
Making two particle detectors in flat spacetime communicate quantumly

Alessio Lapponi ,1,2,* Jorma Louko ,3,† and Stefano Mancini 4,5,‡

1Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
2Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli,

Complesso Universitario di Monte S. Angelo, Via Cintia Edificio 6, 80126 Napoli, Italy
3School of Mathematical Sciences, University of Nottingham, University Park,

Nottingham NG7 2RD, United Kingdom
4School of Science and Technology, University of Camerino,

Via Madonna delle Carceri 9, 62032 Camerino, Italy
5Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Perugia,

Via A. Pascoli, 06123 Perugia, Italy

(Received 4 April 2024; accepted 5 June 2024; published 22 July 2024)

A communication protocol with nonzero quantum capacity is found when the two communicating parts
are particle detector models in (3þ 1)-dimensional spacetime. In particular, as detectors, we consider two
harmonic oscillators interacting with a scalar field, whose evolution is generalized for whatever
background spacetime and whatever spacetime smearing of the detectors. We then specialize to Minkowski
spacetime and an initial Minkowski vacuum, considering a rapid interaction between the field and the two
detectors, studying the case where the receiver is static and the sender is moving. The possibility to have a
quantum capacity greater than zero stems from a relative acceleration between the detectors. Indeed, no
reliable quantum communication is possible when the two detectors are static or moving inertially with
respect to each other, but a reliable quantum communication can be achieved between a uniformly
accelerated sender and an inertial receiver.
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I. INTRODUCTION

An intriguing intersection between two pillars of modern
physics, i.e., quantum mechanics and Einstein’s theory of
relativity, is provided by the theory of “relativistic quantum
information” (RQI) [1]. Each quantum communication
protocol relies on a composite quantum system wherein
its components exchange informationvia a quantumchannel
[2]. However, when a quantum system is subjected to
relativistic effects, such as high velocities or strong gravi-
tational fields, significant modifications of it are expected
[3]. For this reason, the study of RQI becomes indispensable
aswe contemplate the extension of quantumcommunication
and computation protocols to relativistic regimes, especially
in the context of space-based quantum technologies [4,5]
and relativistic quantum cryptography [6].

Notable effects of the spacetime curvature could be seen
in the context of quantum field theory. In fact, the framework
known as “quantum field theory in curved spacetimes” [7,8]
predicts a nonunique definition of the particle number
operator, meaning that the amount of particles measured
by observers in different frames could be different. This
effect occurs, in particular, when observers undergo a
noninertial motion [9,10] or lie in a spacetimewith a horizon
or a time-dependent gravitational field [11,12]. Because of
this mismatch of measured particles, the communication
capabilities of quantum channels were recently proven to
decrease in these contexts [13,14].
The concept of particles produced has no meaning with-

out a second quantum system measuring the presence of
those particles. To this aim, “Unruh-DeWitt detectors” (or
“particle detector models”) play a pivotal role on under-
standing the physics of particle production in gravitational
contexts [10,15,16]. In general, they consist on a localized
quantum system interacting with an observable of the field.
The detection of a particle by an Unruh-DeWitt detector is
related to the transition between its ground state to a
whatever excited state. For example, if uniformly linearly
accelerated, the probability of transition has a thermal
probability distribution, proving that the particles produced
by the Unruh effect can be effectively detected [15,17].
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Applications of particle detectors go beyond the thermal
acceleration, giving insights on the nature of quantum fields
in several spacetime contexts, such as cosmological expan-
sions [18,19] and black holes [20–22].
In this context, an outstanding result is that the vacuum

of a quantum field presents an entanglement between
spacelike separated points, which can be harvested by
moving particle detectors [23–25]. Because of this, one can
exploit the classical and quantum correlations of the field
state to communicate messages. Hence, recent studies have
developed communication protocols between two distant
particle detectors interacting with a mediator field [26–28].
These schemes can exploit qubit systems [26] (with two-
level detectors) or bosonic systems (with harmonic oscil-
lator detectors) [28,29].
The prominent problem, when dealing with the inter-

action between the field and the particle detectors, is the
lack of exact solutions for the evolution of the system
beyond perturbative regime. In fact, when studying the
probability of transition of the detectors—since relativistic
effects on quantum systems are expected to be perturba-
tions of them—in a communication context a perturbative
regime implies a negligible amount of signal communi-
cated [30]. In case of communication of qubits, with two-
level particle detectors, this limit can be overcome by using
the algebraic approach for quantum field theory [31,32]. In
case we communicate bosons—with harmonic oscillator
detectors—it was shown that the evolution of the covari-
ance matrix always allows a nonperturbative approach for
the evolution of the system [29]. In particular, Ref. [28]
considers the Heisenberg evolution of the detectors’
moment operator, following a quantum Langevin equation.
With this method, the quantum channel properties can be
found exactly also in the strong coupling regime.
Motivated by this fact, in this paper we study the

Heisenberg evolution for two harmonic oscillator detectors
interacting with a scalar field in a general ð3þ 1ÞD
spacetime. In particular, the protocol in Ref. [28] is
generalized for whatever detectors’ smearings and trajec-
tories. The aim is to find a particular protocol allowing a
reliable communication of quantum messages, i.e., a
quantum capacity of the channel greater than zero.
Indeed, for a channel involving communicating particle
detectors in a ð3þ 1ÞD spacetime, while a classical
capacity greater than zero is easily obtainable (see, e.g.,
Refs. [28,32]), a quantum capacity greater than zero was
never obtained so far—unless one considers entanglement
assistance [31,33], detectors operating in bounded regions
of space [27] or detectors interacting with a finite number
of modes of the field [34,35].
For this reason, we wonder if a reliable communication

of quantum messages in an open ð3þ 1ÞD spacetime is
even possible or if there is some limit preventing this kind
of communication. Reference [27] pointed out the role of
the no-cloning theorem. The theorem proves that quantum

states cannot be “cloned” without errors, meaning that a
quantum message cannot be sent reliably to two different
receivers. Then, if the sender’s detector interacts with the
field in each direction, in an isotropic spacetime, there is
potentially more than one receiver achieving the same input
message. The input message is then cloned and the no-
cloning theorem violated. Henceforth, this theorem should
prevent a quantum capacity greater than zero in each
isotropic spacetime. As a consequence, in case of a
ð3þ 1ÞD spacetime, a quantum capacity greater than zero
is expected to occur in very anisotropic situations. This
could be reached when the two detectors move at relativ-
istic speeds with respect to each other.
Then, to explore this possibility, we consider three

different situations with the detectors in a Minkowski
background spacetime: (1) the detectors are static; (2) the
detectors move inertially with respect to each other; (3) the
sender’s detector is Rindler accelerated and the receiver is
static. In case both the detectors are static, because the
situation is fully isotropic, the no-cloning theorem should
prevent any reliable quantum communication. The same
reasoning does not apply for inertial detectors. However, we
show that, in case the detectors travel inertially, not only the
quantum capacity is still zero, but also the classical capacity
is expected to decrease. Finally, in the third case, where the
sender is Rindler accelerated, we prove that the quantum
capacity can be greater than zero. In particular, this is
possible if the sender, after preparing the state, waits enough
time before sending it to the receiver. This is due to the fact
that, from the receiver’s perspective, the state to be com-
municated gets amplified more andmore during the time the
sender waits. This amplification could overcome physical
limits given by the uncertainty principle that the sender
would have in the static case.
The paper is structured as follows. In Sec. II we specify

the Hamiltonian of the system, keeping an eye on the
prescriptions needed in case the two detectors are not static
with respect to each other. In Sec. III, we study the
Heisenberg evolution of the detectors’ moment operator.
In Sec. IV we build a general communication protocol
using the aforementioned Heisenberg evolution, describing
the state of each detector as a one-mode Gaussian state and
the system of the two detectors as a two-mode Gaussian
state. In Sec. V we recognize the channel arising from the
general protocol as a one-mode Gaussian channel. The
properties and quantum capacity of this class of channels
are defined and discussed. In Sec. VI we consider a rapid
interaction between field and detectors. The properties of
the channel are studied when the two detectors are static
Sec. VI A, inertially moving Sec. VI B and when the sender
is Rindler accelerated Sec. VI C. The results and the
possible perspectives for future works are discussed in
Sec. VII.
Throughout this paper, we work in natural units

ℏ ¼ c ¼ 1.
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II. HAMILTONIAN OF THE SYSTEM

We consider two nonrelativistic quantum systems,
labeled with A and B, whose Hamiltonian, in their proper
frame, is that of a 1D quantum harmonic oscillator, i.e.,

Ĥi ¼ ωi

�
a†i ai þ

1

2

�
; ð1Þ

where ωi is the frequency of the oscillator i ¼ A, B. Each of
these harmonic oscillators travel with a general trajectory in
a ð3þ 1ÞD spacetime. These oscillators can be thought as
an infinite level Unruh-DeWitt detector whose energy gap
is ωi [29].
The detectors interact with a massless scalar field,

namely

Φ̂ðt;xÞ ¼
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32jkj

p �
âke−iðjkjt−ik·xÞ þ H:c:

�
: ð2Þ

The interaction between the detector i ¼ A, B and the field
can be modeled via the Hamiltonian density

ĥi;Φ ¼ fiðx; tÞq̂iðtÞ ⊗ Φ̂ðx; tÞ; ð3Þ

where the moment operator q̂i is chosen to be the position
operator of the 1D quantum harmonic oscillator, i.e.,

q̂i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2miωi
p ða†i þ aiÞ; ð4Þ

where mi is the mass of the oscillator i. The function
fiðx; tÞ in Eq. (3) is the spacetime smearing function of the
detector i. In other words, fi indicates how the field-
detector interaction is distributed in space and time.
Usually, in the detector proper frame fiðx; tÞ is defined
as the product between

(i) a space-dependent function f̃iðxÞ, indicating the
position of the detector in space and its “shape”
around its center of mass; and

(ii) a time-dependent function λiðtÞ called the “switching-
in function,” indicating how the field-detector inter-
action is turned on and off in time.

Considering the interaction of the field with both the
detectors A and B, the complete interaction Hamiltonian
density is given by

ĥI ¼ ðfAq̂A þ fBq̂BÞ ⊗ Φ̂: ð5Þ

The operator ĥI from Eq. (5) is a scalar and then it is
independent from the coordinates chosen [36,37]. The
Heisenberg evolution of the system, however, depends
on the Hamiltonian of the detector (1) and on the interaction
Hamiltonian ĤI , obtained by integrating Eq. (5) in space.
Then, ĤI is observer dependent and so is the Heisenberg

evolution of the involved operators. To study the evolution
of the system, we need to define the observer’s frame and
its coordinates.
To account for the most general case, we consider the

two detectors lying in a general background spacetime and
following general trajectories. Each detector i has a proper
observer positioned at the center of mass of the detector i.
Since each detector is represented by a nonrelativistic
quantum system, the coordinates used by each observer
should be locally nonrelativistic. For this reason, we
consider the proper observer comoving with the detector
i to use the Fermi-normal coordinates associated with their
trajectory. Namely, these coordinates could be written as
ðti; xi; yi; ziÞ, where ti is the proper time of the observer,
and the space coordinates ðxi; yi; ziÞ are defined such that
the basis generating them is made by vectors always
orthogonal to the proper velocity of the detector i (see
Refs. [36,38], for further details). Moreover, since we work
with detectors having a spatial extension, the Fermi-normal
coordinates must be well defined along the detectors’
shape, to be considered as nonrelativistic quantum systems.
This is true in general only if the detector is small enough,
as shown in Ref. [39].
The interaction Hamiltonian ĤI , for an observer i

working in the Fermi-normal coordinates ti, xi, is obtained
through the integration of Eq. (5) in dxi, i.e.,

Ĥi
IðtiÞ¼

Z
Σti

X
j¼A;B

fjðti;xiÞq̂jðtiÞ⊗Φ̂ðti;xiÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−giðti;xiÞ

p
dxi;

ð6Þ

where gi is the determinant of the metric tensor of the
spacetime where i lies and Σti is the Cauchy surface
ti ¼ const. For simplicity, we define the “smeared field
operator” as

φ̂j
iðtjÞ ¼

Z
Σtj

fiðxj; tjÞΦ̂ðxj; tjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gjðxj; tjÞ

q
dxj; ð7Þ

so that the interaction Hamiltonian for the observer i ¼ A,
B can be written as

Ĥi
IðtiÞ ¼ q̂AðtiÞ ⊗ φ̂i

AðtiÞ þ q̂BðtiÞ ⊗ φ̂i
BðtiÞ: ð8Þ

Notice that, when we write the smeared field operator φ̂b
a,

the label a refers to the smearing function used, while the
label b refers to the observer performing the integration.

III. QUANTUM LANGEVIN EQUATION

We want to study the Heisenberg evolution of the
operators q̂A and q̂B. The evolution of q̂A is governed
by the sum of the Hamiltonian of the harmonic oscillator A,
given by Eq. (1) with i ¼ A and the interaction Hamiltonian
given by Eq. (8) with i ¼ A. At this point, we can follow
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the same procedure done in Ref. [28], recognizing the
interaction Hamiltonian (8) as the one occurring in the
Caldeira-Leggett model for the quantum Brownian motion,
when the smeared field plays the role of an Ohmic
environment [40,41]. The Heisenberg evolution of the
moment operator q̂A is then determined by the following
quantum Langevin equation:

mA
d2

ðdtAÞ2
qAðtAÞ þmAω

2
AqA

−
X
j¼A;B

Z
tA

−∞
χAAjðtA; sAÞqjðsAÞdsA ¼ φA

AðtAÞ; ð9Þ

where we defined the “dissipation kernel”

χiijðti; siÞ ≔ iθðti − siÞhΦj½φi
iðtiÞ;φi

jðsiÞ�jΦi; ð10Þ

for i; j ¼ A, B and denoted with jΦi the initial state of the
scalar field. If the two detectors are not causally correlated,
then the commutators between the field operators with
i ≠ j vanish and so do the off-diagonal elements of the
dissipation kernel (10).
Analogously, for the moment operator of the oscillator B

we have

mB
d2

ðdtBÞ2
qBðtBÞ þmBω

2
BqB

−
X
j¼A;B

Z
tB

−∞
χBBjðtB; sBÞqjðsBÞdsB ¼ φB

BðtBÞ: ð11Þ

The aim is to solve the two coupled differential equa-
tions (9) and (11). In the communication protocol we have
in mind, the detector A wants to communicate its state to
the detector B. For this reason, we need to calculate the
coupled Langevin equations in the proper coordinates of
the detector B, i.e., tB. Then Eq. (9), in terms of tB, becomes

mA
1

ṫ2A
q̈A−mA

ẗA
ṫ3A
q̇AþmAω

2
AqA

−
X
j¼A;B

Z
tB

−∞
χAAjðtB;sBÞqjðsBÞṫAðsBÞdsB¼φA

AðtBÞ; ð12Þ

where we denoted with the upper dot the derivative with
respect to tB. Finally, we can write Eqs. (11) and (12)
together in the following compact form:

0
B@

d2

dt2B
− ẗA

ṫA
d
dtB

þ ṫ2Aω
2
A 0

0 d2

dt2B
þω2

B

1
CA�qA

qB

�
−
Z

tB

−∞

 ṫAðtBÞ2 ṫAðsBÞ
mA

0

0 1
mB

!�
χAAAðtB;sBÞ χAABðtB;sBÞ
χBBAðtB;sBÞ χBBBðtB;sBÞ

��
qAðsBÞ
qBðsBÞ

�
dsB¼

 ṫ2AðtBÞφA
AðtBÞ

mA

φB
BðtBÞ
mB

!
;

ð13Þ

where we multiplied Eq. (12) bym−1
A ṫ2AðtBÞ and Eq. (11) by

m−1
B . If the detectors are not causally correlated, i.e.,

χAAB ¼ χBBA ¼ 0, then the off-diagonal terms of Eq. (13)
disappear and the evolution of q̂A becomes completely
independent from q̂B and viceversa.
We now define the Green’s function matrix

GðtB; sBÞ ≔
�
GAAðtB; sBÞ GABðtB; sBÞ
GBAðtB; sBÞ GBBðtB; sBÞ

�
ð14Þ

solution of the homogeneous form of the Langevin equa-
tion (13), which is reported in Eq. (A1) of Appendix A.
Imposing the causality conditionGðt < sÞ ¼ 0, the Green’s
function matrix follows the boundary conditions Gðt ¼
s; sÞ ¼ 0 and Ġðt → sþ; sÞ ¼ I.
Then, the evolution of the operators q̂i from a time sB to

a time tB can be expressed through the Green’s function
matrix as

�
qAðtBÞ
qBðtBÞ

�
¼ ĠðtB; sBÞ

�
qAðsBÞ
qBðsBÞ

�
þ GðtB; sBÞ

�
q̇AðsBÞ
q̇BðsBÞ

�

þ
Z

tB

sB

GðtB; rBÞM−1F2ðrBÞ
�
φA
AðrBÞ

φB
BðrBÞ

�
drB;

ð15Þ

where, for simplicity, we defined the matrix M ≔
diagðmA;mBÞ and the matrix FðtÞ ≔ diagðṫAðtÞ; 1Þ.

