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A communication protocol with nonzero quantum capacity is found when the two communicating parts
are particle detector models in (3 + 1)-dimensional spacetime. In particular, as detectors, we consider two
harmonic oscillators interacting with a scalar field, whose evolution is generalized for whatever
background spacetime and whatever spacetime smearing of the detectors. We then specialize to Minkowski
spacetime and an initial Minkowski vacuum, considering a rapid interaction between the field and the two
detectors, studying the case where the receiver is static and the sender is moving. The possibility to have a
quantum capacity greater than zero stems from a relative acceleration between the detectors. Indeed, no
reliable quantum communication is possible when the two detectors are static or moving inertially with
respect to each other, but a reliable quantum communication can be achieved between a uniformly

accelerated sender and an inertial receiver.
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I. INTRODUCTION

An intriguing intersection between two pillars of modern
physics, i.e., quantum mechanics and Einstein’s theory of
relativity, is provided by the theory of “relativistic quantum
information” (RQI) [1]. Each quantum communication
protocol relies on a composite quantum system wherein
its components exchange information via a quantum channel
[2]. However, when a quantum system is subjected to
relativistic effects, such as high velocities or strong gravi-
tational fields, significant modifications of it are expected
[3]. For this reason, the study of RQI becomes indispensable
as we contemplate the extension of quantum communication
and computation protocols to relativistic regimes, especially
in the context of space-based quantum technologies [4,5]
and relativistic quantum cryptography [6].
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Notable effects of the spacetime curvature could be seen
in the context of quantum field theory. In fact, the framework
known as “quantum field theory in curved spacetimes” [7,8]
predicts a nonunique definition of the particle number
operator, meaning that the amount of particles measured
by observers in different frames could be different. This
effect occurs, in particular, when observers undergo a
noninertial motion [9,10] or lie in a spacetime with a horizon
or a time-dependent gravitational field [11,12]. Because of
this mismatch of measured particles, the communication
capabilities of quantum channels were recently proven to
decrease in these contexts [13,14].

The concept of particles produced has no meaning with-
out a second quantum system measuring the presence of
those particles. To this aim, “Unruh-DeWitt detectors” (or
“particle detector models”) play a pivotal role on under-
standing the physics of particle production in gravitational
contexts [10,15,16]. In general, they consist on a localized
quantum system interacting with an observable of the field.
The detection of a particle by an Unruh-DeWitt detector is
related to the transition between its ground state to a
whatever excited state. For example, if uniformly linearly
accelerated, the probability of transition has a thermal
probability distribution, proving that the particles produced
by the Unruh effect can be effectively detected [15,17].

Published by the American Physical Society
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Applications of particle detectors go beyond the thermal
acceleration, giving insights on the nature of quantum fields
in several spacetime contexts, such as cosmological expan-
sions [18,19] and black holes [20-22].

In this context, an outstanding result is that the vacuum
of a quantum field presents an entanglement between
spacelike separated points, which can be harvested by
moving particle detectors [23-25]. Because of this, one can
exploit the classical and quantum correlations of the field
state to communicate messages. Hence, recent studies have
developed communication protocols between two distant
particle detectors interacting with a mediator field [26-28].
These schemes can exploit qubit systems [26] (with two-
level detectors) or bosonic systems (with harmonic oscil-
lator detectors) [28,29].

The prominent problem, when dealing with the inter-
action between the field and the particle detectors, is the
lack of exact solutions for the evolution of the system
beyond perturbative regime. In fact, when studying the
probability of transition of the detectors—since relativistic
effects on quantum systems are expected to be perturba-
tions of them—in a communication context a perturbative
regime implies a negligible amount of signal communi-
cated [30]. In case of communication of qubits, with two-
level particle detectors, this limit can be overcome by using
the algebraic approach for quantum field theory [31,32]. In
case we communicate bosons—with harmonic oscillator
detectors—it was shown that the evolution of the covari-
ance matrix always allows a nonperturbative approach for
the evolution of the system [29]. In particular, Ref. [28]
considers the Heisenberg evolution of the detectors’
moment operator, following a quantum Langevin equation.
With this method, the quantum channel properties can be
found exactly also in the strong coupling regime.

Motivated by this fact, in this paper we study the
Heisenberg evolution for two harmonic oscillator detectors
interacting with a scalar field in a general (34 1)D
spacetime. In particular, the protocol in Ref. [28] is
generalized for whatever detectors’ smearings and trajec-
tories. The aim is to find a particular protocol allowing a
reliable communication of quantum messages, i.e., a
quantum capacity of the channel greater than zero.
Indeed, for a channel involving communicating particle
detectors in a (3+ 1)D spacetime, while a classical
capacity greater than zero is easily obtainable (see, e.g.,
Refs. [28,32]), a quantum capacity greater than zero was
never obtained so far—unless one considers entanglement
assistance [31,33], detectors operating in bounded regions
of space [27] or detectors interacting with a finite number
of modes of the field [34,35].

For this reason, we wonder if a reliable communication
of quantum messages in an open (3 + 1)D spacetime is
even possible or if there is some limit preventing this kind
of communication. Reference [27] pointed out the role of
the no-cloning theorem. The theorem proves that quantum

states cannot be “cloned” without errors, meaning that a
quantum message cannot be sent reliably to two different
receivers. Then, if the sender’s detector interacts with the
field in each direction, in an isotropic spacetime, there is
potentially more than one receiver achieving the same input
message. The input message is then cloned and the no-
cloning theorem violated. Henceforth, this theorem should
prevent a quantum capacity greater than zero in each
isotropic spacetime. As a consequence, in case of a
(3 + 1)D spacetime, a quantum capacity greater than zero
is expected to occur in very anisotropic situations. This
could be reached when the two detectors move at relativ-
istic speeds with respect to each other.

Then, to explore this possibility, we consider three
different situations with the detectors in a Minkowski
background spacetime: (1) the detectors are static; (2) the
detectors move inertially with respect to each other; (3) the
sender’s detector is Rindler accelerated and the receiver is
static. In case both the detectors are static, because the
situation is fully isotropic, the no-cloning theorem should
prevent any reliable quantum communication. The same
reasoning does not apply for inertial detectors. However, we
show that, in case the detectors travel inertially, not only the
quantum capacity is still zero, but also the classical capacity
is expected to decrease. Finally, in the third case, where the
sender is Rindler accelerated, we prove that the quantum
capacity can be greater than zero. In particular, this is
possible if the sender, after preparing the state, waits enough
time before sending it to the receiver. This is due to the fact
that, from the receiver’s perspective, the state to be com-
municated gets amplified more and more during the time the
sender waits. This amplification could overcome physical
limits given by the uncertainty principle that the sender
would have in the static case.

The paper is structured as follows. In Sec. II we specify
the Hamiltonian of the system, keeping an eye on the
prescriptions needed in case the two detectors are not static
with respect to each other. In Sec. III, we study the
Heisenberg evolution of the detectors’ moment operator.
In Sec. IV we build a general communication protocol
using the aforementioned Heisenberg evolution, describing
the state of each detector as a one-mode Gaussian state and
the system of the two detectors as a two-mode Gaussian
state. In Sec. V we recognize the channel arising from the
general protocol as a one-mode Gaussian channel. The
properties and quantum capacity of this class of channels
are defined and discussed. In Sec. VI we consider a rapid
interaction between field and detectors. The properties of
the channel are studied when the two detectors are static
Sec. VI A, inertially moving Sec. VI B and when the sender
is Rindler accelerated Sec. VIC. The results and the
possible perspectives for future works are discussed in
Sec. VIL

Throughout this paper, we work in natural units
h=c=1.
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II. HAMILTONIAN OF THE SYSTEM

We consider two nonrelativistic quantum systems,
labeled with A and B, whose Hamiltonian, in their proper
frame, is that of a 1D quantum harmonic oscillator, i.e.,

o 1
Hi_wi<ajai+§>v (1)

where w), is the frequency of the oscillator i = A, B. Each of
these harmonic oscillators travel with a general trajectory in
a (3 4 1)D spacetime. These oscillators can be thought as
an infinite level Unruh-DeWitt detector whose energy gap
is w; [29].

The detectors interact with a massless scalar field,
namely

(ake—f<kf—ik~x> + Hc> 2)

" &Ik
=T

The interaction between the detector i = A, B and the field
can be modeled via the Hamiltonian density

ili.cb = fi(x.0)q;(1) ® D(x.1), (3)

where the moment operator g; is chosen to be the position
operator of the 1D quantum harmonic oscillator, i.e.,

1
b, — f . 4
=] + ;). @

where m; is the mass of the oscillator i. The function
fi(x,1) in Eq. (3) is the spacetime smearing function of the
detector i. In other words, f; indicates how the field-
detector interaction is distributed in space and time.
Usually, in the detector proper frame f;(x,¢) is defined
as the product between
(i) a space-dependent function f;(x), indicating the
position of the detector in space and its “shape”
around its center of mass; and
(ii) atime-dependent function 4;(#) called the “switching-
in function,” indicating how the field-detector inter-
action is turned on and off in time.
Considering the interaction of the field with both the
detectors A and B, the complete interaction Hamiltonian
density is given by

hy = (fada + f5as) ® ®. (5)

The operator /; from Eq. (5) is a scalar and then it is
independent from the coordinates chosen [36,37]. The
Heisenberg evolution of the system, however, depends
on the Hamiltonian of the detector (1) and on the interaction
Hamiltonian A, obtained by integrating Eq. (5) in space.
Then, H, is observer dependent and so is the Heisenberg

evolution of the involved operators. To study the evolution
of the system, we need to define the observer’s frame and
its coordinates.

To account for the most general case, we consider the
two detectors lying in a general background spacetime and
following general trajectories. Each detector i has a proper
observer positioned at the center of mass of the detector i.
Since each detector is represented by a nonrelativistic
quantum system, the coordinates used by each observer
should be locally nonrelativistic. For this reason, we
consider the proper observer comoving with the detector
i to use the Fermi-normal coordinates associated with their
trajectory. Namely, these coordinates could be written as
(t;, x;, vi» 2i), where ¢; is the proper time of the observer,
and the space coordinates (x;, y;, z;) are defined such that
the basis generating them is made by vectors always
orthogonal to the proper velocity of the detector i (see
Refs. [36,38], for further details). Moreover, since we work
with detectors having a spatial extension, the Fermi-normal
coordinates must be well defined along the detectors’
shape, to be considered as nonrelativistic quantum systems.
This is true in general only if the detector is small enough,
as shown in Ref. [39].

The interaction Hamiltonian A ;, for an observer i
working in the Fermi-normal coordinates #;, X;, is obtained
through the integration of Eq. (5) in dx;, i.e.,

I:I}'(t,-):é Zfj(ti’xi)é\]j(ti)®(i)(tivxi) —gi(t;,X;)dx;,
f,'j=A,B
(6)

where ¢g; is the determinant of the metric tensor of the
spacetime where i lies and %, is the Cauchy surface
t; = const. For simplicity, we define the “smeared field
operator” as

pilt) = / g )00 1)y =510 (1)

so that the interaction Hamiltonian for the observer i = A,
B can be written as

Hi(1;) = qa(t;) @ @'y (t;) + ap(t;) ® Pis(1;).  (8)

Notice that, when we write the smeared field operator @2,
the label a refers to the smearing function used, while the
label b refers to the observer performing the integration.

III. QUANTUM LANGEVIN EQUATION

We want to study the Heisenberg evolution of the
operators g, and gg. The evolution of g, is governed
by the sum of the Hamiltonian of the harmonic oscillator A,
given by Eq. (1) with i = A and the interaction Hamiltonian
given by Eq. (8) with i = A. At this point, we can follow
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the same procedure done in Ref. [28], recognizing the
interaction Hamiltonian (8) as the one occurring in the
Caldeira-Leggett model for the quantum Brownian motion,
when the smeared field plays the role of an Ohmic
environment [40,41]. The Heisenberg evolution of the
moment operator ¢, is then determined by the following
quantum Langevin equation:

2
my S qa(ta) + mawiqs
(dty)?

/ )(A, (tas54)q;(54)dsa = @A(ta), (9)

Jj=AB

where we defined the “dissipation kernel”

s:) (@i (1), @(s)]|®).  (10)

for i, j = A, B and denoted with |®) the initial state of the
scalar field. If the two detectors are not causally correlated,
then the commutators between the field operators with
i # j vanish and so do the off-diagonal elements of the
dissipation kernel (10).

Analogously, for the moment operator of the oscillator B
we have

2t s;) = i0(1; —

d> _ix d 2 t
i ha TheR 0 (qA) [ nlartel 0
0 dd—%+w§ g/ J-w 0

where we multiplied Eq. (12) by m;'#%(¢3) and Eq. (11) by
m B‘. If the detectors are not causally correlated, i.e.,
24g = x5, =0, then the off-diagonal terms of Eq. (13)
disappear and the evolution of g, becomes completely
independent from gz and viceversa.

