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We consider the renormalization group flow equation for the two-dimensional sigma models with the
Kähler target space. The first-order formulation allows us to treat perturbations in these models as current-
current deformations. We demonstrate, however, that the conventional first-order formalism misses certain
anomalies in the measure, and should be amended. We reconcile beta functions obtained within the
conformal perturbation theory for the current-current deformations with traditional “geometric” results
obtained in the background field methods, in this way resolving the peculiarities pointed out in O.
Gamayun et al. [Peculiarities of beta functions in sigma models, J. High Energy Phys. 10 (2023) 097]. The
result is achieved by the supersymmetric completion of the first-order sigma model.
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Beta functions in quantum field theories define the
dependence of the coupling constant on the renormalization
scale (the RG flow, see e.g., [1]). For two-dimensional
sigma models, this flow has a rich geometric meaning,
which is the main reason for their successful application in
string theory and statistical mechanics [2]. In [3] it was
shown how to cast a traditional bosonic sigma model into
the so-called first-order form, which allows one, in par-
ticular, to treat metric perturbations as conformal pertur-
bation theory.
In Ref. [4] we have considered a special type of metric

deformations dubbed Lie-algebraic sigma models [5],
which correspond to the current-current deformations. This
allowed us to compare our results with the rich research
history of beta functions for such deformations [7–13].
We have established that the first-order sigma models
proposed in [3] when applied to β function calcu-
lations works perfectly at the leading order. However, it
leads to results incompatible with the standard geometric
(background field method) calculations starting from
the second order. In particular, in [4] we considered a

Lie-algebraic generalization of the CP1 model on the
Kähler space of one complex parameter φ. The metric
(with the upper indices) was a finite polynomial of φ; φ̄
parametrized by a number of generally speaking complex
parameters ni. A straightforward calculation of higher
loops in this formalism predicts that the higher loops must
be polynomial too, which contradicts the geometric result
already at two loops.
We have formulated a hypothesis to explain the discrep-

ancy as follows: the loss of polynomiality in the second and
higher loops is due to an infrared effect which in turn
reflects the loss of symmetry in the measure not explicitly
seen in the path integral. In this work we will demonstrate
that this is indeed the case. We consider a more general case
of Kählerian target space of arbitrary dimension. Our
starting observation is as follows: if we endow the bosonic
model at hand by N ¼ ð2; 2Þ supersymmetry, which is
always possible, then all contributions to the β function
beyond the first loop vanish, and simultaneously the
measure is regularized. Next, we make superpartners’ mass
large and integrate them out. Remarkably, we observe a
leftover—a finite effect which can be viewed as an
anomaly. This effect violates polynomiality.
Our observation is somewhat similar to the situation in

super-Yang-Mills (without matter). If we start from N ¼ 2
theory, its perturbative β function contains only one loop
which does not violate holomorphy in the complexified
gauge coupling 1=g2. Now, if we add the mass term to the
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scalar superfield (including the “second” gluino) we reduce
N ¼ 2 down toN ¼ 1 breaking holomorphy starting from
the second loop [14,15] as a result of an anomaly in the
measure [16].
Technically, the failure of the first-order formalisms in

higher loops in [4] and the successful resolution which will
be reported below is due to the following circumstance.
In [4] the original βγ system was defined classically, i.e.,
with the flat metric, while our perturbation used a curved
metric. Now, through additional supersymmetry and heavy
fermion masses we obtain the bosonic βγ system at the
quantum level, taking into account a nonflat metric in the
measure.
More specifically, by the bosonic action of the unper-

turbed βγ system, we understand the following sigma-model

S0 ¼
Z
Σ

d2z
π

�
pa∂φ

a þ p̄ā∂φ̄
ā
�
: ð1Þ

Here the scalar fields φa and φ̄ā represent coordinates of
the D-dimensional target space. [17]. The fields pa, pā are
(1, 0) and (0, 1) forms on Σ correspondingly. For our
purposes, it will be enough to consider Σ ¼ CP1. This
theory is classically invariant under the diffeomorphism
transformations φa → φa − ϵVa

AðφÞ, generated by the cur-
rent JA ¼ paVa

A. Henceforth the capital Latin letters enu-
merate all possible vector fields, while the lowercase is
reserved for the target space indices (cf., with [4]). On the
quantum level this symmetry becomes anomalous which is
reflected in the following operator product expansion
(OPE) of the currents