IV. COMMUNICATION PROTOCOL

Tracing away the field, the system made by two
harmonic oscillators can be seen as a two-mode bosonic
system. Within multimode bosonic systems, Gaussian
states have a pivotal importance both in quantum optics
and in quantum information theory [42]. Motivated by this
fact, we consider the system of the two detectors to be
initially in a “two-mode bosonic Gaussian state.” The
properties of these states are defined by two elements:
the “covariance matrix”
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σ ¼
�
σqq σqp

σpq σpp

�
; ð16Þ

where, for α; β ¼ q, p, we have

σαβ¼
1

2

 
hfα̂A;β̂Agi−2hα̂Aihβ̂Ai hfα̂A;β̂Bgi−2hα̂Aihβ̂Bi
hfα̂B;β̂Agi−2hα̂Bihβ̂Ai hfα̂B;β̂Bgi−2hα̂Bihβ̂Bi

!
;

ð17Þ

and the “first momentum vector”

d ¼

0
BBB@

hq̂Ai
hq̂Bi
hp̂Ai
hp̂Bi

1
CCCA: ð18Þ

The operator p̂i is canonically conjugate to q̂i, so that

½q̂i; p̂j� ¼ iδij: ð19Þ

If q̂i ¼ 1ffiffiffiffiffiffiffiffiffi
2miωi

p ða†i þ aiÞ, then p̂i ¼ i
ffiffiffiffiffiffiffimiωi
2

p ða†i − aiÞ from

Eq. (19). Moreover, by applying the Heisenberg evolution
to the operator q̂i, one obtains d

dti
q̂i ¼ p̂i=mi. Since the

evolution of the system is computed in Bob’s frame, we
have p̂A ¼ mA

dqA
dtA

¼ mAq̇A=ṫA. At this point, Eq. (15) can
be rewritten in terms of the value of the operators p̂i at the
initial time sB, i.e.,�
qAðtBÞ
qBðtBÞ

�
¼ ĠðtB; sBÞ

�
qAðsBÞ
qBðsBÞ

�

þ GðtB; sBÞM−1FðsBÞ
�
pAðsBÞ
pBðsBÞ

�

þ
Z

tB

sB

GðtB; rBÞM−1F2ðrBÞ
�
φA
AðrBÞ

φB
BðrBÞ

�
drB;

ð20Þ
where F and M are defined at the end of Sec. III. By
applying a time derivative to Eq. (20) and multiplying it
from the left by F−1ðtBÞM, we can write the evolved
operators p̂i as

�
pAðtBÞ
pBðtBÞ

�
¼ F−1ðtBÞMG̈ðtB; sBÞ

�
qAðsBÞ
qBðsBÞ

�
þ F−1ðtBÞMĠðtB; sBÞM−1FðsBÞ

�
pAðsBÞ
pBðsBÞ

�

þ
Z

tB

sB

F−1ðtBÞMĠðtB; rBÞM−1FðrBÞ2
�
φA
AðrBÞ

φB
BðrBÞ

�
drB: ð21Þ

The first momentum vector (18) does not affect the entropy-related quantities of a Gaussian state. Being interested in
them in the following, we can consider d ¼ 0 without loss of generality. Finally, using Eqs. (20) and (21), we can write the
evolution of the covariance matrix (16) from a time sB to a time tB. Setting, for simplicity, t ≔ tB and s ≔ sB, we have

σqqðtÞ ¼ Ġðt; sÞσqqðsÞĠTðt; sÞ þ Ġðt; sÞσqpðsÞFðsÞM−1GTðt; sÞ þ Gðt; sÞM−1FðsÞσpqðsÞĠTðt; sÞ

þ Gðt; sÞM−1FðsÞσppðsÞFðsÞM−1GTðt; sÞ þ
Z

t

s

Z
t

s
Gðt; rÞM−1F2ðrÞνðr; r0ÞF2ðr0ÞM−1GTðt; r0Þdrdr0; ð22Þ

σqpðtÞ¼ Ġðt;sÞσqqðsÞG̈Tðt;sÞMF−1ðtÞþĠðt;sÞσqpðsÞM−1FðsÞĠTðt;sÞF−1ðtÞMþGðt;sÞM−1FðsÞσpqðsÞG̈Tðt;sÞMF−1ðtÞ

þGðt;sÞM−1FðsÞσppðsÞFðsÞM−1ĠTðt;sÞMF−1ðtÞþ
Z

t

s

Z
t

s
Gðt;rÞM−1F2ðrÞνðr;r0ÞF2ðr0ÞM−1ĠTðt;r0ÞMF−1ðtÞdrdr0;

ð23Þ

σpqðtÞ ¼ σTqpðtÞ; ð24Þ

σppðtÞ ¼ F−1ðtÞMG̈ðt; sÞσqqðsÞG̈Tðt; sÞMF−1ðtÞ þ F−1ðtÞMG̈ðt; sÞσqpðsÞFðsÞM−1ĠTðt; 0ÞMF−1ðtÞ
þ F−1ðtÞMĠðt; sÞM−1FðsÞσpqðsÞG̈Tðt; sÞMF−1ðtÞ þ F−1ðtÞMĠðt; sÞM−1FðsÞσppðsÞFðsÞM−1ĠTðt; sÞMF−1ðtÞ

þ
Z

t

s

Z
t

s
F−1ðtÞMĠðt; rÞM−1F2ðrÞνðr; r0ÞF2ðr0ÞM−1ĠTðt; r0ÞMF−1ðtÞdrdr0; ð25Þ

where we defined the noise kernel
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νðt; t0Þ ≔ 1

2

� hfφA
AðtÞ;φA

Aðt0Þgi hfφB
BðtÞ;φA

Aðt0Þgi
hfφA

AðtÞ;φB
Bðt0Þgi hfφB

BðtÞ;φB
Bðt0Þgi

�
: ð26Þ

Equations (22)–(25) could be rewritten in the following compact form:

σðtÞ ¼ TσðsÞTT þN; ð27Þ

where

T ¼
�

Ġðt; sÞ Gðt; sÞM−1FðsÞ
F−1ðtÞMG̈ðt; sÞ F−1ðtÞMĠðt; sÞM−1FðsÞ

�
; ð28Þ

and

N ¼
� R

t
s

R
t
s Gðt; rÞM−1F2ðrÞνðr; r0ÞF2ðr0ÞM−1GTðt; r0Þdrdr0 R

t
s

R
t
s Gðt; rÞM−1F2ðrÞνðr; r0ÞF2ðr0ÞM−1ĠTðt; r0ÞMF−1ðtÞdrdr0R

t
s

R
t
s F

−1ðtÞMĠðt; rÞM−1F2ðrÞνTðr; r0ÞF 2ðr0ÞM−1GTðt; r0Þdrdr0 R
t
s

R
t
s F

−1ðtÞMĠðt; rÞM−1F 2ðrÞνðr; r0ÞF 2ðr0ÞM−1ĠTðt; r0ÞMF−1ðtÞdrdr0
�
: ð29Þ

The communication protocol consists of Alice sending
information about her detector’s state to Bob. In other
words, we now define a “quantum channel”—in general, a
map whose input and output are quantum states—whose
input is the state of Alice’s detector at a time s and the
output is the state of Bob’s detector at a time t (the
properties of this channel are studied in Sec. V).
Namely, we wonder how much information about
Alice’s state at the time s is achievable from Bob’s state
at the time t. To perform this study, it is convenient to
rewrite the covariance matrix (16) in the form

σ ¼
�
σAA σAB

σBA σBB

�
; ð30Þ

where, for i; j ¼ A, B,

σij ¼
1

2

� hfq̂i; q̂jgi hfq̂i; p̂jgi
hfp̂i; q̂jgi hfp̂i; p̂jgi

�
: ð31Þ

The state of Alice detector is represented by the one-mode
Gaussian state σAA. Analogously, σBB is the one-
mode Gaussian state representing Bob’s detector. The off-
diagonal term σAB ¼ σTBA expresses the correlations
between the two oscillators. If we suppose the two detectors
to be initially uncorrelated, we need σABðsÞ ¼ 0. The
expectation value of the energy of the oscillator i, whose
state is represented by σii, depends on the observer. If the
observer is moving alongside the oscillator, then

hEii ¼ TrðEiσiiEiÞ; ð32Þ

where Ei ¼ diag
� ffiffiffiffiffiffiffiffi

miω
2
i

2

q
; 1ffiffiffiffiffiffi

2mi

p
�
. For an external observer

j, from the conservation of the action, the energy hEii
from Eq. (32) is multiplied by a factor dti

dtj
. Hence, in Bob’s

frame, Alice’s detector carries an energy ṫAhEAi ¼
ṫATrðEAσAAEAÞ.
To obtain the covariance matrix in the form given by

Eq. (30), one can apply to the covariance matrix (16) the
permutation

P ¼

0
BBB@

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1
CCCA; ð33Þ

which exchanges the second and third rows and columns of
the matrix (16). Since PP ¼ I, Eq. (27) still holds by
applying the same transformation P to the matricesT andN
of Eqs. (28) and (29), respectively. In this way, we can
write

T0 ≔ PTP ¼
� TAA TAB

TBA TBB

�
; ð34Þ

N0 ≔ PNP ¼
�NAA NAB

NBA NBB

�
: ð35Þ

Then, Eq. (27) can be rewritten as
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�
σAAðtÞ σABðtÞ
σBAðtÞ σBBðtÞ

�

¼
� TAA TAB

TBA TBB

��
σAAðsÞ σABðsÞ
σBAðsÞ σBBðsÞ

�

×

� TT
AA TT

BA

TT
AB TT

BB

�
þ
�NAA NAB

NBA NBB

�
: ð36Þ

The input state of the channel is Alice’s detector state at the
time s, namely σin ¼ σAAðsÞ. The output state is the state of
the detector B at a time t, namely σout ¼ σBBðtÞ. The latter,
using Eq. (36) and σABðsÞ ¼ σBAðsÞ ¼ 0, can be written in
terms of the former as

σBBðtÞ ¼ TBAσAAðsÞTT
BA þ TBBσBBðsÞTT

BB þ NBB; ð37Þ

where, using Eqs. (28) and (29) alongside Eqs. (34) and
(35), we can find

TBA ¼
 

ĠBAðt; sÞ GBAðt; sÞ ṫAðsÞmA

G̈BAðt; sÞmB ĠBAðt; sÞmB
ṫAðsÞ
mA

!
; ð38Þ

TBB ¼
�

ĠBBðt; sÞ GBBðt; sÞm−1
B

G̈BBðt; sÞmB ĠBBðt; sÞ

�
; ð39Þ

and NBB ¼
�
N11

N12

N12

N22

�
, with

N11 ¼ m−2
A

Z
t

s

Z
t

s
ṫ2AðrÞṫ2Aðr0ÞGBAðt; rÞνAAðr; r0ÞGBAðt; r0Þdrdr0 þm−1

A m−1
B

Z
t

s

Z
t

s
ṫ2Aðr0ÞGBBðt; rÞνBAðr; r0ÞGBAðt; r0Þdrdr0

þm−1
A m−1

B

Z
t

s

Z
t

s
ṫ2AðrÞGBAðt; rÞνABðr; r0ÞGBBðt; r0Þdrdr0 þm−2

B

Z
t

s

Z
t

s
GBBðt; rÞνBBðr; r0ÞGBBðt; r0Þdrdr0; ð40Þ

N12 ¼ m−2
A mB

Z
t

s

Z
t

s
ṫ2AðrÞṫ2Aðr0ÞGBAðt; rÞνAAðr; r0ÞĠBAðt; r0Þdrdr0 þm−1

A

Z
t

s

Z
t

s
ṫ2Aðr0ÞGBBðt; rÞνBAðr; r0ÞĠBAðt; r0Þdrdr0

þm−1
A

Z
t

s

Z
t

s
ṫ2AðrÞGBAðt; rÞνABðr; r0ÞĠBBðt; r0Þdrdr0 þm−1

B

Z
t

s

Z
t

s
GBBðt; rÞνBBðr; r0ÞĠBBðt; r0Þdrdr0; ð41Þ

N22¼m−2
A m2

B

Z
t

s

Z
t

s
ṫ2AðrÞṫ2Aðr0ÞĠBAðt;rÞνAAðr;r0ÞĠBAðt;r0Þdrdr0 þm−1

A mB

Z
t

s

Z
t

s
ṫ2Aðr0ÞĠBBðt;rÞνBAðr;r0ÞĠBAðt;r0Þdrdr0

þm−1
A mB

Z
t

s

Z
t

s
ṫ2AðrÞĠBAðt;rÞνABðr;r0ÞGBBðt;r0Þdrdr0 þ

Z
t

s

Z
t

s
ĠBBðt;rÞνBBðr;r0ÞĠBBðt;r0Þdrdr0: ð42Þ

V. ONE-MODE GAUSSIAN CHANNELS

A quantum channel transforming each one-mode
Gaussian state σin into another one-mode Gaussian state
σout is called a “one-mode Gaussian channel” [43]. In
general, a one-mode Gaussian channel N acts on the input
σin through the following map:

N ∶σin ↦ σout ¼ TσinTT þ N: ð43Þ

To ensure the complete positiveness of the channel, the
following condition should be satisfied:

detN ≥
1

2
ð1 − det TÞ: ð44Þ

Comparing Eq. (37) with Eq. (43), since σin ¼ σAAðsÞ
and σout ¼ σBBðtÞ, we can recognize the channel defined in
the communication protocol in Sec. IV as a one-mode
Gaussian channel characterized by the matrices

T ¼ TBA; ð45Þ

N ¼ TBBσBBðsÞTT
BB þ NBB: ð46Þ

The matrices T and N therefore characterize the capacities
of the channel N . Moreover, for one-mode Gaussian
channels, it is conjectured that the one-mode Gaussian
states are the ones preserving more classical and quantum
information under the application of a quantum channel
[44,45]. Following this conjecture, to calculate the
capacities of a channel, one can consider exclusively
Gaussian states as inputs of the channel without loss of
generality.

