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where the presence of entanglement in the quantum field is actually detrimental to the process of getting the
two detectors entangled.
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I. INTRODUCTION

There has been a recent push to study entanglement in
quantum field theory through particle detector models.
Unlike other techniques, particle detector models provide
a way to implement localized measurements that make
sense in terms of physically implementable settings and
are self-regularized and hence free from spurious diver-
gences. The family of relativistic quantum information
protocols known as entanglement harvesting consists
of localized particle detectors that get entangled by
extracting preexisting entanglement from a quantum field.
This was first explored by Valentini and Reznik [1,2] and
further developed later on for different kinds of fields and
backgrounds (see, e.g., [3–17]).
Nonetheless, as first pointed out by [18], not all

entanglement acquired by the detectors comes from the
correlations in the quantum field. In fact, when the
detectors are in causal contact, they can also get entangled
via communication. In [18] it was argued that one can split
the acquired entanglement acquired by the detectors into
two different sources: communication-mediated entangle-
ment and genuinely harvested entanglement.
In previous literature it was argued that these two

contributions always combine so that there is more entan-
glement when communication through the field is allowed
than in spacelike separation. However, perhaps surpris-
ingly, we show that this is not always the case.
Namely, we find that, in general, the contributions of the

communication component and the contribution coming
from the harvesting of preexisting entanglement in the field
can actually interfere. This interference can be constructive,

amplifying even more the amount of entanglement acquired
by the detectors, but also destructive so that the harvesting
contribution and the communication contribution cancel
and the detectors fail to get entangled. This phenomenon is
not apparent in the setups considered in recent studies in
which this splitting is analyzed (such as [18–20]). We show
that this phenomenon was not visible because for all the
commonly chosen highly symmetric setups (see, e.g.,
[14,21–30]) both sources contribute constructively to the
entanglement between detectors. In this paper, we provide
sufficient conditions, fulfilled by commonly explored
scenarios, such that the interference between the two
sources is guaranteed to be constructive.
Then, guided by these conditions we provide examples

in Minkowski and de Sitter spacetimes where destructive
interference causes the detectors to not get entangled while
in causal contact, even though communication alone or
genuine harvesting alone would have entangled the detec-
tors. Conversely, we also find scenarios where the con-
structive interference is stronger than in the setups
commonly explored in the literature, further enhancing
the entanglement acquired by the detectors.
Our manuscript is organized as follows. In Sec. II we

review the protocol of entanglement harvesting, to establish
notation and build the necessary tools that will be used later
on. In Sec. III, we review the splitting of the entanglement
acquired by detectors into a communication component and
a genuine harvesting component. Section IV presents the
main results, namely the conditions that the spacetime, the
detectors, and the field Feynmann propagator should meet
to guarantee constructive interference. In Sec. V, we show
numerical examples in Minkowski and de Sitter spacetimes
where these conditions are violated. There, we find that
interference can go through the full range from completely
destructive to fully constructive. The concluding remarks
appear in Sec. VI.
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II. ENTANGLEMENT HARVESTING

For the sake of completeness and establishing notation,
we review the protocol of entanglement harvesting follow-
ing, e.g., Ref. [5]. Consider two Unurh-DeWitt detectors
[31–35], A and B, following timelike trajectories zAðτAÞ
and zBðτBÞ in an (nþ 1)-dimensional spacetime M. Here,
we assume that τA and τB are the respective proper times of
the detectors.
The detectors are considered to be two-level quantum

systems whose internal Hamiltonians are given by

Ĥj ¼ Ωjσ̂
þ
j σ̂

−
j ; ð1Þ

for j ¼ A; B. Here, Ωj represents the (proper) internal
energy gap, while σ̂þj ¼ jejihgjj and σ̂−j ¼ jgjihejj are
ladder operators between the respective ground and excited
states.
The detectors are coupled to a massless real scalar

quantum field ϕ̂ðxÞ defined on the spacetime M. The field
is assumed to satisfy the Klein-Gordon equation,

ð∇μ∇μ − ξRÞϕ̂ðxÞ ¼ 0; ð2Þ

where ξ is a constant and R is the scalar curvature.
Assuming fukðxÞ; u�kðx0Þg to be a complete, orthonormal
set of solutions to Eq. (2), we can write an explicit
expression for the field as

ϕ̂ðxÞ ¼
Z

dnkðukðxÞâk þ ukðxÞ�â†kÞ: ð3Þ

Here, the ladder operators satisfy the usual bosonic
canonical commutation relations, namely

½âk; â†p� ¼ δðnÞðk − pÞ: ð4Þ

We consider the usual covariant prescription for the
Unruh-DeWitt (UDW) detector [36] where the interactions
happen in a finite region of spacetime according to the
following interaction Hamiltonian density1:

ĥIðxÞ ¼ λ½ΛAðxÞμ̂AðτAÞ þ ΛBðxÞμ̂BðτBÞ�ϕ̂ðxÞ: ð5Þ

Here, the detectors’ monopole moments are given by

μ̂jðτjÞ ¼ eiΩjτj σ̂þj þ e−iΩjτj σ̂−j ; ð6Þ

and ΛjðxÞ are the spacetime smearing functions.
Time evolution in the interaction picture is thus imple-

mented through the operator2

ÛI ¼ T exp

�
−i

Z
dVĥIðxÞ

�
; ð7Þ

where dV is the invariant spacetime volume element that
for a given choice of coordinates ðt; xÞ takes the form
dV ¼ dtdnx

ffiffiffiffiffiffi−gp
, where g is the determinant of the metric

tensor.
As it is common in entanglement harvesting protocols,

we can assume that the initial state of the field is a zero-
mean Gaussian state ρ̂ϕ;0 (as, for example, the Minkowski
vacuum in flat spacetime and the conformal vacuum in de
Sitter). The detectors can be set in arbitrary pure states jψAi
and jψBi. The initial state of the full system is then
written as

ρ̂0 ¼ jψAihψAj ⊗ jψBihψBj ⊗ ρ̂ϕ;0: ð8Þ

With this choice, notice that the detectors’ initial state
has no correlations whatsoever. Nonetheless, after time
evolving the state ρ̂0 with Eq. (7), the detectors can evolve
to a mutually entangled state. This can occur even if the
detectors are spacelike separated, for instance, when ρ̂ϕ;0 is
the vacuum. This is so because the detectors harvest
preexisting entanglement in the field’s initial state. The
process of extracting entanglement from the field to two
localized detectors has become known as entanglement
harvesting [5,38]. For example, when the field’s initial state
is the Minkowski vacuum, it is well known that there is
entanglement in the field between degrees of freedom in
regions that are spacelike [2,39,40] and timelike [41–43]
separated.
The state of the detectors after they couple to the field is

given by ρ̂AB ¼ Trϕ½ÛIρ̂0Û
†
I �. To express this state in matrix

form, we consider states jζAi and jζBi so that B ¼
fjψAψBi; jψAζBi; jζAψBi; jζAζBig is an orthonormal basis.
In terms of the previously defined ground and excited states
of the detectors, we can write

jgji ¼ cos αjjψ ji − eiβj sin αjjζji;
jeji ¼ e−iβj sin αjjψ ji þ cos αjjζji; ð9Þ

1Notice that this construction assumes that there is a foliation
where the spacetime smearing factorizes into switching and
smearing functions Λjðτj; xÞ ¼ χjðτjÞFjðxÞ and that there is a
family of frames in which all the spatial points in the support of
FjðxÞ remain at the same coordinate distance to a “center of
mass” of the detector j. The detector’s internal forces keep the
detector cohesive. The trajectory of this center of mass zjðτjÞ
defines the proper time τj associated with the detector j (i.e., the
center of mass is assumed to carry the internal clock of the
detector). The details and assumptions that go into this con-
struction can be found in [36,37], where it is discussed that this
kind of construction is reasonable to model systems such as
atomic probes.

2Notice that for spatially smeared detectors there is an
ambiguity in the definition of time ordering. However, it was
shown in [37] that if we keep all our predictions to leading order
in the perturbative parameter λ and choose suitable initial states,
then the evolution will not depend on the time ordering chosen, so
this ambiguity is irrelevant for this work.
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for some αj; βj ∈ ½0; 2π�. Thus, in the basis B we have

ρ̂AB ¼

2
6664
1−LAA−LBB X� Y� M�

X LBB L�
AB 0

Y LAB LAA 0

M 0 0 0

3
7775þOðλ4Þ; ð10Þ

with

Lij ¼ ½cos2αicos2αjLijðΩi;ΩjÞ
− cos2αisin2αje−2iβjLijðΩi;−ΩjÞ
− sin2αicos2αje2iβiLijð−Ωi;ΩjÞ
þ sin2αisin2αje2iðβi−βjÞLijð−Ωi;−ΩjÞ�; ð11Þ

M ¼ ½cos2 αA cos2 αBMðΩA;ΩBÞ
− cos2 αA sin2 αBe2iβBMðΩA;−ΩBÞ
− sin2 αA cos2 αBe2iβAMð−ΩA;ΩBÞ
þ sin2 αA sin2 αBe2iðβAþβBÞMð−ΩA;−ΩBÞ�; ð12Þ

where

LijðΩi;ΩjÞ ¼ λ2
Z

dVdV 0eiðΩiτi−Ωjτ
0
jÞΛiðxÞΛjðx0ÞWðx0; xÞ;

ð13Þ

MðΩA;ΩBÞ ¼ −λ2
Z

dVdV 0eiðΩAτAþΩBτ
0
BÞΛAðxÞΛBðx0Þ

× GFðx; x0Þ: ð14Þ

The terms Lij and M are usually called local noise and
nonlocal correlations, respectively. The expressions for X
and Y are cumbersome and, since we will not use them
here, we refer the interested reader to Ref. [44]. In Eqs. (13)
and (14), Wðx; x0Þ is the Wightman function,

Wðx; x0Þ ¼ Tr½ϕ̂ðxÞϕ̂ðx0Þρ̂ϕ;0�; ð15Þ

whereas GFðx; x0Þ represents the Feynman propagator,
which can be written as

GFðx; x0Þ ¼ Tr½T ϕ̂ðxÞϕ̂ðx0Þρ̂ϕ;0�
¼ Θðt − t0ÞWðx; x0Þ þ Θðt0 − tÞWðx0; xÞ: ð16Þ

Here, ΘðtÞ is the Heaviside step function, and t describes
any time coordinate.
The amount of entanglement between the detectors can

be quantified by the negativity [45]. Such a choice of
entanglement quantifier is common in the entanglement
harvesting literature (see, e.g., [5,6,14,19]), since it is an
entanglement measure even for mixed states.

For a system of two qubits, negativity is a faithful
entanglement measure, and it is defined as the absolute sum
of the negative eigenvalues of the partially transposed
density matrix of the two qubits ρ̂tA . In particular, for the
state ρ̂AB described by Eq. (10) we have [5]

N ¼ maxf0;Vg þOðλ4Þ; ð17Þ

with

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMj2 þ

�
LAA − LBB

2

�
2

s
−
LAA þ LBB

2
: ð18Þ

According to expression (18), we can see that, in general,
the entanglement emerges as a competition between the
nonlocal term M and the local noise terms (LAA and LBB).
For the particular case where LAA ¼ LBB ¼ L (such as
identical inertial detectors in Minkowski spacetime), the
negativity reads

N ¼ maxf0; jMj − Lg þOðλ4Þ: ð19Þ

When the detectors are in causal contact, it is possible to
trace back the entanglement created between the detectors
to two different sources [18]. On the one hand, the detectors
can get entangled via communication through the field
(signaling) and, on the other hand, the detectors can get
entangled by extracting the entanglement already present
[39,40] in the field state (harvesting). In the next section,
we are going to review how one can distinguish between
these two different contributions.

