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We consider the renormalization group flow equation for the two-dimensional sigma models with the
Kihler target space. The first-order formulation allows us to treat perturbations in these models as current-
current deformations. We demonstrate, however, that the conventional first-order formalism misses certain

anomalies in the measure, and should be amended. We reconcile beta functions obtained within the
conformal perturbation theory for the current-current deformations with traditional “geometric” results
obtained in the background field methods, in this way resolving the peculiarities pointed out in O.
Gamayun et al. [Peculiarities of beta functions in sigma models, J. High Energy Phys. 10 (2023) 097]. The
result is achieved by the supersymmetric completion of the first-order sigma model.
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Beta functions in quantum field theories define the
dependence of the coupling constant on the renormalization
scale (the RG flow, see e.g., [1]). For two-dimensional
sigma models, this flow has a rich geometric meaning,
which is the main reason for their successful application in
string theory and statistical mechanics [2]. In [3] it was
shown how to cast a traditional bosonic sigma model into
the so-called first-order form, which allows one, in par-
ticular, to treat metric perturbations as conformal pertur-
bation theory.

In Ref. [4] we have considered a special type of metric
deformations dubbed Lie-algebraic sigma models [5],
which correspond to the current-current deformations. This
allowed us to compare our results with the rich research
history of beta functions for such deformations [7-13].
We have established that the first-order sigma models
proposed in [3] when applied to g function calcu-
lations works perfectly at the leading order. However, it
leads to results incompatible with the standard geometric
(background field method) calculations starting from
the second order. In particular, in [4] we considered a
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Lie-algebraic generalization of the CP' model on the
Kihler space of one complex parameter ¢. The metric
(with the upper indices) was a finite polynomial of ¢, @
parametrized by a number of generally speaking complex
parameters n;. A straightforward calculation of higher
loops in this formalism predicts that the higher loops must
be polynomial too, which contradicts the geometric result
already at two loops.

We have formulated a hypothesis to explain the discrep-
ancy as follows: the loss of polynomiality in the second and
higher loops is due to an infrared effect which in turn
reflects the loss of symmetry in the measure not explicitly
seen in the path integral. In this work we will demonstrate
that this is indeed the case. We consider a more general case
of Kihlerian target space of arbitrary dimension. Our
starting observation is as follows: if we endow the bosonic
model at hand by N = (2,2) supersymmetry, which is
always possible, then all contributions to the # function
beyond the first loop vanish, and simultaneously the
measure is regularized. Next, we make superpartners’ mass
large and integrate them out. Remarkably, we observe a
leftover—a finite effect which can be viewed as an
anomaly. This effect violates polynomiality.

Our observation is somewhat similar to the situation in
super-Yang-Mills (without matter). If we start from NV = 2
theory, its perturbative f function contains only one loop
which does not violate holomorphy in the complexified
gauge coupling 1/¢>. Now, if we add the mass term to the
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scalar superfield (including the “second” gluino) we reduce
N =2 downto N = 1 breaking holomorphy starting from
the second loop [14,15] as a result of an anomaly in the
measure [16].

Technically, the failure of the first-order formalisms in
higher loops in [4] and the successful resolution which will
be reported below is due to the following circumstance.
In [4] the original fy system was defined classically, i.e.,
with the flat metric, while our perturbation used a curved
metric. Now, through additional supersymmetry and heavy
fermion masses we obtain the bosonic fy system at the
quantum level, taking into account a nonflat metric in the
measure.

More specifically, by the bosonic action of the unper-
turbed By system, we understand the following sigma-model

d? _ _
So = / L2 (0" + padd®). (1)
>y T

Here the scalar fields ¢ and “ represent coordinates of
the D-dimensional target space. [17]. The fields p,, p; are
(1, 0) and (0, 1) forms on X correspondingly. For our
purposes, it will be enough to consider £ = CP!. This
theory is classically invariant under the diffeomorphism
transformations ¢ — ¢ — eV4(¢), generated by the cur-
rent J4 = p,V4. Henceforth the capital Latin letters enu-
merate all possible vector fields, while the lowercase is
reserved for the target space indices (cf., with [4]). On the
quantum level this symmetry becomes anomalous which is
reflected in the following operator product expansion
(OPE) of the currents

f587c(0) = Qup

<

TA()T5(0) = =5 + treg. (2)
Here we assume that the vector fields form an algebra with
the structure constants f§,. The structures 77453 and Q4 in a
chosen coordinate frame are