A. Canonical form

To evaluate the capacity of the channel N , we need to
reduce it to its “canonical form” [43]. First of all, we apply
a unitary transformation Uin on the input Gaussian state,
whose density matrix is ρin, and another unitary trans-
formation Uout on the output Gaussian state, whose density
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matrix is ρout. Uin and Uout are called “preprocessing” and
“postprocessing” transformations, respectively. Let be ρin
and ρout represented by the covariance matrices σin and σout,
respectively. Then, a unitary transformation acting on a
density matrix corresponds to a symplectic transformation
acting on a covariance matrix, so that the action of Uin on
ρin (respectively, the action of Uout on ρout) corresponds to
the action of a symplectic transformation Sin on σin (Sout on
σout). Since the pre- and postprocessing transformations are
unitaries, the properties of the channelN are invariant up to
their application. The mapping (43) can be rewritten as

Uout∘N ∘Uin∶ σin ↦ TcσinTT
c þ Nc; ð47Þ

where

T c ¼ SinTSTout; ð48Þ

Nc ¼ SoutNSTout: ð49Þ

It is possible to choose Sin and Sout so that
1 Tc ¼

ffiffiffiffiffijτjp
I and

Nc ¼
ffiffiffiffiffi
W

p
I. Calling the elements of T andN as Tij ≔ fTgij

and Nij ≔ fNgij, where i, j ¼ 1, 2, the preprocessing Sin
and the postprocessing Sout reducing the channel to its
canonical form are

Sin ¼
ffiffiffiffiffi
W4

pffiffiffiffiffiffiffiffiffiffiffiffi
N11jτj

p
 N11T22−N12T12ffiffiffiffi

W
p −T12

N12T11−N11T21ffiffiffiffi
W

p T11

!
; ð50Þ

Sout ¼
ffiffiffiffiffi
W4

pffiffiffiffiffiffiffiffi
N11

p
�

1 0

− N12ffiffiffiffi
W

p N11ffiffiffiffi
W

p

�
: ð51Þ

From Eq. (47), we can finally write the output σout in terms
of the input σin as

σout ¼ jτjσin þ
ffiffiffiffiffi
W

p
I: ð52Þ

From Eqs. (48) and (49), by applying the determinant on
both sides, we have

τ ¼ det T ; ð53Þ

W ¼ detN: ð54Þ

The meaning of the parameters τ and W can be easily
understood from Eq. (52). Namely, τ, called “transmissiv-
ity” of the channel, indicates the fraction of input signal
which is present in the output. The parameter W refers to

the amount of signal achieved by Bob which is not present
into Alice’s input. This is associated with the “additive
noise” achieved by Bob. In particular, with W and τ, one
can evaluate the average number of noisy particles n̄ that
Bob achieves, as

n̄ ¼
( ffiffiffiffi

W
p
j1−τj −

1
2

if τ ≠ 1;ffiffiffiffiffi
W

p
otherwise:

ð55Þ

The complete positiveness condition (44) reduces to n̄ ≥ 0.

B. Capacities

We now study the quality of the communication of a
generic channel characterized by generic values of τ andW.
The perfect quantum channel occurs when τ ¼ 1 and
n̄ ¼ 0. The further we go from this ideal situation, the
worse would be the quality of the communication through
the channel.
The quantification of this “quality” is well provided by

the capacities of a quantum channel. In particular, the
“classical capacity” (“quantum capacity”) of the quantum
channel N quantifies the quality of the communication of
classical messages (quantum messages) under the channel
N . By using the formal definition, the classical capacity
(quantum capacity) of a quantum channel N is the
maximum rate of classical information (quantum informa-
tion) that the channel N can transmit reliably. In other
words, if the capacity of a channel is zero, then the channel
cannot transmit information reliably. Instead, as long as the
capacity of a channel is positive, information can be
transmitted with an arbitrarily low amount of error.
However, the less the magnitude of the capacity, the more
the uses of the quantum channel are needed to transmit
information reliably—in practice, a lower capacity requires
more time for a reliable communication.
The possibility of a reliable communication of classical

messages with harmonic oscillator detectors is guaranteed
by the fact that we are using bosonic channels. For such
channels, the classical capacity is always greater than zero
and can be arbitrarily high by increasing the energy of the
channel input [46,47]. Moreover, for static detectors always
interacting with the field after the switching-in, the classical
capacity was extensively studied in Ref. [28]. For this
reason, in this paper we focus more on the possibility of
transmitting quantum messages reliably, by studying the
quantum capacity within the protocol described in Sec. IV.
Then, we try to evaluate the quantum capacity Q of the

channel N , characterized by the parameters τ and W. This
task is still an open problem if we consider several uses of
the quantum channel. Indeed, in this case, different inputs
of the channel uses could be entangled and this fact
drastically complicates the evaluation (see Refs. [48,49]
for more details). However, the problem simplifies if we
consider input states separable over each channel use.

1In some particular cases, the matrices T and N cannot be
reduced in this form. Instead, they reduces analogously to rank
one matrices. However, this occurs in very singular cases, so that
this possibility is not taken into account in this work.
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In this case, we evaluate the so-called “single-letter
quantum capacity” Qð1Þ. In general, Qð1ÞðN Þ ≤ QðN Þ,
so that Qð1Þ > 0 is sufficient to prove that a reliable
quantum communication is possible.
It is (see, e.g., [2])

Qð1ÞðN Þ ¼ max f0; IcðN Þg; ð56Þ

where Ic is the “maximized coherent information,” i.e., the
coherent information of the channel N maximized over
all the possible inputs. The latter, for a one-mode Gaussian
channel characterized by the parameters τ and n̄,
results [50,51]

Icðτ;WÞ ¼ θðτÞ log τ

j1 − τj − h

�
1

2
þ n̄

�
; ð57Þ

where log denotes base 2 logarithm and h∶ð1=2;þ∞Þ →
Rþ is the function

hðxÞ ≔
�
xþ 1

2

�
log

�
xþ 1

2

�
−
�
x −

1

2

�
log

�
x −

1

2

�
:

ð58Þ

From Eq. (56) we have that Qð1Þ > 0 if Ic is positive. Since
h is definite positive, from Eq. (57), a necessary condition
to have Ic > 0 is that τ > 1=2. This is obviously a
consequence of the no-cloning theorem [52].

VI. IMPLEMENTING THE COMMUNICATION
PROTOCOL IN DIFFERENT SCENARIOS

The features and properties of the communication
channel built with a pair of harmonic oscillators, interacting
with a field, were established in Secs. III and IV. Now, we
focus on a more specific protocol, defining a particular
spacetime smearing for the detectors which is convenient to
calculate the quantum capacity of the channel explicitly and
to compare the results with the literature.
We take the detectors to travel on prescribed trajectories

in Minkowski spacetime. Before specifying the trajectories,
we define the spacetime smearing of the detectors. As
mentioned in Sec. II, in the detectors’ proper frame, the
smearing function fi is usually factorized into a space-
dependent function f̃i, giving the shape of the detector—in
other words, its spatial distribution—and a time-dependent
function λi giving the switching-in function. Hence, by
calling ðti;xiÞ the proper coordinates of the observer
comoving with the detector i, we have

fiðxi; tiÞ ¼ λiðtiÞf̃iðxiÞ: ð59Þ

A finite size for the detector i, given by the function f̃iðxiÞ,
provides an ultraviolet cutoff for the modes of the field
interacting with the detector. In particular, from Ref. [53], a

shape of the detector i following a Lorentzian distribution
with effective size ϵ gives an exponential cutoff for the
modes of the field e−ϵk. This cutoff is convenient since it
usually allows analytical solutions for the correlation
function.
Motivated by this fact, for both the detectors, we

consider a Lorentzian shape

f̃iðxiÞ ¼
1

π2
ϵ

ðxi · xi þ ϵ2Þ2 : ð60Þ

Since ϵ−1 represents an ultraviolet cutoff for the energies of
the modes the detector interacts with, the energy of the
detector itself—computed through an average hEii from
Eq. (32)—must satisfy

ϵhEii ≪ 1: ð61Þ

Since the minimum energy of the oscillator i occurs in its
ground state, where hEii ¼ ωi=2, a necessary condition to
satisfy Eq. (61) is

ϵωi ≪ 1: ð62Þ

We mostly use the proper coordinates of the receiver Bob.
Then, for the sake of simplicity, we write ðt;xÞ ≔ ðtB;xBÞ
from now on. The distance between Bob’s detector and
Alice’s detector, measured in Bob’s frame, is indicated
with the function dðtÞ. Since the Lorentzian smearing
function (60) does not have compact support, to assume
the two detectors uncorrelated when Alice prepares the
state [i.e., σABðsÞ ¼ 0], we need the two detectors to be far
from each other at the time s, i.e., we assume dðsÞ ≫ ϵ.
Moreover, we assume dðtÞ ≫ ϵ for any time t to ensure that
the communication between the detectors occurs only
because of the interaction with the field—not because
the two detectors “touch” each other at a certain time.
Regarding the switching-in function, we resort to a rapid

interaction between field and detector [30,32,33]. Namely,
we consider Alice’s detector to interact with the field only
at a certain time tAI , so that

λAðtAÞ ¼ λAδðtA − tAI Þ: ð63Þ

However, we must consider an uncertainty on tAI to take
into account the Heisenberg principle.2 To do that, we
consider tAI as a random variable in a uniform probability

distribution from the values t̄IA − ΔtAI
2

to the values t̄IA þ ΔtAI
2
,

where t̄AI is the central value of the uniform distribution (or
the mean of tAI ) and ΔtAI is the range of values that tAI may
assume. The standard deviation of the distribution is

2In Appendix B we show that, if we violate the Heisenberg
principle, then also the no-cloning theorem would be violated.
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ΔtAI =
ffiffiffiffiffi
12

p
. Then, since the minimum possible energy of

Alice’s detector, before the interaction, is ωA=2, the
uncertainty principle implies

ΔtAI ≥
ffiffiffiffiffi
12

p

ωA
: ð64Þ

To simplify later calculations, we make the choice
ΔtAI ¼ 2π

ωA
, respecting the condition (64). Notice that the

condition (62) implies ϵ ≪ ΔtAI .
Supposing that Alice and Bob have shared classical

information before the protocol, Bob knows that Alice
wants to send her message at the time t̄AI . However, Bob has
no way to predict the outcome of the random variable tAI .
For this reason, in order to be sure to receive Alice’s
message, Bob should interact with the field in a finite time
window of width ΔtBI including all the possible values of
tAI . Bob’s window should be centered around the time
t̄BI þ dðt̄BI Þ, where t̄BI ¼ t−1A ðt̄AI Þ and large ΔtBI ≥ ΔtAI . In
particular, from Bob’s perspective, Alice’s minimum
energy during the interaction is multiplied by a factor
ṫAðt̄BI Þ ≤ 1. For this reason, Bob’s interaction with the field
should last for at least

ΔtBI ¼ ΔtAI
ṫAðt̄AI Þ

; ð65Þ

where the upper dot, as in Sec. III, refers to the first
derivative with respect to Bob’s proper time t. Since
ΔtBI ≥ ΔtAI , we have ϵ ≪ ΔtBI —this condition is used to
perform some approximations to compute the Green’s
function matrix elements in Appendix A. The switching-
in function of Alice is then given by Eq. (63), while Bob’s
reads

λBðtÞ ¼ λB
1

ΔtBI
rect

�
t − t̄BI − dðt̄BI Þ

ΔtBI

�
; ð66Þ

where we used the function

rectðxÞ ¼
�
1 if j2xj < 1;

0 if j2xj > 1:
ð67Þ

At this point, to have a rapid interaction protocol, we must
impose3

ΔtBI =dðt̄BI Þ ≪ 1 ⇒ dðt̄BI ÞωAṫAðt̄BI Þ ≫ 1: ð68Þ

Last, we consider the field’s initial state jΦi to be the
Minkowski vacuum j0i.

A. Static detectors

We start with the simplest case where the detectors are
static in a given reference frame. In this case, the proper
coordinates of Alice and Bob coincide, so that we can call
both of them ðt;xÞ.
Since the field is in a Minkowski vacuum, the dissipation

kernel (10) can be rewritten as

χijðt; sÞ ¼ −2θðt − sÞλiðtÞλjðsÞ

×I
Z
Σt

dx
Z
Σs

dx0f̃iðxÞf̃jðx0ÞWðx; t;x0; sÞ;

ð69Þ

where Wðx; t;x0; sÞ is the Wightman function of the scalar
field, i.e., h0jΦ̂ðx; tÞΦ̂ðx0; sÞj0i. The double integral in
Eq. (69) is the two-point correlation function of the
“smeared version” of the field Φ. The latter, for a
Lorentzian smearing (60), was computed in Ref. [53].
Using this result and making explicit λAðtÞ and λBðsÞ, from
Eqs. (63) and (66), respectively, we get the elements of the
dissipation kernel as

χAAðt; sÞ ¼ χABðt; sÞ ¼ 0; ð70Þ

χBBðt; sÞ ¼
4λ2B
π2Δt2I

rect

�
t − d − t̄I

ΔtI

�
rect

�
s − d − t̄I

ΔtI

�

× θðt − sÞ ϵðt − sÞ
ððt − sÞ2 þ 4ϵ2Þ2 ; ð71Þ

χBAðt;sÞ¼
4λAλB
π2ΔtI

δðs− tIÞrect
�
t−d− t̄I
ΔtI

�

×
ϵðt− tIÞ

ððt− tIÞ2−Δx−4ϵ2Þ2þ16ϵ2ðt− tIÞ2
: ð72Þ

Similar to the dissipation kernel in Eq. (69), the elements of
the noise kernel (26) can be rewritten as

νijðt; sÞ ¼ 2λiðtÞλjðsÞ

×R
Z
Σt

dx
Z
Σs

dx0f̃iðxÞf̃jðx0ÞWðx; t;x0; sÞ

ð73Þ

and explicitly computed as

νAAðt; sÞ ¼ λ2A
δðt − tIÞδðs − tIÞ

8π2ϵ2
; ð74Þ

νBBðt; sÞ ¼ −
1

2π2Δt2I
rect

�
t − d − t̄I

ΔtI

�
rect

�
s − d − t̄I

ΔtI

�

×
ðt − sÞ2 − 4ϵ2

ððt − sÞ2 þ 4ϵ2Þ2 ; ð75Þ
3In Appendix A, we show that the rapid interaction condition

(68) allows us to get approximated analytical results for the
Green’s function matrix elements.
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νABðt; sÞ ¼ νBAðs; tÞ ¼ −
1

2π2ΔtI
δðt − tIÞrect

�
s − d − t̄I

ΔtI

�

×
ðt − sÞ2 − d2 − 4ϵ2

ððt − sÞ2 − d2 − 4ϵ2Þ2 þ 16ϵ2ðt − sÞ2 : ð76Þ

At this point, to calculate the transmissivity τ and the
additive noiseW of the communication channel, we have to
solve the homogeneous quantum Langevin equation (A1)
to obtain the elements of the Green’s function matrix. We
report here the solution for them, leaving the detailed
calculation in the Appendix A. In particular, for GAA and
GAB we have

GAAðt; sÞ ¼
sinðωAðt − sÞÞ

ωA
; ð77Þ

GABðt; sÞ ¼ 0: ð78Þ

For GBA and GBB we have to distinguish three ranges
of time:

(i) s < t < dþ t̄I − ΔtI=2, i.e., before detector B in-
teracts with the field;

(ii) dþ t̄I − ΔtI=2 < t < dþ t̄I þ ΔtI=2, i.e., while de-
tector B interacts with the field; and

(iii) t > dþ t̄I þ ΔtI=2, i.e., after detector B interacts
with the field.

