ¼ idXi

i.e., no deformation, then

Hi ¼ GðXiÞ
0 , and we remove the ith entry from the sequence of

1- and 2-morphisms. This physicallymeanswe do nothing at step i.
10Note that, as a necessary condition for the vertical composition

of α1 and α2 to be defined, we need that O0
i ¼ gi ·Oi for some

gi ∈GðXiÞ
0 for each i in the sequence. In particular, these exist only if

the sequence of CFTs in both 2-morphisms is identical.
11Due to this, we can drop the stabilizer subgroups from our

notation, but we write them explicitly whenever they are required.
12Note that the horizontal composition of α1 and β1 requires

the target of fOigni¼1∶ X1 → Xnþ1 match the source of
fUlgml¼1∶X0

1 → X0
mþ1, i.e., Xnþ1 ¼ X0

1.
13Here the 2-morphism β2 is defined as the sequence

fðp1;U 0
1Þ;…; ðpm;U 0

mÞg. 14See e.g., [32–40] for some results in the supersymmetric case.
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Mc. Here no RG flow is triggered onMc; the values of the
couplings are essential as they determine the target CFT
and have a geometrical meaning as (local) coordinates on
the conformal manifold. As a result, our procedure of
defining 1-morphisms with a sequence of flows better be
interpreted as a concatenation of infinitesimal exactly
marginal deformations. Geometrically, each such concat-
enation consists of a series of small consecutive deviations
from the source CFT point along the conformal manifold;
it forms a path in Mc. Therefore, we conclude that
1-morphisms between CFTs on the same conformal mani-
fold are paths between the corresponding points, such that
different paths correspond to different morphisms.15

Turning to 2-morphisms, we should look at the global
symmetry. On generic points of the conformal manifold, it
is described by the group GMc

. However, there might be
special loci within Mc where the symmetry gets enhanced
to a bigger group Glocus ⊃ GMc

. By definition, all the
exactly marginal deformations preserve GMc

, but on an
enhancement locus, where the symmetry is larger, various
deformations might be again related to each other by the
action of the enhanced global symmetry group. This gives
us the 2-category structure as before. Here, however, each
2-morphism is parametrized by a sequence of (equivalence
classes of) group elements associated to loci where the two
paths in question intersect a locus with enhanced global
symmetry.16 Therefore, the source and target 1-morphisms
might correspond to the same path or different paths which
intersect at least at the same loci of enhanced symmetry
(see Fig. 4).17 The fact that the loci with enhanced
symmetry behave differently than the generic one is because
these loci will have more marginal operators (which are
marginally irrelevant in supersymmetric theories) [33]. Thus,
turning on generic marginal deformations, we do generate a

flow which ends up on the same conformal manifold. The
2-category structure is intimately related with the symmetry
structure of the conformal manifold.

V. MONOIDAL STRUCTURE

The category CðDÞ we have built admits a natural monoidal

structure, i.e., a tensor product.GivenX; Y ∈ CðDÞ
0 ,weobtain a

new objectZ≡ X ⊗ Y ∈ CðDÞ
0 by taking the tensor product of

Hilbert spaces and (extended) operator algebras of the
theories X and Y. This produces the decoupled sum of
the original degrees of freedom and thus it forms a
consistent theory. If X and Y both admit a Lagrangian
description, the path integral of Z is nothing but the
product of the path integrals of X and Y (the action of Z
is simply the sum SZ ¼ SX þ SY), therefore all correla-
tion functions factorize. The unit object 1 is given by
the empty theory, with no dynamical fields and vanish-
ing action, such that its product with any other object
leaves the latter invariant. Under these assumptions, the
tensor product is manifestly associative.
In our construction, fields of particular spin, namely the

scalar field and the fermions of various types in a given
dimension, are elementary objects in the sense that they are
not tensor products of other objects. Theories with
Lagrangian description are constructed by tensoring these
elementary objects and following morphisms. The free
matter fields are not necessarily the only elementary objects
(see Sec. IX for more details). Note that spin-one fields in
our discussion play a different role compared to other spins
as these are associated to morphisms.
The tensor product admits a natural lift to a tensor

product of 1- and 2-morphisms, which makes it into a
2-functor on the 2-category CðDÞ. Namely, given two source
CFTs X and Y and the sequences of deformations
f∶X → X0 and g∶Y → Y 0, we can define the 1-morphism
from X ⊗ Y to X0 ⊗ Y 0, which we will denote by f ⊗ g,