III. COMMUNICATION VS GENUINE
HARVESTING

When two detectors in spacelike separation get
entangled through their interaction with the field, it is
clear that this entanglement has to come from the preexist-
ing correlations in the field itself. However, when they are
in causal contact, the detectors could very well be gaining
entanglement both through genuine harvesting from the
field state and also through the direct exchange of infor-
mation through the field. The techniques to separate these
two contributions were first laid out in [18], where the
authors use the state dependence of the symmetric (real)
and antisymmetric (imaginary) parts of the Wightman
function to split the negativity into signaling and genuine
harvesting contributions. Following the same notation as in
[18], we are going to denote by N − the negativity
computed if only the signaling contribution is kept in
the M term, and N þ the negativity if we only keep the
symmetric contribution of the Wightman function for the
M term. Then, determining if entanglement is harvested or
if it is acquired through communication is done by
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comparing the total amount of entanglement N and the
signaling contribution N −.
Concretely, to define N � we first look at the state

dependence of the symmetric and antisymmetric parts of
the Wightman function. We separate the Wightman func-
tion as follows:

Wðx; x0Þ ¼ Wþðx; xÞ þW−ðx; x0Þ; ð20Þ

where the symmetric and the antisymmetric parts are,
respectively, given by

Wþðx; x0Þ ¼ 1

2
Trðfϕ̂ðxÞ; ϕ̂ðx0Þgρ̂ϕÞ ð21Þ

and

W−ðx; x0Þ ¼ 1

2
Trð½ϕ̂ðxÞ; ϕ̂ðx0Þ�ρ̂ϕÞ: ð22Þ

From the general expression of the field ϕ̂ðxÞ in Eq. (3) and
the canonical commutation relations (4), it is clear that the
commutator ½ϕ̂ðxÞ; ϕ̂ðx0Þ� is a multiple of the identity, and
hence its expectation is state independent (see the explicit
calculations in, among many others, [18,46]). The state
independence of W−ðx; x0Þ is key to separating the two
contributions: any entanglement whose origin can be traced
back to this component of theWightman function cannot be
associated with preexisting entanglement in the field, since
one could consider a state of the field with no entangle-
ment, and yet this contribution would be unchanged.
Consequently, it must be concluded that the antisymmetric
part of the Wightman function is not associated with true
entanglement harvesting but rather contributes only to
signaling.
Using the decomposition of the Wightman in Eq. (20),

we can formally define the symmetric and antisymmetric
parts of the Feynman propagator as

G�
F ðx; x0Þ ¼ Θðt − t0ÞW�ðx; x0Þ þ Θðt0 − tÞW�ðx0; xÞ:

ð23Þ

Then, we can split the nonlocal term M into two
contributions, namely

M ¼ Mþ þM−; ð24Þ

and the components M� can be defined by simply
changing the Feynman propagator in Eq. (14) by the
corresponding terms G�

F ðx; x0Þ. Finally, we write

V� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM�j2 þ

�
LAA − LBB

2

�
2

s
−
LAA þ LBB

2
; ð25Þ

so that the harvested negativity N þ and the communica-
tion-assisted negativity N − can be expressed as3

N � ¼ maxfV�; 0g þOðλ4Þ: ð26Þ

IV. GENERAL RESULTS FOR GUARANTEEING
CONSTRUCTIVE INTERFERENCE

It is commonly observed in previous literature that the
acquired entanglement N is larger than both N �, which
indicates that communication and preexisting field corre-
lations work together to entangle the detectors. However,
this is not the case in general. There are situations where
communication and field correlations can “destructively
interfere,” resulting in small N even if both N � are
relatively large. In this section, we will explore this
phenomenon by describing all the ways in which the
contributions from communication and preexisting field
correlations can add up to build entanglement. Then, we
explore a set of transformations of the harvesting setup that
turn scenarios where communication and genuine harvest-
ing contributions to jMj cancel each other into scenarios
where they collaborate. After this, we provide a set of (easy
to check) sufficient conditions under which communication
and harvesting are always collaborating constructively.
For this exploration, we will focus on the study of the

correlation term jMj which always contributes positively
to N . The current section specifically presents how
communication (through M−) and field correlations
(through Mþ) determine jMj and therefore N . The local
noise terms, LAA and LBB, of course, also affect entangle-
ment; however, they are local to each detector and
hence independent of communication and correlations
acquired of the detectors, and thus are ignored in the
present section.
Starting from the most general scenario, jMj can be

small even if jMþj and jM−j are relatively large, because

jMj2 ¼ jMþ þM−j2
¼ jMþj2 þ jM−j2 þ 2jMþjjM−j cosΔγ: ð27Þ

Here, Δγ is the relative phase between the complex
numbers Mþ and M−. This phase Δγ controls how
communication (M−) interferes with field correlations

3A small remark to avoid confusion due to the names given to
the different contributions to negativity: notice that M− can still
be nonzero and N − ¼ 0 if the local noise terms conspired
appropriately (or it could even happen that N ≠ 0 while
N � ¼ 0, a case that will appear in the plots of the examples
of Sec. V). This means that there can be some communication-
assisted harvesting even if N − ¼ 0. However, what is true is that
even in such a case the preexisting field correlations are
responsible for the entanglement between the detectors. If field
correlations were not there, there would be no entanglement in the
detectors at all.
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(Mþ). The interference can be fully destructive, making
jMj the smallest,

jΔγj ¼ π ⇔ jMj ¼ jjMþj − jM−jj; ð28Þ

fully constructive, making jMj the largest,

jΔγj ¼ 0 ⇔ jMj ¼ jMþj þ jM−j; ð29Þ

or exactly in between, with Mþ and M− so that

jΔγj ¼ π=2 ⇔ jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMþj2 þ jM−j2

q
: ð30Þ

In the two latter cases, communication and field correla-
tions collaborate to increase jMj and thus N . As we will
see, the last relation, Eq. (30), turns out to be commonly
fulfilled for the simplest choices of the UDW detector
model, as will be explored in Proposition 3.
Next, we explore how to transform a setup from a

destructive interference to a constructive interference sce-
nario. Concretely, we will show how to transform the
parameters of the harvesting setup to change the sign
cosΔγ in Eq (27). To find such a transformation, it is
convenient to denote as MG�

F
the term M after complex

conjugating the propagator GF. Then,

M ¼ Mþ þM−; MG�
F
¼ Mþ −M−: ð31Þ

Consequently,

M�
G�

F
¼ �M�; ð32Þ

which implies

jMG�
F
j2 ¼ jMþj2 þ jM−j2 − 2jMþjjM−j cosΔγ; ð33Þ

where Δγ is the relative phase between the original terms
Mþ and M−. Observe that, as we were searching for, the
term with cosΔγ, which controls the interference, has the
opposite sign in jMG�

F
j compared to in jMj. Meanwhile,

the communication and field correlations contributions
retain the same size, jM�

G�
F
j ¼ jM�j.

Therefore, if we find an operation that conjugatesGF, we
could use it to turn destructive interference into construc-
tive, as previously described. The next proposition shows
how one can achieve that by changing the initial state of the
particle detectors or, equivalently, transforming the param-
eters of the particle detector model.
Proposition 1. Consider an operation that transforms

arbitrary states of the detectors j ¼ A;B as follows:

cos αjjgji þ eiβj sin αjjeji → sin αjjgji þ eiβj cos αjjeji:
ð34Þ

Let M̃ be M after performing this transformation on the
initial state of the detectors. Then,

jM̃j2 ¼ jMþj2 þ jM−j2 − 2jMþjjM−j cosΔγ;
jM̃�j ¼ jM�j: ð35Þ

Therefore, swapping the populations in the ground and
excited states (while keeping the relative phase between
them) changes the sign of cosΔγ. Thus, this swap turns any
destructive interference into constructive, while keeping the
communication and genuine harvesting contributions
unchanged.
Equivalently, the transformation in Eq. (34) can be

implemented by reversing the energy gaps Ωj → −Ωj
and the relative phases βj → −βj.
Proof. To prove the proposition, use Eq. (12) to see that

ðMG�
F
Þ� ¼ ½cos2αAcos2αBMð−ΩA;−ΩBÞ

− cos2αAsin2αBe−2iβBMð−ΩA;ΩBÞ
− sin2αAcos2αBe−2iβAMðΩA;−ΩBÞ
þ sin2αAsin2αBe−2iðβAþβBÞMðΩA;ΩBÞ�

¼ M̃: ð36Þ

Here we used that

ðMG�
F
ðΩA;ΩBÞÞ� ¼ Mð−ΩA;−ΩBÞ; ð37Þ

which in turn follows from Eq. (14) and Λj ¼ Λ�
j .

Finally, substituting M̃ ¼ M�
G�

F
into Eqs. (32) and (33)

provides the identities stated in the proposition. ▪
Notice that according to this result, the stronger the

destructive interference is in M, the stronger the corre-
sponding constructive interference is in M̃.
Now, we are ready to explore the conditions that

enforce cosΔγ ¼ 0.
Proposition 2. Let MG�

F
be M after complex conjugat-

ing GF, as in Eq. (31). Then,

jMj ¼ jMG�
F
j⇔ jMj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMþj2þjM−j2

q
⇔ cosΔγ¼ 0:

ð38Þ

Proof. The proof follows directly from comparing
Eqs. (27) and (33). ▪
Therefore, jMj ¼ jMG�

F
j is a sufficient condition for

both the communication M− and field correlations Mþ to
positively contribute to negativity. Notice that, because of
Eq. (36), the result of Proposition 2 also holds if we use M̃
instead of MG�

F
. Therefore, if jMj does not change under

transforming the initial states as in Eq. (34), then there
cannot be destructive interference. Furthermore, whenever
jMj ¼ jMG�

F
j, interference is locked in the middle ground
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with cosΔγ ¼ 0, and the contributions N − and N þ to the
entanglement between the detectors satisfy

N ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þÞ2þðN −Þ2

q
⇒N ≥N −; N ≥N þ; ð39Þ

as proven in Appendix A.
Next, we will provide a framework to find symmetries

of the harvesting setup that enforce the condition
jMj ¼ jMG�

F
j. This framework is based on performing

coordinate transformations in the integral for M. To keep
this method as general as possible and simultaneously
simplify the derivation, we use the order λ2 contribution to

ρ̂AB, denoted by ρ̂ð2ÞAB (the expression is provided in
reference [44]). Working with the basis generated by the
tensor product of the general states jψ ji and jζji, as defined
before in Eq. (9), we can write

M ¼ hζAχBjρ̂ð2ÞAB jψAψBi

¼ −λ2
Z

dVdV 0PAðxÞPBðx0ÞGFðx; x0Þ; ð40Þ

where we have defined4

PjðxÞ ¼ ΛjðxÞhζjjμ̂jðτjðxÞÞjψ ji: ð41Þ

Notice that the terms PjðxÞ conveniently group the con-
tributions toM due to each detector. The condition jMj ¼
jMG�

F
j thus becomes equivalent to

����
Z

dVdV 0PAðxÞPBðx0ÞGFðx; x0Þ
����

¼
����
Z

dVdV 0P�
AðxÞP�

Bðx0ÞGFðx; x0Þ
����: ð42Þ

Now, consider a map T taking a pair of points x; x0 ∈M to
another pair as follows:

Tðx; x0Þ ¼ ðT1ðx; x0Þ; T2ðx; x0ÞÞ: ð43Þ

To see the effect of this map on pairs of coordinates,
consider a pair of charts ðφ;φ0Þmapping pairs of spacetime
points ðx; x0Þ to the coordinates ðxμ; x0μÞ∈Rnþ1. We can
see that T induces a map between the coordinates of pairs
of events ðyμ; y0μÞ → ðxμ; x0μÞ through

ðφ;φ0Þ ∘T−1 ∘ ðφ−1;φ0−1Þ; ð44Þ

i.e., through the composition of T−1 with the chart pair
ðφ;φ0Þ. Specifically, the coordinates ðyμ; y0μÞ of the pair of

points ðy; y0Þ are sent to the coordinates ðxμ; x0μÞ of the pair
of points ðT−1

1 ðy; y0Þ; T−1
2 ðy; y0ÞÞ. Then, for integrals like

the ones in Eq. (42), we can use the map (44) as a “change
of variables,” as follows5:

A ¼
Z

dVdV 0Aðy; y0Þ

¼
Z

dnþ1yμdnþ1y0μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðyμÞg0ðy0μÞ

p
Aðyμ; y0μÞ

¼
Z

dnþ1xμdnþ1x0μ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðT1ðxμ; x0μÞÞg0ðT2ðxμ; x0μÞÞ

p
× jJðxμ; x0μÞjAðTðxμ; x0μÞÞ; ð45Þ

where g and g0 are the determinants of the metric in the
coordinates defined by φ and φ0, respectively. Moreover,

Jðxμ; x0μÞ ¼ det

�
∂ðyμ; y0μÞ
∂ðxν; x0νÞ

�
ð46Þ

is the determinant of the Jacobian matrix of the change of
variables. For convenience, let us define

jðxμ; x0μÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðT1ðxμ; x0μÞÞg0ðT2ðxμ; x0μÞÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðxμÞg0ðx0μÞp jJðxμ; x0μÞj:

ð47Þ

Notice that jðxμ; x0μÞ is invariant under changes of coor-
dinates. Therefore, we can write Eq. (45) in an explicitly
coordinate independent way,

A ¼
Z

dVdV 0jðx; x0ÞAðTðx; x0ÞÞ: ð48Þ

Now, consider a different integral,

B ¼
Z

dVdV 0Bðx; x0Þ: ð49Þ

Then, observe that to impose the condition jAj ¼ jBj it is
sufficient to find a constant angle ν such that

jðx; x0ÞAðTðx; x0ÞÞ ¼ eiνBðx; x0Þ: ð50Þ

Applying this result to our condition in Eq. (42), we obtain
the following theorem.
Theorem 1. Consider any transformation T ¼ ðT1; T2Þ

that acts on two copies of the spacetime M, as in Eq. (43).
Let PA and PB be given by Eq. (41).