We now define the Green’s function matrix

Gaa(tg,sp) Gagp

G(t s =
(5. 55) (GBA(IB’SB) Gpp

)

(tB’ SB)

solution of the homogeneous form of the Langevin equa-
tion (13), which is reported in Eq. (Al) of Appendix A.
Imposing the causality condition G(7 < s) = 0, the Green’s
function matrix follows the boundary conditions G(z =
s,5) =0 and G(t - s*,s5) =L

Then, the evolution of the operators g; from a time sz to
a time 75 can be expressed through the Green’s function
matrix as

(ZﬁAanSB) XaB
L) \xpa(ts.58) X535

d2
( )2 qp(tg) + mpogqg

Z / X5i(ts58)q;(s5)dsp = @p(tp).  (11)

The aim is to solve the two coupled differential equa-
tions (9) and (11). In the communication protocol we have
in mind, the detector A wants to communicate its state to
the detector B. For this reason, we need to calculate the
coupled Langevin equations in the proper coordinates of
the detector B, i.e., t5. Then Eq. (9), in terms of ¢, becomes

1 iy
MAy Ga—my=3qa +mawiqa
Ly 4

/m,(rg,sB)qst)rA<s3>ds3—qu(zB) (12)

where we denoted with the upper dot the derivative with
respect to 7g. Finally, we can write Eqgs. (11) and (12)
together in the following compact form:

(t5)¢4 (15)
) (o= ()

(i) = St (G ) +stmsm (o)
+ [ St ) (A7) i,
(15)

where, for simplicity, we defined the matrix M :=
diag(my, my) and the matrix F(¢) := diag(#4(z), 1).

IV. COMMUNICATION PROTOCOL

Tracing away the field, the system made by two
harmonic oscillators can be seen as a two-mode bosonic
system. Within multimode bosonic systems, Gaussian
states have a pivotal importance both in quantum optics
and in quantum information theory [42]. Motivated by this
fact, we consider the system of the two detectors to be
initially in a “two-mode bosonic Gaussian state.” The
properties of these states are defined by two elements:
the “covariance matrix”
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c c
o ( 99 qp>’ (16)
Opq Opp

where, for a,f = ¢, p, we have

. _1<<{aA,ﬁA}>—z<aA><ﬁA> <{aA,ﬁB}>—2<aA><BB>>
"2\ a B D) -2 Ba) (s Bsh) ~20an) (B) )

(17)
and the “first momentum vector”
(qa)
d— <?B> (18)
<PA>
(PB)

The operator p; is canonically conjugate to g;, so that

If g,

= \/zlm—,»wi(aj +a;), then p; = i\/"2%(a} - a;) from
Eq. (19). Moreover, by applying the Heisenberg evolution
to the operator g;, one obtains %?]i = p;/m;. Since the
evolution of the system is compuied in Bob’s frame, we
have p, = mAiz% = muyqa/t,. At this point, Eq. (15) can
be rewritten in terms of the value of the operators p; at the
initial time sp, i.e.,

(fne) = ((210))
+ G(tp. s5)M " F(sp (”A SB))

PB SB)
A
2(”3 )drg,
5(rp)

I
+/ G(tg, rg)M™ 1[,:2(,,3)((”
sp @
(20)
where F and M are defined at the end of Sec. III. By
applying a time derivative to Eq. (20) and multiplying it
from the left by F~!(z5)M, we can write the evolved

(9 ] = i6y). (19) operators p; as
|
(i) =t (150 ) + -ttt v (110
+ /t [F‘l(tB)MG(tB,rB)M‘l[F(rB)2<zé(:Z;)drB. (21)

The first momentum vector (18) does not affect the entropy-related quantities of a Gaussian state. Being interested in
them in the following, we can consider d = 0 without loss of generality. Finally, using Eqgs. (20) and (21), we can write the
evolution of the covariance matrix (16) from a time sp to a time #g. Setting, for simplicity, ¢ := fz and s := sp, we have
= G(t, 8§)0,44(s $)GT (1, 5) + G(1, s)o,

»($)F()MTIGT (2, 5) + G(t, s )M™'F(s)0,,(5)G" (2. 5)

+ G(t,s)M™'F(s)o,,(s)F(s)M™'G" (¢, 5) / / (t, Y"M™'F2(r)u(r, 7 )P (F)M-IGT (¢, ¥ )drdr;  (22)

qu(l)

=G(1,5)0,,(s)G (1.5 MF~ (1) + G(1,5)a,

opp(8)F(s)M

»($)MIF(s)GT (1,5)F~H ()M +G(t,5)M~'F(s)o
// (t. )M (r)u(r, V)P ()M~ GT (¢, 7 )MF~ (¢)drdr;

(23)

o4p(1) g ()G (£.5)MF~ (1)

+6G(t,s)MF(s) MG (2,s)MF~!(
0,pq(1) = 0b,(1); (24)

(s)F(s)M~'GT (¢,0)MF~'(¢)
op (S)F(s)M™
1G(t, ¥ )MF~(t)drdr (25)

6,,(1) = F1(1)MG(1, 5)
+ F1()MG(t, s)M~'F(s)o

g

where we defined the noise kernel

0,44(5)G" (1, s)MF~! (1) + F~' (1)MG(1, 5)o,,

g (9)G7 (£, 5)MF1 (1) + F~H (1 )MG(1, s)M~'F(s)o 1GT (¢, s)MF~'(¢)

HMG(z, r)M™'F2(r)u(r, ¥/ )F2 (r' )M~
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oty (AAOAON UoAO A -
(oAb ) (ob.ob0)) )

Equations (22)—(25) could be rewritten in the following compact form:

1

o(t) = To(s)TT + N, (27)
where
G(t, s G(t, s\ M~ F(s
T= - ( ) | - ( ) (_1) , (28)
(OMG(r.5) | F~'()MG(z, sM~"F(s)
and
Ji f’G t, r)M'E2 (r)u(r, PP (X )MLGT (¢, ¥ )drdr ‘ J! ]"G t, M P2 (F)u(r, 7P (F)M™IGT (¢, ¥ YMF- (¢)drdr’
N= <f’ JIFHOMG(t, )MIF2 (r)oT (r, 7 )P (P )M G (2, ) drdr’ ‘ S JTEHOMG(t, )M (r)u(r, PP (P )M G (1, r’)M[F‘l(l)drdr’) (29)

The communication protocol consists of Alice sending here E. — di mew?
information about her detector’s state to Bob. In other " cr¢ =i = C1ag " \/2m;

words, we now define a “quantum channel”—in general, a  ; from the conservation of the action the energy (E;)

map whose input and output are quantum states—whose g Eq. (32) is multiplied by a factor . Hence, in Bob’s
input is the state of Alice’s detector at a time s and the

output is the state of Bob’s detector at a time ¢ (the
properties of this channel are studied in Sec. V).
Namely, we wonder how much information about
Alice’s state at the time s is achievable from Bob’s state

> . For an external observer

frame, Alice’s detector carries an energy th(Ey) =
iATr(EpopaEa)-

To obtain the covariance matrix in the form given by
Eq. (30), one can apply to the covariance matrix (16) the

at the time 7. To perform this study, it is convenient to permutation
rewrite the covariance matrix (16) in the form
1 0 0O
o o 00 10
c= < A A > (30) P = , (33)
0BA oBB 01 0 0
00 0 1

where, for i, j = A, B,

L/ Uanay Qan b)) which exchanges the second and third rows and columns of
6, == ( 9i-4; 4i- P ) . (31)  the matrix (16). Since PP =1, Eq. (27) still holds by
({pi-q 1}> ({piPi}) applying the same transformation P to the matrices T and N

of Egs. (28) and (29), respectively. In this way, we can
The state of Alice detector is represented by the one-mode write

Gaussian state o044. Analogously, opp is the one-
mode Gaussian state representing Bob’s detector. The off- T T
diagonal term o,p = GEA expresses the correlations T := PTP = (L—AB>; (34)
between the two oscillators. If we suppose the two detectors BA Tpp

to be initially uncorrelated, we need oc,5(s) =0. The
expectation value of the energy of the oscillator i, whose
state is represented by o;;, depends on the observer. If the N = PNP — (Mﬂ) . (35)
observer is moving alongside the oscillator, then Npga Npgp

(E;) = Tr(E;oiE)), (32) Then, Eq. (27) can be rewritten as
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oan(t) | oap(t)
( )

opa(t) ‘ opp(1)
B <TAA | TAB) <0AA(S) | UAB(S)>
Tpa ’ Tpp opa(S) ‘ opp(s)
T? TL Ny N

x( A | ﬁ“)+< - AB). (36)

Thp ‘ T'pp Npa ‘ Npp
The input state of the channel is Alice’s detector state at the
time s, namely o}, = 044 (s). The output state is the state of
the detector B at a time ¢, namely 6., = o55(t). The latter,

using Eq. (36) and 6,45(s) = 6p4(s) = 0, can be written in
terms of the former as

t t
Ny, = m? / / B (M) Gt Dwan(r. ¥)Ga (2. 7 )drdr + m3!

o55(1) = Tpaoaa(s)Ths + Tppops(s)Ths + Npg.  (37)

where, using Eqgs. (28) and (29) alongside Eqgs. (34) and
(35), we can find

Gpa(t,s)

GBA(tv S) iljpzj)
Tpa= | .
Gpa(t,s)mg

_ ) ;o (38)
Gal(t, S)’"B%)

Gpp(t, s)mg"\
)), (39)

GBB(t7S

- < Gpp(t,s)
Tgp=1| ..
Gpp(t,s)mp

_ (Nu N :
and NBB = <Ni; NZ), with

t t
mEl//i/za(”/)GBB(f,’”)’/BA(V,FI)GBA(IJ”/M’”d”/

+ my'my // 12(r)Gpa(t, r)uag(r, ) Gyp(t, ¥ )drdr + my //GBB (t,r)vgg(r,r)Ggg(t, r)drdr, (40)

1 t . t t .
Ny, = my’mg /'ti(r)if\(r’)GBA(t,r)I/AA(r,r’)GBA(t,r’)drdr’er;l/ / (Y )Gpp(t, r)vga(r, ¥ )Gpy(t, ¥ )drdr

Noyp=my ms/
—G—lemB/

V. ONE-MODE GAUSSIAN CHANNELS

of [
[
[

A quantum channel transforming each one-mode
Gaussian state o;, into another one-mode Gaussian state
ooyt 18 called a “one-mode Gaussian channel” [43]. In
general, a one-mode Gaussian channel A" acts on the input
o;, through the following map:

Nicy = 65y = Toy, TT +N. (43)

To ensure the complete positiveness of the channel, the
following condition should be satisfied:

1
detN 25(1 —detT). (44)

Comparing Eq. (37) with Eq. (43), since oy, = o44(s)
and 6, = op(t), we can recognize the channel defined in
the communication protocol in Sec. IV as a one-mode
Gaussian channel characterized by the matrices

r)Gpa(t, Pvag(r, ') Ggg(t, r')drdr + mj / / Ggp(t, r)vgg(r, r')Ggg(t, r)drdr'; (41)

tA GBA(I F)uga(r, r)GBA(t r)drdr’ +my mB/ / tA GBB(t r)vga(r, r)GBA(t rdrdr

r)GBA(t, rap(r,r')Gpp(t, r’)drdr/—l—/ / GBB(t, rvgg(r, r’)GBB(t, rdrdr’ . (42)
[
N = Tggopp(s)Thp + Npp. (46)

The matrices T and N therefore characterize the capacities
of the channel N. Moreover, for one-mode Gaussian
channels, it is conjectured that the one-mode Gaussian
states are the ones preserving more classical and quantum
information under the application of a quantum channel
[44,45]. Following this conjecture, to calculate the
capacities of a channel, one can consider exclusively
Gaussian states as inputs of the channel without loss of
generality.