FIG. 4. A conformal manifold. On the left we depict morphisms
corresponding to paths. On the right, the shaded blue and orange
lines denote loci with enhanced symmetry. The two 1-morphisms
(black and green paths) are related by a 2-morphism
α ¼ fðg1;O1Þ; ðg2;O2Þ; ðg3;O3Þg, defined via the intersection
of the paths (corresponding to the 1-morphisms) and the enhance-
ment loci. In general, when leaving one such locus we have
multiple choices of how to break the symmetry, all related to each
other by the action of elements of the enhanced symmetry group.
These group elements gi determine the structure of α.

15Note that here it is somewhat natural to identify homotopi-
cally equivalent paths. In that case, every morphism becomes
invertible, with the inverse given by the oppositely oriented path.
This gives the category of the CFTs residing on the same
conformal manifold the structure of the path groupoidP1ðMcÞ
of the conformal manifold (if we identify homotopically equiv-
alent deformations). As we will soon discuss, in some cases one
can associate more than one 1-morphism to a given path. We can
consider the skeletal category of the conformal manifold group-
oid. If we identify morphisms corresponding to the same path this
is given by the homotopy group of the conformal manifold.
Moreover, in the skeletal category of CðDÞ theories residing on the
same conformal manifolds will be identified as objects.

16To be precise, here the 2-morphisms are parametrized by
pairs, where the first element belongs to the appropriate coset and
the second element is the corresponding source deformation.

17Note that the conformal manifold is usually defined quo-
tienting by the global symmetry and that is one reason why loci
with enhanced symmetry typically are referred to as cusps on the
conformal manifold. A more pedantic application of our general
definition of the 2-morphisms is then only to connect identical
paths on the quotiented manifold by the 2-morphisms. Here we
take a more cavalier viewpoint.
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as the combination of the two sequences of defor-
mations. This operation preserves compositions and iden-
tity 1-morphisms. Similarly, given the deformations
f; f0∶ X → X0 and g; g0∶Y → Y 0, such that there exist
α∶f ⇒ f0 and β∶g ⇒ g0 defined as above, we can build
the 2-morphism α ⊗ β∶f ⊗ f0 ⇒ g ⊗ g0 by combining
the sequences describing α and β. Once again, this opera-
tion preserves compositions and identity 2-morphisms.
The structure that we obtain is that of a strict monoidal
2-category ðCðDÞ;⊗Þ.
A natural way of understanding the structure of CðDÞ is to

view it as a (strict) 3-category, sayDðDÞ, with a single object
denoted by � [4]. Here the 1-morphisms of DðDÞ are the
objects of CðDÞ, viewed abstractly as endomorphims of �.
Thus, the 2- and 3-morphisms of DðDÞ are nothing but the
1- and 2-morphisms of CðDÞ respectively. The three com-
positions on DðDÞ are then constructed as follows (see
Fig. 5). The vertical composition of 3-morphisms of DðDÞ

coincides with the • of CðDÞ. Next, the functor describing
the horizontal composition of the 2-morphisms of DðDÞ,
and its lift to 3-morphisms, is the horizontal composition ∘
of CðDÞ. Finally, the 2-functor providing the composition

of 1-morphisms of DðDÞ, together with its lift to 2- and
3-morphisms, is the tensor product ⊗. The axioms of a
3-category require that these three different structures are
compatible with each other and satisfy some properties, the
interchange laws:

ðδ • γÞ ∘ ðβ • αÞ ¼ ðδ ∘ βÞ • ðγ ∘ αÞ;
ðσ ⊗ βÞ • ðρ ⊗ αÞ ¼ ðσ • ρÞ ⊗ ðβ • αÞ;
ðμ ⊗ γÞ ∘ ðρ ⊗ αÞ ¼ ðμ ∘ ρÞ ⊗ ðγ ∘ αÞ: ð12Þ

These can be read from the three planes in Fig. 5.
The first interchange law is the one we already checked

above for 2-morphisms in CðDÞ. To prove the others, we
use the definitions for 1-morphisms and 2-morphisms in C.
We denote,

f∶X1 → Y1 ¼ fO1;…;Ong;
g∶X2 → Y2 ¼ fU1;…;Umg: ð13Þ

Then, we write their tensor product as

f ⊗ g∶X1 ⊗ X2 → Y1 ⊗ Y2

¼ fO1;…;On;U1;…;Umg: ð14Þ
Note that here the ordering between the sets ofO’s and U’s
does not matter. Only the relative ordering between differ-
ent O’s (resp. U) does. Therefore the product is commu-
tative: f ⊗ g ¼ g ⊗ f. Next we employ the following
notation for 2-morphisms:

α ¼ fðgðαÞ1 ;O1Þ;…; ðgðαÞn ;OnÞg; ð15Þ
so that the tensor product of 2-morphisms reads,18

ρ⊗ α¼ fð1⊗ gðρÞ1 ;Ug1
1 Þ;…;

ð1⊗ gðρÞm ;Ug1
m Þ; ðgðαÞ1 ⊗ 1;Of1

1 Þ;…; ðgðαÞn ⊗ 1;Of1
n Þg: ð16Þ

Using the definitions of compositions we then can prove
the interchange laws (12). For example,

ðσ ⊗ βÞ • ðρ ⊗ αÞ ¼ fð1 ⊗ gðσÞ1 ;Ug2
1 Þ;…; ð1 ⊗ gðσÞm ;Ug2

m Þ; ðgðβÞ1 ⊗ 1;Of2
1 Þ;…; ðgðβÞn ⊗ 1;Of2

n Þg
• fð1 ⊗ gðρÞ1 ;Ug1

1 Þ;…; ð1 ⊗ gðρÞm ;Ug1
m Þ; ðgðαÞ1 ⊗ 1;Of1

1 Þ;…; ðgðαÞn ⊗ 1;Of1
n Þg

¼ fð1 ⊗ gðσÞ1 gðρÞ1 ;Ug1
1 Þ;…; ð1 ⊗ gðσÞm gðρÞm ;Ug1

m Þ; ðgðβÞ1 gðαÞ1 ⊗ 1;Of1
1 Þ;…; ðgðβÞn gðαÞn ⊗ 1;Of1

n Þg
¼ ðfðgðσÞ1 ;Ug2

1 Þ;…; ðgðσÞm ;Ug2
m Þg • fðgðρÞ1 ;Ug1

1 Þ;…; ðgðρÞm ;Ug1
m ÞgÞ ⊗

ðfðgðβÞ1 ;Of2
1 Þ;…; ðgðβÞn ;Of2

n Þg • fðgðαÞ1 ;Of1
1 Þ;…; ðgðαÞn ;Of1

n ÞgÞ
¼ ðσ • ρÞ ⊗ ðβ • αÞ: ð17Þ

FIG. 5. Illustration of the interchange laws. We have a single
object � in the 3-category and the 1-morphisms are the CFTs.
Each axis corresponds to a different morphism: the x axis is the
tensor product ⊗, the y axis is the composition ∘ of the category

CðDÞ, while the z-axis is the vertical product • of the 2-morphisms
of CðDÞ.

18Herewe consider the tensor product of the groups acting on the two tensored components. Note that the global symmetry of the tensor
product of two theories might be bigger than the tensor product of the symmetries of the two components. An example is tensoring a
collection say of 2 complex scalar fields. However, for the purpose of checking the interchange laws this enhancement is not essential.
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In this equation, the superscripts of O and U denote the
1-morphisms to which the basic deformations belong. Also,
as usual, 1 here denotes the identity element of a corre-
sponding group.

VI. CATEGORY OF CFTS IN ANY DIMENSION

Let us next define the category of all CFTs C. The set of

objects in C is given by C0 ¼∪∞
D¼0 C

ðDÞ
0 . The set of

morphisms includes the morphisms of CðDÞ,

∪∞
D¼0 C

ðDÞ
1 ⊂ C1; ð18Þ

but also contains additional morphisms connecting objects

in CðDÞ
0 with different values of D. Physically we define

these additional morphisms as follows. Given X∈ CðDÞ
0 we

can place it on a MðD0Þ ×mðD−D0Þ where mðD−D0Þ is a
compact space. We can also turn on background gauge
fields supported on mðD−D0Þ, fAg. Then we can discuss the
low energy physics of this construction. The resulting
physics might be describable by a D0-dimensional CFT