Before the interaction with the field we have

GBBðt; sÞ ¼
sinðωBðt − sÞÞ

ωB
; ð79Þ

GBAðt; sÞ ¼ 0: ð80Þ

During the interaction

GBBðt̃; s̃Þ¼
e−

B
2
t̃

ωB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A−B2

p
�
ð2ωBcosðωBs̃Þ−BsinðωBs̃ÞÞsin

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
A−

B2

4

r
t̃

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A−B2

p
sinðωBs̃Þcos

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
A−

B2

4

r
t̃

��
; ð81Þ

GBAðt̃; s̃Þ ¼
C
A

��
1 − e−

B
2
t̃ cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
t̃

2

��
þ BC

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p e−
B
2
t̃ sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
t̃

2

��
; ð82Þ

where t̃ ¼ t − ðdþ t̄I − ΔtI=2Þ, s̃ ¼ s − ðdþ t̄I − ΔtI=2Þ,

A ¼
�
ω2
B −

λ2B
32πmBΔt2I ϵ

�
; ð83Þ

B ¼ λ2B
32πmBΔt2I

; ð84Þ

and finally

C ¼ λAλB
4π2mBΔtI

d
ϵðϵ2 þ d2ÞGAAðtI; sÞ: ð85Þ

After the interaction with the field

GBBðt̃; sÞ ¼
ĠBBðt̃ ¼ Δt−I ; sÞ

ωB
sinðωBðt̃ − ΔtIÞÞ

þ GBBðt̃ ¼ Δt−I ; sÞ cosðωBðt̃ − ΔtIÞÞ; ð86Þ

GBAðt̃; sÞ ¼
ĠBAðt̃ ¼ Δt−I ; sÞ

ωA
sinðωBðt̃ − ΔtIÞÞ

þGBAðt̃ ¼ Δt−I ; sÞ cosðωBðt̃ − ΔtIÞÞ: ð87Þ

At this point, we can compute the parameters τ and W
defined in Sec. V, allowing us to calculate the capacity of

the channel. In particular, we are interested in these
properties after Bob has interacted with the field, i.e.,
when t > dþ t̄I þ ΔtI=2.

1. Additive noise

We can compute the noise by studying the determinant of
the matrix N defined in Eq. (46). We start by analyzing the
second term ofN, given by the matrixNBB. The elements of
this matrix, given by Eqs. (40)–(42), could be greatly
simplified with the rapid interaction protocol chosen. In
fact, the elements of the noise kernel (74) and (76), when
integrated in Eqs. (40)–(42) give terms proportional to
GBAðt; t̄IÞ. However, since GAAðt; tÞ ¼ 0 from Eq. (77) the
parameter C from Eq. (85) vanishes, makingGBAðt; t̄IÞ ¼ 0
for each t. Then, only the last integrals of Eqs. (40)–(42) are
nonzero. That is

N11¼
1

m2
B

Z
t

s

Z
t

s
GBBðt;rÞνBBðr;r0ÞGBBðt;r0Þdrdr0; ð88Þ

N12¼
1

mB

Z
t

s

Z
t

s
ĠBBðt;rÞνBBðr;r0ÞGBBðt;r0Þdrdr0; ð89Þ

N22 ¼
Z

t

s

Z
t

s
ĠBBðt; rÞνBBðr; r0ÞĠBBðt; r0Þdrdr0: ð90Þ
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Regarding the first term of the noise matrixN in Eq. (46), in
order to minimize the noise, we suppose Bob prepares his
oscillator in its ground state. Namely

σBBðsÞ ¼
1

2
diagððmBωBÞ−1; mBωBÞ: ð91Þ

Looking at Eqs. (88)–(91), we notice that the noise matrix
N from Eq. (46) is dependent exclusively on GBB.
We can numerically evaluate W ¼ detN from Eq. (46),

obtaining results as in Fig. 1. This figure shows that, apart
from oscillations—due to the presence of oscillating
functions in Eqs. (86)—the noise decreases by increasing
the time during which Bob interacts with the field ΔtI . In
particular, numerical analyses have shown that the noise is
maximized in the limit ΔtI → 0. This limit corresponds to
the one obtained in case the interaction of Alice and Bob
with the field is δ-like. This case is studied in detail in
Appendix B as a limit case of the protocol described in this
section, with the result

W ¼ 1

4
þ λ2B
16π2ϵ2ωBmB

: ð92Þ

When Δt is finite, we can consider the noise in Eq. (92) as
an upper bound for W.
Moreover, as we can see from Fig. 1,

ffiffiffiffiffi
W

p
has the lower

bound 1=2, given by the first term of the matrix N from
Eq. (46). This term indicates the initial state of Bob’s
detector, giving a noisy contribution of 1=4 on the
determinant of N—this contribution increases by choosing
an initial state of Bob’s oscillator different than the vacuum.
The condition (61) for the energy of the detector must be

valid both before and after the interaction. In particular,
after the interaction, each detector has absorbed energy

from the field. We can calculate this energy by studying the
evolution of Alice’s and Bob’s subsystem states, repre-
sented respectively by σAAðtÞ and σBBðtÞ. From Eq. (36),
the evolution of Alice’s detector, in Bob’s frame, reads

σAAðtÞ ¼ TAAσAAðsÞTT
AA þ NAA: ð93Þ

The matrix TAA, from Eqs. (28) and (34), is in general

TAA ¼

0
B@ ĠAAðt; sÞ ṫAðsÞ

mA
GAAðt; sÞ

mA
ṫAðtÞ G̈AAðt; sÞ ṫAðsÞ

ṫAðtÞ ĠAAðt; sÞ

1
CA: ð94Þ

In the static case, Eq. (94) becomes

TAA ¼
 

ĠAAðt; sÞ GAAðt;sÞ
mA

mAG̈AAðt; sÞ ĠAAðt; sÞ

!
; ð95Þ

and NAA is equal to NBB up to an exchange of the indices
A and B.
Since Alice’s and Bob’s frames coincide, the channel

(93) also described the evolution of Alice’s state in her own
frame, which is what we have to analyze to bound the
energy of Alice’s detector. Recall that the interaction
between Alice’s detector and the field is δ-like
[Eq. (63)], so we can use the results in Appendix B to
compute the elements of NAA. Namely, we can use
Eqs. (B10)–(B12) and replace the index B with the index
A. At this point, we can study the energy that Alice’s
detector gains by interacting with the field. Using Eq. (32),

hEAðt ¼ tþI Þi − hEAðt ¼ t−I Þi ¼
λ2A

16π2ϵ2mA
: ð96Þ

Hence, to prevent the final energy of the detector A to
overcome the ultraviolet cutoff ϵ−1, we have to impose

λ2A ≪ mAϵ: ð97Þ

The noise received by Bob is bounded from above by that
which he would receive with a δ-like interaction (B13).
Then, also the energy that Bob’s detector absorbs from the
interaction is bounded from above by that which it would
absorb in the δ-like interaction case. The latter is computed
again by using Eqs. (B10)–(B12) along with Eq. (32),
giving the left-hand side of Eq. (96) with the label A
replaced by B. Thus, to prevent Bob’s oscillator from
overcoming the cutoff ϵ−1, we must impose

λ2B ≪ mBϵ: ð98Þ

It is worth remarking that the condition (98) is sufficient,
but not necessary, to prevent Bob’s oscillator energy to
increase too much after the interaction. That is because to

FIG. 1. Plot of the parameter
ffiffiffiffiffi
W

p
− 1

2
, quantifying the noise of

the channel, in terms of the width of the window during which
Bob’s detector interacts with the field ΔtI , for different frequen-
cies of Bob’s detector. The values of the parameters are chosen as
λB ¼ 1, ϵ ¼ 10−3 eV−1, d ¼ 105 eV−1 and mB ¼ 109 eV.
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find the condition (98), we considered an upper bound for
the absorbed energy instead of its actual value. On the
contrary, the condition (97), preventing the same problem
for Alice’s detector, is both necessary and sufficient, since
the absorbed energy was computed exactly in Eq. (96).
To analyze the magnitude of the upper bound of the noise

in Eq. (92) (called W̄ from now on) we rewrite it as

W̄ ¼ 1

4
þ λ2B
16π2ϵmB

1

ϵωB
: ð99Þ

From Eq. (99), we notice that the condition (98) does not
prevent the noise W̄ from becoming large, since ωBϵ ≪ 1.
In particular, the upper bound of the noise can increase
arbitrarily high by decreasing ωB. From Fig. 1, this fact
seems to be true (apart from oscillations) also for the noise
W, which increases as ωB is reduced.

2. Transmissivity

After the interaction time, the transmissivity τ ¼ det T ¼
detTBA can be computed by using Eq. (38) and the
expression (87) for GBAðt; sÞ, obtaining

τðt̃ > ΔtIÞ ¼
mB

mA
ðĠ2

BAðΔtI; s̃Þ þ ω2
BG

2
BAðΔtI; s̃ÞÞ: ð100Þ

The function GBAðΔt; sÞ must be computed through
Eq. (82). By employing the condition (98), one can
simplify e−

B
2
t̃ ∼ 1, since

B
2
t̃ <

B
2
ΔtI ¼

λ2B
32πmBΔtI

≪
λ2B

32πmBϵ
≪ 1: ð101Þ

Moreover, with the same argument, we have

4A − B2 ¼ 4ω2
B −

λ2B
8πmBΔt2I ϵ

�
1þ λ2Bϵ

128πmBΔt2I

�
∼ 4A:

ð102Þ

In this way the solution (82) is simplified to

GBAðt̃; sÞ ¼
C
A
ð1 − cosð

ffiffiffiffi
A

p
t̃ÞÞ þ CB

2A3=2 sinð
ffiffiffiffi
A

p
t̃Þ: ð103Þ

We can finally write τ in Eq. (100) explicitly. Exploiting
Eq. (103) for GBA during the interaction and taking an
average over the values of tAI , we get

τ ∼
λ2Aλ

2
B

128π6mAmBϵ
2d2

1

ω2
B − λ2B

128π3mBϵ
ω2
A

0
BB@
�
1 − cos

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
B

ω2
A
− λ2B

128π3mBϵ

r ��
2

1 − λ2B
128π3mBϵ

ω2
A

ω2
B

þ sin2

0
B@2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
B

ω2
A
−

λ2B
128π3mBϵ

s 1
CA
1
CCA: ð104Þ

The transmissivity τ in Eq. (104) is plotted in Fig. 2. The
figure shows that [apart from oscillations due to trigono-
metric functions in Eq. (104)] τ drops to zero as ωB is

increased. In particular, in the range ωB ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2B
128π3mBϵ

q
ωA,

Eq. (104) can be simplified to

τ ∼
λ2Aλ

2
B

16π4mAmB

1

ϵ2d2
1

8π2ω2
B

�
2 − 2 cos

�
2π

ωB

ωA

��
: ð105Þ

The maximum value of τ occurs in the limit ωB → 0 where

τ ¼ τmax ∼
λ2Aλ

2
B

128π6ϵ2mAmB

1

d2ω2
A

sinh2
�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2B

128π3mBϵ

q �
λ2B

128π3mBϵ

∼
1

32π4
λ2A
mAϵ

λ2B
mBϵ

1

d2ω2
A
; ð106Þ

where, in the last line, we used the condition (98).

3. Quantum capacity

The maximum transmissivity the channel can have is
given by τmax in Eq. (106). Apart from the first numerical

FIG. 2. Plot of the transmissivity τ from Eq. (104) in terms of
the energy gap of the detector B, for different values of the energy
gap of the detector A. The parameters used are λA ¼ λB ¼ 1,
ϵ ¼ 10−3 eV−1, d ¼ 105 eV−1 and mA ¼ mB ¼ 109 eV.
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factor ð32π4Þ−1, τmax is the product of three factors, all
much smaller than 1, by the conditions (68), (97), and (98),
respectively. As a consequence, τmax ≪ 1 in the static case.
From Eq. (57), the maximized coherent information is
negative and then the quantum capacity is vanishing from
Eq. (56). This is consistent with the no-cloning theorem,
since it would not be possible to communicate quantum
messages to Bob if another observer, within the same
distance from Alice, can achieve the same quantum
message reliably (see the discussion in Appendix A.1
in Ref. [27]).

B. Inertial detectors

We now consider Alice’s detector traveling inertially
with respect to Bob in a Minkowski vacuum background.
In particular, we consider the detector A moving in the
same timelike plane as the detector B. Alice’s and Bob’s
coordinates are related through8>>><

>>>:

t ¼ γðtA − βxAÞ;
x ¼ γðxA − βtAÞ þ d;

y ¼ yA;

z ¼ zA:

ð107Þ

In Bob’s coordinates, the distance of Alice’s detector from
Bob is dðtÞ ¼ d − βt.
Again, Alice interacts via a δ-like switching-in at a time

tAI with expected value t̄AI and uncertainty ΔtAI ¼ 2π
ωA
. To

receive Alice’s message, Bob interacts with the field at a
time centered at t̄BI þ dðt̄BI Þ, following again Eq. (66). From
Eq. (107), the relation between Alice’s and Bob’s proper
time is tAðtÞ ¼ t=γ. Then, from Eq. (65), the time period in
which Bob should interact with the field is

ΔtBI ¼ γΔtAI ¼ 2πγ

ωA
: ð108Þ

We now proceed to compute the elements of the dissipation
kernel. It is easy to show that, again, χAAA ¼ χAAB ¼ 0. For
χBBB, we have

χBBBðt;sÞ¼
4λ2Bθðt−sÞ
π2ðΔtBI Þ2

rect

�
t−dðt̄BI Þ− t̄BI

ΔtBI

�

×rect

�
s−dðt̄BI Þ− t̄BI

ΔtBI

�
ϵðt−sÞ

ððt−sÞ2þ4ϵ2Þ2 : ð109Þ

To study χBBA, we first need to study the smeared field
operator φB

AðtBÞ from Eq. (7). To this purpose, we consider
the spacetime smearing of Alice’s detector and we bring it
in Bob’s coordinates. That is

fAðtA;xAÞ¼
1

π2
ϵδðtA− tAI Þ

ðxA ·xAþϵ2Þ2

¼ 1

π2
ϵδðtþβx−βd− tAI =γÞ

γ

��
x−d
γ þβtAI

�
2

þy2þz2þϵ2
�

2
: ð110Þ

Considering the variable x̃ ¼ 1
γ ðx − dÞ þ βtAI , Alice’s

smearing becomes

fAðt; x̃; y; zÞ ¼
1

π2γ

ϵδðtþ βγx̃ − γtAI Þ
ðx̃2 þ y2 þ z2 þ ϵ2Þ2 : ð111Þ

From Eq. (111), fA is peaked at x̃ ¼ 0 and drops to zero as
ðϵx̃Þ4 outside a neighborhood of x̃ ¼ 0 with radius ∼ϵ. Since
tAI has uncertainty ΔtAI and ΔtAI ≫ ϵ we can consider the
deviations of x̃ around zero to be negligible with respect to
the deviations of tAI around t̄

A
I . For this reason, the argument

of the Dirac δ in Eq. (111) may be approximated to4

∼t − γtAI . In this way, using Eq. (69), the dissipation kernel
element χBBA becomes

χBBAðt; t0Þ ¼ −2λAλBθðt − t0Þ δðt
0 − tBI Þ
ΔtBI

rect

�
t − t̄BI − dðt̄BI Þ

ΔtBI

�

×I
Z

dk
eijkjðt−t0Þ

ð2πÞ3jkj
Z

dx
ϵeik·x

π2ðx2 þ y2 þ z2 þ ϵ2Þ2
Z

dx0 ϵe−ik·x
0

π2γ

��
x0−d
γ þ βtAI

�
2

þ y02 þ z02 þ ϵ2
�

2
: ð112Þ

Defining k ¼ ðkx; ky; kzÞ and k0 ≔ ðγkx; ky; kzÞ, the integrals in dx and dx0 in Eq. (112) can be evaluated to be equal to
e−ϵjkj and e−ϵjk0je−ikxdðtBI Þ, respectively. Then, we rewrite Eq. (112) as