Map = AVEOVE. Qg =9.VE0,0 V500", (3)
In the general case, both 7 and € are functions on the target
space (depending on both ¢ and {). The operator product
expansion (2) does not represent a chiral current algebra.
Moreover, it is not even a vertex operator algebroid studied
in [18-20], because of ¢ dependence. This way, we have
a new structure not encountered before. However, in the
general case 7, depends on the choice of the coordinate
frame and does not transform as a scalar under the diffeo-
morphisms of the target (similar to [18-20]). Therefore, it is
even more surprising that under the current-current defor-
mation of the theory S, specified by the action Sg;

5o = / L2 G0, (0)74() (4)

the corresponding beta function (understood as a flow of
the “couplings” G*4) in the first two loops reads as

al gebra]

2 GBBGCCfBCfB C’ (5)

T2

algebra]

3 GCCGBBGFA( Crfiplics +cc.). (6)

2

The subscripts of the beta functions correspond to the
power of the perturbation operators (in conformal pertur-
bation methods [4]) and have to be identified with a number

of loops +1. For instance, f3%"™ corresponds to the first

loop, "™ to the second, and so on. The superscript

indicates that these expressions can be obtained solely using
the current algebra (2). Additionally, we have restored para-
meter . In Ref. [4] expressions (A1) and (6) were obtained
in a more general version of the deformation (4) [21]

a2z _ _
Sy = / 79““(¢,¢)papa- (7)

In this case the integration over p, and p; transforms the
first-order sigma model into the traditional second-order
geometric representation [3]. This allows us to compare
two beta functions. Specifically, in the first two loops for
a generic Kihler metric g%, the corresponding beta
function is well defined via the geometric objects of the
target space [22,23]

/

geometry Raa geometry ﬁRa _bRami,b (8)
= s 3 2 mp .

2

One can show (see Appendix A) that expressions for the
one-loop beta functions do coincide,

azllgebra _ geometry’ (9)
after the proper identification of ¢** and G*4 via equating
(4) and (7). This can be attributed to the fact that the
structure constants f$, do not require any extra structures
to be defined. In the two-loop case (i.e., for f33) this is no
longer true and extra care is needed to address the special
nature of the structure 7745 mentioned above. Alternatively,
this can be considered as subtleties of integration over
momenta p, and p; (see [24-27]).

To avoid these subtleties and reconcile algebraic and
geometric answers we introduce a supersymmetric gener-
alization of the original fy system. Namely, we introduce
fermions 7z, (7;) and w* () and modify S, as

d’z, - g
So = So — o (7,09 + 7a0p°). (10)

The currents J, are promoted to the supersymmetric ones
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Ja = Ta=pVilo) _ﬂaabvfﬂ//b- (11)
Their current algebra is no longer anomalous

Ja(2)T(0) —@—kreg. (12)

To be able to mode out the fermions we additionally
introduce fermionic mass terms
d’z d? .
58, —m/—ZM““ﬂaira—}—m/—ZM,—ml/"/“l//“. (13)
2r 2r
So far we do not require any symmetric properties of the
matrices M““ and M, and their relation to the deforma-
tions (7), although we assume for simplicity that they are
inverse of each other
MaM® =85, MPM,; =5t (14)
The mass-deformed action S,, = S, + S, is invariant with
respect to the diffeomorphisms generated by the vector

field V4(p) provided that the deformations transform
covariantly,

8aMaq = V50,May + Map0,Vy;, (15)
SAM = V50,M“* — MP79, V. (16)

The quantity 77,5 previously defined via the OPE (2) can be
alternatively defined via the two-point function of the
currents. Indeed, in the purely bosonic theory, we have

0 VRVE M

Ua(@p(0)5, = — APt = T (17)

One might expect that in the supersymmetric version with
the mass-deformation switched on, all fermionic degrees of
freedom decouple at the distances m|z| > 1, and we
immediately recover the first expression in Eq. (C4),

mz>1 0,VE0,V4
(Ta(2)T(0))g, "L = ZeZa% s (1)

Z

However, this would be a hasty conclusion. It turns out to
be true only for the constant matrices M ;.