4Here we write τjðxÞ to represent the value of τj when the
center of mass of detector j is in the same leaf (of the Fermi-
Walker foliation where the spacetime smearing factorizes as
mentioned in footnote 1) as the spacetime point x.

5Notice that when we replace a function of points in spacetime
Aðx; x0Þ by Aðxμ; x0μÞ, we are abusing notation and what we
actually mean is Aðx; x0Þ ¼ Aðφ−1ðxμÞ;φ0−1ðx0μÞÞ≡ Aðxμ; x0μÞ.
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Assume there is a constant angle ν such that

P�
AðT1ðx;x0ÞÞP�

BðT2ðx;x0ÞÞGFðTðx;x0ÞÞjðx;x0Þ
PAðxÞPBðx0ÞGFðx;x0Þ

¼ eiν: ð51Þ

Then, jMj ¼ jMG�
F
j, and therefore by Proposition 2,

jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMþj2 þ jM−j2

q
; ð52Þ

which means that cosΔγ ¼ 0 in Eq. (27) and that, in
particular, the contributions of communication and preex-
isting field correlations cannot interfere destructively.
It turns out that we can simplify the condition expressed

by Eq. (51) if, for a given spacetime and field configuration,
jðx; x0Þ ¼ 1 and the map T preserves the Feynman propa-
gator. This simplification is detailed in the following
Corollary.
Corollary 1. Assume that the map T ¼ ðT1; T2Þ satisfies

gðT1ðxμ; x0μÞÞg0ðT2ðxμ; x0μÞÞjJðxμ; x0μÞj2 ¼ gðxμÞg0ðx0μÞ;
GFðTðx; x0ÞÞ ¼ GFðx; x0Þ; ð53Þ

Then, the condition

P�
AðT1ðx; x0ÞÞP�

BðT2ðx; x0ÞÞ ¼ eiνPAðxÞPBðx0Þ; ð54Þ

with ν some constant, becomes sufficient to have

jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMþj2 þ jM−j2

q
: ð55Þ

To apply this result to physical situations, it will be
helpful to further simplify this corollary when certain
symmetries are present in the detector dynamics. Several
of these possible symmetries are explored in Appendix B.
From there, we derive that in many cases, which happen to
frequently appear in the literature, communication and field
correlations must “collaborate” to generate entanglement
between detectors. Moreover, this collaboration happens in
the very specific way described by Eq. (55). Concretely, in
Appendix B we provide conditions on the particle detec-
tors, field, and spacetime of entanglement harvesting setups
so that Eq. (55) holds. It is important to have in mind that
these conditions are only sufficient to force cosΔγ ¼ 0 and,
in turn, to rule out destructive interference. Nonetheless, as
we shall see in the next section, it is easy to find setups even
with fully constructive interference (Δγ ¼ 0) or fully
destructive interference (Δγ ¼ π) just by violating these
conditions. Therefore, even if these conditions are not
necessary, they seem to be present in all cases that we know
of where Eq. (55) holds. For conciseness, the following
proposition presents a simplified version of these condi-
tions, which will guide the exploration of harvesting setups
in the next section.

Proposition 3. Consider entanglement harvesting set-
ups where
(1) Spacetime is flat.
(2) The field is initially prepared in the Minkowski

vacuum, and the detectors start both in their ground
state or both in their excited state.

(3) The detectors are inertial and comoving.
(4) Spacetime smearings are separable in the detectors’

comoving frame, i.e., Λjðt; xÞ ¼ χjðtÞFjðxÞ.
(5) The proper energy gaps are equal, ΩA ¼ ΩB.
(6) In the comoving frame, for some time tR, it is

satisfied that either

χjðtþ tRÞ ¼ χjðtR − tÞ; j ¼ A;B; ð56Þ

or χAðtþ tRÞ ¼ χBðt − tRÞ: ð57Þ

Then, the following relationship holds:

jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMþj2 þ jM−j2

q
: ð58Þ

The reader familiar with entanglement harvesting will
likely recognize these conditions as being satisfied for
many cases analyzed in previous literature. Therefore, very
often we see this kind of “collaboration” between the
communication-assisted term and the genuine harvesting
term when it comes to detectors getting entangled while
they are in causal contact.
For the harvesting setups specified by this proposition,

fulfilling either Eq. (56) or Eq. (57) makes the setup
symmetric under a certain map T in the way described
by Corollary 1. When Eq. (56) holds, the setup becomes
symmetric under the following time reversal around tR:

TðtR þ t; x; tR þ t0; x0Þ ¼ ðtR − t; x; tR − t0; x0Þ; ð59Þ

where the coordinates are chosen to be the standard
Minkowski coordinates. Similarly, when Eq. (57) holds,
the setup becomes symmetric under a different time
reversal around tR which also includes a time coordinate
swap,

TðtR þ t; x; tR þ t0; x0Þ ¼ ðtR − t0; x; tR − t; x0Þ: ð60Þ

The reasons for why the whole setup is symmetric are that,
first, Minkowski spacetime and the corresponding vacuum
are symmetric under time reversal at all times, allowing tR
to have an arbitrary value. Second, the conditions over the
initial states of the detectors, their trajectories, gaps, and
switching functions are sufficient to ensure that the field-
detector interactions are time reversal symmetric around
some tR. The details of how Proposition 3 guarantees
Corollary 1 are provided in Appendixes B, C, and D.
Appendix E shows three more general versions of
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Proposition 3 for arbitrary harvesting setups that follow the
covariant prescription of [36].
In summary, the symmetries in Proposition 3 forbid

destructive interference. However, it is not difficult to think
of physical scenarios where these symmetries are violated.
We will illustrate this in the next section, where we will
show scenarios with both destructive interference and
stronger constructive interference than those described
by Proposition 3.

V. ENTANGLEMENT THROUGH
COMMUNICATION AND HARVESTING
CAN INTERFERE DESTRUCTIVELY

In this section, wewill present concrete examples both for
detectors in Minkowski spacetime and in cosmological
scenarios where the assumptions of Proposition 3 (and their
generalizations to cosmological spacetimes) are not satisfied.
Concretely, we will analyze scenarios where both the
communication-assisted and genuine harvesting contribu-
tions to negativity will be greater than the actual negativity
acquired by the detectors, showing a destructive interference
between the communication contribution to entanglement
and the entanglement acquired through harvesting.
Moreover, most cases previously studied in the literature
satisfy the conditions of Proposition 3, and therefore the two
contributions to entanglement while in causal contact were
constructively interfering in a particular way, satisfying

jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMþj2 þ jM−j2

q
: ð61Þ

However, we will see that it is possible to find scenarios
where jMj is actually larger than (61) (strong constructive
interference) and cases where it is less than (61) (destructive
interference). This showcases that most of the setups
previously studied in the literature are in a very particular
middle ground between constructive and destructive inter-
ference of communication and harvesting.

A. Minkowski spacetime

First, let us consider two detectors in 3þ 1 Minkowski
spacetime. We adopt coordinates xμ ¼ ðt; xÞ where the
metric reads

ds2 ¼ −dt2 þ dx2: ð62Þ

As usual for two inertial comoving detectors, wewill assume
that the localization of both detectors A and B is given by
spacetime smearing functions which can be split into a
switching and spatial smearing in the coordinates ðt; xÞ, i.e.,
ΛjðxÞ ¼ χjðtÞFjðxÞ. More concretely, we assume that the
detectors’ centers of mass follow inertial trajectories
described by zAðtÞ ¼ xA and zBðtÞ ¼ xB, where xA and xB

are constant 3-vectors. We will assume that both detectors
start in their respective ground states and that the state of the
field is initially prepared in the Minkowski vacuum, the

expressions for Lij and M [see Eqs. (11) and (12)] can be
written in the following form (with ΩA ¼ ΩB ¼ Ω):

Lij ¼
λ2

2ð2πÞ3
Z

dtdt0e−iΩðt−t0ÞχiðtÞχjðt0ÞKijðt; t0Þ;

M ¼ −
λ2

2ð2πÞ3
Z

∞

−∞
dt
Z

t

−∞
dt0QABðt; t0Þ; ð63Þ

where we have defined the auxiliary functions

QABðt; t0Þ ¼ eiΩðtþt0ÞKABðt; t0ÞðχAðtÞχBðt0Þ þ χAðt0ÞχBðtÞÞ;
ð64Þ

Kijðt; t0Þ ¼ 2ð2πÞ3
Z

d3xd3x0FiðxÞFjðx0ÞWðt; x; t0; x0Þ:

ð65Þ

To follow a common choice in the literature, for the spatial
smearing function, we take a Gaussian profile, namely

FjðxÞ ¼
1

ð ffiffiffi
π

p
σÞ3 e

−1
2

�
jx−xj j

σ

	
2

: ð66Þ

For this particular choice of smearing (65) simplifies to

Kijðt; t0Þ ¼
Z

dk3

jkj e
ik·ðxi−xjÞe−jkj2σ2e−ijkjΔt: ð67Þ

Notice that in the equation for M, the Heaviside theta
function that appears in the definition of the Feynman
propagator, Eq. (16), is implemented as a nested integral in
the time variable t. To evaluate Eq. (67), we will consider
separately the cases i ¼ j (same detectors) and i ≠ j
(different detectors). First, for i ≠ j, we have KABðt; t0Þ ¼
KBAðt; t0Þ, which evaluates to

KABðt; t0Þ ¼
2πi
d

½IðΔtþ dÞ − IðΔt − dÞ�: ð68Þ

Here, Δt ¼ t − t0, d ¼ jxA − xBj, and

IðzÞ ¼
ffiffiffi
π

p
2σ

e−
z2

4σ2 −
i
σ
D
�

z
2σ

�
; ð69Þ

where DðxÞ ¼
ffiffi
π

p
2
e−x

2

erfi x is the Dawson function.6

For i ¼ j, we have

Kjjðt; t0Þ ¼
2π

σ2

�
1 −

Δtffiffiffi
2

p
σ

�
i

ffiffiffi
π

2

r
e−

Δt2

4σ2 þ
ffiffiffi
2

p
D
�
Δt
2σ

���
:

ð71Þ

6The Dawson function is defined as

DðxÞ ≔ e−x
2

Z
x

0

dye−y
2

: ð70Þ
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Finally, the term M− associated with signaling can be
written as

M− ¼ −
λ2

2ð2πÞ3
Z

∞

−∞
dt
Z

t

−∞
dt0Q−

ABðt; t0Þ: ð72Þ

Here, the only difference between Q−
ABðt; t0Þ and QABðt; t0Þ

is the replacement KABðt; t0Þ → K−
ABðt; t0Þ, where

K−
ABðt; t0Þ ¼

π3=2i
σd

�
e−

ðΔtþdÞ2
4σ2 − e−

ðΔt−dÞ2
4σ2

�
: ð73Þ

To proceed with the numerical evaluation of all the relevant
terms, we need to define an expression for the switching
function of the detectors. Notice that, in the current setup,
conditions 1 through 5 of Proposition 3 are satisfied.
Therefore, to create a numerical scenario where the con-
ditions of the proposition are not satisfied we need to pick a
switching function that violates Condition 6. For this, we
can employ switchings that contradict both Eqs. (56) and
(57). One way to achieve this is by making the switching
functions asymmetric. In particular, we are going to choose
skew-normal distributions [47], namely

Sðt;αÞ ¼ NðαÞe− t2

T2

�
1þ erf

�
αt
T

��
: ð74Þ

Here, NðαÞ stands for a dimensionless normalization factor
that ensures that themaximumvalue of Sðt; αÞ is 1. Denoting
by tmaxðαÞ the point such that SðtmaxðαÞ; αÞ ¼ 1, we can
define the switchings for j ¼ A;B as follows:

χjðt; αÞ ¼ Sðt − tmaxðαÞ − tjÞ: ð75Þ

In this way, we ensure that the maximum of the switching
happens at t ¼ tj (see Fig. 1).
Using the switching of Eq. (75), we numerically evalu-

ated the expressions for M, M�, and Ljj, thus obtaining
results for the negativity N and the two contributions N �.
We display in Fig. 2 different regimes where the

conditions in Eqs. (56) and (57) are not fulfilled
and the interference between Mþ and M− affects the
detectors’ ability to become entangled in different ways.
In Fig. 2 we present side-to-side results for the case of
asymmetric switching functions (α ¼ 2.35, left column)
and symmetric Gaussian switching (α ¼ 0, right column).
Figures 2(a) and 2(b) show jMj and jM�j, Figs. 2(c)
and 2(d) show the relative phases between Mþ and M−,
and Figs. 2(e) and 2(f) show N and N �.
Specifically, in the case α ¼ 2.35 [see Figs. 2(a), 2(c),

and 2(e)], there exists a range of values of Δt ¼ tB − tA that
causes the communication-assisted negativity N − to
exceed the negativity itself. Moreover, we have identified
values of Δt where N − is nonzero even though N ¼ 0.