A. Canonical form

To evaluate the capacity of the channel N, we need to
reduce it to its “canonical form” [43]. First of all, we apply
a unitary transformation U;, on the input Gaussian state,
whose density matrix is p;,, and another unitary trans-
formation U, on the output Gaussian state, whose density
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matrix is poy. U, and Uy, are called “preprocessing” and
“postprocessing” transformations, respectively. Let be p;,
and p,,, represented by the covariance matrices o;, and o,
respectively. Then, a unitary transformation acting on a
density matrix corresponds to a symplectic transformation
acting on a covariance matrix, so that the action of U;, on
Pin (respectively, the action of U, on p,,) corresponds to
the action of a symplectic transformation S;, on o;, (S, On
Oou)- Since the pre- and postprocessing transformations are
unitaries, the properties of the channel A" are invariant up to
their application. The mapping (43) can be rewritten as

UoyoNoUy,: oy = T,.04,TE +N,, (47)

where
Te = Sin UStus (48)
N, = SoutNS(J;ut' (49)

It is possible to choose S, and Sy, so that' T, = /||l and
N, = v/WI. Calling the elements of T and N as T;; == {T},;
and N;; :== {N},;, where i, j = 1, 2, the preprocessing S,
and the postprocessing S, reducing the channel to its

canonical form are
NiuTyn—-NpTy,
JW v Tia (50)
NipT\ =Ny Ty T ’
/ 11

\/N11|T| W

Y 1 0
Sout = A‘;V <_N12 N“)- (51)
Vvl VW W

Sin =

From Eq. (47), we can finally write the output o, in terms
of the input o;, as

Sout = [7[oin + VWL (52)

From Egs. (48) and (49), by applying the determinant on
both sides, we have

7=detT; (53)
W = detN. (54)

The meaning of the parameters 7 and W can be easily
understood from Eq. (52). Namely, z, called “transmissiv-
ity” of the channel, indicates the fraction of input signal
which is present in the output. The parameter W refers to

Tn some particular cases, the matrices T and N cannot be
reduced in this form. Instead, they reduces analogously to rank
one matrices. However, this occurs in very singular cases, so that
this possibility is not taken into account in this work.

the amount of signal achieved by Bob which is not present
into Alice’s input. This is associated with the “additive
noise” achieved by Bob. In particular, with W and z, one
can evaluate the average number of noisy particles 7 that
Bob achieves, as

WL r ]
i = { = 2 7 (55)
VW otherwise.

The complete positiveness condition (44) reduces to i1 > 0.

B. Capacities

We now study the quality of the communication of a
generic channel characterized by generic values of z and W.
The perfect quantum channel occurs when 7 =1 and
n = 0. The further we go from this ideal situation, the
worse would be the quality of the communication through
the channel.

The quantification of this “quality” is well provided by
the capacities of a quantum channel. In particular, the
“classical capacity” (“quantum capacity”) of the quantum
channel A/ quantifies the quality of the communication of
classical messages (quantum messages) under the channel
N. By using the formal definition, the classical capacity
(quantum capacity) of a quantum channel A is the
maximum rate of classical information (quantum informa-
tion) that the channel N can transmit reliably. In other
words, if the capacity of a channel is zero, then the channel
cannot transmit information reliably. Instead, as long as the
capacity of a channel is positive, information can be
transmitted with an arbitrarily low amount of error.
However, the less the magnitude of the capacity, the more
the uses of the quantum channel are needed to transmit
information reliably—in practice, a lower capacity requires
more time for a reliable communication.

The possibility of a reliable communication of classical
messages with harmonic oscillator detectors is guaranteed
by the fact that we are using bosonic channels. For such
channels, the classical capacity is always greater than zero
and can be arbitrarily high by increasing the energy of the
channel input [46,47]. Moreover, for static detectors always
interacting with the field after the switching-in, the classical
capacity was extensively studied in Ref. [28]. For this
reason, in this paper we focus more on the possibility of
transmitting quantum messages reliably, by studying the
quantum capacity within the protocol described in Sec. IV.

Then, we try to evaluate the quantum capacity Q of the
channel V, characterized by the parameters = and W. This
task is still an open problem if we consider several uses of
the quantum channel. Indeed, in this case, different inputs
of the channel uses could be entangled and this fact
drastically complicates the evaluation (see Refs. [48,49]
for more details). However, the problem simplifies if we
consider input states separable over each channel use.
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In this case, we evaluate the so-called ‘single-letter
quantum capacity” Q). In general, Q)(N) < Q(N),
so that Q1) > 0 is sufficient to prove that a reliable
quantum communication is possible.

It is (see, e.g., [2])

OD(N) = max {0,1,(N)}, (56)

where /. is the “maximized coherent information,” i.e., the
coherent information of the channel A/ maximized over
all the possible inputs. The latter, for a one-mode Gaussian
channel characterized by the parameters z and 7,
results [50,51]

1.(z,W) = 6(z) log 1 zﬂ - h<%+ n> (57)

where log denotes base 2 logarithm and 4:(1/2, +00) —
R, is the function

o () e () - (-2t (5-2).
(58)

From Eq. (56) we have that Q") > 0if I, is positive. Since
h is definite positive, from Eq. (57), a necessary condition
to have I. >0 is that 7 > 1/2. This is obviously a
consequence of the no-cloning theorem [52].

VI. IMPLEMENTING THE COMMUNICATION
PROTOCOL IN DIFFERENT SCENARIOS

The features and properties of the communication
channel built with a pair of harmonic oscillators, interacting
with a field, were established in Secs. III and IV. Now, we
focus on a more specific protocol, defining a particular
spacetime smearing for the detectors which is convenient to
calculate the quantum capacity of the channel explicitly and
to compare the results with the literature.

We take the detectors to travel on prescribed trajectories
in Minkowski spacetime. Before specifying the trajectories,
we define the spacetime smearing of the detectors. As
mentioned in Sec. II, in the detectors’ proper frame, the
smearing function f; is usually factorized into a space-
dependent function f;, giving the shape of the detector—in
other words, its spatial distribution—and a time-dependent
function A; giving the switching-in function. Hence, by
calling (¢;,x;) the proper coordinates of the observer
comoving with the detector i, we have

filxi 1) = Li(1) Fa(xy). (59)

A finite size for the detector i, given by the function f;(x;),
provides an ultraviolet cutoff for the modes of the field
interacting with the detector. In particular, from Ref. [53], a

shape of the detector i following a Lorentzian distribution
with effective size e gives an exponential cutoff for the
modes of the field e~¥. This cutoff is convenient since it
usually allows analytical solutions for the correlation
function.

Motivated by this fact, for both the detectors, we
consider a Lorentzian shape

fi(x;) :lz <

——- 60

T (Xi - X; + 62)2 ( )
Since ¢! represents an ultraviolet cutoff for the energies of
the modes the detector interacts with, the energy of the
detector itself—computed through an average (E;) from
Eq. (32)—must satisfy

e(E;) < 1. (61)

Since the minimum energy of the oscillator i occurs in its
ground state, where (E;) = w;/2, a necessary condition to
satisfy Eq. (61) is

ew; < 1. (62)

We mostly use the proper coordinates of the receiver Bob.
Then, for the sake of simplicity, we write (,X) = (g, Xp)
from now on. The distance between Bob’s detector and
Alice’s detector, measured in Bob’s frame, is indicated
with the function d(z). Since the Lorentzian smearing
function (60) does not have compact support, to assume
the two detectors uncorrelated when Alice prepares the
state [i.e., o45(s) = 0], we need the two detectors to be far
from each other at the time s, i.e., we assume d(s) > .
Moreover, we assume d(t) > ¢ for any time ¢ to ensure that
the communication between the detectors occurs only
because of the interaction with the field—not because
the two detectors “touch” each other at a certain time.

Regarding the switching-in function, we resort to a rapid
interaction between field and detector [30,32,33]. Namely,
we consider Alice’s detector to interact with the field only
at a certain time #7, so that

Aa(ta) = 24614 — 17). (63)

However, we must consider an uncertainty on t? to take
into account the Heisenberg principle.2 To do that, we
consider 74 as a random variable in a uniform probability

. . -l At? =1 At‘;‘
distribution from the values 7, — =" to the values 7, + =",
where 7/ is the central value of the uniform distribution (or

the mean of #4') and A#} is the range of values that 7/ may
assume. The standard deviation of the distribution is

’In Appendix B we show that, if we violate the Heisenberg
principle, then also the no-cloning theorem would be violated.
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A} /+/12. Then, since the minimum possible energy of

Alice’s detector, before the interaction, is w,/2, the
uncertainty principle implies
V12
At} > —. (64)
Wy

To simplify later calculations, we make the choice
At} = 2z respecting the condition (64). Notice that the

Wy’
condition (62) implies € < A#4.

Supposing that Alice and Bob have shared classical
information before the protocol, Bob knows that Alice
wants to send her message at the time 7;'. However, Bob has
no way to predict the outcome of the random variable /.
For this reason, in order to be sure to receive Alice’s
message, Bob should interact with the field in a finite time
window of width A¢% including all the possible values of
#}. Bob’s window should be centered around the time
% +d(i?), where 1% = ;' (7}) and large A® > Ar}. In
particular, from Bob’s perspective, Alice’s minimum
energy during the interaction is multiplied by a factor
t4(%) < 1. For this reason, Bob’s interaction with the field
should last for at least

At}
in(f)

where the upper dot, as in Sec. III, refers to the first
derivative with respect to Bob’s proper time f. Since
A% > Arf, we have € < Arf—this condition is used to
perform some approximations to compute the Green’s
function matrix elements in Appendix A. The switching-
in function of Alice is then given by Eq. (63), while Bob’s

Af = (65)

reads
1 t—18 —d(i)
Ag(t) =2 t|—L 17, 66
o) =t gprece ()
where we used the function
1 if |2x] < 1,
rect(x) = . (67)
0 if [2x] > 1.

At this Pomt to have a rapid interaction protocol, we must
impose
A8 /d(1B) < 1 = d(1B)wyts(18) > 1. (68)
Last, we consider the field’s initial state |®) to be the
Minkowski vacuum |0).

In Appendix A, we show that the rapid interaction condition
(68) allows us to get approximated analytical results for the
Green’s function matrix elements.

A. Static detectors

We start with the simplest case where the detectors are
static in a given reference frame. In this case, the proper
coordinates of Alice and Bob coincide, so that we can call
both of them (¢, x).

Since the field is in a Minkowski vacuum, the dissipation
kernel (10) can be rewritten as

1)2;(s)
x\s/dx/ ax'f( x)f/ xX\W(x,t;x,s),
(69)

xij(t.s) = =20(t — 5)A

where W(x, #;X’, s) is the Wightman function of the scalar
field, ie., (0|®(x,7)®(x',5)[0). The double integral in
Eq. (69) is the two-point correlation function of the
“smeared version” of the field ®. The latter, for a
Lorentzian smearing (60), was computed in Ref. [53].
Using this result and making explicit A4 (¢) and A (s), from
Egs. (63) and (66), respectively, we get the elements of the
dissipation kernel as

Xaa(t,s) = yap(t,s) = 0; (70)
xep(t,5) = ,,jf;g rect<t _Adz,_ i ) rect (S_Adl[_;l)
x O(t—s) = s 147 _65;2_:)462)2 ; (71)
xa(t.5) —i;l’iljé(s —t;)rect (l _Z’t: il)
e(r—1) (72)

=)= Ax—42)2 1 16€2(1—1,)

Similar to the dissipation kernel in Eq. (69), the elements of
the noise kernel (26) can be rewritten as

vij(t,s) = 22:(1)4;(s)
xER/ dx/dx’f f] X )W(x, t;x',s)

(73)
and explicitly computed as
8(t—11)(s — 1)
I/AA(I,S) :/?.‘%T, (74)
1 t—d-— ;] s—d— f[
vpp(t,s) = — AT rect( Al )rect( A >
t— 2 _ 4 2
( S) € (75)

sy a7

025018-10



MAKING TWO PARTICLE DETECTORS IN FLAT SPACETIME ...

PHYS. REV. D 110, 025018 (2024)

1 S—d—il
———5(t — tp)rect | ——
272 AL ( I)rec< Aty )

(t—s5)? —d*> - 4¢*
((t=s)> —d*> —4€*)* + 16€*(t — 5)*

vag(t,s) = vpa(s,t) =

(76)

At this point, to calculate the transmissivity 7 and the
additive noise W of the communication channel, we have to
solve the homogeneous quantum Langevin equation (A1)
to obtain the elements of the Green’s function matrix. We
report here the solution for them, leaving the detailed
calculation in the Appendix A. In particular, for G,, and
G,p we have

Gualr. ) = A=), 7)
Gap(t.s) = 0. (78)
|

For Gy, and Gpp we have to distinguish three ranges
of time:
(1) s <t<d+1 —At;/2, ie., before detector B in-
teracts with the field;
() d+1;—At;/2 <t <d+ 1+ At;/2,1.e., while de-
tector B interacts with the field; and
(iii) t > d+ 1 + At;/2, ie., after detector B interacts
with the field.
Before the interaction with the field we have

Gt s) = sin(w,;(t —5)) : (79)

Gpa(t,s) =0. (80)

During the interaction

Gps(3.3) :%\/e% <(2w3 cos(wp5) — Bsin(wg3))sin (@z) —\/4A - Bsin(wy5) cos <\/A—7B72?> > . (81)

. C ; 4A - B’
Gpa(1,3) = 2 ((1 —e ¥ cos< 7

Where?zt—(d-i-f,—Atl/Z), §=S—(d—|—f[—At1/2),

12
A=} —-——L—), 83
(“’B 32ntAz%e> (83)
/12
— 732, (84)
32rxmpAt;
and finally
Apd d
A Gaallr. s). (85)

- 47t2mBAt] 6(62 + dQ)
After the interaction with the field

o Gpp(f = A1y, s)

Ggp(i,s) ” sin(wg (7 — Aty))
+ Gypli = At ) cos(wp(i— A1), (86)
Ganios) = SAT= 19 G (5 )

+ Ga(7 = Ar7.s) cos(wp(P — Af)).  (87)

At this point, we can compute the parameters z and W
defined in Sec. V, allowing us to calculate the capacity of

S1n

) g a( )

[

the channel. In particular, we are interested in these
properties after Bob has interacted with the field, i.e.,
when t > d + 7, + At;/2.