We claim that the derivatives of M,; modify this
expression already in the leading order in m/|z| by intro-
ducing the covariant derivatives associated with M ;
[instead of the partial derivatives as in (17)],

m|z_\>>l _ VaVszVf;

<jA(Z)jB(O)>S B . (19)

m
Z

Here

V. Vb =0,Vh + M"%9. M, V5. (20)

Notice that this object transforms as a tensor upon the
diffeomorphisms shown in (15). So, 7,45 is now a proper
scalar

Nag =V Vzth%
=0,V50,V4 + M. M, V0,V
+ Mb10.M;,V§0,VE — VEV40,GoeopMe. (21)

The outline of the derivation of this statement is presented
in Appendix C, where we rigorously derive terms linear in
the derivatives, while quadratic terms are recovered in the
special perturbative regime.

This connection reminds the Hermitian connection

VivyE =0,V5 + Mbo,M, VS. (22)

However, the Hermitian connection is compatible with the
metric

VH MY = 0, (23)
while for our connection we have
V, Mb% = o, MP% 4+ MP39 M, M. (24)

This is nonzero unless the metric is Kihlerian. For the
Kéhlerian metrics both connections reduce to the Levi-
Civita connection. Moreover, as we demonstrate in
Appendix B, for the case when the fermions mass metric
coincides with the deformed Kihler metric M9 = 4@
the algebraic beta function (6) coincides with the geo-
metric one (8)

algebra __ ,geometry
e _ pesomety, (25)

Notice that the condition M4 = ¢“@ is rather natural; in the
traditional second-order sigma model, it is manifested in
the coincidence of the target space metric in the action with
the metric that defines the integration measure [2].

The example of (25) considered in [4], Eq. (2.52)—one-
dimensional Kihler space (a Lie-algebraic generalization of
CP"—reads

1 1 2

where R is the scalar curvature and o = 1/(27z). Our
conjecture amounts to summing the geometric progression
in Eq. (26). The third and higher-order loops are scheme-
dependent, however. We plan to address this issue in the
subsequent publication.
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Conclusion. We conclude with the statement that the
first-order formalism in 2D sigma models must be amended
to take into account an anomaly in the measure, as was
conjectured in Ref. [4]. In this work we present the pros this
fact in a particular regularization, namely, supersymmetry-
based regularization. We calculated the second loop of the
beta function using this regularized first-order formalism.
We demonstrated that sending the fermion masses to
infinity leaves a finite trace in the bosonic model. The
above residual nonvanishing contribution amends the first-
order formalism result and makes it identical to the “geo-
metric” calculation. A new understanding gained in this
study is uncovering the anomalous nature of the second and
higher loops. This indicates that the exact all-order beta
function most probably can be recovered on Kéhlerian
target spaces.
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APPENDIX A: ONE-LOOP COMPARISON

Let us demonstrate the equivalence of the geometric and
algebraic beta function for the Kéhler metric in one loop
level. First we transform the algebraic beta function

algebra ’_1 AA ~BB C
e R LA

; (A1)

in the form of the metric g = GA V4 V4. Contracting the
beta function in Eq. (A1) with the V%V‘_é we obtain

algebra] aa

i — [y

1 AA ~BBY/k a Y7k 5-7a
= 7400y ~ 99" g™ (A2)
|

The geometric beta function is given by the Ricci tensor

geometry]a;l — Raa

2 (A3)

For the Kéhler metric g we can use the following definition
of the Ricci tensor

—Ri}' = aiaj 10g(g)
= 51‘(9](73}91&)
= 51‘9](75}91(7 + gkiaiajgki
= aigki(}lgk] + gkiaia]gki (A4)

where in the last line we have used the Kéhler property. One
can easily prove the following lemma

00i9° + 9 G 0019;5 + 919,509 + ¢ 095019 = 0.

(AS5)
which allows us to show that
R = 19,0, — 93¢0y g (A6)
This way, we conclude that
Igeb
zzlge ra _ §e0metry. ( A7)

APPENDIX B: TWO-LOOP COMPARISON

In this section, we compare an algebraic and geometric
beta function at two-loop level. The algebraic beta function
reads

_ 1 -
Igeb
SEVEC = SGMGPEGEC R fhpnas + c.c.

; (B1)

Let us present this expression in terms of the metric of
the target space, which for simplicity, is assumed to be
(i) Kihler; (ii) equivalent to the metric of the mass
deformation.