JAðzÞJBð0Þ ¼ −
ηAB
z2

þ fCABJCð0Þ − ΩAB

z
þ reg: ð2Þ

Here we assume that the vector fields form an algebra with
the structure constants fCAB. The structures ηAB andΩAB in a
chosen coordinate frame are

ηAB ¼ ∂kVc
A∂cV

k
B; ΩAB ¼ ∂cVk

B∂m∂kV
c
A∂φ

m: ð3Þ

In the general case, both η and Ω are functions on the target
space (depending on both φ and φ̄). The operator product
expansion (2) does not represent a chiral current algebra.
Moreover, it is not even a vertex operator algebroid studied
in [18–20], because of φ̄ dependence. This way, we have
a new structure not encountered before. However, in the
general case ηAB depends on the choice of the coordinate
frame and does not transform as a scalar under the diffeo-
morphisms of the target (similar to [18–20]). Therefore, it is
even more surprising that under the current-current defor-
mation of the theory S0, specified by the action SG

SG ¼
Z

d2z
π

GAĀJAðφÞJĀðφ̄Þ ð4Þ

the corresponding beta function (understood as a flow of
the “couplings” GAĀ) in the first two loops reads as

½βalgebra2 �AĀ ¼ 1

2
GBB̄GCC̄fABCf

Ā
B̄ C̄; ð5Þ

½βalgebra3 �AĀ ¼ α0

2
GCC̄GBB̄GFĀ

�
fDCFf

A
BDηC̄ B̄ þ c:c:

�
: ð6Þ

The subscripts of the beta functions correspond to the
power of the perturbation operators (in conformal pertur-
bation methods [4]) and have to be identified with a number
of loops þ1. For instance, βalgebra2 corresponds to the first
loop, βalgebra3 to the second, and so on. The superscript
indicates that these expressions can be obtained solely using
the current algebra (2). Additionally, we have restored para-
meter α0. In Ref. [4] expressions (A1) and (6) were obtained
in a more general version of the deformation (4) [21]

Sg ¼
Z

d2z
π

gaāðφ; φ̄Þpap̄ā: ð7Þ

In this case the integration over pa and pā transforms the
first-order sigma model into the traditional second-order
geometric representation [3]. This allows us to compare
two beta functions. Specifically, in the first two loops for
a generic Kähler metric gaā, the corresponding beta
function is well defined via the geometric objects of the
target space [22,23]

βgeometry
2 ¼ Raā; βgeometry

3 ¼ α0

2
Ra

mp̄bRāmp̄b: ð8Þ

One can show (see Appendix A) that expressions for the
one-loop beta functions do coincide,

βalgebra2 ¼ βgeometry
2 ; ð9Þ

after the proper identification of gaā and GAĀ via equating
(4) and (7). This can be attributed to the fact that the
structure constants fCAB do not require any extra structures
to be defined. In the two-loop case (i.e., for β3) this is no
longer true and extra care is needed to address the special
nature of the structure ηAB mentioned above. Alternatively,
this can be considered as subtleties of integration over
momenta pa and p̄ā (see [24–27]).
To avoid these subtleties and reconcile algebraic and

geometric answers we introduce a supersymmetric gener-
alization of the original βγ system. Namely, we introduce
fermions πa (π̄ā) and ψa (ψ̄ ā) and modify S0 as

S0 → S0 −
Z

d2z
π

ðπa∂ψa þ π̄ā∂ψ̄
āÞ: ð10Þ

The currents JA are promoted to the supersymmetric ones
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JA → J A ¼ paVa
AðφÞ − πa∂bVa

Aψ
b: ð11Þ

Their current algebra is no longer anomalous

J AðzÞJ Bð0Þ ¼
fCABJ Cð0Þ

z
þ reg: ð12Þ

To be able to mode out the fermions we additionally
introduce fermionic mass terms

δSm ¼ m
Z

d2z
2π

Maāπaπ̄ā þm
Z

d2z
2π

Māaψ̄
āψa: ð13Þ

So far we do not require any symmetric properties of the
matrices Maā and Māa and their relation to the deforma-
tions (7), although we assume for simplicity that they are
inverse of each other