1. Additive noise

We can compute the noise by studying the determinant of
the matrix N defined in Eq. (46). We start by analyzing the
second term of N, given by the matrix N p. The elements of
this matrix, given by Eqs. (40)—-(42), could be greatly
simplified with the rapid interaction protocol chosen. In
fact, the elements of the noise kernel (74) and (76), when
integrated in Eqgs. (40)-(42) give terms proportional to
Gpa(t,7;). However, since G4 (t,t) = 0 from Eq. (77) the
parameter C from Eq. (85) vanishes, making Gg,(1,7;) = 0
for each t. Then, only the last integrals of Egs. (40)—(42) are
nonzero. That is

1 t [t
Ny :2/ / Gpp(t,r)vpp(r,r')Gpg(t,r')drdr’,  (88)
mgJs Js

1 t [t
Ny / / Gpp(t, gy (ro )G g1, )drdr . (89)

mpg

t t . .
sz—//GBB(I,’”)’/BB(V,V/)GBB(f,”/)d”d’”/- (90)
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1x10-°
6.

At, (V1)

FIG. 1. Plot of the parameter /W — %, quantifying the noise of
the channel, in terms of the width of the window during which
Bob’s detector interacts with the field A¢,, for different frequen-
cies of Bob’s detector. The values of the parameters are chosen as
g=1,e=103 eV, d=10° eV~ and my = 10° eV.

Regarding the first term of the noise matrix N in Eq. (46), in
order to minimize the noise, we suppose Bob prepares his
oscillator in its ground state. Namely

osn(s) = ydiag((mpop) " mpos). (O1)

Looking at Egs. (88)—(91), we notice that the noise matrix
N from Eq. (46) is dependent exclusively on Ggp.

We can numerically evaluate W = detN from Eq. (46),
obtaining results as in Fig. 1. This figure shows that, apart
from oscillations—due to the presence of oscillating
functions in Egs. (86)—the noise decreases by increasing
the time during which Bob interacts with the field Az,;. In
particular, numerical analyses have shown that the noise is
maximized in the limit A¢; — 0. This limit corresponds to
the one obtained in case the interaction of Alice and Bob
with the field is o-like. This case is studied in detail in
Appendix B as a limit case of the protocol described in this
section, with the result

woly (92)
4 16n%twgmy

When At is finite, we can consider the noise in Eq. (92) as
an upper bound for W.

Moreover, as we can see from Fig. 1, \/W has the lower
bound 1/2, given by the first term of the matrix N from
Eq. (46). This term indicates the initial state of Bob’s
detector, giving a noisy contribution of 1/4 on the
determinant of N—this contribution increases by choosing
an initial state of Bob’s oscillator different than the vacuum.

The condition (61) for the energy of the detector must be
valid both before and after the interaction. In particular,
after the interaction, each detector has absorbed energy

from the field. We can calculate this energy by studying the
evolution of Alice’s and Bob’s subsystem states, repre-
sented respectively by 644 (f) and opp(f). From Eq. (36),
the evolution of Alice’s detector, in Bob’s frame, reads

oaa(t) = Tya044(5)Thy + Naa. (93)

The matrix 744, from Egs. (28) and (34), is in general

Gaalt, s) %GAA(L s)

i Gaaltos) 75 Gaalt.s)

TAA =

In the static case, Eq. (94) becomes

Gaalt,s) —GA;(:J)

Typ = ( . . ) (95)
maGup(t,s)  Gaa(t,s)

and N4, is equal to Ngp up to an exchange of the indices
A and B.

Since Alice’s and Bob’s frames coincide, the channel
(93) also described the evolution of Alice’s state in her own
frame, which is what we have to analyze to bound the
energy of Alice’s detector. Recall that the interaction
between Alice’s detector and the field is &-like
[Eq. (63)], so we can use the results in Appendix B to
compute the elements of N,,. Namely, we can use
Egs. (B10)—(B12) and replace the index B with the index
A. At this point, we can study the energy that Alice’s
detector gains by interacting with the field. Using Eq. (32),

A4

=—-5—. (96
167%€>m, (96)

(Ea(t =17)) = (Eat = 17))

Hence, to prevent the final energy of the detector A to
overcome the ultraviolet cutoff e~!, we have to impose

4 < mye. (97)

The noise received by Bob is bounded from above by that
which he would receive with a §-like interaction (B13).
Then, also the energy that Bob’s detector absorbs from the
interaction is bounded from above by that which it would
absorb in the §-like interaction case. The latter is computed
again by using Eqgs. (B10)-(B12) along with Eq. (32),
giving the left-hand side of Eq. (96) with the label A
replaced by B. Thus, to prevent Bob’s oscillator from
overcoming the cutoff e~!, we must impose

23 < mge. (98)
It is worth remarking that the condition (98) is sufficient,

but not necessary, to prevent Bob’s oscillator energy to
increase too much after the interaction. That is because to
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find the condition (98), we considered an upper bound for
the absorbed energy instead of its actual value. On the
contrary, the condition (97), preventing the same problem
for Alice’s detector, is both necessary and sufficient, since
the absorbed energy was computed exactly in Eq. (96).

To analyze the magnitude of the upper bound of the noise
in Eq. (92) (called W from now on) we rewrite it as

-1 22 1
W= 4 + 167°emp ey (99)
From Eq. (99), we notice that the condition (98) does not
prevent the noise W from becoming large, since wgze < 1.
In particular, the upper bound of the noise can increase
arbitrarily high by decreasing @wg. From Fig. 1, this fact
seems to be true (apart from oscillations) also for the noise
W, which increases as wp is reduced.

2. Transmissivity

After the interaction time, the transmissivity 7 = det T =
detTp, can be computed by using Eq. (38) and the
expression (87) for G, (1, s), obtaining

~ m .
(i > Aty) = m—j (G2 (A1;,5) + 03G3,(A2;,5)).  (100)

323 1

~

1 2 o A ?
— COs 7 w_f‘ - 12873 mge

The function Gpgs(Atf,s) must be computed through
Eq. (82). By employing the condition (98), one can

simplify e~ ~ 1, since
B 22 22
—fT<—Af; = B B «1 101
2 ! 32ampAt;  32xmpe (101)
Moreover, with the same argument, we have
2 2
4A — B = 4o — & —(1+ 43¢ 2 ) ~4a.
8rmpAtre 128mmpAty
(102)
In this way the solution (82) is simplified to
. C . CB . 3
Gpa(t,s) = Z(l — cos(V/AT)) +Wsm(\/gt). (103)

We can finally write 7 in Eq. (100) explicitly. Exploiting
Eq. (103) for Gp4 during the interaction and taking an
average over the values of 7, we get

v} A5

1287%mymge*d? 2 5 2
B — "B
DB ~ 185 mpe PA 1

The transmissivity 7 in Eq. (104) is plotted in Fig. 2. The
figure shows that [apart from oscillations due to trigono-
metric functions in Eq. (104)] = drops to zero as wg is

1.2x10"3 | — wa=leV g
1023 wp=0.75eV
WX r 4

— wa=0.5eV
8.x10724 |
S 6.x10724 [
4.x10724 |
2.x10724 L
07\ 1 1 1 1 1 1 1
00 02 04 06 08 10 12 14
wp (eV)

FIG. 2. Plot of the transmissivity 7 from Eq. (104) in terms of
the energy gap of the detector B, for different values of the energy
gap of the detector A. The parameters used are 1, = Az =1,
e=103 eV, d=10° eV~ and m, = my = 10° eV.

12
- 1287 mge Wy

5 +sin? | 27

— 104
@y ki  1287°mpge (104)

B

2

increased. In particular, in the range wg > \/#gfmﬂw/‘,
Eq. (104) can be simplified to

<2 ~2cos (2;:2—?)) (105)

The maximum value of 7 occurs in the limit wz — 0 where

. 2 22
1 sinh (277: V 128773BmBe>

2323 1 1
T~
167*mymy 2 d? 87’ w%

292
128702 mymp d*w} .
1287° mge
12 3 1

N , 106
327 mye mpe d’w? (106)

where, in the last line, we used the condition (98).

3. Quantum capacity

The maximum transmissivity the channel can have is
given by 7, in Eq. (106). Apart from the first numerical
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factor (327*)7!, 7., is the product of three factors, all
much smaller than 1, by the conditions (68), (97), and (98),
respectively. As a consequence, 7,,,, << 1 in the static case.
From Eq. (57), the maximized coherent information is
negative and then the quantum capacity is vanishing from
Eq. (56). This is consistent with the no-cloning theorem,
since it would not be possible to communicate quantum
messages to Bob if another observer, within the same
distance from Alice, can achieve the same quantum
message reliably (see the discussion in Appendix A.l
in Ref. [27]).

B. Inertial detectors

We now consider Alice’s detector traveling inertially
with respect to Bob in a Minkowski vacuum background.
In particular, we consider the detector A moving in the
same timelike plane as the detector B. Alice’s and Bob’s
coordinates are related through

t=y(tx = Pxa);

x =y(xq —fty) + d; (107)
Y =DYa;

=124

In Bob’s coordinates, the distance of Alice’s detector from
Bob is d(t) = d — pt.

Again, Alice interacts via a 6-like switching-in at a time
ff with expected value 7 and uncertainty Arj = 2% To
receive Alice’s message, Bob interacts with the field at a
time centered at 7% + d(7%), following again Eq. (66). From
Eq. (107), the relation between Alice’s and Bob’s proper
time is #4(z) = t/y. Then, from Eq. (65), the time period in
which Bob should interact with the field is

2
ArB = yAar = (108)
Wy

! B _ =B _ -B
2B, (1.1) = =22,250(t — 1) 6(tA tl)rect(t 7 —d(17)

We now proceed to compute the elements of the dissipation
kernel. It is easy to show that, again, ¥4, = y4; = 0. For
155, we have

20(+_ __ 4(7B\ _7B
 4250(t—s) ect<t d(7%) t,>

B o(t,5)=
X (1) 7 (ArB)? ArB

Xrect(s—d(f?)—??> e(i=3)

Ar? ((t—s)*+4e*)?*

(109)

To study x5,, we first need to study the smeared field
operator ¢f (tz) from Eq. (7). To this purpose, we consider
the spacetime smearing of Alice’s detector and we bring it
in Bob’s coordinates. That is

1 es(ty—14)
7 (X4 Xp +€%)?
1

* d A\ 22 2)
r{ \55+p | +y ++e

Considering the variable X = (x—d)+pt}, Alice’s
smearing becomes

Falta,xq) =

1 es(t+ prx —yt})
2B+ 2+ R

faltX,y,2) = (111)

From Eq. (111), f, is peaked at X = 0 and drops to zero as
(€)* outside a neighborhood of & = 0 with radius ~e. Since
#/ has uncertainty Azf and A#} > e we can consider the
deviations of X around zero to be negligible with respect to
the deviations of #; around 7;'. For this reason, the argument
of the Dirac § in Eq. (111) may be approximated to*
~t — yt}. In this way, using Eq. (69), the dissipation kernel
element x5, becomes

)

(112)

5 A8
) colkx co— kX
xS/dk dx dx’
SPREIT 202 . 2. 2. .2 2/ / 2 2
(27)°|K| 7 (x° +y* 4+ 27 +€) n2y<(¥+ﬁtﬁ‘) +y’2+z’2+€2>

Defining k = (k.. k,., k,) and k' := (yk,, k. k_), the integrals in dx and dx’ in Eq. (112) can be evaluated to be equal to
e~¢kl and e~¢IKl=ikd(1}) respectively. Then, we rewrite Eq. (112) as

“In other words, we can say that the detectors are small enough to consider the relation between 7, and ¢ only in the center of mass of
the detectors, ignoring the fact that this relation would change along the detector’s profile. This is possible as long as € is negligible with
respect to the range of times considered. In our case, A#{ represents this range of times, since it is a natural uncertainty on the interaction

time.
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5(f' —18) t—18—d(%)
25 =—20,0p Az,BI rect IAt,B L2VSI(r),  (113)
where
1 . .
1(1) = ilK| (=) =ik, () —e(K[HIK' D gk (114
0= | G e

The integral I(f) does not give an elementary function.
However, since |k| < |k’| < y|k| for each k, we can use
the mean value theorem to substitute |k’| with u|k| inside
the integral, where 1 < u < y. Then, defining n = e we

2
can evaluate /() as

1 1
4r* (t — t8 — 2ien)?