4In other words, we can say that the detectors are small enough to consider the relation between tA and t only in the center of mass of
the detectors, ignoring the fact that this relation would change along the detector’s profile. This is possible as long as ϵ is negligible with
respect to the range of times considered. In our case, ΔtAI represents this range of times, since it is a natural uncertainty on the interaction
time.
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χBBA¼−2λAλB
δðt0− tBI Þ
ΔtBI

rect
�
t− t̄BI −dðt̄BI Þ

ΔtBI

�
IIðtÞ; ð113Þ

where

IðtÞ ¼
Z

1

ð2πÞ3jkj e
ijkjðt−tBI Þ−ikxdðtBI Þ−ϵðjkjþjk0jÞdk: ð114Þ

The integral IðtÞ does not give an elementary function.
However, since jkj < jk0j < γjkj for each k, we can use
the mean value theorem to substitute jk0j with μjkj inside
the integral, where 1 < μ < γ. Then, defining n ¼ 1þμ

2
, we

can evaluate IðtÞ as

IðtÞ ¼ −
1

4π2
1

ðt − tBI − 2iϵnÞ2 − dðtBI Þ2
: ð115Þ

The precise value of n must be computed numerically.
However, for the analysis we perform, it is sufficient to
know that n is included between 1 (in the limit jk0j → jkj)
and ð1þ γÞ=2 (in the limit jk0j → γjkj).
The dissipation kernel element (112) can be finally

written as

χBBAðt;t0Þ¼
4λAλB
π2ΔtBI

δðt0− tBI Þrect
�
t−d− t̄BI

ΔtI

�

×
nϵðt− tBI Þ

ððt− tBI Þ2−dðtBI Þ−4n2ϵ2Þ2þ16n2ϵ2ðt− tBI Þ2
:

ð116Þ
We can now compute the elements of the Green’s function
matrix. Again, the calculations are reported in Appendix A.
Computing, we obtain GAB ¼ 0. For GAA we get

GAAðt; sÞ ¼
γ

ωA
sin

�
ωA

γ
ðt − sÞ

�
: ð117Þ

Regarding GBA, applying the same approximations per-
formed in the static case, we have GBA ¼ 0 before the
interaction. During the interaction, instead, we have that
GBA has the same behavior of the static case, given by
Eq. (82), but the parameter C is replaced by

C0 ¼ λAλB
4π2mBΔtBI

dðt̄BI Þ
nϵðn2ϵ2 þ dðt̄BI Þ2Þ

GAAðtBI ; sÞ: ð118Þ

After the interaction, GBAðt; sÞ can be expressed again as
Eq. (87). Finally, since χBBB is the same as the one obtained
in the static case (109), GBB is given by Eqs. (79), (81), and
(86), respectively, before, during, and after Bob’s detector
interaction with the field.

1. Additive noise

The elements of the noise kernel (26) can be easily
computed as

νAAðt; sÞ ¼ λ2A
δðt − tBI Þδðs − tBI Þ

8π2γ2ϵ2
; ð119Þ

νBBðt;sÞ¼−
1

2π2Δt2I
rect

�
t−dðt̄BI Þ− t̄BI

ΔtBI

�

×rect

�
s−dðt̄IÞ− t̄I

ΔtBI

� ðt−sÞ2−4ϵ2

ððt−sÞ2þ4ϵ2Þ2 ; ð120Þ

νABðt; sÞ ¼ νBAðs; tÞ ¼ −
δðt − tBI Þ
2π2γΔtI

rect

�
s − dðt̄IÞ − t̄I

ΔtI

�

×
ðt − sÞ2 − dðsÞ2 − 4ϵ2

ððt − sÞ2 − dðsÞ2 − 4ϵ2Þ2 þ 16ϵ2ðt − sÞ2 :

ð121Þ

Applying the same reasoning as in the static case
(Sec. VI A 1), the elements of the noise matrix N simplify
also here, so that the elements of NBB are given by
Eqs. (88)–(90).
Since also GBB is the same as the one we had in the static

case, we conclude that the additive noise received by Bob is
exactly the same as we computed in Sec. VI A 1 and shown
in Fig. 1. As a consequence, the condition (98) is still
sufficient to ensure that energy absorbed by the detectors
does not overcome the detectors’ cutoff.

2. Transmissivity

As done in Sec. VI A 2 we can simplify GBAðt; sÞ during
the interaction as 4A − B2 ∼ 4A and e−B=2Δt

B
I ∼ 1, obtaining

Eq. (103) with C0 from Eq. (118) replacing C. Then, we
obtain τ as done in Sec. VI B 2 considering ΔtBI ¼ 2πγ

ωA

instead of ΔtB ¼ 2π
ωA

and C0 instead of C. By averaging over
the possible values of tBI , we get

τ ∼
λ2Aλ

2
B

128π6mAmBγ

�
dðt̄BI Þ

nϵðn2ϵ2 þ dðt̄BI Þ2Þ
�

2 1

ω2
B − λ2Bω

2
A

128π3mBϵγ
2

0
BB@
�
1 − cos

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2

ω2
B

ω2
A
− λ2B

128π3mBϵ

r ��
2

1 − λ2B
128π3mBϵγ

2

ω2
A

ω2
B

þ sin2

0
B@2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2

ω2
B

ω2
A
−

λ2B
128π3mBϵ

s 1
CA
1
CCA: ð122Þ
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The transmissivity (122) obtained when the detectors
travel inertially (called τI from now on) is similar to the
static case transmissivity (100) (which we call τS) apart
from: the redshift of Alice’s detector energy gap (namely,

ωA becomes ωA=γ in τI); the factor
�

dðt̄BI Þ
nϵðn2ϵ2þdðt̄BI Þ2Þ

�
2

replacing ðϵdÞ−2 in τI.
In particular, by fixing the parameter ηA equal to ωA in

the static case and equal to ωA=γ in the inertial case and by
taking the same distance, i.e., d ¼ dðtBI Þ, we have

τI ¼
τS
γn

�
d2

n2ϵ2 þ d2

�
2

: ð123Þ

As long as n is not very large, we can assume d ≫ nϵ and
then we have

τI ∼
τS
nγ

: ð124Þ

We can conclude that, in case two detectors move inertially
with respect to each other with a Lorentz factor γ, the
transmissivity decreases by a factor 1=ðnγÞ with respect to
the static case. The factor γ−1 comes from the presence of
ṫAðsÞ in the matrix T , in Eq. (38). That factor arises from the
fact that the state prepared by Alice changes if seen by an
external observer. This transformation is reported in
Eq. (C1) and it is extensively studied in Appendix C.
The factor n−1 comes from the fact that, despite both

detectors having the same spatial smearing in their own
proper frames, their smearings differ in Bob’s frame. In
particular, from Bob’s perspective, Alice’s spatial profile is
contracted along the x axis. This obviously affects neg-
atively the communication properties.

3. Quantum capacity

Since τI < τS ≪ 1, the quantum capacity is zero again
from Eqs. (56) and (57).
At the end of Sec. VI A 3 (using Ref. [27]), we discussed

how, in the static case, the geometry of the protocol
neglects a priori the possibility of a reliable communication
of quantum messages. However, the same argument is not
applicable to the pair of inertial detectors. In fact, since the
detectors move inertially along the same line, there are no
other observers, beside Bob, who can potentially receive
the same message. Nevertheless, we showed that this
argument is not sufficient to imply the possibility of a
reliable quantum communication.
Summarizing, we proved not only that the quantum

capacity is still zero in case the detectors travel inertially,
but also that their transmissivity decreases compared with
the pair of static detectors. Henceforth, since the noise
achieved is the same, also the classical capacity is expected
to be worse if we make the detectors travel inertially.

C. Accelerating detectors

We now consider Alice undergoing a Rindler acceler-
ation [54,55] along the x axis at y ¼ z ¼ 0—while Bob is
static at x ¼ y ¼ z ¼ 0.5 The Fermi normal coordinates of
Alice are the Rindler coordinates ðtA; xA; yA; zAÞ, related to
Bob’s coordinates ðt; x; y; xÞ through8>>>>><

>>>>>:

t ¼
�
1
α þ xA

�
sinhðαtAÞ;

x ¼
�
1
α þ xA

�
coshðαtAÞ;

y ¼ yA;

z ¼ zA;

ð125Þ

where α is Alice’s proper acceleration. The world line of
Alice’s center of mass is ð1α sinhðαtAÞ; 1α coshðαtAÞ; 0; 0Þ.
Then, the distance between the two detectors, in Bob’s
frame, is given by

dðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

α2
þ t2

r
: ð126Þ

So, 1=α represents the minimum distance between the two
detectors, reached at tA ¼ t ¼ 0. To ensure that the detectors
are always far from each other we need αϵ ≪ 1. From
Ref. [39], the condition αϵ ≪ 1 also ensures the validity of
the Fermi coordinates inside the detector, allowing one to
considerAlice’s detector as a nonrelativistic quantum system.
We suppose that the field is initially in the Minkowski

vacuum. Following the protocol described at the beginning
of Sec. VI, Alice’s and Bob’s switching-in are given by
Eqs. (63) and (66), respectively. In Bob’s proper time,
Alice’s interaction time tAI becomes tBI ¼ 1

α sinhðαtAI Þ. To
ensure that Bob receives Alice’s message, the window of
his interaction period with the field should be

ΔtBI ¼ 2π

ωAṫAðt̄BI Þ
¼ 2π coshðt̄BI Þ

ωA
: ð127Þ

Regarding the elements of the dissipation kernel, we have
again χAAA ¼ χAAB ¼ 0. The element χBBB is given by
Eq. (109), as in the static and inertial case. To compute
χBBA, we transform Alice’s smearing function in Bob’s
coordinates using Eq. (125), namely

fAðxA;tAÞ¼
ϵδðtA− tAI Þ

ðxA ·xAþϵ2Þ2

¼ αx
cosh2ðαtAI Þ

ϵδðt−x tanhðαtAI ÞÞ��
x

coshðαtAI Þ
− 1

α

�
2

þy2þz2þϵ2
�

2
:

ð128Þ

5The opposite situation, where Bob is Rindler accelerated and
Alice is static, is considered in Refs. [56,57] to study the
communication through Gaussian wave packets.
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By using the variable x̃ ¼ x
coshðαtAI Þ

− 1
α, Eq. (128) becomes

fAðx̃;y;z;tÞ¼
1þαx̃

coshðαtAI Þ
ϵδðt−ð1αþ x̃ÞsinhðαtAI ÞÞ
ðx̃2þy2þz2þϵ2Þ2 : ð129Þ

Notice that, from Eq. (129), fA becomes negative when
x̃ < −1=α. This is because, for x̃ < −1=α, the detector
crosses the Rindler horizon [55] and then this region is not
observable by Bob. However, from Eq. (129), we see that
the Lorentzian shape is centered at x̃ ¼ y ¼ z ¼ 0 and
vanishes as ðϵ=x̃Þ4 by increasing the magnitude of x̃. Since
ϵ ≪ 1=α, we can conclude that the portion of the
Lorentzian shape crossing the Rindler horizon is negligible.
Moreover, since ϵα ≪ 1, whenever the Lorentzian shape is
not negligible (i.e., a neighborhood of radius ∼ϵ), one can
approximate 1þ αx̃ ∼ 1. In this way, Alice’s smearing
from Eq. (129) becomes

fAðx̃; y; z; tÞ ∼
1

coshðαtAI Þ
ϵδðt − tBI Þ

ðx̃2 þ y2 þ z2 þ ϵ2Þ : ð130Þ

At this point, we can compute the dissipation kernel χBBA in
the exact same way we have done in Sec. VI B, obtaining

χBBA¼−2λAλB
δðt0− tBI Þ
ΔtBI

rect

�
t− t̄BI −dðt̄BI Þ

ΔtBI

�
IIaðtÞ; ð131Þ

where

IaðtÞ ¼
Z

1

ð2πÞ3jkj e
ijkjðt−tBI Þ−ikxdðtBI Þ−ϵðjkjþjk00jÞdk; ð132Þ

and k00 ¼ ðcoshðαtAI Þkx; ky; kzÞ. Similar to what we did in
Sec. VI B to evaluate Eq. (116), by using the fact that
jkj < jk00j < coshðαtAI Þjkj, we can write

χBAðt;t0Þ¼
4λAλB
π2ΔtBI

δðt0− tBI Þrect
�
t−d− t̄BI

ΔtI

�

×
n0ϵðt− tBI Þ

ððt− tBI Þ2−dðtBI Þ−4n02ϵ2Þ2þ16n02ϵ2ðt− tBI Þ2
;

ð133Þ

where n0 is between 1 and6 ð1þ coshðαtAI ÞÞ=2.
Now, we can proceed to compute the properties of the

quantum channel. Using Eq. (A1), the equation for GAA is,
in Bob’s proper time,

G̈AAðt; sÞ þ
α2t

1þ α2t2
ĠAAðt; sÞ þ

ω2
A

1þ α2t2
GAAðt; sÞ ¼ 0;

ð134Þ
with boundary conditions ĠAAðt→ sþ;sÞ¼1 and GAAðt →
sþ; sÞ ¼ 0. The solution can be obtained exactly as

GAAðt;sÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þα2s2

p

ωA
sin

�
ωA

α
ðsinh−1ðαtÞ−sinh−1ðαsÞÞ

�
:

ð135Þ

The equation for GBB is the same used in the static and
inertial cases (Secs. VI A and VI B), giving the same
solution. For GBAðt; sÞ, the differential equation is similar
to that for the inertial case [Eq. (A25)] with n0 replacing n
and considering Eq. (135) for GAAðtBI ; sÞ. In this way, the
solution forGBAðt; sÞ is the same as for inertial detectors up
to these substitutions.

1. Additive noise

The elements of the noise kernel (26) can be easily
computed as

νAAðt; sÞ ¼ λ2A
δðt − tBI Þδðs − tBI Þ
8π2ð1þ α2ðtBI Þ2Þϵ2

; ð136Þ

νBBðt;sÞ¼−
1

2π2Δt2I
rect

�
t−dðt̄BI Þ− t̄BI

ΔtBI

�

×rect

�
s−dðt̄IÞ− t̄I

ΔtBI

� ðt−sÞ2−4ϵ2

ððt−sÞ2þ4ϵ2Þ2 ; ð137Þ

νABðt;sÞ¼ νBAðs;tÞ

¼−
δðt− tBI Þ

2π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þα2ðtBI Þ2

p
ΔtI

rect

�
s−dðt̄IÞ− t̄I

ΔtI

�

×
ðt−sÞ2−dðsÞ2−4ϵ2

ððt−sÞ2−dðsÞ2−4ϵ2Þ2þ16ϵ2ðt−sÞ2 : ð138Þ

Again, putting Eqs. (136) and (138) in Eqs. (40)–(42), the
Dirac δ’s imply the presence of GBAðt; tBI Þ in the first three
integrals of them. However GBAðt; tBI Þ ¼ 0 since, from
Eq. (135), GAAðtBI ; tBI Þ ¼ 0. In this way, Eqs. (40)–(42)
reduce again to Eqs. (88)–(90), respectively. Since both νBB
and GBB are the same as the static case (Sec. VI A) and
inertial case (Sec. VI B), also the noise is the same one
computed in Sec. VI A 1 (and shown in Fig. 1).