For α ¼ 0, Condition 6 of Proposition 3 is met, so
Eq. (58) holds. This means the relative phase betweenMþ

and M− is �π=2, leading to constructive interference. In
contrast, for α ¼ 2.35, there are regions with destructive
and constructive interference. Moreover, notice that the
constructive interference gets stronger than in the �π=2
relative phase scenario.
Another way of violating Condition 6 of Proposition 3 is

to use different shapes for the switching functions of each
detector. Indeed, by choosing Gaussian switchings of
different widths we can violate the condition in Eq. (58).
Namely, we can choose

χjðtÞ ¼ e
−

�
t−tj
Tj

�
2

; ð76Þ

with TA ≠ TB.
We illustrate the case of switching with two different

widths in Figs. 3 and 4. We see that there is an asymmetry
in how the detectors are entangled depending on which
detector switches on first, with an advantage when Δt > 0
[the detector with shorter switching time (A) couples to the
field before the detector with a longer switching time (B)].
However, we note that the contributions to negativity, N þ

and N −, do not depend on the order of coupling. This
means that the asymmetry of the negativity with respect to
Δt is due to interference alone because of how the relative
phases change depending on which detector couples first.
Concretely, when detector B couples first (Δt < 0), the

interference is destructive, reducing the extracted entangle-
ment. Conversely, when A couples first (Δt > 0), we have
constructive interference between the two contributions,
with an effect even stronger than that in Eq. (61). Hence, in
a configuration with a different switching duration in each
detector, maximizing entanglement requires carefully tim-
ing the detectors’ interactions to avoid the adverse effects of
destructive interference.

FIG. 1. Nonsymmetric switching functions for different values
of the asymmetry parameter α.
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B. Example in a cosmological spacetime

By working in a spacetime that has no time-reversal
symmetry, we can also construct an entanglement harvest-
ing setup where the interference between the contributions
from field correlations and communication violate con-
dition (58). As a particular example, we shall consider a
spatially flat Friedmann–Robertson–Walker (FRW) space-
time, a setting where entanglement harvesting has been
studied in the past (see, e.g., [48]). In comoving coordinates
ðt; xÞ ¼ ðt; x; y; zÞ the line element reads

ds2 ¼ −dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ: ð77Þ
Or, introducing a new time coordinate η,

ηðtÞ ¼
Z

t

0

dt0
1

aðt0Þ ; ð78Þ

we explicitly reveal the conformally flat nature of the
metric:

ds2 ¼ −aðηÞ2ðdt2 þ dx2 þ dy2 þ dz2Þ: ð79Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Results for an entanglement harvesting setup in Minkowski spacetime with nonsymmetric switchings. The physical
parameters used are the following: ΩT ¼ 5, d=T ¼ 2.1, and σ=T ¼ 0.3. In the horizontal axis, we have Δt ¼ tB − tA. The solid vertical
lines (yellow) represent the light cones. (a), (c), and (e) correspond to the case α ¼ 2.35, whereas (b), (d), and (f) display the case α ¼ 0,
where we have the standard Gaussian switching. The appearance of an even symmetry with respect to Δt in the plots is explained by
Appendix F.
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We now consider a scalar quantum field ϕ̂ conformally
coupled to curvature so that the field satisfies Eq. (2) with
ξ ¼ 1

6
. In this case, it can be shown (see, e.g., [49]) that the

field ψ̂ðxÞ ¼ aðηÞϕ̂ðxÞ satisfies the Minkowski Klein-
Gordon equation. Therefore, the field modes of ϕ̂ðxÞ
and the Wightman function Wðx; x0Þ for this case can be
obtained from the ones from the Minkowski case by
simply introducing additional multiplicative scale fac-
tors aðηÞ.
Now, to concretely find setups where the interference

between Mþ and M− leads to a novel behavior of the
negativity, the guiding principle will be the violation of a
more general version of Proposition 3 that applies to FRW
spacetimes. As demonstrated in Appendix D 2, we can
derive the following proposition:

Proposition 4. Consider entanglement harvesting set-
ups where
(1) Spacetime is FRW as in Eq. (77).
(2) The scale factor satisfies aðtþ tRÞ ¼ aðtR − tÞ.
(3) Both detectors are comoving with the Hubble flow

and are initially both in the ground state or both in
the excited state.

(4) The field is massless, conformally coupled to cur-
vature, and initially in the conformal vacuum.

(5) Spacetime smearings factorize in the comoving
frame as the product of a function of only time

FIG. 3. Numerical results for the negativity (top) and the
communication-assisted negativity (bottom) as a function of
the distance d between the centers of the detectors and the time
delayΔt between the centers of the switchings. The entanglement
harvesting setup is in Minkowski spacetime with Gaussian
switchings of different length scales, and the physical parameters
used are ΩTA ¼ 4, σ=TA ¼ 0.2, and TB=TA ¼ 1.3.

FIG. 4. Numerical results for negativity, harvested negativity,
and communication-assisted negativity as a function of the time
delay Δt between the center of the switchings. The entanglement
harvesting setup is in Minkowski spacetime with Gaussian
switchings with different length scales, and the physical param-
eters used are ΩTA ¼ 4, d=T ¼ 3, σ=TA ¼ 0.2, and
TB=TA ¼ 1.3. The appearance of symmetries with respect to
the sign of Δt in the plots is explained in Appendix F.
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and a function of only space, i.e., Λjðt; xÞ ¼
TjðtÞXjðxÞ.

(6) The proper energy gaps are equal, ΩA ¼ ΩB.
(7) In the comoving frame, for some time tR, it is

satisfied that either

Tjðtþ tRÞ ¼ TjðtR − tÞ; j ¼ A; B; ð80Þ

or TAðtþ tRÞ ¼ TBðt − tRÞ: ð81Þ

Then, the following relationship holds:

jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMþj2 þ jM−j2

q
: ð82Þ

Assuming that the initial state of the field is the
conformal vacuum and that the detectors both start in their
respective ground states, the terms Lij,M, andM− will be
given by the same Eqs. (63) and (72) under the replacement

dtdt0 →
dtdt0

aðtÞaðt0Þ : ð83Þ

In the auxiliary functions KABðt; t0Þ and Kjjðt; t0Þ of
Eqs. (68) and (71), we also need to perform the replacement
Δt ¼ t − t0 → Δη ¼ ηðtÞ − ηðt0Þ. Therefore, the numerical
methods applied to compute N in Sec. VA and all
associated terms transition smoothly to this case. All that
remains is to specify a particular example of FRW
spacetime and choose the shape and switching functions
to model our detectors. As a concrete example let us choose
the scale factor to be that of de Sitter spacetime:

aðtÞ ¼ eHt: ð84Þ

As for the detectors, let us choose both the switchings
and the spatial smearing functions to be Gaussians. That is,
the functions χjðtÞ will be given by

χjðtÞ ¼ e
−

�
t−tj
T

�
2

: ð85Þ

The smearing functions Fjðt; xÞ are given by

Fjðt; xÞ ¼
1

ð ffiffiffiffiffiffi
2π

p
σaðtÞÞ3 e

−1
2

�
jx−xj j

σ

�
2

; ð86Þ

where the detector expands with the expansion of the
universe and the scale factor in the denominator comes
from the L1 normalization of the smearing function:

Z
dx3aðtÞ3Fjðx; t0Þ ¼ 1: ð87Þ

Notice that even if we choose

TjðtÞ ¼ aðtÞ−3χjðtÞ; ð88Þ
XjðxÞ ¼ aðtÞ3Fjðt; xÞ; ð89Þ

to ensure consistency with Assumption 5 of Proposition 4,
it is clear that the form of the expansion factor, Eq. (84)
automatically leads to the violation of the conditions
expressed by Eqs. (80) and (81). Therefore, in the present
setup, we have no guarantee that the relation (82) holds.
A particular case of this kind of setup is displayed in

Fig. 5. Analogously to the instances examined in the
Minkowski case, it is observed that the components M�
exhibit interference, leading to scenarios where the

FIG. 5. Numerical results for de Sitter spacetime. The
parameters used are ΩT ¼ 4, d=T ¼ 2, σ=T ¼ 0.1, and
H ¼ 0.1. Here, Δt ¼ tB − tA.
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communication-mediated negativity surpasses the total
negativity. Additionally, around the region Δt=T ¼ 0, we
observe that the harvested negativity (N þ) can also exceed
the value of the negativity (N ). This means that despite the
detectors’ capability to extract preexisting correlations from
the field, the entanglement acquired through communica-
tion destructively interferes with the harvested entangle-
ment, resulting in the overall entanglement being less than
each component individually.

VI. CONCLUSIONS

We explored the interplay between the two different ways
in which two particle detectors can get entangled through
their interactionwith a quantum field. Namely, (1) harvesting
preexisting entanglement from the field and (2) acquiring
entanglement by exchanging information through the field
when the detectors are in causal contact. The analysis
demonstrated that, in general entanglement harvesting set-
ups, these contributions are not always additive, but instead
they can interfere both destructively and constructively.
We provided sufficient conditions for an entanglement

harvesting setup to not display destructive interference
between these two contributions. We discuss that the reason
this phenomenon was not observed in the past is because
these conditions aremet in the scenarios commonly explored
in the literature, which typically have a lot of symmetry.
We then showed simple examples in Minkowski and

cosmological spacetimes using entanglement harvesting
setups that violate these conditions and for which the two
contributions to harvesting (a) combine constructively,
amplifying the total amount of entanglement beyond
previously observed scenarios, and (b) interfere destruc-
tively, preventing the detectors from getting entangled. For
example, whenever the detectors are in causal contact and
the switching functions are not time symmetric, we can see
regimes where due to destructive interference the detectors
cannot get entangled. This is so even though in these
regimes harvesting alone or communication alone would
have gotten the detectors entangled.
This study suggests that if one wants to make two

detectors entangled through short interactions with a
quantum field, one can enhance the amount of entangle-
ment acquired by the detectors by choosing the setup so
that the two contributions interfere constructively.
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APPENDIX A: INEQUALITY BETWEEN
NEGATIVITY AND ITS COMMUNICATION

AND HARVESTING CONTRIBUTIONS

Here, we would like to show that the assumption

jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMþj2 þ jM−j2

q
ðA1Þ

implies the following relation between the negativity and its
contributions:

N ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN þÞ2 þ ðN −Þ2

q
: ðA2Þ

Let us prove this statement by considering different cases.
(1) Case 1: N þ ¼ 0.

The relation (A2) becomes equivalent to
N ≥ N −, which is directly verified using jMj ≥
jM−j in the definition of negativity and its asso-
ciated components, namely Eqs. (18) and (25).

(2) Case 2: N − ¼ 0.
The argument is analogous to case 1.

(3) Case 3: N þ ≠ 0 and N − ≠ 0.
Here, we have N � ¼ V� > 0. Let us define

L� ¼ jLAA � LBBj
2

: ðA3Þ

In this way, we can write

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMj2 þ L2

−

q
− Lþ;

V� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jM�j2 þ L2

−

q
− Lþ: ðA4Þ

Then, using Eq. (A1), we can cast the statement of
Eq. (A2) into

0 ≤ V2 − ðVþÞ2 − ðV−Þ2
¼ −L2

− þ 3L2þ

þ 2Lþ
�
Vþ þ V− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMj2 þ L2

−

q 	
: ðA5Þ

Next, we get rid of the square root by moving it to
the other side of the inequality and then taking the
square on both sides. Further manipulation allows us
to rewrite the inequality as

8L2þVþV− þ 4LþðL2þ − L2
−ÞðVþ þ V−Þ

þ ðL2þ − L2
−Þ2 ≥ 0: ðA6Þ
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Finally, this statement is true because of Lþ ≥ 0,
L2þ ≥ L2

− and the assumption V� > 0. Therefore, we
conclude that given the relation (A1), the statement
(A2) is true.