I(t) = -

mTree (115)
The precise value of n must be computed numerically.
However, for the analysis we perform, it is sufficient to
know that n is included between 1 (in the limit |k’| — |k|)
and (1 +y)/2 (in the limit |k'| — y|k|).

The dissipation kernel element (112) can be finally
written as

40 —d—7
XgA(ty t/) :ﬂ'zAl‘? a(l/ - t?)rect <Ttl
" ne(t—1%)
((t=18)2—d(1?) —4an*e*)> +16n%e(t—18)*"

(116)

We can now compute the elements of the Green’s function
matrix. Again, the calculations are reported in Appendix A.
Computing, we obtain G4z = 0. For G4, we get

a(z00)

Regarding Gp,, applying the same approximations per-
formed in the static case, we have G4 = 0 before the
interaction. During the interaction, instead, we have that
Gps has the same behavior of the static case, given by
Eq. (82), but the parameter C is replaced by

Gaa(t,s) (117)

After the interaction, Gg,(#,s) can be expressed again as
Eq. (87). Finally, since x5, is the same as the one obtained
in the static case (109), G is given by Egs. (79), (81), and
(86), respectively, before, during, and after Bob’s detector
interaction with the field.

1. Additive noise

The elements of the noise kernel (26) can be easily
computed as

8(t —17)8(s — 17)

Uaa(t,s) :’13\ 812y%e ; (119)
1 t—d(B)-1
Z/BB(t,s):—2”2At%rect< Ail I)
s—d(f) =1\ (t—s)*—4€>
t 5 120
Xrec( ad ) —seraae (120

vap(t,s) = vpa(s,t) = —

5(t—1%) rect <s —d(%) - E,>

21’y Aty Aty
y (t—s5)? —d(s)* — 4¢?
((t=s)>—d(s)> —4€*)> +16€*(t — 5)*°

(121)

Applying the same reasoning as in the static case
(Sec. VI A 1), the elements of the noise matrix N simplify
also here, so that the elements of Npp are given by
Eqgs. (88)—(90).

Since also Gpp is the same as the one we had in the static
case, we conclude that the additive noise received by Bob is
exactly the same as we computed in Sec. VI A 1 and shown
in Fig. 1. As a consequence, the condition (98) is still
sufficient to ensure that energy absorbed by the detectors
does not overcome the detectors’ cutoff.

2. Transmissivity

As done in Sec. VI A 2 we can simplify Gy, (¢, s) during
the interaction as 4A — B? ~ 4A and e~8/22% ~ 1, obtaining
Eq. (103) with C’" from Eq. (118) replacing C. Then, we

obtain 7 as done in Sec. VIB2 considering Ar? :%V

_ ZﬂAiB . . czl(ff) — Gaa(18,5).  (118) instead of Aty = 37’: and C’ instead of C. By averaging over
dn*mpAt] ne(n“e” + d(#;)”) the possible values of %, we get
| <1 cos (277.’ 20 _ 4 >>2
(a1 M S
12870 mamgy \ne(ne + d(if)?) wjy — 1281132;7/2 1- lzgﬂflilBg}’z%

2 /12
+sin? | 2my 2 2B "B
wy  128n°mpe

(122)
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The transmissivity (122) obtained when the detectors
travel inertially (called z; from now on) is similar to the
static case transmissivity (100) (which we call zg) apart
from: the redshift of Alice’s detector energy gap (namely,

d(iy) 2
ne(n252+d(f13)2))
replacing (ed)~2 in 7;.
In particular, by fixing the parameter 7, equal to @, in

the static case and equal to @, /y in the inertial case and by
taking the same distance, i.e., d = d(1?), we have

g 42 2
== .
! yn \n?e* + d?

As long as n is not very large, we can assume d > ne and
then we have

w, becomes wy/y in 1;); the factor (

(123)

o~ (124)
ny
We can conclude that, in case two detectors move inertially
with respect to each other with a Lorentz factor y, the
transmissivity decreases by a factor 1/(ny) with respect to
the static case. The factor y~! comes from the presence of
t4(s) in the matrix T, in Eq. (38). That factor arises from the
fact that the state prepared by Alice changes if seen by an
external observer. This transformation is reported in
Eq. (C1) and it is extensively studied in Appendix C.
The factor n~! comes from the fact that, despite both
detectors having the same spatial smearing in their own
proper frames, their smearings differ in Bob’s frame. In
particular, from Bob’s perspective, Alice’s spatial profile is
contracted along the x axis. This obviously affects neg-
atively the communication properties.

3. Quantum capacity

Since 7; < 7y < 1, the quantum capacity is zero again
from Egs. (56) and (57).

At the end of Sec. VI A 3 (using Ref. [27]), we discussed
how, in the static case, the geometry of the protocol
neglects a priori the possibility of a reliable communication
of quantum messages. However, the same argument is not
applicable to the pair of inertial detectors. In fact, since the
detectors move inertially along the same line, there are no
other observers, beside Bob, who can potentially receive
the same message. Nevertheless, we showed that this
argument is not sufficient to imply the possibility of a
reliable quantum communication.

Summarizing, we proved not only that the quantum
capacity is still zero in case the detectors travel inertially,
but also that their transmissivity decreases compared with
the pair of static detectors. Henceforth, since the noise
achieved is the same, also the classical capacity is expected
to be worse if we make the detectors travel inertially.

C. Accelerating detectors

We now consider Alice undergoing a Rindler acceler-
ation [54,55] along the x axis at y = z = 0—while Bob is
staticat x =y =z = 0.” The Fermi normal coordinates of
Alice are the Rindler coordinates (74, X4, ¥4, 24 ), related to
Bob’s coordinates (¢, x,y, x) through

t= (é + xA) sinh(at,);

x= (5 +xA) cosh(at,); (125)
Y =DYa;
= ZAa

where a is Alice’s proper acceleration. The world line of
Alice’s center of mass is (Lsinh(at,),lcosh(at,).0,0).
Then, the distance between the two detectors, in Bob’s

frame, is given by
! 2
d(t) =1/ + 1.
a

So, 1/a represents the minimum distance between the two
detectors, reached at 1, = ¢t = 0. To ensure that the detectors
are always far from each other we need ae < 1. From
Ref. [39], the condition ae < 1 also ensures the validity of
the Fermi coordinates inside the detector, allowing one to
consider Alice’s detector as a nonrelativistic quantum system.

We suppose that the field is initially in the Minkowski
vacuum. Following the protocol described at the beginning
of Sec. VI, Alice’s and Bob’s switching-in are given by
Egs. (63) and (66), respectively. In Bob’s proper time,
Alice’s interaction time 7f becomes ¥ = Lsinh(arf). To
ensure that Bob receives Alice’s message, the window of
his interaction period with the field should be

(126)

A — 271_3 _ 2ﬂCOSh(f§3).
wata(f}) 27

(127)

Regarding the elements of the dissipation kernel, we have
again y4, = x4p =0. The element y%, is given by
Eq. (109), as in the static and inertial case. To compute
5., we transform Alice’s smearing function in Bob’s
coordinates using Eq. (125), namely

ed(ty—17)
’[ e ———
fA(XA A) (XA'XA+€2)2
. ax €5(t—xtanh(att))
~ cosh?(ar}) x N o222\
cosh(ar) " a +y +z°te€

(128)

>The opposite situation, where Bob is Rindler accelerated and
Alice is static, is considered in Refs. [56,57] to study the
communication through Gaussian wave packets.
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By using the variable ¥ =
1

— 1 Eq. (128) becomes

] I +ax ed(t—(L+T)sinh(ar))
fa®y,z,t)= N (2222
cosh(aty) (X*+y*+z>+¢%)

(129)

Notice that, from Eq. (129), f, becomes negative when
X < —=1/a. This is because, for ¥ < —1/a, the detector
crosses the Rindler horizon [55] and then this region is not
observable by Bob. However, from Eq. (129), we see that
the Lorentzian shape is centered at X =y =z =0 and
vanishes as (¢/%)* by increasing the magnitude of ¥. Since
e < 1/a, we can conclude that the portion of the
Lorentzian shape crossing the Rindler horizon is negligible.
Moreover, since ea < 1, whenever the Lorentzian shape is
not negligible (i.e., a neighborhood of radius ~¢), one can
approximate 1+ aX ~ 1. In this way, Alice’s smearing
from Eq. (129) becomes

ed(t — 1%)
cosh(at?) (2 +y* + 22 +€*)’

faX.y.z.1) ~ (130)

At this point, we can compute the dissipation kernel y3, in
the exact same way we have done in Sec. VI B, obtaining

5(1' —18) rect <t—f§ —d(1%)

A8 A8

X ‘EA =—244p

)51a(t), (131)

where

1
WZ/ @)K ©

and kK" = (cosh(arf )k, k,. k). Similar to what we did in
Sec. VIB to evaluate Eq. (116), by using the fact that
k| < |K”| < cosh(at})|k|, we can write

ifke| (1=1) =ik d (1) —e(|k|+K"]) g

(132)

42,0 t—d—7°
){BA(I’ t/) = ﬁzA[? 6([/ - t?)rect <At1
" n'e(t—1%)
((t—18)2 —d(18) —4n"e?)> +16n"e* (1 —18)?’

(133)

where 7’ is between 1 and® (1 + cosh(arf))/2.

Now, we can proceed to compute the properties of the
quantum channel. Using Eq. (A1), the equation for G, is,
in Bob’s proper time,

To be more precise, since t? is a random variable bounded in
the interval [f4 + Arf/2,7 — Ar}/2], the maximum value
for n' is n' =3+ jcosh(a([f}|+Z)). However, since
At® < d, then @ < w, and the upper bound of n’' becomes
(1 + cosh(arf))/2 + O(a/wy).

Can(to5) 4 — G ts) +— P Goi(ts) =0
?S - 9 9 ’s - 9 9 ’S = b
AA 1—‘r(12l2 AA 1+a2t2 AA

(134)

with boundary conditions G4 (t— s*,s) =1 and G4 (t —
sT, s) = 0. The solution can be obtained exactly as

@sin <ﬂ (sinh~! (at) —sinh~! (as ))) :

a

Gaa(t,s)= W

(135)

The equation for Gpp is the same used in the static and
inertial cases (Secs. VIA and VIB), giving the same
solution. For Gp,(t, s), the differential equation is similar
to that for the inertial case [Eq. (A25)] with n’ replacing n
and considering Eq. (135) for G4 (7%, s). In this way, the
solution for G4 (¢, s) is the same as for inertial detectors up
to these substitutions.

1. Additive noise

The elements of the noise kernel (26) can be easily
computed as

8t —17)3(s = 17) .

vaa(t,s) = A2 ; (136)
A 4872 (1 + o (1F)?)e?
1 t—d(i%) -1
VBB(t’S):_anAt%reCt( Altf !
s—d(f) =1\ (t—s)*—4€>
t ; 137
Xre"( st ) msrraae (7

Uag(t,5) =vpa(s,1)
_ 5(r—17) rect(s—d(i,)—?,)
2722/1+2(15)2 At Az
(t—s)>—d(s)>—4€*
=) —d(s)2 =422+ 16215

(138)

Again, putting Eqgs. (136) and (138) in Egs. (40)—(42), the
Dirac §’s imply the presence of Gy (1, 18) in the first three
integrals of them. However Gg,(t,8) = 0 since, from
Eq. (135), Gau(#8,18) = 0. In this way, Egs. (40)-(42)
reduce again to Eqgs. (88)—(90), respectively. Since both vgp
and Gpp are the same as the static case (Sec. VI A) and
inertial case (Sec. VIB), also the noise is the same one
computed in Sec. VIA 1 (and shown in Fig. 1).

2. Transmissivity

By applying the same approximations performed in
Sec. VI A2, the solution for the transmissivity after Bob
interacts with the field, performing an average over the
values of 75, is
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0958 PH) ViR

1

T~ = -
12872 mympe*n (n*e€® + d*(18))* 1 + a*(1%)? 2

X
2 2
A o

P : E— Y
1287 mpe(1+0?(i%)?) 3

1

The behavior of the transmissivity in Eq. (139) (called z,)
in terms of w,/wg is the same as the static case trans-
missivity (100) up to a redshift on Alice’s energy gap
wy = o,/ (1 + a*(7%)?). To compare the transmissivity 7,
with that in the static case 7g, we fix 74 = w,14(7%), as we
did in Sec. VIB 2 and we get

T @ <62+d2

MEWI T R@)?) \n? + &

)213. (140)

From Eq. (140), we see that the lowest possible value
for n/, ie., 1, gives an upper bound of 7,. A lower
bound for 7, is given if n’ assumes its highest value
Nmax = (1 + cosh(atf)))/2.