Y ∈ CðD
0Þ

0 . If that is the case we define a morphism X → Y
which is parametrized by the compactification geometry
fmðD−D0Þ;Ag and the source CFT. We will refer to these as
across-dimensions morphisms.
As was the case with in-dimension morphisms, we can

naturally compose various across-dimension morphisms
with each other and also across-dimension morphisms with
in-dimension morphisms. A general morphism is thus
defined by an ordered sequence of deformations, some
of which are in-dimension deformations and some are
across-dimension compactifications.
Next, the compactificationdeformationmight preserve the

0-form symmetry of the source CFTor it might break it, say
by the choice of the background gauge fields. Different
compactifications preserving the same symmetry of the
source CFT thus again might be related by the action of
the 0-form symmetry group of the source CFT. This provides
2-morphisms between compactification 1-morphisms. More
generally, amorphismdefined by a sequence of deformations
can be related by a sequence (of equivalence classes) of group
elements as before. This provides a 2-category structure onC.
Note that, abstractly, this structure does not distinguish in-
dimension and across-dimension morphisms and treats them
uniformly.
The 0-form symmetry of the lower dimensional target

theory can have several higher-dimensional origins. First, it
can be the 0-form symmetry of the source CFT. Second,
it can come from definitions of boundaries of the com-
pactification geometries. Finally, it can come from the
higher-form symmetry of the source CFTs taking the
corresponding topological operators to wrap the compacti-
fication surface. In addition, some of the 0-form symmetry
of the target CFT might be emergent as usual. Finally, also

nontopological operators, local and nonlocal operators can
give rise to local operators in lower dimensions which we
can associate to morphisms, see e.g., [42] and Appendix E
of [43].
To define a monoidal structure, we need to extend the

set of objects to incorporate coupled CFTs of different
dimensionalities. One can naturally consider a product of
two CFTs of different dimensionalities D and D0 < D by
considering someD0-dimensional hyperplane inD dimen-
sional space and placing the D0-dimensional CFT on it.
The bulk CFT and the lower-dimensional one are not
coupled. Next, one can consider coupling the two CFTs
in various ways, e.g., gauging symmetries or coupling
operators. If the resulting theory is conformally invariant
we can add it to the set of objects. Note that tensoring
more than two objects requires a more rigorous definition;
e.g., one can define tensored objects of same dimension-
ality to share the same spacetime, and objects of lower
dimensionality to live on submanifolds of objects all of
higher dimensionality. The resulting category we will
denote by C̃. The category C̃ can be thought of as category
of CFTs in arbitrary number of dimensions in presence of
arbitrary conformal defects.

VII. SMALLER CATEGORIES

One can discuss various ways to simplify or constrain the
category of all CFTs. One way to do so has been already
discussed; we can consider the set of theories residing on
the same conformal manifold. This restriction retains the
structure of 2-category but does not have a natural tensor
product. Another way to obtain a more general class of
theories is to consider CFTs with at least some amount of
supersymmetry. For example, one can define a category

CðD¼4jN¼1Þ such that CðD¼4jN¼1Þ
0 is the subset of CðD¼4Þ

0

corresponding to theories which have at leastD ¼ 4N ¼ 1
superconformal symmetry (are SCFTs). To define mor-
phisms between the different theories here we need to be
more careful. For example, if we want the deformations to
preserve supersymmetry explicitly we need to turn on first
several deformations at once, scalar potentials and Yukawa
terms following from a superpotential. Second, gauging a
symmetry preserving N ¼ 1 supersymmetry corresponds
to adding not just vector fields but also gaugino fermions.
In our general definition this gauging thus corresponds to
tensoring with free fields, gauging, and turning on poten-
tials. One can define morphisms using these supersym-
metric definitions and hence consider the category of the
supersymmetric theories with morphisms being supersym-
metric deformations.19 This construction can be generalized

19Note that with the supersymmetric definition of morphisms
we can have relevant deformations starting and ending on the
same object. A simple example is the N ¼ 2 duality in D ¼ 3
between a single chiral superfield and Uð1Þ gauge theory with a
single charge þ1 chiral superfield [44].
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to a category of supersymmetric CFTs in any dimensions.
Here one would insist discussing compactifications
between dimensions preserving some amount of super-
symmetry. This implies that one has in general to consider
twisting along with compactification: that is turning
nontrivial background fields for the R-symmetry. The
2-category structure works in the same way as before.