APPENDIX B: EXAMPLES OF SYMMETRIES
THAT SATISFY COROLLARY 1

Here, we focus on examples of maps T constructed to
satisfy the hypotheses of Corollary 1. In particular, we
provide sufficient conditions for the harvesting setups so
that all the Corollary hypotheses are fulfilled. Moreover,
these examples are later used to prove Propositions 3 and 4
of the main text.
Symmetry 1. Time reversal around the value tR of a time

coordinate in an arbitrary coordinate system ðt; xÞ:

Tðx; x0Þ ¼ ðTRðxÞ; TRðx0ÞÞ;
TRðtR þ t; xÞ ¼ ðtR − t; xÞ: ðB1Þ

The hypotheses of Corollary 1 are satisfied if the following
assumptions hold:
(1) gðtR þ t; xÞ ¼ gðtR − t; xÞ,
(2) GFðtR þ t; x; tR þ t0; x0Þ ¼ GFðtR − t; x; tR − t0; x0Þ,
(3) ΛjðtR þ t; xÞ ¼ ΛjðtR − t; xÞ,
(4) For some constant νj,

hζjjμ̂jðτjðtRþ t;xÞÞjψ ji¼eiνjhψ jjμ̂jðτjðtR− t;xÞÞjζji:

Here, we recall that g is the determinant of the metric, GF is
the Feynman propagator, fΛjg are the spacetime smearing
functions, and jζji are the states orthogonal to the initial
states jψ ji as defined in Eq. (9).
Symmetry 2. Time reversal around tR in the arbitrary

coordinates ðt; xÞ and swap of spacetime points:

Tðx; x0Þ ¼ ðTRðx0Þ; TRðxÞÞ;
TRðtR þ t; xÞ ¼ ðtR − t; xÞ: ðB2Þ

The hypotheses of Corollary 1 are satisfied if the following
assumptions hold:
(1) gðtR þ t; xÞ ¼ gðtR − t; xÞ,
(2) GFðtR þ t0; x0; tR þ t; xÞ ¼ GFðtR − t; x; tR − t0; x0Þ,
(3) ΛAðtR þ t; xÞ ¼ ΛBðtR − t; xÞ,
(4) For some constant ν,

hζAjμ̂AðτAðtR þ t; xÞÞjψAi
¼ eiνhψBjμ̂BðτBðtR − t; xÞÞjζBi:

Symmetry 3. Time reversal around tR in the arbitrary
coordinates ðt; xÞ, reflection about x0 in ðt; xÞ and swap of
spacetime points:

Tðx; x0Þ ¼ ðTRRðx0Þ; TRRðxÞÞ;
TRRðtR þ t; x0 þ xÞ ¼ ðtR − t; x0 − xÞ: ðB3Þ

The hypotheses of Corollary 1 are satisfied if the following
assumptions hold:
(1) gðtR þ t; x0 þ xÞ ¼ gðtR − t; x0 − xÞ,
(2) GFðtRþt0;x0þx0;tRþt;x0þxÞ¼GFðtR−t;x0−x;tR−

t0;x0−x0Þ,
(3) ΛAðtR þ t; x0 þ xÞ ¼ ΛBðtR − t; x0 − xÞ,
(4) For some constant ν,

hζAjμ̂AðτAðtR þ t; x0 þ xÞÞjψAi
¼ eiνhψBjμ̂BðτBðtR − t; x0 − xÞÞjζBi:

Notice that in this symmetry the distance between the
detectors at time tR can be adjusted by changing x0, in
contrast to Symmetry 2, where the detectors must be at the
same place at time tR.
Symmetry 4. Proper time swap and reversal around υR=2.

To better describe this symmetry, we use the coordinates
ðτj; x̃jÞ where Λjðτj; x̃jÞ ¼ χjðτjÞFjðx̃jÞ and where τj are
the proper times of the detectors.7

Now we can express this symmetry as

TðτA; x̃A; τB; x̃BÞ ¼ ðυR − τB; x̃A; υR − τA; x̃BÞ; ðB4Þ

where pairs of spacetime points are expressed in the joint
coordinates ðτA; x̃A; τB; x̃BÞ. The hypotheses of Corollary 1
are satisfied if the following assumptions hold:
(1) gAðτA; x̃AÞgBðτB; x̃BÞ¼gAðυR−τB; x̃AÞgBðυR−τA; x̃BÞ,
(2) GFðτA; x̃A; τB; x̃BÞ ¼ GFðυR − τB; x̃A; υR − τA; x̃BÞ,
(3) χAðτÞ ¼ χBðυR − τÞ,
(4) ΩA ¼ ΩB ¼ Ω,
(5) βA þ βB ¼ ΩυR,
(6) j cos αAj ¼ j cos αBj, j sin αAj ¼ j sin αBj.

Here, the gj are the determinant of the metric in ðτj; x̃jÞ
coordinates, and the detectors’ initial states are

jψ ji ¼ cos αjjgji þ sin αjeiβj jeji: ðB5Þ

Notice that Assumptions 4, 5, and 6 appear because they
are sufficient to show that

hζAjμ̂AðτÞjψAi ¼ eiΩυRhζBjμ̂BðυR − τÞjψBi; ðB6Þ

with jζji the states orthogonal to jψ ji as defined in Eq. (9).
For this T to satisfy Corollary 1, first notice that

jJðτA; x̃A; τB; x̃BÞj ¼ 1. Then, the symmetry Assumptions
1 and 2 directly translate to the conditions required by

7In the usual prescription for detectors, ðτj; x̃jÞ will be chosen
to be the Fermi normal coordinates associated with the detectors’
trajectories. However, the result given here holds regardless of
whether ðτj; x̃jÞ are chosen to be the Fermi normal coordinates.
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Eq. (53). It only remains to show that Eq. (54) is fulfilled.
This condition asks that for some constant angle ν,

P�
AðT1ðx; x0ÞÞP�

BðT2ðx; x0ÞÞ ¼ eiνPAðxÞPBðx0Þ: ðB7Þ

Substituting the definition of Pj,

PjðxÞ ¼ ΛjðxÞhζjjμ̂jðτjðxÞÞjψ ji; ðB8Þ

and usingΛjðτj; x̃jÞ ¼ χjðτjÞFjðx̃jÞ, one sees that to satisfy
Eq. (B7) the following conditions are enough:

χAðτÞ ¼ χBðυR − τÞ; ðB9Þ

hζAjμ̂AðτÞjψAi ¼ eiν=2hψBjμ̂BðυR − τÞjζBi: ðB10Þ

The condition over the monopole operators μ̂j simplifies by
using the identity

hζjjμ̂jðτjÞjψ ji ¼ eiβjðcjeiðΩjτj−βjÞ − sje−iðΩjτj−βjÞÞ; ðB11Þ

where we denote sj ¼ sin2 αj, cj ¼ cos2 αj. Together with
the hypotheses ΩA ¼ ΩB ¼ Ω, βA ¼ −βB þΩυR, cA ¼ cB,
sA ¼ sB,

hζAjμ̂AðτÞjψAi ¼ eiβAðcAeiðΩτ−βAÞ − sAe−iðΩτ−βAÞÞ
¼ eiβAðcBe−iðΩðυR−τÞ−βBÞ − sBeiðΩðυR−τÞ−βBÞÞ
¼ eiΩυRhψBjμ̂BðυR − τÞjζBi: ðB12Þ

Therefore, Eq. (B10) is fulfilled with ν ¼ 2ΩυR. This
completes proving that the assumptions in the statement
of Symmetry 4 are enough to fulfill Corollary 1.
Summary: Corollary 1 holds for harvesting setups that

meet the conditions described in any of the symmetries
presented in this section. We recall that for such symmetric
setups, cosΔγ ¼ 0, i.e.,

jMj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jMþj2 þ jM−j2

q
; ðB13Þ

which precludes any destructive interference between Mþ
and M−.
As a final remark, a common extension of the UDW

detector model includes complex spacetime smearings, i.e.,
Λ�
j ≠ Λj. All the results presented in this section can be

generalized to account for complex spacetime smearings,
but we have restricted our results to real smearings for
simplicity. For complex smearings, the Hamiltonian inter-
action density for each detector in the interaction picture
becomes ĥI;jðxÞ ¼ λΛjðxÞeiΩjτj σ̂þj þ H:c:, with H.c. denot-
ing the Hermitian conjugate. Therefore, the expression for
M also changes (see, e.g., [50]). Nonetheless, the require-
ments specified for each symmetry only need a modifica-
tion of the conditions of Λj (or χj). Specifically, whenever

an equality between smearing or switching functions
appears, one of the sides has to be conjugated, and the
equality only needs to be fulfilled up to a constant
complex phase.

APPENDIX C: FURTHER SIMPLIFICATIONS
OF THE HYPOTHESES OF COROLLARY 1

In this appendix, we introduce several lemmas that
simplify Conditions 3 and 4 of Symmetries 1, 2, and 3,
respectively.
Lemma 1. Consider the two sets of coordinates ðτj; x̃jÞ

with j∈ fA;Bg, where Λjðτj; x̃jÞ ¼ χjðτjÞFjðx̃jÞ. Given
coordinates ðt; xÞ, the time reversal around tR is
TRðtR þ t; xÞ ¼ ðtR − t; xÞ. Assume that
(1) Given τR;j ¼ τjðtR; 0Þ,

τjðxÞ ¼ 2τR;j − τjðTRðxÞÞ;
x̃jðxÞ ¼ x̃jðTRðxÞÞ: ðC1Þ

(2) χjðτÞ ¼ χjð2τR;j − τÞ.
(3) βj ¼ ΩjτR;j.

Recall that βj is the relative phase in the detectors’ initial
states jψ ji ¼ cos αjjgji þ sin αjeiβj jeji.
Under these assumptions, Conditions 3 and 4 of

Symmetry 1 are fulfilled.
Proof. We prove Condition 3 first; to do so, keep in mind

that

Λjðt; xÞ ¼ χjðτjðt; xÞÞFjðx̃jðt; xÞÞ: ðC2Þ

Then, using the time reversibility condition over χj,

χjðτjðtR − t; xÞÞ ¼ χjð2τR;j − τjðtR − t; xÞÞ
¼ χjðτjðtR þ t; xÞÞ: ðC3Þ

Substituting back into the first equation shows Condition 3
of Symmetry 1,

ΛjðtR − t; xÞ ¼ χjðτjðtR − t; xÞÞFjðx̃jðtR − t; xÞÞ
¼ χjðτjðtR þ t; xÞÞFjðx̃jðtR þ t; xÞÞ
¼ ΛjðtR þ t; xÞ: ðC4Þ

To prove Condition 4 of Symmetry 1, let us use the
identity

hζjjμ̂jðτjÞjψ ji ¼ eiβjðcjeiðΩjτj−βjÞ − sje−iðΩjτj−βjÞÞ; ðC5Þ

where sj ¼ sin2 αj, cj ¼ cos2 αj, and we recall that jζji are
the states orthogonal to the initial state jψ ji as defined in
Eq. (9). Substituting into the following expression:
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hζjjμ̂jðτjðtR − t; xÞÞjψ ji ¼ eiΩjτR;jðcjeiðΩjτjðtR−t;xÞ−ΩjτR;jÞ

− sje−iðΩjτjðtR−t;xÞ−ΩjτR;jÞÞ
¼ eiΩjτR;jðcje−iðΩjτjðtRþt;xÞ−ΩjτR;jÞ

− sjeiðΩjτjðtRþt;xÞ−ΩjτR;jÞÞ
¼ e2iΩjτR;jhψ jjμ̂jðτjðtR þ t; xÞÞjζji;

ðC6Þ

where the condition over τj is given by Eq. (C1), and that
βj ¼ ΩjτR;j, finishing the proof. ▪
Lemma 2. Consider the two sets of coordinates ðτj; x̃jÞ

with j∈ fA;Bg, where Λjðτj; x̃jÞ ¼ χjðτjÞFjðx̃jÞ. Given
coordinates ðt; xÞ, the time reversal around tR is
TRðtR þ t; xÞ ¼ ðtR − t; xÞ. Assume that
(1) Given υR ¼ τAðtR; 0Þ þ τBðtR; 0Þ,

τAðxÞ ¼ υR − τBðTRðxÞÞ;
x̃AðxÞ ¼ x̃BðTRðxÞÞ: ðC7Þ

(2) FAðx̃Þ ¼ FBðx̃Þ.
(3) χAðτÞ ¼ χBðυR − τÞ.
(4) ΩA ¼ ΩB ¼ Ω.
(5) βA þ βB ¼ ΩυR.
(6) j cos αAj ¼ j cos αBj, j sin αAj ¼ j sin αBj,

where we recall that the detectors’ initial states are
jψ ji ¼ cos αjjgji þ sin αjeiβj jeji.
Under these assumptions, Conditions 3 and 4 of