MaāMāb ¼ δba; Mb̄aMab̄ ¼ δb̄ā: ð14Þ

The mass-deformed action Sm ¼ S0 þ δSm is invariant with
respect to the diffeomorphisms generated by the vector
field Va

AðφÞ provided that the deformations transform
covariantly,

δAMāa ¼ Vb
A∂bMāa þMāb∂aVb

A; ð15Þ

δAMaā ¼ Vb
A∂bM

aā −Mbā
∂bVa

A: ð16Þ

The quantity ηAB previously defined via the OPE (2) can be
alternatively defined via the two-point function of the
currents. Indeed, in the purely bosonic theory, we have

hJAðzÞJBð0ÞiS0 ¼ −
∂aVb

A∂bV
a
B

z2
¼ −

ηAB
z2

: ð17Þ

One might expect that in the supersymmetric version with
the mass-deformation switched on, all fermionic degrees of
freedom decouple at the distances mjzj ≫ 1, and we
immediately recover the first expression in Eq. (C4),

hJ AðzÞJ Bð0ÞiSm ¼mjzj≫1 −
∂aVb

A∂bV
a
B

z2
: ð18Þ

However, this would be a hasty conclusion. It turns out to
be true only for the constant matrices Maā.
We claim that the derivatives of Maā modify this

expression already in the leading order in mjzj by intro-
ducing the covariant derivatives associated with Maā
[instead of the partial derivatives as in (17)],

hJ AðzÞJ Bð0ÞiSm ¼mjzj≫1 −
∇aVb

A∇bVa
B

z2
: ð19Þ

Here

∇aVb
A ¼ ∂aVb

A þMbā
∂cMāaVc

A: ð20Þ

Notice that this object transforms as a tensor upon the
diffeomorphisms shown in (15). So, ηAB is now a proper
scalar

ηAB ¼ ∇aVb
A∇bVa

B

¼ ∂aVb
A∂bV

a
B þMbā

∂cMāaVc
A∂bV

a
B

þMbā
∂cMāaVc

B∂bV
a
A − Vb

BV
a
A∂aGc̄c∂bMcc̄: ð21Þ

The outline of the derivation of this statement is presented
in Appendix C, where we rigorously derive terms linear in
the derivatives, while quadratic terms are recovered in the
special perturbative regime.
This connection reminds the Hermitian connection

∇H
a Vb

A ¼ ∂aVb
A þMbā

∂aMācVc
A: ð22Þ

However, the Hermitian connection is compatible with the
metric

∇H
a Mbk̄ ¼ 0; ð23Þ

while for our connection we have

∇aMbk̄ ¼ ∂aMbk̄ þMbā
∂cMāaMck̄: ð24Þ

This is nonzero unless the metric is Kählerian. For the
Kählerian metrics both connections reduce to the Levi-
Civita connection. Moreover, as we demonstrate in
Appendix B, for the case when the fermions mass metric
coincides with the deformed Kähler metric Maā ¼ gaā

the algebraic beta function (6) coincides with the geo-
metric one (8)

βalgebra3 ¼ βgeometry
3 : ð25Þ

Notice that the conditionMaā ¼ gaā is rather natural; in the
traditional second-order sigma model, it is manifested in
the coincidence of the target space metric in the action with
the metric that defines the integration measure [2].
The example of (25) considered in [4], Eq. (2.52)—one-

dimensional Kähler space (a Lie-algebraic generalization of
CP1)—reads

βG11̄
¼ G11̄

�
1

4π
Rþ

�
1

4π
R
�

2

þ � � �
�
; ð26Þ

where R is the scalar curvature and α0 ¼ 1=ð2πÞ. Our
conjecture amounts to summing the geometric progression
in Eq. (26). The third and higher-order loops are scheme-
dependent, however. We plan to address this issue in the
subsequent publication.
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Conclusion. We conclude with the statement that the
first-order formalism in 2D sigma models must be amended
to take into account an anomaly in the measure, as was
conjectured in Ref. [4]. In this work we present the pros this
fact in a particular regularization, namely, supersymmetry-
based regularization. We calculated the second loop of the
beta function using this regularized first-order formalism.
We demonstrated that sending the fermion masses to
infinity leaves a finite trace in the bosonic model. The
above residual nonvanishing contribution amends the first-
order formalism result and makes it identical to the “geo-
metric” calculation. A new understanding gained in this
study is uncovering the anomalous nature of the second and
higher loops. This indicates that the exact all-order beta
function most probably can be recovered on Kählerian
target spaces.
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APPENDIX A: ONE-LOOP COMPARISON