We start by rewriting identically

GMGBEGEC R fE nupVeVe = GMGPEGEC (V’gvga;caivg + VER VIOV — VA Vo Ve — VEVLgo Ve

+ VERVEVE = VEOVEOVE ) (0uV40,VE + 70c9a V30,V

+ §7°0. 9k V0L VK = V4 V. 049:.0,9°) Vi

(B2)

Here we have used the definition of the commutator of the vector fields and the modified definition of 7,5 (See (21) in the

main text). Using A <> B symmetry we can further rewrite
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AA BB ~CC £D (E ayra _ (AARBBCC (k5 A-7 Vva kY5 A- 5 Va k 3.\ A va k 3175 a
GMGBBG ff?x)é gDnABVCVE—G GBBG (VBVAak()gVC—VBVCOkGEVA+V30kVA6§VC—2V36kVC(3§VA

+ V’éa,;v%ag Vfa) (0kV50,VE + 6770, 9:k V40,V + 9770, 9e V0,V

— VB VA 0,9:.0,9°) V&

or equivalently

GMGPBGEE fDfE napVeVE = GMGH (VEVE 00—V

kg 0p0sVE + VEVE 05 g% — 2V ap g0,V

+ gk oy V505 VA) (0 V50,V + 670,961 V0V + 6750096 V0, VE — VEVE 04g200,9).

(B4)
This way we obtain
GMGPPGEE D fE s VEVE = (V100" V050 + V05 (097 V 105" = 20507V 019"
+ 07059"* Vg™ — g“’EVkazzasgba)- (BS)
|

Where which demonstrates that even on the two-loop level

vb gki =0, ng + ng 00 Geb gc§ <B6) glgebra _ gcometry (B12)
V,0...09" = 0,,0...09"° + ¢¥¢0.9z,,0...09°*. (B7)

These computations are valid for any metric g*?. For Kihler

metric they can be simplified even further. In particular, in

this case, the covariant derivative of a metric vanishes
Vb gk‘? = 0, (Bg)

while for the “double” derivative we have the following
presentation

Vg = 005" + I} Oy
= 0p(Vig"") — g0},

= —R’4.9° = Ry 99
= —R 59" G = —R%yzg?".  (BY)
And in a similar way
Vha{gkl_( — _kaﬁbgml_( — _RkbEmgml_(
= _prgmg’"kgk‘_’ — _Rimprngkp. (B 10)
Altogether we get
GMGPEGEC R fE siap = Ry R wpng™ g7 o
= Rami)bRam[)b, (Bl 1)

APPENDIX C: CURRENG-CURRENT
CORRELATION FUNCTION

In this section, we outline proof of Egs. (19)—(21) in the
main text.

For convenience let us reformulate the problem here. We
are interested in the computation of the following current-
current correlation function

(Ta(2)T5(0))5, =148

(C1)
4

in the limit m|z| > 1.

The currents are given by the normal ordered expressions
T4(2) = paVi(p) — 7,0, V4", while the mass deformed
action reads

d? - -
Sm = /_Z (paa(pa — 7Oy + C'C')
T

So

&z - _ d’z _
b [ Mg m [ Moy,

[
(€2)

The coefficients are chosen in such a way that at m = 0 the
OPE would read as
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5b
Pa(2)¢" (W)lymo = 1+ 1o,
5b
ﬂa(Z)l//b<W)‘m:0 - 7 — +reg (C3)
We are going to prove that
nag = Va VZVbV§
=0,V40,V$ + M"30,.M;, VS0,V
+ MP9,.M;,V§0, Vs — VEVE0,Mz.0,M.  (C4)

First let us notice that in the correlators that do not involve
p, one can easily ignore ¢ dependence in M,; and M“? in
S,,. In particular, the fermions correlators could be com-
puted explicitly (we drop S,, subscript in the correlators),

(za (D (0)) = 8- P |K1(mIZ|)
(72 (0)) = 85 a “K (mlz) (C5)
(7a(2)72(0)) = mMz.Ko(mlz]),
(@ (2)w(0)) = mM**Ko(m|z]). (Co)

Here K, and K; are the modified Bessel function of the
second kind. The rest of fermionic two-point functions are
zero. All these correlators are exponentially small for
m|z| > 1. This way, the fermion-fermion current terms
do not contribute in the correlator (C1)

O(e™hl).