2. Transmissivity

By applying the same approximations performed in
Sec. VI A 2, the solution for the transmissivity after Bob
interacts with the field, performing an average over the
values of tBI , is

6To be more precise, since tAI is a random variable bounded in
the interval ½t̄AI þ ΔtAI =2; t̄AI − ΔtAI =2�, the maximum value
for n0 is n0 ¼ 1

2
þ 1

2
cosh ðαðjt̄AI j þ π

ωA
ÞÞ. However, since

ΔtBI ≪ d, then α ≪ ωA and the upper bound of n0 becomes
ð1þ coshðαtAI ÞÞ=2þOðα=ωAÞ.
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τ ∼
θðt̄BI − sÞλ2Aλ2B

128π6mAmBϵ
2n02

d2ðt̄BI Þ
ðn02ϵ2 þ d2ðt̄BI ÞÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2s2

p

1þ α2ðt̄BI Þ2
1

ω2
B − λ2Bω

2
A

128π3mBϵð1þα2ðt̄BI Þ2Þ

×

0
BB@
�
1 − cos

�
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ α2ðt̄BI Þ2Þ ω

2
B

ω2
A
− λ2B

128π3mBϵ

r ��
2

1 − λ2B
128π3mBϵð1þα2ðt̄BI Þ2Þ

ω2
A

ω2
B

þ sin2

0
B@2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ α2ðt̄BI Þ2Þ

ω2
B

ω2
A
−

λ2B
128π3mBϵ

s 1
CA
1
CCA: ð139Þ

The behavior of the transmissivity in Eq. (139) (called τA)
in terms of ωA=ωB is the same as the static case trans-
missivity (100) up to a redshift on Alice’s energy gap
ωA → ωA=ð1þ α2ðt̄BI Þ2Þ. To compare the transmissivity τA
with that in the static case τS, we fix ηA ¼ ωAṫAðt̄BI Þ, as we
did in Sec. VI B 2 and we get

τA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2s2

p

n0ð1þ α2ðt̄BI Þ2Þ
�

ϵ2 þ d2

n02ϵ2 þ d2

�
2

τS: ð140Þ

From Eq. (140), we see that the lowest possible value
for n0, i.e., 1, gives an upper bound of τA. A lower
bound for τA is given if n0 assumes its highest value
nmax ¼ ð1þ coshðαtAI ÞÞ=2.
The relation between τA and τS, from Eq. (140), is

strongly dependent on s and t̄BI , being, respectively, the
time s when both Alice and Bob prepare their initial state
(since Bob’s initial state is set to be the ground state of the
oscillator, we refer to s as the time when just Alice prepares
her detector’s state) and the average time t̄BI when Alice
interacts with the field to send her state to Bob.
From causality, we have that both τS and τA are zero

when s > t̄BI . Then, depending on the value of t̄BI , we can
find values of s such that τA < τS or τA > τS. By using the
fact that τA is maximized when n0 ¼ 1 and minimized when
n0 ¼ nmax, we define two time parameters s− and sþ, as

s− ≔ jt̄BI j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ α2ðt̄IBÞ2

q
; ð141Þ

sþ≔
1

α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n02maxð1þα2ðt̄BI Þ2Þ2

�
n02maxϵ

2þd2

d2

�
2

−1

s
: ð142Þ

In this way,
(1) if jsj < s−, then τA < τS;
(2) if jsj > sþ, then τA > τS; and
(3) if s− < jsj < sþ, we need numerical calculations in

order to evaluate n0 exactly to compare τA and τS.
Condition 1 is always satisfied if s ≥ 0, so that, to improve
the transmissivity of the channel with respect to the static
case, Alice has to prepare her initial state before the time
when they are at their minimum distance 1=α.

On the contrary, for each value of t̄BI , Alice can prepare
her initial state with enough advance (increasing −s) so that
the condition 2 is satisfied, increasing the transmissivity of
the protocol where Alice accelerates. From Eq. (140), τA
can reach an arbitrarily high value by increasing −s, i.e., the
earlier Alice decides to prepare her initial state with respect
to the transmission of the signal t̄BI . To explain why this
happens, we study the evolution of Alice’s state, in Bob’s
frame, from the time of its preparation s to the time where it
is sent to Bob t̄BI .
Todo that,weuseEq. (93)where thematrixTAA is givenby

Eq. (94) using theGreen’s functionmatrix element (135). The
determinant of the matrix TAA could be seen as a trans-
missivity from Alice to herself, in Bob’s coordinates,
reading

detTAA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2s2

1þ α2ðt̄BI Þ2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2s2

p α

ωA

αt̄BI
1þ α2ðt̄BI Þ2

× sin ð2ωAðtAðt̄BI Þ − tAðsÞÞÞ: ð143Þ

We can neglect the second term on the rhs of Eq. (143) since

α ≪ ωA. In this way, detTAA ∼
ffiffiffiffiffiffiffiffiffiffiffi
1þαs2

1þα2t2

q
. Then, if jsj > jt̄BI j,

Alice’s state inBob’s framegets amplified by a factor
ffiffiffiffiffiffiffiffiffiffiffi
1þαs2

1þα2t2

q
before it interacts with the field. Conversely, if jt̄BI j > jsj, the
input state of Alice is damped by τA before the interaction
with the field. Henceforth, inBob’s perspective,Alice’s initial
state could be amplified arbitrarily, eventually overcoming the
huge loss comparable to τS from Eq. (104) and occurring
when Alice’s detector communicates with Bob’s through
the field.
To improve the transmissivity of the channel, the

best case scenario is provided if Alice interacts with
the field at the time t̄BI ¼ 0, i.e., when she is at her
minimum distance from Bob, as shown in Fig. 3. This
scenario also provides an approximate analytic solution
for the transmissivity, since now n0 ≃ 1. Then, Eq. (140)
simply becomes

τA ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2s2

p
τS: ð144Þ
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3. Quantum capacity

Summarizing, in Sec. VI C 1, we briefly showed how the
additive noise achieved by Bob, in the accelerating case, is
exactly the one of the static case (see Fig. 1). Then, in
Sec. VI C 2 we recognized the protocol described in Fig. 3
as the optimal one to increase the transmissivity τA,
following Eq. (144) where τS is given by Eq. (100).
From Eq. (144), by increasing jsj, it is possible to

increase τA so that τA > 1=2 and potentially have a positive
maximized coherent information (57), leading to a quantum
capacity Qð1Þ > 0. To analyze this possibility, we take the
upper bound of the noise W̄, from Eq. (99). Since the
maximized coherent information (57) decreases with W,
then IcðτA; W̄Þ ≤ IcðτA;WÞ. In this way, IcðτA; W̄Þ > 0 is
sufficient to prove that the single-letter quantum capacity of
the channel is greater than zero.
The average number of noisy particles occurring when

W ¼ W̄, using Eq. (55), is

n̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ λ2B

16π2ϵ2mBωB

q
j1 − τAj

−
1

2
: ð145Þ

At this point, we can take a value of jsj so that τA is
sufficiently high to make n̄ ¼ 0. To this end, τA must read

τA ¼ τ⋆A ≔ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2B

4π2ϵ2mBωB

s
; ð146Þ

leading, fromEq. (57), to amaximized coherent information

Icðτ⋆A; W̄Þ ¼ log

�
τ⋆A

τ⋆A − 1

�
¼ log

0
B@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2B

4π2ϵ2mBωB

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λ2B

4π2ϵ2mBωB

q
1
CA:

ð147Þ

Since Ic from Eq. (147) is always positive, we can finally
conclude that, with the protocol described in Fig. 3, it is
possible to choose a value for jsj high enough to have a
quantum capacity greater than zero and communicate
quantum messages reliably.
Figure 4 shows how the maximized coherent information

(57) grows by increasing jsj from 0 to the value js⋆j,
defined so that τAðs⋆Þ ¼ τ⋆A .
The value of Icðτ⋆; W̄Þ is maximized when W is

minimized to 1=4, so that τ⋆A ¼ 2, and Icð2; 1=4Þ ¼ 1,
implying that Qð1Þ ≤ 1, in the range 0 < jsj < js⋆j. From
Fig. 1, we see that W ¼ 1=4 is reachable by choosing
suitable values of ΔtI and then of the energy gap ωA, due to
the oscillations of W.
If we choose s so that jsj > js⋆j, then from Eq. (145) n̄

becomes negative and the channel N ∶σin ↦ σout is no
more a complete positive map, albeit Gaussian. We discuss
in Appendix C why this situation arises.
Although we have shown that it is theoretically possible

to communicate quantum messages reliably with this
protocol, a practical realization would be really hard.
The value of js⋆j (time from the preparation of the input
to the communication) could be estimated considering
ωB ¼ ωA=2, so that

js⋆j ≃ 1.538 × 104 ·
mAmBϵ

2ω2
A

λ2Aλ
2
Bα

3
: ð148Þ

FIG. 3. This image outlines the protocol used in Sec. VI C
in Bob’s coordinates, with s ¼ −4 eV−1, t̄BI ¼ 0 eV−1 and
α ¼ 0.5 eV.

FIG. 4. Maximized coherent information Ic of the channel
outlined in Fig. 3 (where t̄BI ¼ 0), obtained from Eq. (57), in
terms of the time s when Alice prepares her initial state (in Bob’s
frame). The quantum capacity of the channel corresponds to Ic
when Ic > 0. The parameters chosen are λA ¼ λB ¼ 1,
ωA ¼ 1 eV, ωB ¼ 0.5 eV, mA ¼ mB ¼ 109 eV, d ¼ 105 eV−1,
ϵ ¼ 10−3 eV−1.
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The quantities chosen in Fig. 4 for the parameters ωi,mi, ϵ,
d emulate an atomic scale detector. A quantum capacity
greater than zero occurs if jsj ≃ 1031 eV−1, comparable
with the age of the Universe (≃6.611 × 1032 eV−1).
Moreover, the minimum distance d ¼ 1=α ≃ 105 eV−1

from the two detectors was chosen to have an acceleration α
generating an Unruh thermal radiation of ∼1 K, far from
being reachable by modern experimental setups. However,
it was recently shown how detectors with a circular motion
could provide an analog Unruh effect and potentially reach
high accelerations in a limited space [58–60]. To this
perspective, we notice from Eq. (148) that the protocol
execution time ∼js⋆j scales as α−3. So, if one finds a way to
increase the acceleration of a detector, the execution time
could drastically decrease to reach reasonable values.
To decrease js⋆j, the couplings λB could be increased as

well. Indeed, the condition (98) guarantees that Bob’s
detector cannot absorb energy beyond its limits. For this
condition, we considered the upper bound for the additive
noise (99), obtained in the limit ΔtI → 0. However, as we
see from Fig. 1, the noise achieved by Bob could drastically
decrease when ΔtI is finite. Then, to limit the energy of the
detector after the interaction with the field, one can choose
a more permissible condition instead of the condition (98),
giving the possibility to increase λB and reduce the
execution time js⋆j.

VII. FINAL DISCUSSIONS AND PERSPECTIVES

For particle detector models in a (3þ 1ÞD spacetime, the
possibility to send quantum messages reliably via an
isotropic interaction with the field is usually prevented
by the no-cloning theorem [27]. In this paper, we showed
that this problem can be circumvented by taking the two
detectors in motion with respect to each other.
To do that, we use the method presented in Ref. [28] to

study the communication of bosonic signals in nonpertur-
bative regimes. In Secs. II–IV, we generalized this method
for whatever spacetime smearing of the detectors and for
whatever background spacetime they move in. Although
the expressions could be very complicated—implying most
of the times nonexact solutions—the freedom on the
detectors’ smearing could be used to simplify those
expressions. In this work, we exploited this possibility to
study some protocols involving a rapid interaction between
field and detector. However, as a future perspective,
particular spacetime smearing for the detectors could allow
an analytic study of the communication properties between
two detectors with a wider variety of trajectories or back-
ground spacetime. Obviously, those smearing functions
should satisfy the Fermi bound discussed in Ref. [39], to
ensure that the detectors can be considered nonrelativistic
quantum systems.
For example, in Appendix B, we see how a δ-like

switching-in of the detectors can drastically simplify the
properties of the channel and its quantum capacity (defined

in Sec. V). Despite this simplicity, we showed that the no-
cloning theorem is violated in this case, since a quantum
capacity greater than zero is possible also in a Minkowski
spacetime, contradicting the geometric argument presented
in Ref. [27]. In this context, it is interesting to observe how
the violation of the no-cloning theorem is related to the
violation of the uncertainty principle. Indeed, in Sec. VI,
we presented a protocol similar to the one in Appendix B,
but ensuring that the Heisenberg principle is respected.
Although the results are similar, the violation of the no-
cloning theorem is prevented in this case, due to an infrared
cutoff on the energy gap of Alice’s detector.
Then, we considered a static receiver on a Minkowski

background. The sender was considered in three different
situations: static with respect to the receiver (Sec. VI A);
traveling inertially with respect to the receiver (Sec. VI B);
undergoing a Rindler acceleration (Sec. VI C). The noise
received by the receiver (Bob) is always the same, as a
consequence of the fact that the motion of Bob is the same
and that Alice’s interaction with the field is δ-like (even if
her interaction time presents an uncertainty).
When the two detectors are static, the transmissivity of

the channel is so low that each possibility of reliable
quantum communication is prevented (as expected from the
no-cloning theorem). This result is comparable numerically
to the one obtained in Ref. [28]—where the switching-in
function is considered to be a Heaviside θ—in case of low
coupling. Moreover, in Ref. [32], it is shown how the
classical capacity of the channel [46,47]—built with a pair
of two-level detectors interacting rapidly—increases by
increasing the ratio λA=λB. In our scenario, a similar
behavior is suggested by the fact that the transmissivity
(100) is proportional to λ2Aλ

2
B while the upper bound of the

noise is ∝ λ2B, from Eq. (99). Then, the study of the classical
capacity of the channel deserves further investigations in
the future. If the result of Ref. [32] is confirmed, then the
increasing of the classical capacity with the ratio λA=λB
could be a typical feature of the “rapid interaction” between
field and detectors. Indeed, for long interaction periods, the
classical capacity drastically drops if we consider detectors
with a different coupling with the field [28].
By considering two detectors traveling inertially in the

same line, the geometric argument for the no-cloning
theorem [27] is no more applicable. However, in
Sec. VI B we proved not only that the quantum capacity
is always zero again, but also that the classical capacity
decreases with respect to the static case. This can be
ascribed to two factors: the length contraction of the
detector and the fact that Alice’s state is seen by an
observer in a different frame.
These results suggest that, to seek for a quantum capacity

greater than zero, one has to look for a situation where the
two observers are not inertial with respect to each other. For
this reason, we investigated the case where Alice is Rindler
accelerated with respect to Bob (Sec. VI C) as shown in
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Fig. 3. In this case, we proved that a nonzero quantum
capacity is possible if Alice prepares her state in the remote
past with respect to the timewhen Alice and Bob are at their
minimum distance. This is due to the strong redshift of the
energy gap of Alice, which can circumvent the infrared
cutoff arising in the static case. Moreover, one can study the
evolution of Alice’s state in Bob’s frame [Eq. (143)] to see
how Alice’s state undergoes an amplification which can
compensate the loss occurring during the interaction with
the field (the same obtained in the static case Sec. VI A).
In general, a noninertial detector undergoes quantum

effects (e.g., the Unruh effect) as predicted by quantum
field theory in curved spacetimes. These effects could play
a crucial role in the possibility to achieve a reliable quantum
communication. To this prospect, also entanglement har-
vesting could be pivotal [23,61]. Indeed, an arbitrary high
entanglement between the detectors always lead to an
assisted quantum capacity greater than zero [31]. Future
works would try to see in more detail how quantum effects,
given by the detectors’ noninertial motion, could affect the
possibility of achieving a quantum capacity greater than
zero.
Notice that, while Alice waits before sending her signal,

no entanglement harvesting occurs, since the two detectors
do not interact with the field. However, it is interesting to
see how the communication scheme behaves as entangle-
ment harvesting occurs. Indeed, if entanglement between
the detectors is harvested from the time −s to the time
tI ¼ 0, it makes sense that the entanglement between the
two detectors could eventually assist the communication of
quantum messages, making the quantum capacity greater
than zero [31].
The analogy with the entanglement harvesting occurs

also in the quantitative analysis performed at the end of
Sec. VI C 3. The latter indicates that a practical realization
of this protocol would require a huge amount of time,
making the protocol practically impossible to achieve with
today’s means. One can relate the difficulty to realize this
protocol with the difficulty to see the Unruh effect (or
entanglement harvesting) in a laboratory. Indeed, Eq. (148)

shows that the protocol execution time scales as α−3. In this
way, if we find a way to create a detector achieving a
considerable Unruh temperature, the required time could
drastically drop to make the protocol realizable.
The possibility to achieve a non-negligible Unruh

temperature is recently being theoretically investigated
with detectors undergoing a stationary motion in a finite
space, e.g., a circular motion [58–60]. In a future work, we
investigate if those stationary motion setups could allow a
nonzero quantum capacity as well. Moreover, it is worth
investigating what could be the role of a curved background
on the communication of quantum messages. To this
perspective, it is known that the spacetime curvature
decreases the communication capabilities of single-mode
signals [13,14]. We wonder if the same occurs in the
communication of bosonic states through particle detectors.