Let us demonstrate the equivalence of the geometric and
algebraic beta function for the Kähler metric in one loop
level. First we transform the algebraic beta function

½βalgebra2 �CC̄ ¼ 1

2
GAĀGBB̄fCABf

C̄
Ā B̄

ðA1Þ

in the form of the metric gaā ¼ GAĀVa
AV̄

ā
Ā
. Contracting the

beta function in Eq. (A1) with the Va
CV̄

ā
C̄ we obtain

½βalgebra2 �aā ¼ ½βalgebra2 �CC̄Va
CV̄

ā
C̄

¼ 1

2
GAĀGBB̄Vk

½A∂kV
a
B�V̄

k̄
½Ā∂k̄V̄

ā
B̄�

¼ gkk̄∂k∂k̄g
aā − ∂k̄g

kā
∂kgak̄: ðA2Þ

The geometric beta function is given by the Ricci tensor

½βgeometry
2 �aā ¼ Raā ðA3Þ

For the Kähler metric g we can use the following definition
of the Ricci tensor

−Rij̄ ¼ ∂i∂j̄ logðgÞ
¼ ∂iðgkl̄∂j̄gkl̄Þ
¼ ∂igkl̄∂j̄gkl̄ þ gkl̄∂i∂j̄gkl̄

¼ ∂igkl̄∂l̄gkj̄ þ gkl̄∂i∂j̄gkl̄ ðA4Þ

where in the last line we have used the Kähler property. One
can easily prove the following lemma

∂k∂l̄g
aāþ giāGaj̄

∂k∂l̄gij̄þ giā∂l̄gij̄∂kg
aj̄þ giā∂kgij̄∂l̄g

aj̄ ¼ 0;

ðA5Þ

which allows us to show that

Raā ¼ gkl̄∂k∂l̄g
aā − ∂j̄g

kā
∂kgaj̄: ðA6Þ

This way, we conclude that

βalgebra2 ¼ βgeometry
2 : ðA7Þ

APPENDIX B: TWO-LOOP COMPARISON

In this section, we compare an algebraic and geometric
beta function at two-loop level. The algebraic beta function
reads

½βalgebra3 �EC̄ ¼ 1

2
GAĀGBB̄GCC̄fDACf

E
BDηĀ B̄ þ c:c: ðB1Þ

Let us present this expression in terms of the metric of
the target space, which for simplicity, is assumed to be
(i) Kähler; (ii) equivalent to the metric of the mass
deformation.
We start by rewriting identically

GAĀGBB̄GCC̄fD̄Ā C̄f
Ē
B̄ D̄ηABV

a
CV̄

ā
Ē ¼ GAĀGBB̄GCC̄

�
Vk̄
B̄V

s̄
Ā
∂k̄∂s̄V

ā
C̄ þ Vk̄

B̄∂k̄V
s̄
Ā
∂s̄Vā

C̄ − Vk̄
B̄∂k̄V

s̄
C̄∂s̄V

ā
Ā
− Vk̄

B̄V
s̄
C̄∂k̄∂s̄V

ā
Ā

þ Vk̄
C̄∂k̄V

s̄
Ā
∂s̄Vā

B̄ − Vk̄
Ā
∂k̄V

s̄
C̄∂s̄V

ā
B̄

	�
∂kVb

A∂bV
k
B þ gbc̄∂cgc̄kVc

A∂bV
k
B

þ gbc̄∂cgc̄kVc
B∂bV

k
A − Vb

BV
k
A∂kgc̄c∂bg

cc̄
�
Va
C ðB2Þ

Here we have used the definition of the commutator of the vector fields and the modified definition of ηAB (See (21) in the
main text). Using A ↔ B symmetry we can further rewrite
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GAĀGBB̄GCC̄fD̄Ā C̄f
Ē
B̄ D̄ηABV