The relation between 74, and 7y, from Eq. (140), is
strongly dependent on s and 7%, being, respectively, the
time s when both Alice and Bob prepare their initial state
(since Bob’s initial state is set to be the ground state of the
oscillator, we refer to s as the time when just Alice prepares
her detector’s state) and the average time 72 when Alice
interacts with the field to send her state to Bob.

From causality, we have that both z¢ and 7, are zero
when s > 78. Then, depending on the value of 7%, we can
find values of s such that 7, < 7g or 74, > 7. By using the
fact that 74 is maximized when n’ = 1 and minimized when
n' = Ny, we define two time parameters s_ and s, as

s_o= (/2 + (%)% (141)
1 _ n'2 > +d*\ 2
s+==a\/n’%nax(1+a2(z§)2)2(madz> -1.  (142)

In this way,

(1) if |s| < s_, then 7, < 7g;

(2) if |s| > s, then 74 > 75; and

(3) if s_ < |s| < s, we need numerical calculations in

order to evaluate n’ exactly to compare 7,4 and tg.

Condition 1 is always satisfied if s > 0, so that, to improve
the transmissivity of the channel with respect to the static
case, Alice has to prepare her initial state before the time
when they are at their minimum distance 1/a.

2 2
Grion

B 1287° mpe(1+a?(1%)?)

2
(1 — cos (27r\/(1 + az(f?)z) Zz; - 128i§m36>> w
: _
+ sin? Zﬂ\/(l + a*(17)?)

2 2

B_ Mg
@*  1287°mpe

A B

(139)

On the contrary, for each value of 7%, Alice can prepare
her initial state with enough advance (increasing —s) so that
the condition 2 is satisfied, increasing the transmissivity of
the protocol where Alice accelerates. From Eq. (140), 74
can reach an arbitrarily high value by increasing —s, i.e., the
earlier Alice decides to prepare her initial state with respect
to the transmission of the signal 7%. To explain why this
happens, we study the evolution of Alice’s state, in Bob’s
frame, from the time of its preparation s to the time where it
is sent to Bob 72.

To do that, we use Eq. (93) where the matrix 7'y 4 is given by
Eq. (94) using the Green’s function matrix element (135). The
determinant of the matrix 744 could be seen as a trans-
missivity from Alice to herself, in Bob’s coordinates,
reading

1 + a?s? a ar®
detT 4, = — 5 1 2 2—71_
T\ Tre@e Y T o T @)
x sin (24 (14 (18) = t4(s))). (143)

We can neglect the second term on the rhs of Eq. (143) since

Ltar Then, if |s| > [77],

a <K wy. In this way, det T 44 ~
1+as®
1+a’r?
before it interacts with the field. Conversely, if [f?| > |s], the
input state of Alice is damped by 7, before the interaction
with the field. Henceforth, in Bob’s perspective, Alice’s initial
state could be amplified arbitrarily, eventually overcoming the
huge loss comparable to zg from Eq. (104) and occurring
when Alice’s detector communicates with Bob’s through
the field.

To improve the transmissivity of the channel, the
best case scenario is provided if Alice interacts with
the field at the time ff =0, i.e., when she is at her
minimum distance from Bob, as shown in Fig. 3. This
scenario also provides an approximate analytic solution
for the transmissivity, since now n’ ~ 1. Then, Eq. (140)
simply becomes

Alice’s state in Bob’s frame gets amplified by a factor

T4~V 1+ a?s’zq.

(144)
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3. Quantum capacity

Summarizing, in Sec. VI C 1, we briefly showed how the
additive noise achieved by Bob, in the accelerating case, is
exactly the one of the static case (see Fig. 1). Then, in
Sec. VI C 2 we recognized the protocol described in Fig. 3
as the optimal one to increase the transmissivity 7y,
following Eq. (144) where 7y is given by Eq. (100).

From Eq. (144), by increasing |s|, it is possible to
increase 7,4 so that 7, > 1/2 and potentially have a positive
maximized coherent information (57), leading to a quantum
capacity Q) > 0. To analyze this possibility, we take the
upper bound of the noise W, from Eq. (99). Since the
maximized coherent information (57) decreases with W,
then 1.(t4, W) < I.(z4, W). In this way, I.(t4, W) > 0 is
sufficient to prove that the single-letter quantum capacity of
the channel is greater than zero.

The average number of noisy particles occurring when
W = W, using Eq. (55), is

i 45
4 + 16722 mywy _l (145)
1 =14 2

S
I

At this point, we can take a value of |s| so that 7, is
sufficiently high to make # = 0. To this end, 7, must read

2

A
1+7Ba

146
Ar’e’mpwpg (146)

Ty=15 =1+

leading, from Eq. (57), to a maximized coherent information

Bob Alice ’

FIG. 3. This image outlines the protocol used in Sec. VIC
in Bob’s coordinates, with s =—4 eV~ # =0eV~! and
a=0.5ceV.

/‘{2
i « 1 y/1 4 it —
IC (TZ’ W) _ l()g (T*Ti 1) _ l()g 47;2252m13w8
A 1+ 47[26‘anng

(147)

Since /.. from Eq. (147) is always positive, we can finally
conclude that, with the protocol described in Fig. 3, it is
possible to choose a value for |s| high enough to have a
quantum capacity greater than zero and communicate
quantum messages reliably.

Figure 4 shows how the maximized coherent information
(57) grows by increasing |s| from O to the value [s*|,
defined so that 7,(s*) = 7.

The value of I.(z*,W) is maximized when W is
minimized to 1/4, so that zy =2, and [.(2,1/4) =1,
implying that Q1) < 1, in the range 0 < |s| < |s*|. From
Fig. 1, we see that W = 1/4 is reachable by choosing
suitable values of A¢; and then of the energy gap w,, due to
the oscillations of W.

If we choose s so that |s| > |s*|, then from Eq. (145) 7
becomes negative and the channel N :oj, = 6,y is no
more a complete positive map, albeit Gaussian. We discuss
in Appendix C why this situation arises.

Although we have shown that it is theoretically possible
to communicate quantum messages reliably with this
protocol, a practical realization would be really hard.
The value of |s*| (time from the preparation of the input
to the communication) could be estimated considering
wg = @y /2, so that

2.2
muanpge~@
|s*| ~ 1.538 x 10* - 2524 (148)
2203
AB
1 ]
0
1F ]
o -2f ]
_3— 4
4t ]
_57\ 1 1 1 ]
0 5.0x 1030 1.0x1031 1.5x10%7

Isl v

FIG. 4. Maximized coherent information /., of the channel
outlined in Fig. 3 (where 7% = 0), obtained from Eq. (57), in
terms of the time s when Alice prepares her initial state (in Bob’s
frame). The quantum capacity of the channel corresponds to .
when [, > 0. The parameters chosen are Ay =1z =1,
wy=1eV, wz =05¢eV, my =my =10 eV, d =103 eV~!,
e=1073 eVl
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The quantities chosen in Fig. 4 for the parameters w;, m;, €,
d emulate an atomic scale detector. A quantum capacity
greater than zero occurs if |s|~10°' eV~!, comparable
with the age of the Universe (~6.611 x 1032 eV~!).

Moreover, the minimum distance d = 1/a ~ 10° eV~!
from the two detectors was chosen to have an acceleration
generating an Unruh thermal radiation of ~1 K, far from
being reachable by modern experimental setups. However,
it was recently shown how detectors with a circular motion
could provide an analog Unruh effect and potentially reach
high accelerations in a limited space [58-60]. To this
perspective, we notice from Eq. (148) that the protocol
execution time ~|s*| scales as a=>. So, if one finds a way to
increase the acceleration of a detector, the execution time
could drastically decrease to reach reasonable values.

To decrease |s*|, the couplings Az could be increased as
well. Indeed, the condition (98) guarantees that Bob’s
detector cannot absorb energy beyond its limits. For this
condition, we considered the upper bound for the additive
noise (99), obtained in the limit Az; — 0. However, as we
see from Fig. 1, the noise achieved by Bob could drastically
decrease when At; is finite. Then, to limit the energy of the
detector after the interaction with the field, one can choose
a more permissible condition instead of the condition (98),
giving the possibility to increase Ap and reduce the
execution time |s*|.

VII. FINAL DISCUSSIONS AND PERSPECTIVES

For particle detector models in a (3 + 1)D spacetime, the
possibility to send quantum messages reliably via an
isotropic interaction with the field is usually prevented
by the no-cloning theorem [27]. In this paper, we showed
that this problem can be circumvented by taking the two
detectors in motion with respect to each other.

To do that, we use the method presented in Ref. [28] to
study the communication of bosonic signals in nonpertur-
bative regimes. In Secs. II-1V, we generalized this method
for whatever spacetime smearing of the detectors and for
whatever background spacetime they move in. Although
the expressions could be very complicated—implying most
of the times nonexact solutions—the freedom on the
detectors’ smearing could be used to simplify those
expressions. In this work, we exploited this possibility to
study some protocols involving a rapid interaction between
field and detector. However, as a future perspective,
particular spacetime smearing for the detectors could allow
an analytic study of the communication properties between
two detectors with a wider variety of trajectories or back-
ground spacetime. Obviously, those smearing functions
should satisfy the Fermi bound discussed in Ref. [39], to
ensure that the detectors can be considered nonrelativistic
quantum systems.

For example, in Appendix B, we see how a o-like
switching-in of the detectors can drastically simplify the
properties of the channel and its quantum capacity (defined

in Sec. V). Despite this simplicity, we showed that the no-
cloning theorem is violated in this case, since a quantum
capacity greater than zero is possible also in a Minkowski
spacetime, contradicting the geometric argument presented
in Ref. [27]. In this context, it is interesting to observe how
the violation of the no-cloning theorem is related to the
violation of the uncertainty principle. Indeed, in Sec. VI,
we presented a protocol similar to the one in Appendix B,
but ensuring that the Heisenberg principle is respected.
Although the results are similar, the violation of the no-
cloning theorem is prevented in this case, due to an infrared
cutoff on the energy gap of Alice’s detector.

Then, we considered a static receiver on a Minkowski
background. The sender was considered in three different
situations: static with respect to the receiver (Sec. VI A);
traveling inertially with respect to the receiver (Sec. VI B);
undergoing a Rindler acceleration (Sec. VI C). The noise
received by the receiver (Bob) is always the same, as a
consequence of the fact that the motion of Bob is the same
and that Alice’s interaction with the field is é-like (even if
her interaction time presents an uncertainty).

When the two detectors are static, the transmissivity of
the channel is so low that each possibility of reliable
quantum communication is prevented (as expected from the
no-cloning theorem). This result is comparable numerically
to the one obtained in Ref. [28]—where the switching-in
function is considered to be a Heaviside —in case of low
coupling. Moreover, in Ref. [32], it is shown how the
classical capacity of the channel [46,47]—built with a pair
of two-level detectors interacting rapidly—increases by
increasing the ratio 1,/4z. In our scenario, a similar
behavior is suggested by the fact that the transmissivity
(100) is proportional to A31% while the upper bound of the
noise is & A2, from Eq. (99). Then, the study of the classical
capacity of the channel deserves further investigations in
the future. If the result of Ref. [32] is confirmed, then the
increasing of the classical capacity with the ratio A4/Ag
could be a typical feature of the “rapid interaction” between
field and detectors. Indeed, for long interaction periods, the
classical capacity drastically drops if we consider detectors
with a different coupling with the field [28].

By considering two detectors traveling inertially in the
same line, the geometric argument for the no-cloning
theorem [27] is no more applicable. However, in
Sec. VIB we proved not only that the quantum capacity
is always zero again, but also that the classical capacity
decreases with respect to the static case. This can be
ascribed to two factors: the length contraction of the
detector and the fact that Alice’s state is seen by an
observer in a different frame.

These results suggest that, to seek for a quantum capacity
greater than zero, one has to look for a situation where the
two observers are not inertial with respect to each other. For
this reason, we investigated the case where Alice is Rindler
accelerated with respect to Bob (Sec. VIC) as shown in
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Fig. 3. In this case, we proved that a nonzero quantum
capacity is possible if Alice prepares her state in the remote
past with respect to the time when Alice and Bob are at their
minimum distance. This is due to the strong redshift of the
energy gap of Alice, which can circumvent the infrared
cutoff arising in the static case. Moreover, one can study the
evolution of Alice’s state in Bob’s frame [Eq. (143)] to see
how Alice’s state undergoes an amplification which can
compensate the loss occurring during the interaction with
the field (the same obtained in the static case Sec. VI A).

In general, a noninertial detector undergoes quantum
effects (e.g., the Unruh effect) as predicted by quantum
field theory in curved spacetimes. These effects could play
a crucial role in the possibility to achieve a reliable quantum
communication. To this prospect, also entanglement har-
vesting could be pivotal [23,61]. Indeed, an arbitrary high
entanglement between the detectors always lead to an
assisted quantum capacity greater than zero [31]. Future
works would try to see in more detail how quantum effects,
given by the detectors’ noninertial motion, could affect the
possibility of achieving a quantum capacity greater than
zero.