ACKNOWLEDGMENTS

A. L. is grateful to the Gravity Laboratory Group of the
University of Nottingham for the support and the interest-
ing discussions on the main topic of the work. A. L.
especially thanks Leo Parry, Adam Wilkinson, and
Cisco Gooding for their active help to solve the problems
faced in this study. We thank an anonymous referee for
helpful comments. The work of J. L. was supported by
United Kingdom Research and Innovation Science and
Technology Facilities Council (Grant No. ST/S002227/1).
S. M. acknowledges financial support from Italian Ministry
of Universities and Research through “PNRRMUR project
PE0000023-NQSTI.”

APPENDIX A: CALCULATION OF THE GREEN’S
FUNCTION MATRIX ELEMENTS

In this appendix we report the detailed calculations for
the elements of the Green’s function matrix, obtained from
the homogeneous version of the quantum Langevin equa-
tion (13), i.e.,

 d2

dt2B
− ẗA

ṫA
d
dtB

þ ṫ2Aω
2
A 0

0 d2

dt2B
þω2

B

!
GðtB;sBÞ−

Z
tB

−∞

� ṫAðtBÞ2 ṫAðrBÞ
mA

0

0 1
mB

��
χAAAðtB;rBÞ χAABðtB;rBÞ
χBBAðtB;rBÞ χBBBðtB;rBÞ

�
GðrB;sBÞdrB¼δðtB−sBÞI:

ðA1Þ
When the two detectors are static, Eq. (A1) becomes

8>>>>><
>>>>>:

G̈AAðt; sÞ þ ω2
AGAAðt; sÞ − 1

mA

R
t
−∞ χAAðt; rÞGAAðr; sÞdr − 1

mA

R
t
−∞ χABðt; rÞGBAðr; sÞdr ¼ 0;

G̈BAðt; sÞ þ ω2
BGBAðt; sÞ − 1

mB

R
t
−∞ χBAðt; rÞGAAðr; sÞdr − 1

mB

R
t
−∞ χBBðt; rÞGBAðr; sÞdr ¼ 0;

G̈ABðt; sÞ þ ω2
AGABðt; sÞ − 1

mA

R
t
−∞ χAAðt; rÞGABðr; sÞdr − 1

mA

R
t
−∞ χABðt; rÞGBBðr; sÞdr ¼ 0;

G̈BBðt; sÞ þ ω2
BGBBðt; sÞ − 1

mB

R
t
−∞ χBAðt; rÞGABðr; sÞdr − 1

mB

R
t
−∞ χBBðt; rÞGBBðr; sÞdr ¼ 0;

ðA2Þ
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with boundary conditions Gijðt → sþ; sÞ ¼ 0 and Ġijðt →
sþ; sÞ ¼ δij.
Using the dissipation kernel elements (70)–(72), the first

and third equations of the system (A2) read, respectively,

G̈AAðt; sÞ þ ω2
AGAAðt; sÞ ¼ 0; ðA3Þ

G̈ABðt; sÞ þ ω2
AGABðt; sÞ ¼ 0: ðA4Þ

The solutions are, respectively,

GAAðt; sÞ ¼
sinðωAðt − sÞÞ

ωA
; ðA5Þ

GABðt; sÞ ¼ 0: ðA6Þ

The fourth of Eq. (A2) for GBBðt; sÞ becomes

G̈BBðt; sÞ þ ω2
BGBBðt; rÞ −

λ2B
4π2mBΔt2I

rect

�
t − d − t̄I

ΔtI

�Z
dþt̄IþΔtI

2

dþt̄I−
ΔtI
2

θðt − rÞ ϵðt − rÞ
ððt − rÞ2 þ 4ϵ2Þ2GBBðr; sÞdr ¼ 0: ðA7Þ

Before the interaction, i.e., when s < t < dþ t̄I − ΔtI=2, the solution of GBB is trivially

GBBðt − sÞ ¼ sinðωBðt − sÞÞ
ωB

: ðA8Þ

To find an approximate solution for GBBðt; sÞ during the interaction, i.e., in the interval dþ t̄I − ΔtI=2 <
t < dþ t̄I þ ΔtI=2, we study the third term on the left-hand side of Eq. (A7). By integrating the integral by parts we get

Z
dþt̄IþΔtI

2

dþt̄I−
ΔtI
2

θðt − rÞ ϵðt − rÞ
ððt − rÞ2 þ 4ϵ2Þ2 GBBðr; sÞdr ¼

GBBðt; sÞ
8ϵ

−
1

2

ϵGBBðdþ t̄I − ΔtI=2; sÞ
4ϵ2 þ ðt − d − t̄I þ ΔtI

2
Þ2

−
1

2

Z
t

dþt̄I−
ΔtI
2

ϵ

ðt − rÞ2 þ 4ϵ2
ĠBBðr; sÞdr: ðA9Þ

We start by analyzing the third term on the rhs of Eq. (A9). As long as t − d − t̄I þ ΔtI=2 ≫ ϵ, the integrand can be
approximated by the Dirac δ, 1

2
δðt − rÞ. Taking into account that the upper bound of the integral lies on the peak of the Dirac

δ, we have, when t − d − t̄I þ ΔtI=2 ≫ ϵ,

−
1

2

Z
t

dþt̄I−
ΔtI
2

ϵ

ðt − rÞ2 þ 4ϵ2
ĠBBðr; sÞdr ¼ −

π

8
ĠBBðt; sÞ: ðA10Þ

When t − d − t̄I þ ΔtI=2 ∼ ϵ, the approximation in Eq. (A10) cannot be performed. However, one can prove that, by
increasing t starting from dþ t̄I − ΔtI=2, the left-hand side of Eq. (A10) increases its magnitude from zero until it reaches
the value − π

8
ĠBBðt; sÞ for t≳ ϵ.

The second term on the rhs of Eq. (A9) is negligible with respect to the first term except for times t such that
t − d − t̄þ ΔtI=2 ∼ ϵ. Since ωBϵ ≪ 1, from the condition (62), the function GBB, given Eq. (A8), is expected to change
by a negligible amount in the interval ðdþ t̄ − ΔtI=2 − ϵ; dþ t̄ − ΔtI=2þ ϵÞ. Then, we can make the following
approximation:

GBBðt; sÞ
8ϵ

−
1

2

ϵGBBðdþ t̄I − ΔtI=2; sÞ
4ϵ2 þ ðt − d − t̄I þ ΔtI

2
Þ2 ∼

GBBðt; sÞ
8ϵ

−
1

2

ϵGBBðt; sÞ
4ϵ2 þ ðt − d − t̄I þ ΔtI

2
Þ2

¼ GBBðt; sÞ
8ϵ

� ðt − d − t̄I þ ΔtI=2Þ2
4ϵ2 þ ðt − d − t̄I þ ΔtI=2Þ2

�
: ðA11Þ

From Eq. (A11), the first two terms on the rhs of Eq. (A9) give 0 at the beginning of the interaction time t ¼ dþ t̄I − ΔtI=2
and grow to GBBðt; sÞ=ð8ϵÞ after a time comparable to ϵ. We can conclude that the integral (A9), from being zero at time
t ¼ dþ t̄I − ΔtI=2, increases its magnitude to become, after a time of the order ϵ, the following:

Z
dþt̄IþΔtI

2

dþt̄I−
ΔtI
2

θðt − rÞ ϵðt − rÞ
ððt − rÞ2 þ 4ϵ2Þ2GBBðr; sÞdr ∼

GBBðt; sÞ
8ϵ

−
π

8
ĠBBðr; sÞdr: ðA12Þ
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If we haveΔtI ≫ ϵ, then the range of timewhere the approximation (A12) is not valid is very small with respect to the entire
interaction time. In other words, if we consider the approximation in Eq. (A12) to be valid during the entire interaction time,
the error expected on the value of GBBðt; sÞ after the interaction would be of an order Oðϵ=ΔtIÞ and then negligible.
Thus, for our purposes, we can rewrite Eq. (A7) as

G̈BBðt; sÞ þ
λ2B

32πmBΔt2I
rect

�
t − d − t̄I

ΔtI

�
ĠBBðt; sÞ þ

�
ω2
B −

λ2B
32πmBΔt2I ϵ

rect

�
t − d − t̄I

ΔtI

��
GBBðt; sÞ ¼ 0: ðA13Þ

The solution of Eq. (A13) during the interaction (dþ t̄I − ΔtI=2 ≤ t < dþ t̄I þ ΔtI=2, i.e., 0 < t̃ < ΔtI), by matching
GBB and its derivative with the solution (A8) at t ¼ dþ t̄I − ΔtI=2 is

GBBðt̃; s̃Þ ¼
e−

B
2
t̃

ωB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
 
ð2ωB cosðωBs̃Þ − B sinðωBs̃ÞÞ sin

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A −

B2

4

r
t̃

!

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
sinðωBs̃Þ cos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A −

B2

4

r
t̃

!!
; ðA14Þ

where, for simplicity, we defined t̃ ≔ t − ðdþ t̄I − ΔtI=2Þ, s̃ ≔ s − ðdþ t̄I − ΔtI=2Þ, A ≔ ðω2
B − λ2B

32πmBΔt2I ϵ
Þ and

B ≔ λ2B
32πmBΔt2I

.

After the interaction (t̃ ≥ Δt), Eq. (A7) returns the one of a simple harmonic oscillator. By matching GBB and its
derivative with the solution (A14) at t̃ ¼ ΔtI , we get

GBBðt̃; sÞ ¼
ĠBBðt̃ ¼ Δt−I ; sÞ

ωB
sinðωBðt̃ − ΔtIÞÞ þGBBðt̃ ¼ Δt−I ; sÞ cosðωBðt̃ − ΔtIÞÞ: ðA15Þ

Equations (A8), (A14), and (A15) give then the complete solution for GBBðt; sÞ before, during and after the interaction,
respectively.
The second equation of the system (A2), using the dissipation kernel elements (71) and (72), reads

G̈BAðt; sÞ þ ω2
BGBAðt; rÞ −

λ2B
4π2mBΔt2I

rect

�
t − d − t̄I

ΔtI

�Z
dþt̄IþΔtI

2

dþt̄I−
ΔtI
2

θðt − rÞ ϵðt − rÞ
ððt − rÞ2 þ 4ϵ2Þ2GBAðr; sÞdr

¼ 4λAλB
π2ΔtI

rect

�
t − d − t̄I

ΔtI

�
GAAðtI; sÞ

ϵðt − tIÞ
ððt − tIÞ2 − d2 − 4ϵ2Þ2 þ 16ϵ2ðt − tIÞ2

: ðA16Þ

Regarding the third term on the left-hand side of Eq. (A16) we can simplify it using Eq. (A12)—with GBA instead
of GBB and using the same argument explained before. Concerning the rhs of Eq. (A16), we study the factor

ϵðt−tIÞ
ððt−tIÞ2−d2−4ϵ2Þ2þ16ϵ2ðt−tIÞ2 in the range where rect

�
t−d−t̄I
ΔtI

�
≠ 0, i.e., when d − t̄I − ΔtI=2 < t < d − t̄I þ ΔtI=2. Since

jtI − t̄Ij < ΔtI=2, we can prove that

ϵðt − tIÞ
ððt − tIÞ2 − d2 − 4ϵ2Þ2 þ 16ϵ2ðt − tIÞ2

¼ 1

16

d
ϵðϵ2 þ d2Þ

�
1þO

�
ΔtI
d

��
: ðA17Þ

Then, from the rapid interaction condition (68), the second term of the latter can be neglected. Using these approximations,
Eq. (A16) becomes

G̈BAðt; sÞ þ
λ2B

32πmBΔt2I
rect

�
t − d − t̄I

ΔtI

�
ĠBAðt; sÞ þ

�
ω2
B −

λ2B
32πmBΔt2I ϵ

rect

�
t − d − t̄I

ΔtI

��
GBAðt; sÞ

¼ λAλB
4π2mBΔtI

rect

�
t − d − t̄I

ΔtI

�
d

ϵðϵ2 þ d2ÞGAAðtI; sÞ: ðA18Þ

Before the interaction, i.e., when s < t < dþ t̄I −
ΔtI
2
, given the boundary conditions GBAðt ¼ s; sÞ ¼ ĠBAðt ¼ s; sÞ ¼ 0,

we have GBAðt; sÞ ¼ 0. During the interaction (dþ t̄I − ΔtI=2 < t < dþ t̄I þ ΔtI=2), Eq. (A18) becomes
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G̈BAðt; sÞ þ
λ2B

32πmBΔt2I
ĠBAðt; sÞ þ

�
ω2
B −

λ2B
32πmBΔt2I ϵ

�
GBAðt; sÞ ¼

λAλB
4π2mBΔtI

d
ϵðϵ2 þ d2ÞGAAðtI; sÞ: ðA19Þ

Setting

C ¼ λAλB
4π2mBΔtI

d
ϵðϵ2 þ d2ÞGAAðtI; sÞ ∼

λAλB
4π2mBΔtI

1

ϵd
GAAðtI; sÞ; ðA20Þ

the solution of Eq. (A19) reads

GBAðt̃; sÞ ¼
C
A

��
1 − e−

B
2
t̃ cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
t̃

2

��
þ BC

A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p e−
B
2
t̃ sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4A − B2

p
t̃

2

��
; ðA21Þ

where t̃, A and B are defined below Eq. (A14). Finally, when t̃ > ΔtI , Eq. (A18) becomes G̈BA þ ω2
BGBA ¼ 0 whose

solution is

GBAðt̃; sÞ ¼
ĠBAðt̃ ¼ Δt−I ; sÞ

ωA
sinðωBðt̃ − ΔtIÞÞ þ GBAðt̃ ¼ Δt−I ; sÞ cosðωBðt̃ − ΔtIÞÞ: ðA22Þ

Then, GBAðt; sÞ ¼ 0 before the interaction, while during and after it, GBA follows Eqs. (A21) and (A22), respectively.
In case the two detectors travel inertially with respect to each other (as in Sec. VI B), for the elements of the dissipation

kernel we have χAAA ¼ χAAB ¼ 0 and χBBB and χBBA given by Eqs. (109) and (116). Using these, the homogenous Langevin
equation (A1) yields the following equations for the elements of the Green’s function matrix:

G̈AAðt; sÞ þ
ω2
A

γ2
GAAðt; sÞ ¼ 0; ðA23Þ

G̈ABðt; sÞ þ
ω2
A

γ2
GABðt; sÞ ¼ 0; ðA24Þ

G̈BAðt; sÞ þ
λ2B

32πmBðΔtBI Þ2
rect

�
t − dðt̄BI Þ − t̄BI

ΔtBI

�
ĠBAðt; sÞ þ

�
ω2
B −

λ2B
32πmBðΔtBI Þ2ϵ

rect

�
t − dðt̄BI Þ − t̄BI

ΔtBI

��
GBAðt; sÞ

¼ λAλB
4π2mBΔtBI

rect

�
t − dðt̄BI Þ − t̄BI

ΔtBI

�
dðt̄BI Þ

nϵðn2ϵ2 þ dðt̄BI Þ2Þ
GAAðtBI ; sÞ; ðA25Þ

while for GBB we have again Eq. (A7). On the rhs of Eq. (A25), we took ΔtI ≪ d to approximate dðtBI Þ ∼ dðt̄BI Þ, i.e., we
considered the distance dðtÞ to change by a negligible amount in support of λBðtÞ from Eq. (66).
Using the boundary conditions Gijðt → sþ; sÞ ¼ 0 and Ġijðt → sþ; sÞ ¼ δij, the solutions of Eqs. (A23) and (A24) are,

respectively,

GAAðt; sÞ ¼
γ

ωA
sin
�
ωA

γ
ðt − sÞ

�
; ðA26Þ

GABðt; sÞ ¼ 0: ðA27Þ

The Green’s function element GBAðt; sÞ is zero again at times s < t < dðtBI Þ þ t̄BI − ΔtBI =2. In the range
dðtBI Þ þ t̄BI − ΔtBI =2 < t < dðtBI Þ þ t̄BI þ ΔtBI =2 we have again Eq. (A21) considering t̃ ¼ t − ðdðtBI Þ þ t̄BI − ΔtBI =2Þ, where
C is replaced by

C0 ¼ λAλB
4π2mBΔtBI

dðt̄BI Þ
nϵðn2ϵ2 þ dðt̄BI Þ2Þ

GAAðtBI ; sÞ: ðA28Þ
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The equation for GBBðt; sÞ is the same as that computed for
static detectors, so that also the solution does not change.
That is, the solution for GBB before, during and after the
interaction is given respectively by Eqs. (A8), (A14),
and (A15).
In case Alice’s detector undergoes a Rindler acceleration

and Bob is static, as described in Fig. 3, the computation of
the Green’s function matrix is similar to the one performed
for inertially traveling detectors. This computation is
explained directly in the main text (see Sec. VI C).