a
CV̄

ā
Ē ¼ GAĀGBB̄GCC̄

�
Vk̄
B̄V

s̄
Ā
∂k̄∂s̄V

ā
C̄ − Vk̄

B̄V
s̄
C̄∂k̄∂s̄V

ā
Ā
þ Vk̄

B̄∂k̄V
s̄
Ā
∂s̄Vā

C̄ − 2Vk̄
B̄∂k̄V

s̄
C̄∂s̄V

ā
Ā

þ Vk̄
C̄∂k̄V

s̄
B̄∂s̄V

ā
Ā

	�
∂kVb

A∂bV
k
B þ gbc̄∂cgc̄kVc

A∂bV
k
B þ gbc̄∂cgc̄kVc

B∂bV
k
A

− Vb
BV

k
A∂kgc̄c∂bg

cc̄
�
Va
C ðB3Þ

or equivalently

GAĀGBB̄GCC̄fD̄Ā C̄f
Ē
B̄D̄ηABV

a
CV̄

ā
Ē ¼GAĀGBB̄

�
Vk̄
B̄V

s̄
Ā
∂k̄∂s̄g

aā −Vk̄
B̄g

as̄
∂k̄∂s̄V

ā
Ā
þVk̄

B̄∂k̄V
s̄
Ā
∂s̄gaā − 2Vk̄

B̄∂k̄g
as̄
∂s̄Vā

Ā

þ gak̄∂k̄V
s̄
B̄∂s̄V

ā
Ā

	�
∂kVb

A∂bV
k
Bþ gbc̄∂cgc̄kVc

A∂bV
k
Bþ gbc̄∂cgc̄kVc

B∂bV
k
A−Vb

BV
k
A∂kgc̄c∂bg

cc̄
�
:

ðB4Þ

This way we obtain

GAĀGBB̄GCC̄fD̄Ā C̄f
Ē
B̄ D̄ηABV

a
CV̄

ā
Ē ¼ gas̄∇k∂k̄g

bā∇b∂s̄gkk̄ þ∇bgks̄
�
∂k̄g

aā∇k∂s̄gbk̄ − 2∂s̄gak̄∇k∂k̄g
bā

þ ∂k̄∂s̄g
aā∇kgbk̄ − gak̄∇k∂k̄∂s̄g

bā
	
: ðB5Þ

Where

∇bgks̄ ¼ ∂bgks̄ þ gkc̄∂cgc̄bgcs̄ ðB6Þ

∇b∂…∂gks̄ ¼ ∂b∂…∂gks̄ þ gkc̄∂cgc̄b∂…∂gcs̄: ðB7Þ

These computations are valid for any metric gaā. For Kähler
metric they can be simplified even further. In particular, in
this case, the covariant derivative of a metric vanishes

∇bgks̄ ¼ 0; ðB8Þ

while for the “double” derivative we have the following
presentation

∇k∂k̄g
bā ¼ ∂k∂k̄g

bā þ Γb
kc∂kg

cā

¼ ∂k̄ð∇kgbāÞ − gcā∂k̄Γb
kc

¼ −Rb
kk̄cg

cā ¼ Rb̄kk̄cg
bb̄gcā

¼ −Rck̄kb̄g
bb̄Gcā ¼ −Rā

k̄kb̄g
bb̄: ðB9Þ

And in a similar way

∇b∂s̄gkk̄ ¼ −Rk
ms̄bgmk̄ ¼ −Rk

bs̄mgmk̄

¼ −Rp̄bs̄mgmk̄gkp̄ ¼ −Rs̄mp̄bgmk̄gkp̄: ðB10Þ

Altogether we get

GAĀGBB̄GCC̄fD̄Ā C̄f
Ē
B̄ D̄ηAB ¼ Rā

k̄kb̄R
a
mp̄bgmk̄gkp̄gbb̄

¼ Ra
mp̄bRāmp̄b; ðB11Þ

which demonstrates that even on the two-loop level

βalgebra3 ¼ βgeometry
3 : ðB12Þ

APPENDIX C: CURRENG-CURRENT
CORRELATION FUNCTION

In this section, we outline proof of Eqs. (19)–(21) in the
main text.
For convenience let us reformulate the problem here. We

are interested in the computation of the following current-
current correlation function

hJ AðzÞJ Bð0ÞiSm ≡ −
ηAB
z2

ðC1Þ

in the limit mjzj ≫ 1.
The currents are given by the normal ordered expressions

J AðzÞ ¼ paVa
AðφÞ − πa∂bVa

Aψ
b, while the mass deformed

action reads

Sm ¼
Z

d2z
π

ðpa∂φ
a − πa∂ψ

a þ c:c:Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
S0

þm
Z

d2z
2π

MaāðφÞπaπ̄ā þm
Z

d2z
2π

MāaðφÞψ̄ āψa

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
δSm

:

ðC2Þ

The coefficients are chosen in such a way that at m ¼ 0 the
OPE would read as

FIRST-ORDER FORMALISM FOR β FUNCTIONS IN … PHYS. REV. D 110, 025017 (2024)

025017-5



paðzÞφbðwÞjm¼0 ¼
δba

z − w
þ reg;

πaðzÞψbðwÞjm¼0 ¼
δba

z − w
þ reg: ðC3Þ

We are going to prove that

ηAB ¼ ∇aVb
A∇bVa

B

¼ ∂aVb
A∂bV

a
B þMbā

∂cMāaVc
A∂bV

a
B

þMbā
∂cMāaVc

B∂bV
a
A − Vb

BV
a
A∂aMc̄c∂bMcc̄: ðC4Þ

First let us notice that in the correlators that do not involve
p, one can easily ignore φ dependence in Maā and Maā in
Sm. In particular, the fermions correlators could be com-
puted explicitly (we drop Sm subscript in the correlators),

hπaðzÞψbð0Þi ¼ δba
mz
jzj K1ðmjzjÞ;

hπ̄āðzÞψ̄ b̄ð0Þi ¼ δb̄ā
mz̄
jzj K1ðmjzjÞ ðC5Þ

hπaðzÞπ̄āð0Þi ¼ mMāaK0ðmjzjÞ;
hψ̄ āðzÞψað0Þi ¼ mMaāK0ðmjzjÞ: ðC6Þ

Here K0 and K1 are the modified Bessel function of the
second kind. The rest of fermionic two-point functions are
zero. All these correlators are exponentially small for
mjzj ≫ 1. This way, the fermion-fermion current terms
do not contribute in the correlator (C1)

hπa∂bVa
Aψ

bðzÞπc∂nVc
Bψ

nð0Þi ¼ Oðe−mjzjÞ: ðC7Þ

Now let us have a look at mixed terms. In this case, the field
p from the bosonic part of the current can be contracted
with the φ in the deformation terms in the mass part of
Sm (C2). Namely,

hpaVa
AðzÞπc∂nVc

Bψ
nð0ÞδSmi

¼ 2Va
A∂nV

c
BM

nā
∂aMāc

Z
d2w
2π

m3

z − w
w̄
jwj

× K1ðmjwjÞK0ðmjwjÞ: ðC8Þ

Notice that the above integral does not have UV diver-
gences, to compute it we use the radial coordinates and
rescale the absolute value jwj

Z
∞

0

djwj
Z

π

−π

dφ
π

mjwje−iφ
z − eiφjwj=mK0ðjwjÞK1ðjwjÞ

¼ 2

z2

Z
mjzj

0

jwj2K0ðjwjÞK1ðjwjÞdjwj: ðC9Þ

For mjzj ≫ 1 we can replace the upper limit to infinity,
which will yield us some constant

Z
∞

0

jwj2K0ðjwjÞK1ðjwjÞdjwj ¼
1

2
: ðC10Þ

This gives

hpaVa
AðzÞπc∂nVc

Bψ
nð0ÞδSmiS0 ¼mjzj≫1 Va

A∂nV
c
BM

nā
∂aMāc

z2
:

ðC11Þ

This way, we recover VV 0 terms in (C4).
Now let us turn to the boson-boson contributions. To

simplify computations we consider a small deformation
on top of the constant metric Māa ¼ ½M0�āa þ δMāa, and
correspondingly Maā ¼ ½M0�aā − δMāa, where