Notice that, while Alice waits before sending her signal,
no entanglement harvesting occurs, since the two detectors
do not interact with the field. However, it is interesting to
see how the communication scheme behaves as entangle-
ment harvesting occurs. Indeed, if entanglement between
the detectors is harvested from the time —s to the time
t; = 0, it makes sense that the entanglement between the
two detectors could eventually assist the communication of
quantum messages, making the quantum capacity greater
than zero [31].

The analogy with the entanglement harvesting occurs
also in the quantitative analysis performed at the end of
Sec. VIC 3. The latter indicates that a practical realization
of this protocol would require a huge amount of time,
making the protocol practically impossible to achieve with
today’s means. One can relate the difficulty to realize this
protocol with the difficulty to see the Unruh effect (or
entanglement harvesting) in a laboratory. Indeed, Eq. (148)

|
2 1, 2 . .
;Té_%ﬁ+t/2*wz‘ 0 G(1y.55) /fB <_tA(tBZiA<rB)
B»®B)
0 @ +CU2 -0 0

shows that the protocol execution time scales as 3. In this
way, if we find a way to create a detector achieving a
considerable Unruh temperature, the required time could
drastically drop to make the protocol realizable.

The possibility to achieve a non-negligible Unruh
temperature is recently being theoretically investigated
with detectors undergoing a stationary motion in a finite
space, e.g., a circular motion [58—60]. In a future work, we
investigate if those stationary motion setups could allow a
nonzero quantum capacity as well. Moreover, it is worth
investigating what could be the role of a curved background
on the communication of quantum messages. To this
perspective, it is known that the spacetime curvature
decreases the communication capabilities of single-mode
signals [13,14]. We wonder if the same occurs in the
communication of bosonic states through particle detectors.
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APPENDIX A: CALCULATION OF THE GREEN’S
FUNCTION MATRIX ELEMENTS

In this appendix we report the detailed calculations for
the elements of the Green’s function matrix, obtained from
the homogeneous version of the quantum Langevin equa-
tion (13), i.e.,

> ()(ﬁA(tBJB) Xap(tg.75)

G(rp.sp)drg=06(tp—sg)l
xoa(tg.1p) )(gg(lBJ’B)>

E B mp
(A1)
When the two detectors are static, Eq. (A1) becomes
Gaa(t.s) + 3Gaa(t,s) _mLAfioo)(AA(t’ r)GAA(rvS)dr_mLAfioo)(AB(t’ r)Gpa(r.s)dr = 0;
Gpal(t.s) + wpGpalt.s) — i Sl Ba(t.1)Gaa(r, s)dr — o= [ xpp(t.1)Gpa(r. s)dr = 0; (A2)
Gap(t.s) + w3 Gap(t.s) — i Sl xaa(t.r)Gag(r,s)dr — - [1 xap(t.r)Gpp(r, s)dr = 0;
Gpp(t,s) + wpGpp(t.s) _m%?fioo)(BA(f» r)Gap(r.s) ’”_%fioo)(BB(l’ r)Gpp(r.s)dr =0,
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with boundary conditions G;;(f — s*,s) =0 and G;;(r —»  The solutions are, respectively,
S+, S) - 5[/

Using the dissipation kernel elements (70)—(72), the first Gon(t.s) = sin(wa (1 —s)) (AS)
and third equations of the system (A2) read, respectively, AdLn Wy ’
Gaa(t.5) + @3Gyalt,5) = 0; (A3) Gyp(t,s) = 0. (A6)
Gap(t.s) + @3Gyp(t.5) = 0. (A4) " The fourth of Eq. (A2) for Ggp(t,s) becomes

) 2 t—d—1\ [t e(t—r)
Gpplt, 2Gpp(t, 1) — —52 t ! / O(t —r)————L——Gyp(r,s)dr=0. (A7
an(19) + 3G 1.7) = o e (P ) [ oty G e =0, (A7)

Before the interaction, i.e., when s < t < d + 7; — At;/2, the solution of Gy is trivially

Gunlt ) = =) (A8)

To find an approximate solution for Gpgp(t,s) during the interaction, i.e., in the interval d+7; — Az;/2 <
t <d+1; + At;/2, we study the third term on the left-hand side of Eq. (A7). By integrating the integral by parts we get

At

d+;1+2 6([—1") GBB(I,S) 1€GBB(d+;]—At1/2,S)
ot — ———G r,Ss dr = - =
A y 207 2 Gaalr.s) 8¢ 2424 (1—d -1, +5)

.
- =7+ 4
! / ’ ¢ Gpu(r,s)d (A9)
—— —_— r,s)dr.
2 Jav, -2 (t = r)? + 4¢? BB

We start by analyzing the third term on the rhs of Eq. (A9). As long as t —d —7; + At;/2 > ¢, the integrand can be
approximated by the Dirac 9, %5 (t — r). Taking into account that the upper bound of the integral lies on the peak of the Dirac
5, we have, when t —d — 7; + At; /2 > ¢,

L[t € . .
__ - G ,8)dr = —=Gpp(t, s). AlO
2[”;,—%” (t—r)? +4é? s (r.s)dr 8 55(1-5) (A10)

When t —d —1; + At;/2 ~ ¢, the approximation in Eq. (A10) cannot be performed. However, one can prove that, by
increasing ¢ starting from d + 7; — At;/2, the left-hand side of Eq. (A10) increases its magnitude from zero until it reaches
the value —2Gpp(t,s) for t > €.

The second term on the rhs of Eq. (A9) is negligible with respect to the first term except for times ¢ such that
t—d—1+ At;/2 ~e. Since wgze < 1, from the condition (62), the function Gpp, given Eq. (A8), is expected to change
by a negligible amount in the interval (d +7— At;/2—¢,d+7— At;/2+¢€). Then, we can make the following
approximation:

GBB(tﬂ s)_leGBB(d—}—f,—At,/l S) GBB([,S)_l GGBB(I, S)
8e 24 + (1—d -1, + 51 8¢ 24€* + (t—d — 1, +51)?

_ Ggg(t,s) (r—d—1,+ Ay /2)
8¢ 4 + (t—d -1, + At;)2)%)

(Al1)

From Eq. (A11), the first two terms on the rhs of Eq. (A9) give 0 at the beginning of the interaction time t = d + 7; — At;/2
and grow to Gp(t, 5)/(8¢) after a time comparable to e. We can conclude that the integral (A9), from being zero at time
t =d+ 1, — At;/2, increases its magnitude to become, after a time of the order ¢, the following:

d+f1+.A2r_’ e(t - I') GBB(ta S) .
Ot —r) e agrye Gl s)dr ~——0 == 2 Gp(r, s)dr. RE
AHI—AQ’ = ((1=r)* +4€*)? su(r.s)dr 8e g Opn(r.s)dr (A12)
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If we have At; > ¢, then the range of time where the approximation (A12) is not valid is very small with respect to the entire
interaction time. In other words, if we consider the approximation in Eq. (A12) to be valid during the entire interaction time,
the error expected on the value of Gpg(1, s) after the interaction would be of an order O(e/At;) and then negligible.

Thus, for our purposes, we can rewrite Eq. (A7) as

Gpp(t,s) + i rect (= =1 Gpp(t,s) + | @3 i rect = d=1 Gpp(t,s) =0 (A13)
, S , S wn — ,s) =0.
BB 32ampAL At, BB B 3ampAiie At BB

The solution of Eq. (A13) during the interaction (d +7; — Af;/2 <t < d +1; + At;/2, i.e., 0 <7 < At;), by matching
Gpp and its derivative with the solution (A8) at t =d + 17, — At;/2 is

_Bj 2
e2 B
Gpp(1,5) = —————=| 2wz cos(wp5) — B sin(wp5)) sin A——7
wlE9) = 4A_Bz<< c0s(@3) ~ Bsin(w,) (\/ 4>

—V4A — B? sin(wp5) cos <\ [A - BIZ;> ) : (A14)

A

where, for simplicity, we defined 7:=1—(d+1 —At;/2), §:=s5—(d+1,—At;/2), A= (w}— sz and
1
/12
B = ae

After the interaction (7 > At), Eq. (A7) returns the one of a simple harmonic oscillator. By matching Gz and its
derivative with the solution (A14) at 7 = At;, we get

Gpp(i = A1y, 5)

Gpp(l.s) = P
B

sin(wg(F — Aty)) + Gpg(F = Aty 5) cos(wy(F — Ay)). (A15)

Equations (A8), (A14), and (A15) give then the complete solution for Ggp(t, s) before, during and after the interaction,
respectively.
The second equation of the system (A2), using the dissipation kernel elements (71) and (72), reads

) 2 t—d—1\ [d+itT r—
Gpal(t, s) + 03Gpa(t, 1) — B 2rect( 1) /d T O(t-r) %GBA(}’, s)dr

-5 ((t=r)* +4e%)?
Mg Ct(r —d-17

e(t—1)
o ﬂzAtl Atl ((t - t1)2 - d2 - 462)2 + 1662(t - t1)2 '

)GAA(ths) (Al6)

Regarding the third term on the left-hand side of Eq. (A16) we can simplify it using Eq. (A12)—with Gp, instead

of Gpp and using the same argument explained before. Concerning the rhs of Eq. (A16), we study the factor

BB g g P g q y
(([_,I)z_dzfi;;él16620_[1)2 in the range where rect(“fj’) #0, i.e., when d—17,—At;/2 <t <d—1; + At;/2. Since
|t; —1;| < At;/2, we can prove that

e(t—1) 1 d At,
(t=1)2 = d* =422 + 166X (t—1;)>  16€(e2 + &%) (1 T O(j))- (A17)

Then, from the rapid interaction condition (68), the second term of the latter can be neglected. Using these approximations,
Eq. (A16) becomes

. 22 t—d-1\ . 22 t—d—1
Gpalt, b t D) Gpalt, 2 - b t L) ) Ggalr,
pall-s) + 32xmpAt? ree ( Aty ) palls) + (a)B 32zmpAtie ree Aty pall:s)
Adg t—d—T1 d
= t Guulty,s). Al8
AmgAt, ( a, ) @ Cmlins) (A18)
At

Before the interaction, i.e., when s < ¢t < d + 7, — 5, given the boundary conditions Gp4(f = s, 5) = GBA(I =1s,5) =0,
we have Gg,(f,s) = 0. During the interaction (d + 7; — At;/2 < t < d + 1; + At;/2), Eq. (A18) becomes
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. A2 ) A2 ) d
Gpult, — B Gpalt, 2o B NGt s) = —28 Gualts,s).  (A19
palt;5) + 32xmAt: palt:5) + <a)B 327thAt%€) pa(t:5) Ar’mgAt;e(e® + d?) aaltr.s) ( )
Setting
d Al 1
Il G (11, 5) ~ A28 (t1.9). (A20)

= ~—AB G
4mmpAty (€ + d?) 4n’mpAt ed M

the solution of Eq. (A19) reads

. c . 4A — B*7 BC . 4A — B*7
Gpult,s) =— 1—e2! 2sin| —— | ], A21
ga(7,s) A(( e zcos( 3 >)+A hA—Bze sm( 5 )) ( )

where 7, A and B are defined below Eq. (A14). Finally, when 7 > At,, Eq. (A18) becomes Gg, + w3Gpyy = 0 whose
solution is

Gpa(T = Af7 . 5)

GBAG’ S) = »
A

sin(wg(7 — Aty)) + Gpa(T = Aty , s) cos(wp(7 — Aty)). (A22)

Then, Gg,(t,s) = 0 before the interaction, while during and after it, Gg, follows Eqs. (A21) and (A22), respectively.

In case the two detectors travel inertially with respect to each other (as in Sec. VI B), for the elements of the dissipation
kernel we have y4, = ¥4z = 0 and x5, and x5, given by Eqs. (109) and (116). Using these, the homogenous Langevin
equation (A1) yields the following equations for the elements of the Green’s function matrix:

2
.. a)
GAA<ta S) +]/_124GAA(LS) :O’ (A23)
. W2
GAB(tss) +y_124GAB(l,S) :O’ (A24)
Gpal(t, t Gpult, v B ) 7 ANV
S ST THEY ( Arf pa(5) @ = 3 e T A salt:s)
Aurp t—d() -1 d(i8) )
- t 7y2) Gl s); A25
4’ mpAty e ( At} ne(n’e* + d(i8)?) a1, 5) (A25)

while for Ggp we have again Eq. (A7). On the rhs of Eq. (A25), we took At; < d to approximate d(18) ~ d(7%), i.e., we
considered the distance d(7) to change by a negligible amount in support of Az(#) from Eq. (66).
Using the boundary conditions G;;(t = s*,s) = 0 and G;;(t — s*,s) = §,, the solutions of Eqs. (A23) and (A24) are,

L

respectively,
Y . [Wyp
Gaalt,s) =—sin | —(t—1s) ), A26
wltes) = Zsin (240 (A2)
GAB(I,S) =0. (A27)

The Green’s function element Gg,(t,s) is zero again at times s <t <d(ff)+7% —Ar¥/2. In the range
d(B) + 78 — A8 /2 <t < d(t8) + 78 + At? /2 we have again Eq. (A21) considering 7 = ¢ — (d(8) + 78 — At?/2), where
C is replaced by

Aadg d(i7)

C = = Gua(t8,s). A28
4n’mp At ne(n’e? + d(i%)?) wl11.9) (A28)
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The equation for Gp(t, s) is the same as that computed for
static detectors, so that also the solution does not change.
That is, the solution for Ggp before, during and after the
interaction is given respectively by Eqgs. (AS8), (Al4),
and (A15).