APPENDIX B: δ-LIKE INTERACTION

In this appendix, we study the case where both Alice and
Bob interact with the field with a δ-like interaction.
Namely, λiðtiÞ ¼ λiδðti − tiIÞ. This protocol could be seen
as a limit case of the protocol studied in Sec. VI, obtained
by neglecting the uncertainty on Alice’s interaction time, so
that ΔtI ∼ 0.
In the literature this model often provides exact results

for the response function of the detector and for the
capacities of the communication channel between two
detectors [30,32,33]. However, we show here that, unless
we impose an infrared cutoff for the energy gap of Alice’s
detector ωA, the δ-like interaction potentially leads to a
violation of the no-cloning theorem. Hence, despite its

simplicity, this interaction model could be controversial
when studying the communication of bosonic states.
To show this,we consider the casewhere the twodetectors

are static. Taking a distance d between the two, we have
λAðtÞ ¼ λAδðt − tIÞ and λBðtÞ ¼ λBδðt − tI − dÞ. The dis-
sipation and noise kernel elements become [from Eqs. (26)
and (69) and considering Ref. [53] for the Lorentzian
smeared Wightman function]

χAAðt; sÞ ¼ χBBðt; sÞ ¼ χABðt; sÞ ¼ 0; ðB1Þ

χBAðt; sÞ ¼
λAλB
4π2

δðt − tI − dÞδðs − tIÞ
d

ϵðd2 þ ϵ2Þ ; ðB2Þ

νAAðt; sÞ ¼ λ2A
δðt − tIÞδðs − tIÞ

8π2ϵ2
; ðB3Þ

νBBðt; sÞ ¼ λ2B
δðt − tI − dÞδðs − tI − dÞ

8π2ϵ2
; ðB4Þ

νABðt; sÞ ¼ νBAðs; tÞ ¼
λAλB
16π2

δðt − tIÞδðs − tI − dÞ
ϵ2 þ d2

: ðB5Þ

Using Eqs. (B1) and (B2), the homogeneous quantum
Langevin equation (A2) results

8>>>>><
>>>>>:

G̈AAðt; sÞ þ ω2
AGAAðt; sÞ ¼ 0;

G̈BAðt; sÞ þ ω2
BGBAðt; sÞ ¼ λAλB

4π2mB

d
ϵðd2þϵ2Þ δðt − d − tIÞGAAðtI; sÞ;

G̈ABðt; sÞ þ ω2
AGABðt; sÞ ¼ 0;

G̈BBðt; sÞ þ ω2
BGBBðt; sÞ ¼ 0;

ðB6Þ

with boundary conditions Gijðt → sþ; sÞ ¼ 0 and Ġijðt → sþ; sÞ ¼ δij.

The solution for Gii with i ¼ A, B, following Eq. (B6), is

Giiðt; sÞ ¼
sinðωiðt − sÞÞ

ωi
: ðB7Þ

The solution for GBAðt; sÞ, following the second equation of the system (B6), is instead

GBAðt; sÞ ¼ θðt − d − tIÞ
sinðωBðt − d − tIÞÞ

ωB

λAλB
4π2mB

d
ϵðd2 þ ϵ2Þ

sinðωAðtI − sÞÞ
ωA

: ðB8Þ

The transmissivity of the channel τ could be immediately calculated through the determinant of the matrix T from
Eq. (38), as

τ ¼ θðt − d − tIÞ
mB

mA
ðĠ2

BA −GBAG̈BAÞ ¼ θðt − d − tIÞ
λ2Aλ

2
B

16π4mAmB

d2

ϵ2ðd2 þ ϵ2Þ2
sin2ðωAðtI − sÞÞ

ω2
A

: ðB9Þ

The latter is obviously 0 when t < tI þ d, since the detectors are not causally connected.
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Regarding the noise, we proceed to compute the matrix
(46) by supposing that Bob’s detector is prepared in its
ground state (91). The first term of the matrix N can be
easily computed using Eq. (B7). For the second term we
can compute N11, N12 and N22 from Eqs. (40)–(42).
Namely, using (B3)–(B5), we get

N11 ¼
λ2B

8π2ϵ2m2
Bω

2
B
sin2ðωBðt − tI − dÞÞ; ðB10Þ

N12 ¼
λ2B

8π2ϵ2mBωB
sinðωBðt− tI − dÞÞ cosðωBðt− tI − dÞÞ;

ðB11Þ

N22 ¼
λ2B
8π2ϵ

cos2ðωBðt − tI − dÞÞ: ðB12Þ

Then, the quantity W ≔ detN can be computed exactly as

W ¼ 1

4
þ λ2B
16π2ϵ2ωBmB

: ðB13Þ

The noise (B13) corresponds to the upper bound of the
noise (99) achieved in the protocol described in Sec. VI.
There are some caveats in the expression (B9) for the

transmissivity τ. In fact, Alice could decrease the energy
gap of her detector ωA arbitrarily so that the transmissivity
of the channel becomes, in the limit ωA → 0,

τ ∼
λ2Aλ

2
B

16π4mAmB

d2

ϵ2ðd2 þ ϵ2Þ2 ðtI − sÞ2: ðB14Þ

In this case, the transmissivity of the channel is propor-
tional to tI − s, i.e., the time Alice waits after the prepa-
ration of the state to interact with the field. This
proportionality is similar to the one we obtain in case
Alice is Rindler accelerated and Bob is static, as studied in
Sec. VI C. However, in that context, we showed how, in
Bob’s frame, Alice’s state changes from the time s to the
time tI , undergoing an amplification (see Sec. VI C 2).
Instead, here the evolution of Alice’s covariance matrix
from s to tI is provided by Eq. (93) whereNAA ¼ 0 and TAA
is given by Eq. (95). Therefore, we see that TAA is a
symplectic matrix, so that Alice’s substate evolves with a
unitary transformation from s to tI .
As a consequence, the fact that the transmissivity of the

protocol in the static case depends on tI − s is not expected,
because effectively Alice’s state does not change from the
time s to the time tI . Moreover, the expression (B14) for the
transmissivity would allow τ to be arbitrarily high by
increasing tI − s, eventually reaching a situation where the
quantum capacity becomes greater than zero. However, this

violates the no-cloning theorem, because of the isotropy of
the spacetime considered. As explained in detail in
Ref. [27], if Alice is able to communicate a quantum
message to Bob, Alice would be able to communicate a
copy of this quantummessage to every third detector whose
distance from Alice’s is d.
As we proved in Sec. VI A, all these problems are solved

if we consider the uncertainty principle on the time tI .
Indeed, the uncertainty on tI imposes a natural cutoff on
Alice’s energy gap so that ωA ≪ 1=d and the approxima-
tion leading to Eq. (B14) is prevented. Moreover, in this
case, the dependence of τ on tI − s disappears since tI
becomes as a random variable with uncertainty ∼1=ωA.
Concluding, this appendix shows that, despite its sim-

plicity, the δ-like interaction between field and detectors
should be taken with caution. Namely, this kind of
interaction could be considered as an approximating case
valid whenever the period of interaction is very small with
respect to the period of time needed for the detectors to be
causally connected (i.e., d in the static case). However, this
approximation should not overcome the physical limits
imposed by causality or by the uncertainty principle, to
prevent unphysical results.

APPENDIX C: ANALYSIS OF THE COMPLETE
POSITIVITY OF THE CHANNEL

In Sec. VI C 3, we studied the quantum capacity of the
protocol described in Fig. 3, when Alice undergoes a
Rindler acceleration and Bob is static. In this context, we
have seen how, if jsj > js⋆j, then the average number of
noisy particles (145) is negative. From the discussion at the
end of Sec. VA, this means that the map describing the
channel does not satisfy the complete positivity condition.
Thus, when jsj > js⋆j it is no more true that each Gaussian
input σin is mapped into a valid, observable Gaussian
output σout.
By going back to the general case in Sec. IV, looking at

the map (43) together with Eq. (37), there is no way to
guarantee that this map is always complete positive.
However, from Eq. (13) it is clear that the evolution of
the moment operator q̂i of the detectors (and of its
canonically conjugate p̂i) is linear. As a consequence, each
input Gaussian state is always mapped to an output
Gaussian state, so that the channel is always Gaussian.
Then, the eventual lack of complete positivity is not caused
by a disrupting of the Gaussian form of the output. Instead,
we show that this problem originates from the coordinate
transformation of Alice’s input state from Alice’s frame to
Bob’s frame, which is in general a non-CP map.
The map N described by Eq. (43) could be rewritten as

the composition between three different maps, namely N 1,
N 2 and N 3, where
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(i) N 1 maps the input state in Alice’s frame into the
input state in Bob’s frame, called σBAA. Namely,

N 1∶ σinðsÞ↦σBAAðsÞ¼diagð1; ṫAÞσinðsÞdiagð1; ṫAÞ:
ðC1Þ

(ii) N 2 represents the time evolution of Alice’s state in
Bob’s frame from s to tI, i.e.,

N 2∶ σBAAðsÞ ↦ σBAAðtIÞ: ðC2Þ

The evolution of Alice’s state specified in Eq. (93) is
the composite map N 2∘N 1∶ σin → TAAσinTT

AA.
(iii) The map N 3∶ σBAAðtIÞ ↦ σout maps Alice’s state in

Bob’s frame at the time tI to Bob’s state after a
defined time. This is the channel occurring when
Alice and Bob communicate.

Each one of these maps N i could be written as Eq. (43)
with matrices T i and Ni. Then, N i can be characterized by
the parameters τi ¼ det T i and W ¼ detNi. However, the
mapN is a valid one-mode Gaussian channel if, given their
τi andWi, the relative n̄ from Eq. (55), called n̄i, is positive.
In the protocols studied in Sec. VI, the map N 3 always
satisfy this property, because W3 ≥ 1=4 and τ3 ≪ 1. Then,
we have n̄3 ≥ 0 as long as τ3 ≤ 2.
However, for the maps N 1 and N 2, we have

W1 ¼ W2 ¼ 0, implying n̄1 ¼ n̄2 ¼ −1=2 and making
them noncomplete positive maps. The problems that
may arise in the complete channel N ¼ N 3∘N 2∘N 1 are
then caused by the applications of N 1 and N 2.
In particular, we now see that the main problem resides

in N 1 and we show that, by solving it, we automatically
remove the possibility to have n̄ < 0.
This analysis requires further tools on bosonic Gaussian

states that we are going to introduce now. Namely, the
covariance matrix representing a one-mode Gaussian state
is defined in Eq. (31) when i ¼ j. The canonical variables
q̂i and p̂i defining the covariance matrix σii must satisfy the
uncertainty principle, a consequence of the algebra
described in Eq. (19). Mathematically speaking, the covari-
ance matrix σii must satisfy

σii þ
1

2

�
0 i

−i 0

�
≥ 0: ðC3Þ

In general, following the commutation relation (19), a
covariance matrix σii representing a one-mode Gaussian
state can be written as

σii ¼
� 1

2
þ ni þRmi Imi

Imi
1
2
þ ni −Rmi

�
; ðC4Þ

where ni ≔ ha†i aii, i.e., the average number of particles in
the mode i, andmi ≔ haiaii. To satisfy Eq. (C3), one needs

jmij ≤ ni þ n2i . The entropy of the one-mode Gaussian
state represented by σii is given by hð ffiffiffiffiffiffiffiffiffiffiffiffi

det σii
p Þ, where h is

defined in Eq. (58). Since h is not defined when its
argument is less than 1=2, we have det σii ≥ 1=4. This
condition is equivalent to (C3).
Looking at the action of the channelN 1 from Eq. (C1), it

is clear that, starting with an input σin whose determinant is
greater than 1=4, the output of N 1 does not always satisfy
Eq. (C3). For example, starting with the unsqueezed
vacuum state σin ¼ 1

2
I, using Eq. (C1), we have

N 1

�
1

2
I

�
¼
 

1
2

0

0
ṫ2A
2

!
; ðC5Þ

whose determinant is ṫ2A
4
< 1

4
. In this case, the output of the

channel is not an observable state. In particular, the input of
the channel N 1 must satisfy certain conditions to have an
observable output. Namely, by applying the channel N 1 to
the general input state (C4), which we call σin, we need

detðN 1ðσinÞÞ ¼ ṫ2A

�
1

4
þ ni þ n2i − jmij2

�
≥
1

4
: ðC6Þ

A generic covariance matrix σin satisfying the condition
(C6) can be decomposed as σin ¼ σ0in þ N0, where σ0in
could be a whatever one-mode Gaussian state and N0 is a
matrix whose determinant, to ensure that Eq. (C6) is
satisfied, must be

ffiffiffiffiffiffiffiffiffiffiffiffi
detN0

p
≥
1

2

�
1

ṫA
− 1

�
: ðC7Þ

At this point, the channelN 1 can be considered a complete
positive one-mode Gaussian channel where the input is σ0in
and the matrix N0 plays the role of an additive noise,
namely

N 1ðσinÞ ¼ diagð1; ṫAÞσ0indiagð1; ṫAÞ
þ diagð1; ṫAÞN0diagð1; ṫAÞ: ðC8Þ

By reducing the channel (C8) to its canonical form (see
Sec. VA), we now have a transmissivity τ1 ¼ ṫA and a noise
W1 ¼ ṫ2A detðN0Þ. Taking the minimum detN0 possible,
from Eq. (C7), we have W0 ¼ 1

4
ð1 − ṫAÞ2, producing a

number of noisy particles n̄1 ¼ 0. Then, if we apply the
channelN 2 to the rhs of Eq. (C8), we end up again with an
output with a null number of noisy particles. SinceN 3 was
always recognized as a one-mode Gaussian channel, we
can conclude that the lack of complete positiveness of the
channel N is due by the channel N 1. Hence, by ensuring
N 1 is complete positive by taking input states satisfying
Eq. (C6), the channel N is always complete positive
as well.
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