Symmetry 2 are fulfilled.
Proof. We prove Condition 3 first; to do so, keep in mind

that

Λjðt; xÞ ¼ χjðτjðt; xÞÞFjðx̃jðt; xÞÞ: ðC8Þ

Then, using the time reversibility condition over the χj,

χAðτAðtR − t; xÞÞ ¼ χBðυR − τAðtR − t; xÞÞ
¼ χBðτBðtR þ t; xÞÞ; ðC9Þ

and similarly,

FAðx̃AðtR − t; xÞÞ ¼ FBðx̃BðtR þ t; xÞÞ: ðC10Þ

Substituting these back into the first equation completes the
first half of the proof,

ΛAðtR − t; xÞ ¼ χAðτAðtR − t; xÞÞFAðx̃AðtR − t; xÞÞ
¼ χBðτBðtR þ t; xÞÞFBðx̃jðtR þ t; xÞÞ
¼ ΛBðtR þ t; xÞ: ðC11Þ

To prove Condition 4 of Symmetry 2, let us use the
identity

hζjjμ̂jðτjÞjψ ji ¼ eiβjðcjeiðΩjτj−βjÞ − sje−iðΩjτj−βjÞÞ; ðC12Þ

where sj ¼ sin2 αj, cj ¼ cos2 αj, and we recall that jζji are
the states orthogonal to the initial state jψ ji as defined
in Eq. (9). The proof finishes by combining this identity
with the hypotheses cA ¼ cB, sA ¼ sB, ΩA ¼ ΩB ¼ Ω,
βA ¼ −βB þΩυR, and with the assumption over the τj,

hζAjμ̂AðτAðtR − t; xÞÞjψAi
¼ eiβAðcAeiðΩτAðtR−t;xÞ−βAÞ − sAe−iðΩτAðtR−t;xÞ−βAÞÞ
¼ eiβAðcBe−iðΩτBðtRþt;xÞ−βBÞ − sBeiðΩτBðtRþt;xÞ−βBÞÞ
¼ eiΩυRhψBjμ̂BðτBðtR þ t; xÞÞjζBi: ðC13Þ

▪
Lemma 3. Consider the two sets of coordinates ðτj; x̃jÞ

with j∈ fA;Bg, where Λjðτj; x̃jÞ ¼ χjðτjÞFjðx̃jÞ. Given
coordinates ðt; xÞ, the time reversal around tR and reflection
around x0 is TRRðt; xÞ ¼ ð2tR − t; 2x0 − xÞ. Assume that
(1) Given υR ¼ τAðtR; 0Þ þ τBðtR; 0Þ,

τAðxÞ ¼ υR − τBðTRRðxÞÞ;
x̃AðxÞ ¼ x̃BðTRRðxÞÞ: ðC14Þ

(2) FAðx̃Þ ¼ FBðx̃Þ.
(3) χAðτÞ ¼ χBðυR − τÞ.
(4) ΩA ¼ ΩB ¼ Ω.
(5) βA þ βB ¼ ΩυR.
(6) j cos αAj ¼ j cos αBj, j sin αAj ¼ j sin αBj,

where we recall that the detectors’ initial states are
jψ ji ¼ cos αjjgji þ sin αjeiβj jeji.
Under these assumptions, Conditions 3 and 4 of

Symmetry 3 are fulfilled.
This lemma is proven analogously to the previous

Lemma 2. Notice the following apparent incompatibility:
the lemma asks the smearing functions Fj to be equal,
while the assumptions of Symmetry 3 ask spacetime
smearings Λj to be related by a spatial reflection and a
time reversal. However, the equality between Fj is actually
expected because the spatial smearing functions Fj are
defined in their corresponding prescription coordinates
ðτj; x̃jÞ, which we assumed to be related by a time
reflection and a space reflection, as in Eq. (C14).

APPENDIX D: SIMPLIFYING THE SYMMETRIES
FOR THE MOST COMMON ENTANGLEMENT

HARVESTING SCENARIOS

Many of the scenarios analyzed in the literature of
entanglement harvesting already restrict themselves to very
symmetric particular setups. While this is done for different
reasons (mainly simplifying the math) this yields important
simplifications of the conditions required for each of the T
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maps described in Appendix B to be symmetries that fulfill
the assumptions of Corollary 1.
In particular, we will show how the usual assumptions in

the literature for harvesting in flat spacetime and FRWyield
Propositions 3 and 4 of the main text.

1. Sufficient symmetries for harvesting
and communication collaboration

in Minkowski spacetime

This subappendix proves Proposition 3 of the main text.
This proof consists of showing that the conditions for
the symmetries provided in Appendix B are fulfilled in
Minkowski spacetime, for fields that are prepared in the
vacuum and inertial, comoving, symmetrically switched
detectors that are prepared both in the ground state or both
in the excited state.
Lemma 4. Assume that
(1) The spacetime is flat.
(2) The field starts in the Minkowski vacuum.

This implies that for any inertial coordinate system ðt; xÞ
and any constants tR and x0, the Feynmann propagator GF

fulfills

GFðt; x; t0; x0Þ ¼ GFð2tR − t0; 2x0 − x0; 2tR − t; 2x0 − xÞ
¼ GFð2tR − t0; x0; 2tR − t; xÞ
¼ GFð2tR − t; x; 2tR − t0; x0Þ: ðD1Þ

And therefore, these relations fulfill Condition 2 for
the Symmetries 1, 2, 3. Moreover, since gðt; xÞ ¼ −1,
Condition 1 of all these symmetries is also fulfilled.
Proof. The Wightman of the Minkowski vacuum for a

scalar field is

Wðt; x; t0; x0Þ ¼ 1

ð2πÞn
Z

dnk
2ωk

eik·ðx−x0Þe−iωkðt−t0Þ; ðD2Þ

with ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. The Minkowski vacuum Wightman

function fulfills

Wðt; x; t0; x0Þ ¼ WðΔt; jΔxjÞ; ðD3Þ

where we denoted WðΔt; jΔxjÞ ¼ WðΔt; jΔxj; 0; 0Þ and
Δt ¼ t − t0;Δx ¼ x − x0. Then, from the definition of GF

in Eq. (16), we have

GFðt; x; t0; x0Þ
¼ ΘðΔtÞWðΔt; jΔxjÞ þ Θð−ΔtÞWð−Δt; jΔxjÞ
¼ WðjΔtj; jΔxjÞ: ðD4Þ

Therefore, Eq. (D1) is fulfilled because all of the equated
expressions for GF have the same values of jΔtj and
jΔxj. ▪

Lemma 5. Assume that, for a given constant tR,
(1) The spacetime is flat.
(2) The field starts in the Minkowski vacuum.
(3) The detectors start both in their ground state or both

in their excited state.
(4) The detectors are inertial and comoving.
(5) In the comoving frame ðt; xÞ, the spacetime smear-

ing factorizes Λjðt; xÞ ¼ χjðtÞFjðxÞ.
(6) χjðtÞ ¼ χjð2tR − tÞ.

Then, the conditions of Symmetry 1 are fulfilled.
Proof. First, Conditions 1 and 2 of Symmetry 1 hold

because of Lemma 4.
To prove Conditions 3 and 4 of Symmetry 1, we show

next that the assumptions of Lemma 1 hold. First, choose
both coordinate systems ðτA; x̃AÞ and ðτB; x̃BÞ to be ðt; xÞ.
Then, Assumption 1 of Lemma 1 holds. Assumption 2
holds because of χjðtÞ ¼ χjð2tR − tÞ and tR ¼ τR;j. Finally,
Assumption 3 upon the relative phases βj is trivially
satisfied because both initial states are either jψ ji ¼ jgji
or jψ ji ¼ jeji. ▪
Lemma 6. Assume that, for a given constant tR,
(1) The spacetime is flat.
(2) The field starts in the Minkowski vacuum.
(3) The detectors start both in their ground state or both

in their excited state.
(4) The detectors are inertial and comoving.
(5) In the comoving frame ðt; xÞ, the spacetime smear-

ing factorizes Λjðt; xÞ ¼ χjðtÞFjðxÞ.
(6) ΩA ¼ ΩB.
(7) χAðtÞ ¼ χBð2tR − tÞ.
(8) FAðxÞ ¼ FBðxÞ.

Then, the conditions of Symmetry 2 are fulfilled.
Proof. Shown analogously to Lemma 5, using Lemma 2

instead of Lemma 1. Additionally, j cosαAj ¼ j cosαBj and
j sin αAj ¼ j sinαBj hold because of restricting the initial states
of the detectors to be both ground or both excited. ▪
Lemma 7. Assume that, for a given constant tR,
(1) The spacetime is flat.
(2) The field starts in the Minkowski vacuum.
(3) The detectors start both in their ground state or both

in their excited state.
(4) The detectors are inertial and comoving.
(5) In the comoving frame ðt; xÞ, the spacetime smear-

ing factorizes Λjðt; xÞ ¼ χjðtÞFjðxÞ.
(6) ΩA ¼ ΩB.
(7) χAðtÞ ¼ χBð2tR − tÞ.
(8) FAðxÞ ¼ FBð2x0 − xÞ.

Then, the conditions of Symmetry 3 are fulfilled.
Proof. Shown analogously to Lemma 5, using Lemma 3

instead of Lemma 1. The major difference is that while we
still choose the coordinate system ðτA; x̃AÞ to be ðt; xÞ, here
we choose ðτB; x̃BÞ to be instead

τBðt; xÞ ¼ t; x̃Bðt; xÞ ¼ 2x0 − x: ðD5Þ
▪
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Lemma 8. Assume that, for a given constant tR,
(1) The spacetime is flat.
(2) The field starts in the Minkowski vacuum.
(3) The detectors start both in their ground state or both

in their excited state.
(4) The detectors are inertial and comoving.
(5) In the comoving frame ðt; xÞ, the spacetime smear-

ing factorizes Λjðt; xÞ ¼ χjðtÞFjðxÞ.
(6) ΩA ¼ ΩB.
(7) χAðtÞ ¼ χBð2tR − tÞ.

Then, the conditions of Symmetry 3 are fulfilled, by
picking both coordinate systems ðτj; x̃jÞ to be ðt; xÞ.
Proof. Since we picked both ðτj; x̃jÞ to be the inertial

comoving frame ðt; xÞ, then the determinants of the
metric in coordinates ðτj; x̃jÞ satisfy gA ¼ gB ¼ −1 under
the given assumptions, hence fulfilling Condition 1 of
Symmetry 4. Condition 2 over GF becomes the following:
for a given constant tR ¼ υR=2,

GFðt; x; t0; x0Þ ¼ GFð2tR − t; x; 2tR − t0; x0Þ; ðD6Þ

which is true regardless of tR for the Minkowski vacuum, as
shown in Lemma 4.
Conditions 3 and 4 of Symmetry 4 are Assumptions 6 and

7 of the current lemma, using the relationship tR ¼ υR=2.
Finally, Condition 5 upon the relative phases βj is

trivially satisfied because the initial states of the detectors
are either both the ground or both the excited state, and
Condition 6 (j cos αAj ¼ j cos αBj, j sin αAj ¼ j sin αBj) is
fulfilled as well for the same reason. ▪
Finally, Proposition 3 of the main text follows from

combining the assumptions of Lemmas 5, 6, 7, 8.
Specifically, fulfilling any of these lemmas is enough to
have the corresponding symmetry and thus for Corollary 1
to hold. It is worth noticing that although we included one
lemma per symmetry of Appendix B for completion,
Lemmas 6 and 7 become redundant after Lemma 8,
because whenever Lemmas 6 or 7 hold, then Lemma 8
also holds. This explains why no condition upon FjðxÞ
needs to be checked in Proposition 3. Thus the assumptions
of Proposition 3 result from solely combining the assump-
tions of Lemmas 5 and 8. Moreover, we takeΩA ¼ ΩB to be
a condition of Proposition 3 for simplicity, even though this
condition is not needed to satisfy Lemma 5. In general,
Conditions 5 and 6 of Proposition 3 can be replaced by the
following less restrictive combined condition: in the
comoving frame, for some time tR, it is satisfied that either

χjðtþ tRÞ ¼ χjðtR − tÞ; j ¼ A;B; ðD7Þ

or χAðtþ tRÞ ¼ χBðt − tRÞ and ΩA ¼ ΩB: ðD8Þ

For future convenience, we point out that, in the
scenarios where Proposition 3 applies and both detectors
start in the ground state, M simplifies to

M ¼ −λ2
Z

dtdt0dxdx0eiΩðtþt0ÞχAðtÞχBðt0Þ

× FAðxÞFBðx0ÞGFðt; x; t0; x0Þ: ðD9Þ

If both detectors start in the excited state, Ω in the
expression above picks up a negative sign.