VIII. SOME EXAMPLES

Example Nulla: One may consider a quantum mechani-
cal example, of a particle on a ring with mass m and radius
R ¼ 1 (see Fig. 6). The Lagrangian is given by

L ¼ m
2
q̇2 þ θ

2π
q̇; ð19Þ

where q is a periodic variable, q ∼ qþ 2π. Its conjugate
momentum and the Hamiltonian are given by

p ¼ mq̇þ θ

2π
; H ¼ 1

2m

�
p −

θ

2π

�
2

: ð20Þ

Shifting the θ parameter by 2π leads to the same theory.
For θ ¼ 0 or θ ¼ π we have an additional symmetry not
existing for generic θ, the parity taking q → −q. Because
of this symmetry there exists a unitary equivalence
between the θ and −θ theories. The mapping preserves
the action of operators on states, and hence the theories
with θ and −θ are equivalent upon appropriate identi-
fication of operators. By varying the dimensionless
parameter m > 0, the spectrum of the Hamiltonian is
rescaled, thus we are essentially dealing with distinct
physical theories. Moreover, adjusting the θ parameter
may lead to entirely different spectra. Consequently, we

get a family of theories with different Hamiltonians,
fHm;θg, which are parametrized by the two parameters
ðm; θÞ. Since there is no RG flow in quantum mechanics,
the couplings do not run, so every pair of parameters
ðm0; θ0Þ represents a distinct theory after we get rid of the
unitary equivalence mentioned above. Conceptually, this
family of theories may be seen as a conformal manifold,
parametrized by 0 < m < ∞ and 0 ≤ θ ≤ π. In polar
coordinates, the conformal manifold takes is the upper
half-plane with a singularity at the origin. On the boun-
dary of the manifold, i.e., for θ ¼ 0 and π, the global
symmetry gets enhanced by an additional Z2 symmetry,
generated by a parity operator, Pθ¼0;π ,

P0jni0 ¼ j − ni0; Pπjniπ ¼ j1 − niπ; ð21Þ

where jniθ are eigenstates of the theory with parameter θ.
Since the parameter space of the quantum mechanical

theory emulates a conformal manifold, we now elucidate
the strict 2-category structure on it. The objects of the
category are different theories, parametrized by ðm; θÞ, the
coordinates of the manifold. Different paths may represent
different compositions of infinitesimal deformations,
where each infinitesimal deformation generated by rescal-
ing the θ or m parameters. The 2-category structure
arise when there are source theories equipped with an
additional global symmetry, so in this example the
2-morphisms will be associated with deformations that
cross theories with global Z2 symmetry, which are the
theories on the boundary of the manifold. For example, for
a path that touches the boundary once at θ ¼ 0, there are
two associated deformations, related to each other by the
action of P0.
Example I: Let us discuss an example of objects and

morphisms in a category of supersymmetric CFTs; all of
the morphisms and objects will preserve some amount
of supersymmetry. We can phrase the sequence of flows
in nonsupersymmetric category but this would be more
cumbersome. Consider as the source CFT A the collection
of 15þ 16 ¼ 31 N ¼ 1 chiral superfields in four dimen-
sions (see Fig. 7). These include complex scalars and
Weyl fermions. Next we turn on deformation fO1g which
corresponds to splitting the fields into 2 × 8þ 15 and
gauging SUð2Þ subgroup of the Uð31Þ global (non-R)
symmetry of A. Here we consider the symmetries preserv-
ing the structure of supermultiplets. The fields form 15
singlets and 8 fundamentals. This is a relevant deformation
which takes us to CFT B. We can then, for example, take
two of the eight doublets and form from them a mesonic
operator and deform B by turning on a superpotential for
this operator. This is a relevant deformation fO4g. In the IR
this flows to CFT E. Note that from point of view of A we
turned on a mass term and thus the theory E is SUð2Þ
SQCD with Nf ¼ 3 and additional 15 free chiral fields
[45]. This SQCD flows in IR to 15 free fields and thus CFT