(a0, Viy" (2)7.0,Viy" (0)) = (C7)

Notice that the above integral does not have UV diver-
gences, to compute it we use the radial coordinates and
rescale the absolute value |w/|

/ dw /d(p mlwle™
. e“|lw|/m

mel
=2 [ PR (.

Ko(lw)K1([wl)

(€9)

For m|z| > 1 we can replace the upper limit to infinity,
which will yield us some constant

Am WIPKo (W) K ([w])d|w| = 5 (C10)

This gives

mlzl1 V40, VEM™0,M ;.

2

(V4 (2.0, Vi" 035,)s, :

(C11)

This way, we recover VV’ terms in (C4).

Now let us turn to the boson-boson contributions. To
simplify computations we consider a small deformation
on top of the constant metric M, = [My),, + 6Mz,, and
correspondingly M = [M]“ — SM**, where

Now let us have a look at mixed terms. In this case, the field M = M§C5MECMS“ + 0(5M2)- (C12)
p from the bosonic part of the current can be contracted
ith th in the defi tion t in th art of
z*v; (C2§:. [ﬁ} ;?n N ;: eformation terms in the mass part o Quadratic in 5M,,, terms are
<paVX(Z)”LanV%Wn(O)5Sm> " (5Sm)2
B d2W m3 W <puvfx(z)phVB(0) T> = Izm + Im// + Il//l// (C13)
=2V40,VeM™ oM. | ————
27 z—ww]
x K (m|w|)Ko(m|wl). (C8) where
|
m? [ d*w dw
L =5 [ G [ S paVa @ PV O)M ()M iy (), (c14)
m? 2y d*w o 3z
o =" [t [ (paV(2) PV O)Mec ()M (), (c1s)
2 2 2
w d*w . 7
by == [ ot [ (p,V(2) PV 0)0M (o1 )M (), (c1)
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Here the correlators are computed with the action S,, with metric M. Now let us focus on terms that are proportional to
V4V? i.e., where vectors fields are not differentiated, meaning that the fields p are contracted with ¢ in the perturbation. Let

us additionally introduce

then we obtain

(rvi@nvs0 S5

Identically we can present this expression as

where

he = MM, (C17)
d*w d*w
)| = vavh [ [ Ky oy = wal)? + Kofompy = ol

8 < 0,hd0,hS  h50,0,hd o b)> (C18)

Wi, d <> Wy, .

(z=wpwy  (z—wpw, : ?

55)? .

(ravatnvy0 GE)| = vaviamtonse, - vivio.aienc, (c19)
4%
:/ 2wy /d2w22m wo (K (m|wa1|)* + Ko(m|way)?)
(z =wi)wiwy
/d2W1 /d2W2 2m*w, Kl(m|W2|) + Ko(m|w,|)?) (C20)
(z=wwi(wy —wy)
c /d2W1/d2W2 2m* (K (m|wi|)* + Ko(m|wa |)?) /d2W1 G (c21)
* (z=wp)w; 2z (z—wy)wy

with wi, = w; — w,, and C; equals to

¢ = [ amik mpwali + Kol ). (€2
This integral is divergent logarithmically, but luckily it can
be regularized by adding counterterms to the action

S, =S, —Cs / hehs(z)dz (C23)
Notice this regularization is also needed for V'V’ terms. The

constant C| is finite and can be computed as follows. First,
we perform integration over the angle of w,

/ Py waf (s )

2 wy — Wy

= [Tl ualydpeal - (c24)
and then similarly over angle of w,

(Iwi) 1

d2 |2
IR e

which leaves us with the two-dimensional integral over
absolute values (we also rescale |w;| — |w;|/m)

2 [ml]
C :2/ d|W1||W1|
z=Jo

X /wool lwa| (K (|wa])? + Ko(wal)?)d|ws]. (C26)

For m|z| > 1 we replace the upper limit with co and then
exchange integration over |w;| and |w,|, in the end we
arrive at

1 oo 1
- [wal (K (Iwa])? + Ko(|wa])?)d|ws| = .
7 Jo Z

(C27)

CIZ

This way, without C, and with C; = 1/z> from (C19) we
recover quadratic terms in the expansion of (C4) around the
constant metric M, on terms without derivative of the
vector fields.
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