2. Sufficient symmetries for constructive interference
between harvesting and communication in FRW

spacetimes

Here, we show that Proposition 4 for FRW spacetimes
holds for the entanglement harvesting scenarios prescribed
in Sec. V B. The proof arises from the fact that M can be
rewritten to have an analogous form to the M term of
setups where Proposition 3 applies. Concretely, the only
changes are the replacement given in Eq. (83) and the
substitution of t by ηðtÞ in GF. Moreover, using the
assumption Λjðt; xÞ ¼ TjðtÞXjðxÞ results in

M ¼ −λ2
Z

dtdt0dxdx0eiΩðtþt0ÞTAðtÞTBðt0Þ

×XAðxÞXBðx0Þ
GFðηðtÞ; x; ηðt0Þ; x0Þ

aðtÞaðt0Þ : ðD10Þ

Here, GF is the usual expression in inertial coordinates of
the Feynman propagator for the Minkowski vacuum, as
given in the proof of Lemma 4. Notice that this expression
forM assumes that both detectors start in the ground state.
The case where both detectors are prepared in the excited
state amounts to considering Ω < 0. Therefore, this case is
automatically included in Eq. (D10) and in the cur-
rent proof.
Notice that if we define

G̃Fðt; x; t; x0Þ ¼
GFðηðtÞ; x; ηðt0Þ; x0Þ

aðtÞaðt0Þ ; ðD11Þ

then the expression for M becomes the same as for the
scenarios of Proposition 7 [see Eq. (D9)], but with G̃F,
TjðtÞ, XjðxÞ instead of GF, χjðtÞ, FjðxÞ. Therefore, to get
the analogous Proposition 4, we need G̃F andTjðtÞ to fulfill
the corresponding conditions specified in Symmetries 1
and 4, which were the ones used to derive Proposition 3.
Notice that now, to define Symmetry 4, we need to use the
comoving coordinates ðt; xÞ as prescription coordinates for
the detectors. This is a consequence of assuming that the
split Λjðt; xÞ ¼ TjðtÞXjðxÞ happens in the comoving
coordinates, and that the detectors’ proper times coincide
with the comoving time t.
The conditions over TjðtÞ are directly stated in

Proposition 4 and are the same as for χjðtÞ in
Proposition 3. Furthermore, since Condition 2 of
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Symmetries 1 and 4 was needed to prove Proposition 3,
here we also need to verify whether G̃F satisfies the same
condition. Namely, we would like to show that

G̃Fðt; x; t0; x0Þ ¼ G̃Fð2tR − t; x; 2tR − t0; x0Þ;
¼ G̃Fð2tR − t0; x; 2tR − t; x0Þ: ðD12Þ

To show that this relation is indeed fulfilled, first notice that
the second equal sign can readily be checked by substitut-
ing the definition of G̃F and using that GF fulfills the same
equality, as shown in Lemma 4. Second, we need to show
that G̃F is time symmetric around tR. For this proof, we start
with the hypothesis of Proposition 4 that aðtÞ ¼ að2tR − tÞ.
Then, the conformal time [as defined in Eq. (78)] fulfills

ηðtÞ ¼ 2ηðtRÞ − ηð2tR − tÞ; ðD13Þ

which can be readily be verified by taking the derivative
with respect to t. Then,

G̃Fðt; x; t0; x0Þ

¼ GFðηðtÞ; x; ηðt0Þ; x0Þ
aðtÞaðt0Þ

¼ GFð2ηðtRÞ − ηð2tR − tÞ; x; 2ηðtRÞ − ηð2tR − t0Þ; x0Þ
að2tR − tÞað2tR − t0Þ

¼ GFðηð2tR − tÞ; x; ηð2tR − t0Þ; x0Þ
að2tR − tÞað2tR − t0Þ

¼ G̃Fð2tR − t; x; 2tR − t0; x0Þ; ðD14Þ

where we used the first line of Eq. (D1) for the Minkowski
vacuum GF. This completes the proof that Eq. (D12)
holds under the hypothesis that aðtÞ ¼ að2tR − tÞ.
Bringing everything together, an analogous version of
Proposition 3 holds for FRW spacetimes, resulting in
Proposition 4.

APPENDIX E: ALTERNATIVE SYMMETRY
CONDITIONS FOR DETECTORS PRESCRIBED

IN FERMI NORMAL COORDINATES

1. Conditions for the time reversibility and spatial
reflection symmetry of Fermi normal coordinates

Here we shall study how pairs of Fermi normal coor-
dinates are related by a time reversal or a time reversal
combined with a spatial reflection. Knowing the sym-
metries respected by the Fermi normal coordinates is
instrumental in determining the symmetries of the entan-
glement harvesting setup. This is the case when the
harvesting setup uses the usual covariant prescription for
the Unruh-DeWitt detector [36] which is based on the
Fermi normal coordinates adapted to the detector trajectory
zðτÞ. Concretely, given an arbitrary coordinate system
ðt; xÞ, we will consider the transformations

TRðt; xÞ ¼ ð2tR − t; xÞ; TRRðt; xÞ ¼ ð2tR − t; 2x0 − xÞ;
ðE1Þ

where time reversals are performed around the time tR and
the spatial reflection is performed about the point x0. The
lemmas in this appendix provide the conditions on the
metric and trajectories for the pair of Fermi normal
coordinates to be related either by TR or by TRR, which
will be used later in Appendix E 2.
First, we recall how to construct the Fermi normal

coordinates ðτ;XÞ adapted to a timelike curve zðτÞ, where
τ is the curve’s proper time. Choose a fixed proper time τ0,
and pick an orthonormal basis feμðτ0Þg in the tangent
space to zðτ0Þ, such that e0 ¼ żðτ0Þ. This basis extends to
the whole curve, feμðτÞg, by imposing that the basis
vectors are Fermi-Walker (FW) transported along the
curve. A vector field vα on the curve is FW transported if

Dvα

dτ
þ ðaαuβ − uαaβÞvβ ¼ 0; ðE2Þ

where uα and aα are the components of u ¼ dz=dτ and
a ¼ Du=dτ, the four-velocity and four-acceleration of the
curve, respectively. Moreover, we use D=dτ to denote the
directional covariant derivative along zðτÞ, which for a
vector v ¼ vα∂α is

Dvα

dτ
¼ dvα

dτ
þ Γα

βγv
βuγ: ðE3Þ

Notably, u is always FW transported, and therefore
e0ðτÞ ¼ uðτÞ. Moreover, feμðτÞg remains an orthonormal
basis for each point of the curve. The idea behind the
definition of the FW transport is to generalize the parallel
transport to account for the possible change in orientation
introduced by the acceleration of the trajectory. That is, we
would like to transport the frame feμðτÞg in a way that it
does not rotate with respect to the curve. To see this
concretely, consider coordinates where uμ ¼ ðu0; 0; 0; 0Þ,
and define the two-form ωαβ ¼ 2a½αuβ�. In this case, the
only nonvanishing components of ωαβ are ωi0 ¼ −ω0i,
i ¼ 1, 2, 3, since aμuμ ¼ 0. Thus, the second term in
Eq. (E2) is essentially describing the projection of vμ along
the 3-vector ni ¼ ωi0, which describes the rotation of the
orthonormal “spatial” frame ei along the trajectory.
Now, we define the Fermi normal coordinates as follows.

Let N p be the normal neighborhood of p, which is the set
of points that are connected to p by a unique geodesic. For
each τ, denote with Στ the spacelike hypersurface orthogo-
nal to uðτÞ. This hypersurface consists of all the points in
N zðτÞ that can be reached by geodesics that start from zðτÞ
and start with tangent vectors orthogonal to uðτÞ. These
hypersurfaces Στ constitute rest spaces around zðτÞ and
locally define a foliation of spacetime. Then, the coordi-
nates ðτ;XÞ are assigned to the point expzðτÞðXaeaðτÞÞ∈Στ.
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Here, we use the convention that latin indices run over
spatial components, a ¼ 1;…; n. The exponential map is
defined as

exppðvÞ ¼ γvð1Þ; ðE4Þ

where γvðsÞ is a geodesic that fulfills γvð0Þ ¼ p, γ̇vð0Þ ¼ v.
Notice that in this prescription zðτÞ has coordinates ðτ; 0Þ,
and its proper distance to a point with coordinates ðτ;XÞ
is jXj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
aðXaÞ2

p
.

Lemma 9. Choose arbitrary ðt; xÞ coordinates, in which
the metric components are gμν. Consider a pair of timelike
curves zjðτjÞ, j ¼ A, B, parametrized by their proper times
τj. Denote the coordinates of the curves’ points as ðt; zjðtÞÞ.
Assume that for some tR,
(1) gμνðtR þ t; xÞ ¼ sðμ; νÞgμνðtR − t; xÞ,
(2) zAðtR þ tÞ ¼ zBðtR − tÞ.

Here, sðμ1; μ2;…; μnÞ ¼ 1 if the number of zeros
among the set of arguments μ1;…; μn is even and
sðμ1; μ2;…; μnÞ ¼ −1 otherwise. Then, there exist Fermi
normal coordinates ðτj; x̃jÞ adapted to the trajectories
zjðτjÞ that are related by

τAðtR þ t; xÞ ¼ υR − τBðtR − t; xÞ;
x̃AðtR þ t; xÞ ¼ x̃BðtR − t; xÞ; ðE5Þ

with υR ¼ τR;A þ τR;B, where τR;j are the proper times that
fulfill tR ¼ z0jðτR;jÞ.
Proof. Let us start defining a convenient notation: for any

function fðtÞ, let

½fðtÞ�R ¼ fð2tR − tÞ: ðE6Þ

Then, the assumptions of the lemma can be simply
rewritten as

½gμν�R ¼ sðμ; νÞgμν; ½zA�R ¼ ½zB�R: ðE7Þ

Next, let us show that these assumptions imply that
(i) ½gμν�R ¼ sðμ; νÞgμν,
(ii) ½∂λgμν�R ¼ sðμ; ν; λÞ∂λgμν,
(iii) ½Γλ

μν�R ¼ sðμ; ν; λÞΓλ
μν,

(iv) ½uμA�R ¼ −sðμÞuμB,
(v) ½aμA�R ¼ sðμÞaμB.

Showing that sðμ; νÞgμν is the inverse of ½gμν�R is enough
for (i),

sðμ; νÞgμν½gνλ�R ¼ sðμ; λÞgμνgνλ ¼ δλμ: ðE8Þ

For (ii), it is enough to use (i) and to notice that for a general
function hðt; xÞ,

∂0½h�R ¼ −½∂0h�R; ∂a½h�R ¼ ½∂ah�R: ðE9Þ

Relation (iii) follows from combining (i) and (ii) with the
formula for the Christoffel symbols, namely

Γλ
μν ¼

1

2
gλσð∂νgσμ þ ∂μgσν − ∂σgμνÞ: ðE10Þ

Proving (iv) starts from taking the derivative on the
trajectory condition, to obtain ½żA�R ¼ −żB. Then, using

u0j ¼
dt
dτj

; uaj ¼
dt
dτj

żaj ; ðE11Þ

together with gμνu
μ
ju

ν
j ¼ −1, implies

dt
dτj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g00 − 2ga0żaj − gabżaj ż

b
j

q
: ðE12Þ

Therefore, using ½żA�R ¼ −żB and (ii), we get

�
dt
dτA

�
R

¼ dt
dτB

: ðE13Þ

Then, substituting back on Eq. (E11) allows showing (iv).
Finally, to prove (v), combine

aαj ¼
dt
dτj

duαj
dt

þ Γα
βγu

β
ju

γ
j ðE14Þ

with Eqs. (E9), (E13), and relations (iii), (iv).
Next, we prove that the FW transported orthonormal

bases along the curves can be related by a time-reversal
transformation. Consider an orthonormal basis feμðtÞg that
is FW transported along zA and fulfills e0 ¼ uA. Define fμ
such that

ðfμÞα ¼ sðμ; αÞ½ðeμÞα�R: ðE15Þ

We now will show that this basis is FW transported along
zB. Let us start reversing the FW transport equation that the
feμg fulfill,

0 ¼
�
DðeμÞα
dτA

þ ðaαAuβA − uαAa
β
AÞgβγðeμÞγ

�
R

¼ −sðμ; αÞ
�
DðfμÞα
dτB

þ ðaαBuβB − uαBa
β
BÞgβγðfμÞγ

�
; ðE16Þ

where we used the relations (ii), (iv), (v), and also

�
DðeμÞα
dτA

�
R

¼
�
dt
dτA

dðeμÞα
dt

þ Γα
βγðeμÞβuγA

�
R

¼ −sðμ; αÞDðfμÞ
α

dτB
; ðE17Þ
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which used Eqs. (E9), (E13), (E15), and relations (iii), (iv).
Therefore, the ffμg, as defined in Eq. (E15), are FW
transported along zB. Moreover, the ffμg are orthonormal
because