In case Alice’s detector undergoes a Rindler acceleration
and Bob is static, as described in Fig. 3, the computation of
the Green’s function matrix is similar to the one performed
for inertially traveling detectors. This computation is
explained directly in the main text (see Sec. VIC).

APPENDIX B: §-LIKE INTERACTION

In this appendix, we study the case where both Alice and
Bob interact with the field with a o-like interaction.
Namely, 4;(#;) = 4;6(t; — t}). This protocol could be seen
as a limit case of the protocol studied in Sec. VI, obtained
by neglecting the uncertainty on Alice’s interaction time, so
that At; ~ 0.

In the literature this model often provides exact results
for the response function of the detector and for the
capacities of the communication channel between two
detectors [30,32,33]. However, we show here that, unless
we impose an infrared cutoff for the energy gap of Alice’s
detector w,, the o-like interaction potentially leads to a
violation of the no-cloning theorem. Hence, despite its

|

GAA 1S +w%GAA(t7S> :O,

GAB t,s +a),24GAB(t’ S) = 0,

(t.5)

Gpa(t,s) + @3Gpa(t,s) = We(fﬂ;iez)‘s(’ —
(t.5)
(1.5)

GBB t,s +a)123GBB(l’ S) = O»

simplicity, this interaction model could be controversial
when studying the communication of bosonic states.

To show this, we consider the case where the two detectors
are static. Taking a distance d between the two, we have
Aa(t) = A46(t — t;) and Ap(t) = A6(t — t; — d). The dis-
sipation and noise kernel elements become [from Eqgs. (26)
and (69) and considering Ref. [53] for the Lorentzian
smeared Wightman function]

xaa(t,s) = ypg(t.s) = yap(t.s) = 0; (B1)

on(0.5) = 2200 = 1= d)3ls = 1) st (B2)
vaalin) = IR0 g

vpp(t,s) = 13 ot -1 _;2256(; —f—d) ; (B4)
Va(t,5) = vpa(s, 1) = 2B 2= 1O — 1 = d) s

167> e+ d?

Using Egs. (B1) and (B2), the homogeneous quantum
Langevin equation (A2) results

with boundary conditions G;;(t — s™,s) = 0 and G;;(t — s, 5) = §;;.

The solution for G;; with i = A, B, following Eq. (B6), is

The solution for Gg,(t, s), following the second equation of the system (B0), is instead

— ks _ 5):

d—17)Gaa(t1.5); (B6)
Gyfr.s) = SN = ) (87)
sin(wg(t—d —t;)) Aalp d  sin(wy(t; —s)) ' (BS)

Gpult,s) =0(t—d—1;)

Wp

Ar’mg e(d® + €?) wy

The transmissivity of the channel 7 could be immediately calculated through the determinant of the matrix T from

Eq. (38), as

t=0(1—d- tl)m_B(G%A — GpaGpa) =0(1—d —1;)
A

2323 d sin?(w, (t; — 5))
167*mymp € (d* + €2)? w} ’

(B9)

The latter is obviously O when ¢ < #; + d, since the detectors are not causally connected.
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Regarding the noise, we proceed to compute the matrix
(46) by supposing that Bob’s detector is prepared in its
ground state (91). The first term of the matrix N can be
easily computed using Eq. (B7). For the second term we
can compute N;;, N, and N,, from Egs. (40)—(42).
Namely, using (B3)—(BS), we get

/12

B : .
1 ZWSIHZ(WB(t—tI—d)), (BlO)

2

Niy =gt ——sin(wp(t = 1; = d)) cos(wp(t = 1; = d));
"€ MpWp
(B11)
/12
Ny :—gcosz(wB(t—t,—d)). (B12)
8n-e

Then, the quantity W := detN can be computed exactly as

W= ! . (B13)
4 167%wgmp
The noise (B13) corresponds to the upper bound of the
noise (99) achieved in the protocol described in Sec. VI.
There are some caveats in the expression (B9) for the
transmissivity z. In fact, Alice could decrease the energy
gap of her detector w, arbitrarily so that the transmissivity
of the channel becomes, in the limit w, — 0,

3% d?
167*mymp €*(d* + €*)?

T (t;—s)%.  (Bl4)

In this case, the transmissivity of the channel is propor-
tional to #; — s, i.e., the time Alice waits after the prepa-
ration of the state to interact with the field. This
proportionality is similar to the one we obtain in case
Alice is Rindler accelerated and Bob is static, as studied in
Sec. VIC. However, in that context, we showed how, in
Bob’s frame, Alice’s state changes from the time s to the
time #;, undergoing an amplification (see Sec. VIC?2).
Instead, here the evolution of Alice’s covariance matrix
from s to #; is provided by Eq. (93) where Ny, = O and T4,
is given by Eq. (95). Therefore, we see that T, is a
symplectic matrix, so that Alice’s substate evolves with a
unitary transformation from s to #;.

As a consequence, the fact that the transmissivity of the
protocol in the static case depends on #; — s is not expected,
because effectively Alice’s state does not change from the
time s to the time #;. Moreover, the expression (B14) for the
transmissivity would allow 7z to be arbitrarily high by
increasing f; — s, eventually reaching a situation where the
quantum capacity becomes greater than zero. However, this

violates the no-cloning theorem, because of the isotropy of
the spacetime considered. As explained in detail in
Ref. [27], if Alice is able to communicate a quantum
message to Bob, Alice would be able to communicate a
copy of this quantum message to every third detector whose
distance from Alice’s is d.

As we proved in Sec. VI A, all these problems are solved
if we consider the uncertainty principle on the time ;.
Indeed, the uncertainty on #; imposes a natural cutoff on
Alice’s energy gap so that w, < 1/d and the approxima-
tion leading to Eq. (B14) is prevented. Moreover, in this
case, the dependence of 7 on t; — s disappears since t;
becomes as a random variable with uncertainty ~1/w,.

Concluding, this appendix shows that, despite its sim-
plicity, the o-like interaction between field and detectors
should be taken with caution. Namely, this kind of
interaction could be considered as an approximating case
valid whenever the period of interaction is very small with
respect to the period of time needed for the detectors to be
causally connected (i.e., d in the static case). However, this
approximation should not overcome the physical limits
imposed by causality or by the uncertainty principle, to
prevent unphysical results.

APPENDIX C: ANALYSIS OF THE COMPLETE
POSITIVITY OF THE CHANNEL

In Sec. VIC 3, we studied the quantum capacity of the
protocol described in Fig. 3, when Alice undergoes a
Rindler acceleration and Bob is static. In this context, we
have seen how, if |s| > |s*|, then the average number of
noisy particles (145) is negative. From the discussion at the
end of Sec. VA, this means that the map describing the
channel does not satisfy the complete positivity condition.
Thus, when |s| > |s*| it is no more true that each Gaussian
input o;, is mapped into a valid, observable Gaussian
output oy.

By going back to the general case in Sec. IV, looking at
the map (43) together with Eq. (37), there is no way to
guarantee that this map is always complete positive.
However, from Eq. (13) it is clear that the evolution of
the moment operator ¢; of the detectors (and of its
canonically conjugate p;) is linear. As a consequence, each
input Gaussian state is always mapped to an output
Gaussian state, so that the channel is always Gaussian.
Then, the eventual lack of complete positivity is not caused
by a disrupting of the Gaussian form of the output. Instead,
we show that this problem originates from the coordinate
transformation of Alice’s input state from Alice’s frame to
Bob’s frame, which is in general a non-CP map.

The map N described by Eq. (43) could be rewritten as
the composition between three different maps, namely N,
N, and N3, where
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(i) N, maps the input state in Alice’s frame into the
input state in Bob’s frame, called oﬁ - Namely,

N it ow(s) > 04, (s) =diag(1.1a)oi(s)diag(L.1s).
(C1)

(ii) N, represents the time evolution of Alice’s state in
Bob’s frame from s to 7, i.e.,
Nat afu(s) = ol (1) (C2)
The evolution of Alice’s state specified in Eq. (93) is
the composite map N,oN'|: 6y = Tas0i,Th 4.
(iii) The map N3: 65, (#;) > 64, maps Alice’s state in
Bob’s frame at the time #; to Bob’s state after a
defined time. This is the channel occurring when
Alice and Bob communicate.
Each one of these maps N; could be written as Eq. (43)
with matrices T; and N;. Then, A/; can be characterized by
the parameters 7; = detT; and W = detN;. However, the
map N is a valid one-mode Gaussian channel if, given their
7; and W, the relative 77 from Eq. (55), called #;, is positive.
In the protocols studied in Sec. VI, the map N5 always
satisfy this property, because W5 > 1/4 and 73 < 1. Then,
we have 773 > 0 as long as 73 < 2.

However, for the maps AN, and N, we have
W, =W, =0, implying n; =, =—1/2 and making
them noncomplete positive maps. The problems that
may arise in the complete channel A" = N 30N ,0N| are
then caused by the applications of A/} and N>.

In particular, we now see that the main problem resides
in A/, and we show that, by solving it, we automatically
remove the possibility to have 7 < 0.

This analysis requires further tools on bosonic Gaussian
states that we are going to introduce now. Namely, the
covariance matrix representing a one-mode Gaussian state
is defined in Eq. (31) when i = j. The canonical variables
q; and p; defining the covariance matrix o¢;; must satisfy the
uncertainty principle, a consequence of the algebra
described in Eq. (19). Mathematically speaking, the covari-
ance matrix o; must satisfy

+1<0 i>>0
Oij T . 2 U.
2\-1 0

In general, following the commutation relation (19), a
covariance matrix o;; representing a one-mode Gaussian
state can be written as

(C3)

(% + n; + mmi Smi
Oii =

Smi %‘f‘ n; — %m,-

) e

where n; := (a]a;), i.e., the average number of particles in
the mode i, and m; := (a;a;). To satisfy Eq. (C3), one needs

|m;| < n; +n3. The entropy of the one-mode Gaussian
state represented by o;; is given by h(y/deto;;), where h is
defined in Eq. (58). Since & is not defined when its
argument is less than 1/2, we have deto;; > 1/4. This
condition is equivalent to (C3).

Looking at the action of the channel A/} from Eq. (C1), it
is clear that, starting with an input o;, whose determinant is
greater than 1/4, the output of A/, does not always satisfy
Eq. (C3). For example, starting with the unsqueezed

vacuum state oj, = %]I, using Eq. (C1), we have

30
66)-(o o)

2

(C5)

whose determinant is % < %. In this case, the output of the
channel is not an observable state. In particular, the input of
the channel N must satisfy certain conditions to have an
observable output. Namely, by applying the channel A/ to
the general input state (C4), which we call o;,, we need

A 1
et(N o)) = B (3 + i+t =m) 25, (09

A generic covariance matrix o, satisfying the condition
(C6) can be decomposed as oy, = of, + Ny, where o],
could be a whatever one-mode Gaussian state and Ny is a
matrix whose determinant, to ensure that Eq. (C6) is
satisfied, must be

1/1
detN02—<.——l).
v 2 \i,

At this point, the channel | can be considered a complete
positive one-mode Gaussian channel where the input is o/,
and the matrix N, plays the role of an additive noise,
namely

(€7)

Ni(ow) = diag(1, 14)oi,diag(1, 14)

+ diag(1, 74)Nydiag(1,1,). (C8)
By reducing the channel (C8) to its canonical form (see
Sec. VA), we now have a transmissivity 7; = 7,4 and a noise
W, = 5 det(Ny). Taking the minimum detN, possible,
from Eq. (C7), we have W, =1(1—1,)? producing a
number of noisy particles 77; = 0. Then, if we apply the
channel \V;, to the rhs of Eq. (C8), we end up again with an
output with a null number of noisy particles. Since N ; was
always recognized as a one-mode Gaussian channel, we
can conclude that the lack of complete positiveness of the
channel V is due by the channel \/,. Hence, by ensuring
N is complete positive by taking input states satisfying
Eq. (C6), the channel N is always complete positive
as well.
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