FIG. 6. An example of a network of flows. The source theory A
is a collection of 31 chiral superfields (complex scalars and
Weyl fermions). The various morphisms and other objects are
discussed in the text. The lines fO1;O2;O3g and fO2;O3g
correspond to morphisms which are associated to deformations
which can be only defined as a sequence but cannot be thought of
directly as a deformation of the source theory.
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E is a collection of 15þ 15 ¼ 30 free fields. We can
consider this deformation directly at A and then we label it
as fO1;O4g. Alternatively, we could first turn on the mass
term which would lead to free CFT of 12þ 15 ¼ 27 fields
in the IR, H, and then gauge SUð2Þ group with now six
fundamental fields, leading again to E. Let us consider now
starting from B. This theory has SUð8Þ × Uð15Þ global
symmetry and 28 operators in 28 of SUð8Þ which can be
thought as mesons and baryons of A after gauging. Let us
consider an SUð2Þ × SUð6Þ × Uð1Þ subgroup of SUð8Þ
under which 28 → ð1; 15Þ ⊕ ð2; 6Þ ⊕ ð1; 1Þ. We couple
the (1; 15) to the fifteen free fields in the superpotential and
denote this deformation by fO2g. This is a relevant
deformation leading to CFT C. The theory C has (conjec-
turally) an emergent symmetry SUð2Þ × SUð6Þ → E6 [46].
Note that, had we performed the deformation fO2g directly
on A, we would have obtained a cubic superpotential in the
free theory, which is an irrelevant deformation leading us
back to A. Hence, the deformation fO1;O2g represents an
example of a dangerously irrelevant deformation on A
when intended as turning on both O1 and O2 simulta-
neously; however, as we stressed above, the deformations
are considered to be taken one by one in a sequence of
specified order. Here,

fO1;O2g ≠ fO2;O1g ∼ fO1g:

The equivalence on the right just means that the target
CFTs are the same but we will distinguish the two
morphisms. Next, the E6 global symmetry has SUð3Þ3
maximal subgroup with one of the three SUð3Þ factors
emerging in the IR. We can then consider various defor-
mations making use of the emergent symmetry. For
example, we can compactify the theory on a circle to three
dimensions and gauge a diagonal combination of the three
SUð3Þs in the IR turning on a Chern-Simons term with
some level; we denote this deformation by fO3g which is
by itself a concatenation of two deformations (compacti-
fication and gauging). This leads to CFT D. Note that we
can consider the deformation fO1;O2;O3g starting from A
and leading to D. However, this deformation cannot be

defined field theoretically in A as we gauge an emergent
symmetry and only makes sense as a sequence of defor-
mations. Finally we can start from an SCFT in six
dimension—the rank one E-string theory [47–50]—which
we denote by F. This theory has E8 global symmetry. We
can then deform it by placing it on a torus with a flux
breaking E8 to E6 ×Uð1Þ. We denote this deformation as
fðCg¼1;F Þg. The theory will flow to a four dimensional
CFT, G. A relevant superpotential deformation of G,
denoted by fO5g leads again to D. See [46,51] for details.
We have discussed here some flows starting from A and

F: the resulting objects and morphisms are part of a much
larger categorical structure and we only used the above as
an illustration. Note that at each step we had a choice of a
given subgroup to define the deformation. Different choices
lead to equivalent theories in the IR, and thus the relevant
deformations are related by 2-morphisms defined by
mapping one choice into the other one.
Example II: Next, let us consider the conformal manifold

of N ¼ 4 SYM with SUðNÞ gauge group (see Fig. 8).
For SUðN > 2Þ the conformal manifold has three com-
plex dimensions. Along one of the complex directions
the supersymmetry is N ¼ 4. Viewing this theory as an
N ¼ 1 SCFT, the global symmetry along this direction is
SUð3Þ. Along the two additional complex directions
the supersymmetry is broken to N ¼ 1. One of these
direction preserves a Uð1Þ2 subgroup of SUð3Þ while on a
generic locus of the conformal manifold the continuous
global symmetry is completely broken and one only has
R-symmetry and supersymmetry [32]. General 1-morphisms
between twoCFTs on themanifold correspond to continuous
paths. If the path passes through locus of enhanced sym-
metry, one has a choice of embedding for the deformation
that breaks the enhanced global symmetry group once the
path leaves the enhanced locus. Ifwe have two paths between
the same pairs of points onMc which pass through same loci

FIG. 8. Conformal manifold of N ¼ 4 SUðN > 2Þ SYM. The
manifold has three complex dimensions. Along one of the
dimensions the supersymmetry is N ¼ 4 and the global sym-
metry in N ¼ 1 language is SUð3Þ. Along two dimensions the
supersymmetry is N ¼ 1 and symmetry is Uð1Þ2 generically.
While on general locus supersymmetry is N ¼ 1 and there is no
continuous global symmetry.