δMāa ≡Māc
0 δMc̄cMc̄a

0 þOðδM2Þ: ðC12Þ

Quadratic in δMāa terms are

�
paVa

AðzÞpbVb
Bð0Þ

ðδSmÞ2
2

�
¼ Iππ þ Iπψ þ Iψψ ðC13Þ

where

Iππ ¼
m2

2

Z
d2w1

2π

Z
d2w2

2π
hpaVa

AðzÞpbVb
Bð0ÞδMcc̄πcπ̄c̄ðw1ÞδMkk̄πkπ̄k̄ðw2ÞiM0

ðC14Þ

Iψψ ¼ m2

2

Z
d2w1

2π

Z
d2w2

2π
hpaVa

AðzÞpbVb
Bð0ÞδMc̄cψ̄

c̄ψcðw1ÞδMk̄kψ̄
k̄ψkðw2ÞiM0

ðC15Þ

Iπψ ¼ −m2

Z
d2w1

2π

Z
d2w2

2π
hpaVa

AðzÞpbVb
Bð0ÞδMcc̄πcπ̄c̄ðw1ÞδMk̄kψ̄

k̄ψkðw2ÞiM0
: ðC16Þ
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Here the correlators are computed with the action Sm with metric M0. Now let us focus on terms that are proportional to
Va
AV

b
B i.e., where vectors fields are not differentiated, meaning that the fields p are contracted with φ in the perturbation. Let

us additionally introduce

hca ¼ Mc̄c
0 δMc̄a ðC17Þ

then we obtain

�
paVa

AðzÞpbVb
Bð0Þ

ðδSÞ2
2

�
VV

¼ −Va
AV

b
B

Z
d2w1

2π

Z
d2w2

2π
m4½K1ðmjw1 − w2jÞ2 þ K0ðmjw1 − w2jÞ2�

×

�
∂ahdc∂bhcd
ðz − w1Þw2

þ hcd∂a∂bh
d
c

ðz − w1Þw1

þ ðw1; a ↔ w2; bÞ
�
: ðC18Þ

Identically we can present this expression as

�
paVa

AðzÞpbVb
Bð0Þ

ðδSÞ2
2

�
VV

¼ Va
AV

b
B∂ah

d
c∂bhcdC1 − Va

AV
b
B∂a∂bðhdchcdÞC2 ðC19Þ

where

C1 ¼
Z

d2w1

2π

Z
d2w2

2π

2m4w21ðK1ðmjw21jÞ2 þ K0ðmjw21jÞ2Þ
ðz − w1Þw1w2

¼
Z

d2w1

2π

Z
d2w2

2π

2m4w2ðK1ðmjw2jÞ2 þ K0ðmjw2jÞ2Þ
ðz − w1Þw1ðw2 − w1Þ

ðC20Þ

C2 ¼
Z

d2w1

2π

Z
d2w2

2π

2m4ðK1ðmjw21jÞ2 þ K0ðmjw21jÞ2Þ
ðz − w1Þw1

¼
Z

d2w1

2π

C3

ðz − w1Þw1

ðC21Þ

with w12 ¼ w1 − w2, and C3 equals to

C3 ¼
Z

d2w2

2π
2m4ðK1ðmjw2jÞ2 þ K0ðmjw2jÞ2Þ: ðC22Þ

This integral is divergent logarithmically, but luckily it can
be regularized by adding counterterms to the action

Sm → Sm − C3

Z
hdchcdðzÞd2z: ðC23Þ

Notice this regularization is also needed for VV 0 terms. The
constant C1 is finite and can be computed as follows. First,
we perform integration over the angle of w2Z

d2w2

2π

w2fðjw2jÞ
w2 − w1

¼
Z

∞

jw1j
jw2jfðjw2jÞdjw2j ðC24Þ

and then similarly over angle of w1Z
d2w1

2π

fðjw1jÞ
ðz − w1Þw1

¼ 1

z2

Z jzj

0

jw1jfðjw1jÞdjw1j; ðC25Þ

which leaves us with the two-dimensional integral over
absolute values (we also rescale jwij → jwij=m)

C1 ¼
2

z2

Z
mjzj

0

djw1jjw1j

×
Z

∞

jw1j
jw2jðK1ðjw2jÞ2 þ K0ðjw2jÞ2Þdjw2j: ðC26Þ

For mjzj ≫ 1 we replace the upper limit with ∞ and then
exchange integration over jw1j and jw2j, in the end we
arrive at

C1 ¼
1

z2

Z
∞

0

jw2j3ðK1ðjw2jÞ2 þ K0ðjw2jÞ2Þdjw2j ¼
1

z2
:

ðC27Þ

This way, without C2 and with C1 ¼ 1=z2 from (C19) we
recover quadratic terms in the expansion of (C4) around the
constant metric M0 on terms without derivative of the
vector fields.
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