FIG. 7. The parameter space up to unitary equivalence for the
particle on a ring can be described as a strip with two boundaries
at θ ¼ 0 and θ ¼ π. Here we have two 1-morphisms f; h∶s → t.
At the boundaries we have the option to act with the Z2

generators gi i ¼ 1, 2.
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of enhanced symmetrywe can define a 2-morphism between
them. The 2-morphism is parametrized by a sequence of
(equivalence classes of) group elements of the enhanced
symmetry transforming the choice of one deformation into
the other.

IX. DISCUSSION AND COMMENTS

In this note, we have discussed a categorical language to
organize our thinking of the space of CFTs. This discussion
fits the general framework of higher-form/higher-group/
categorical symmetries. The layer we are trying to add
corresponds to deformations of a CFT. The higher
category of generalized symmetries associated to a given
theory acts on various operators in that theory. In
particular, some of these operators can be used to deform
a given CFT to a new CFT. These deformations are
1-morphisms of a category, while the symmetries provide
a higher categorical structure. Another type of morphisms
is given by gauging some (generalized) symmetries. In
particular, we have discussed in detail the application of
this idea to operator deformations and gauging of 0-form
symmetries.20

The monodial 2-category structure we define is math-
ematically precise. By definition the space of CFTs is
endowed with this structure. As we will comment momen-
tarily we can phrase various physical conjectures in this
precise mathematical language. An interesting question is
whether more sophisticated physical arguments can further
restrict this structure.
There are various ways in which the discussion can be

extended. For example, we can consider gauging higher-
form/group symmetries [54]. The gauging of such sym-
metries does not lead to RG flow but does change the
spectrum of operators of different dimensionality the theory
has and thus leads to a different CFT. Moreover one can
also consider gauging global symmetries of various forms
on submanifolds of various codimensions [55].
As our main motivation to develop the categorical

language is to discuss various conjectures and questions
regarding the space of all CFTs (with the hope that such a
reformulation will eventually lead to deeper insights), let us
list some of the questions/conjectures21:

(i) Is there a morphism in CðDÞ
1 to any given CFT from

an object corresponding to a free theory in D ≤ 4?
Remember that a free CFT is a tensor product
of some number of free scalars and free fermions.

This question amounts to wondering whether any
CFT has a Lagrangian construction in a given
number of dimensions. Note that by Lagrangian
construction here we include sequences of deforma-
tions. We can phrase this as asking whether one can
define a set of elementary objects (which might not
be unique) such that: (i) it includes free matter
theories; (ii) all the other theories are obtained from
it by tensor products and deformations, and whether
this set of elementary theories is strictly larger than
the set of free theories. This question can be refined
in various ways.

(ii) Is there a supersymmetric morphism to any given
SCFT from an object corresponding to a free
theory in D ≤ 4? This question might be refined
by demanding the deformations and collections of
free fields to be also supersymmetric.

(iii) Is there a morphism in C1 to any given CFT starting
from an object corresponding to a CFT in D ¼ 6?
Herewewonderwhether anyCFTin lower dimensions
can be obtained as a compactification, and possibly
subsequent deformation, of a six-dimensional CFT.

(iv) Is anyD ≤ 4 (S)CFTobtained froma six-dimensional
CFTs also in the target of free CFTs?That is, whether
all compactifications are across-dimensions dual to
lower-dimensional field theoretic constructions.

(v) What are the nontrivial objects with no outgoing
morphisms which are not TQFTs? Such theories are
sometimes called dead-end CFTs [57,58].

(vi) Studying the structure of theory space led in the
past to various explicit quantitative results. An
example is the relation between compactifications
of 6d CFTs on surfaces and supersymmetric parti-
tion functions [59] of lower-dimensional theories.
Here, the supersymmetric partition functions can
be either labeled by the target lower dimensional
CFT, e.g., Z½T4d�, and then typically hard to com-
pute, or by the across-dimensions morphisns, e.g.,
Z½T4d� ¼ Z½ðmð2Þ; fAgÞ; T6dÞ�, and then often easier
to derive. See e.g., [60,61].
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20The deformations can be thought of as spacetime filling
objects. For example, the operator deformations are terms in the
action. These deformations are not topological in the usual sense
and thus do not correspond to what is often called (−1)-form
symmetries [52,53]. However, as we are interested only in the
fixed points, the fine details of the values of relevant and
irrelevant couplings are inessential and one can view this as a
topological property.

21See also [56].
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