ðfμÞαðfνÞβgαβ ¼ ½ðeμÞαðeνÞβgαβ�R ¼ ημν; ðE18Þ

where ημν is the Minkowski metric. Last, f0 ¼ uB, because

ðf0Þα ¼ −sðαÞ½ðe0Þα�R ¼ −sðαÞ½uαA�R ¼ uαB: ðE19Þ

All these results guarantee that the orthonormal basis
ffμðtÞg can be used to define the Fermi normal coordinates
along zB. From now on, let us use feμg and ffμg to
respectively define the Fermi normal coordinates ðτA; x̃AÞ
around zAðτAÞ and ðτB; x̃BÞ around zBðτBÞ.
Next, we check the relationships in Eq. (E5) between

ðτA; x̃AÞ and ðτB; x̃BÞ. For any spacetime point pA, we define
pB as follows. We denote the Fermi normal coordinates j of
the point pj as

τpj ¼ τjðpjÞ; x̃pj ¼ x̃jðpjÞ: ðE20Þ

Then, pB is chosen so that the coordinates of pA and pB are
related by

τpA
¼ υR − τpB

; x̃pA
¼ x̃pB

; ðE21Þ

with υR ¼ τR;A þ τR;B, where τR;j are the proper times that
fulfill tR ¼ z0jðτR;jÞ. By expressing the points pj in the
coordinate system ðt; xÞ on Eqs. (E20) and (E21), one can
see from Eq. (E5) that what we want to prove is equivalent
to showing TRðpAÞ ¼ pB, with TR as defined in (E1).
Therefore, to complete the proof, it will be enough to
show that TRðpAÞ ¼ pB is true, as is done next.
Consider a geodesic γAðλÞ such that

γAð0Þ ¼ zAðτpA
Þ; γ̇Að0Þ ¼ x̃apA

eaðz0AðτpA
ÞÞ: ðE22Þ

Notice that, by the definition of the Fermi normal coor-
dinates, we have γAð1Þ ¼ pA. Next, define γBðλÞ as

γBðλÞ ¼ TRðγAðλÞÞ: ðE23Þ

The next steps are to show that such γBðλÞ is a geodesic that
fulfills

γBð0Þ ¼ zBðτpB
Þ; γ̇Bð0Þ ¼ x̃apB

faðz0BðτpB
ÞÞ: ðE24Þ

We start checking the first identity in the equation above by
computing

d
dτ

ððz0BÞ−1ð2tR− z0AðτÞÞÞ¼−
u0Aðz0AðτÞÞ

u0Bð2tR− z0AðτÞÞ
¼−1; ðE25Þ

where we used statement (iv) that we proved at the start of
the proof. Therefore, for some constant τ0,

z0Bðτ0 − τÞ ¼ 2tR − z0AðτÞ: ðE26Þ

To find τ0, choose τ ¼ τR;A, so that

z0Bðτ0 − τR;AÞ ¼ 2tR − z0AðτR;AÞ ¼ tR; ðE27Þ

which means τ0 − τR;A ¼ τR;B, and thus τ0 ¼ υR.
Substituting back to Eq. (E26), and using τpA

¼ υR − τpB
,

z0BðτpB
Þ ¼ 2tR − z0AðτpA

Þ; ðE28Þ

and therefore, γ0Bð0Þ ¼ z0BðτpB
Þ. Moreover, we have

γaBð0Þ ¼ zaBðτpB
Þ because γaBð0Þ ¼ zaAðτpA

Þ and

zAðz0AðτpA
ÞÞ ¼ zBð2tR − z0AðτpA

ÞÞ ¼ zBðz0BðτpB
ÞÞ; ðE29Þ

where we used the assumption zAðtÞ ¼ zBð2tR − tÞ. This
completes showing the claim from Eq. (E24) that
γBð0Þ ¼ zBðτpB

Þ.
To get the identity for γ̇Bð0Þ in Eq. (E24), we start from

the definition of γB given in Eq. (E23). Expressing this
definition in ðt; xÞ coordinates gives

γ0BðλÞ ¼ 2tR − γ0AðλÞ; γaBðλÞ ¼ γaAðλÞ: ðE30Þ

Then, taking derivatives with respect to λ, we get

γ̇αBðλÞ ¼ sðαÞγ̇αAðλÞ: ðE31Þ

Combining this result with Eqs. (E15), (E21), and (E28)
leads to

γ̇αBð0Þ ¼ sðαÞγ̇αAð0Þ ¼ sðαÞx̃apA
ðeaÞαðz0AðτpA

ÞÞ
¼ x̃apB

ðfaÞαðz0BðτpB
ÞÞ; ðE32Þ

which, as we wanted to show, is the expression for γ̇Bð0Þ
in Eq. (E24).
Finally, let us show that γB is a geodesic. Taking the

derivative with respect to λ in Eq. (E31),

γ̇αBðλÞ ¼ sðαÞγ̇αAðλÞ; ̈γαBðλÞ ¼ sðαÞγ̈αAðλÞ: ðE33Þ

Then, substituting these expressions into the geodesic
equation which γA fulfills,

̈γαA ¼ −Γα
βγðγ0A; γaAÞγ̇βAγ̇γA;

sðαÞ̈γαB ¼ −sðαÞΓα
βγð2tR − γ0A; γaAÞγ̇βBγ̇γB;

̈γαB ¼ −Γα
βγðγ0B; γaBÞγ̇βBγ̇γB; ðE34Þ
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where we also used statement (iii) and Eq. (E23). The last
line is, as we wanted, the geodesic equation for γB.
Therefore, γB matches the requirements of the

exponential map definition and thus pB ¼ γBð1Þ. Now,
remember that TRðγAðλÞÞ ¼ γBðλÞ. Then, choosing λ ¼ 1,
TRðpAÞ ¼ pB. This finally completes the proof that

τAðtR þ t; xÞ ¼ υR − τBðtR − t; xÞ;
x̃AðtR þ t; xÞ ¼ x̃BðtR − t; xÞ: ðE35Þ

▪
Lemma 10. Choose arbitrary coordinates ðt; xÞ, in which

the metric components are gμν. Consider a timelike curve
zðτÞ, parametrized by its proper time τ. Denote the
coordinates of the curve’s points as ðt; zðtÞÞ. Assume that
for some tR,
(1) gμνðtR þ t; xÞ ¼ sðμ; νÞgμνðtR − t; xÞ,
(2) zðtR þ tÞ ¼ zðtR − tÞ.

Here, sðμ1; μ2;…; μnÞ ¼ 1 if the number of zeros
among the set of arguments μ1;…; μn is even and
sðμ1; μ2;…; μnÞ ¼ −1 otherwise. Then, the Fermi normal
coordinates ðτ; x̃Þ adapted to the trajectory zðτÞ fulfill

τðtR þ t; xÞ ¼ 2τR − τðtR − t; xÞ;
x̃ðtR þ t; xÞ ¼ x̃ðtR − t; xÞ; ðE36Þ

where τR is the proper time that fulfills tR ¼ z0ðτRÞ.
Proof. The assumptions of this lemma fulfill the hypoth-

eses of Lemma 9 for the case zðτÞ ¼ zAðτÞ ¼ zBðτÞ.
Then, Lemma 9 provides two coordinate systems
ðτA; x̃AÞ and ðτB; x̃BÞ adapted to zðτÞ, which are related
by Eq. (E5). A priori, these two coordinate systems
could be different, because there is freedom in the choice
of orthonormal basis that defines any Fermi normal
coordinates adapted to zðτÞ. However, Eq. (E5) implies
that

x̃AðtR; xÞ ¼ x̃BðtR; xÞ; ðE37Þ

which means that there is a spatial surface where both
Fermi normal coordinates ðτA; x̃AÞ and ðτB; x̃BÞ adapted to
zðτÞ are the same. This can only happen if ðτA; x̃AÞ and
ðτB; x̃BÞ are the same coordinate systems, thus proving that
there are Fermi normal coordinates adapted to zðτÞ that
fulfill Eq. (E36), finishing the proof. ▪
Lemma 11. Choose arbitrary coordinates ðt; xÞ, in which

the metric components are gμν. Consider a pair of timelike
curves zjðτjÞ, j ¼ A, B, parametrized by their proper times
τj. Denote the coordinates of the curves’ points as ðt; zjðtÞÞ.
Assume that for some tR,
(1) gμνðtR þ t; x0 þ xÞ ¼ gμνðtR − t; x0 − xÞ,
(2) zAðtR þ tÞ ¼ 2x0 − zBðtR − tÞ.

Then, there exist Fermi normal coordinates ðτj; x̃jÞ adapted
to the trajectories zjðtÞ that are related by

τAðtR þ t; x0 þ xÞ ¼ υR − τBðtR − t; x0 − xÞ;
x̃AðtR þ t; x0 þ xÞ ¼ x̃BðtR − t; x0 − xÞ; ðE38Þ

with υR ¼ τR;A þ τR;B, where τR;j are the proper times that
fulfill tR ¼ z0jðτR;jÞ.
Proof. This lemma is proven analogously to Lemma 9,

so we will only point out the differences. Here, it is
convenient to instead use the following notation for any
functions fðtÞ, hðt; xÞ:

½fðtÞ�R ¼ fð2tR − tÞ;
½hðt; xÞ�RR ¼ hð2tR − t; 2x0 − xÞ: ðE39Þ

Then, following similar steps to the previous proof,
(i) ½gμν�R ¼ gμν,
(ii) ½∂λgμν�RR ¼ −∂λgμν,
(iii) ½Γλ

μν�RR ¼ −Γλ
μν,

(iv) ½uμA�R ¼ uμB,
(v) ½aμA�R ¼ −aμB.

Notice that these relations are useful because the trajecto-
ries transform into one another when performing a time
reversal and a spatial reflection. These relations can be used
to find a pair of orthonormal basis feμðtÞg and ffμðtÞg,
which, respectively, are FW transported along zAðτAÞ and
zBðτBÞ, and that fulfill

½ðeμÞα�R ¼ ðfμÞα: ðE40Þ

Then, we again pick feμðtÞg and ffμðtÞg to, respectively,
define the Fermi normal coordinates adapted to zAðτAÞ and
zBðτBÞ. The final part of the proof is also analogous to
Lemma 9, but changing Eq. (E23) to relate γA and γB by TRR

instead of TR. ▪

2. Simplified conditions to satisfy Corollary 1
when detectors are prescribed in the Fermi

normal coordinates

Here we combine the results obtained in the previous
subappendix with the results of Appendixes B and C to get
simplified propositions that guarantee no destructive inter-
ference between harvesting and communication. This
section assumes that we follow the covariant UDW detector
prescription of [36], where the detector j is prescribed in
the Fermi normal coordinates ðτj; x̃jÞ adapted to its
trajectory zjðτjÞ. These coordinates are valid locally around
the trajectory and factorize the smearing function,
Λjðτj; x̃jÞ ¼ χjðτjÞFjðx̃jÞ. Moreover, τj are the proper
times of the detectors.
Proposition 5. Let gμν be the metric components in

an arbitrary coordinate system ðt; xÞ, zjðtÞ the spatial
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components of the detectors’ trajectories, and ðτj; x̃jÞ the
Fermi normal coordinates adapted to zjðtÞ. Assume that
(1) gμνðtR − t; xÞ ¼ sðμ; νÞgμνðtR þ t; xÞ,
(2) GFðtR − t; x; tR − t0; x0Þ ¼ GFðtR þ t; x; tR þ t0; x0Þ,
(3) zjðtR − tÞ ¼ zjðtR þ tÞ,
(4) Λjðτj; x̃jÞ ¼ χjðτjÞFjðx̃jÞ,
(5) χjðτR;j − τjÞ ¼ χjðτR;j þ τjÞ,
(6) βj ¼ ΩjτR;j,

where τR;j ¼ τjðtR; zjðtRÞÞ and sðμ; νÞ is the sign function
defined in Lemma 10. Moreover, recall that the detectors’
initial states are jψ ji ¼ cos αjjgji þ sin αjeiβj jeji.
These assumptions are sufficient to fulfill the conditions

given in Symmetry 3, thus fulfilling Corollary 1.
This proposition follows from fulfilling the hypotheses

of Lemma 10 in order to get the time reversibility condition
over the Fermi normal coordinates in Eq. (C1) of Lemma 1
and, in turn, fulfill Conditions 3 and 4 of Symmetry 1.
Moreover, notice that Condition 1 of Symmetry 1, i.e.,
gðtR − t; xÞ ¼ gðtR þ t; xÞ, is fulfilled due to the assumption
of the proposition on the components gμν.
Proposition 6. Let gμν be the metric components in an

arbitrary coordinate system ðt; xÞ, zjðtÞ the spatial compo-
nents of the detectors’ trajectories, and ðτj; x̃jÞ the Fermi
normal coordinates adapted to zjðtÞ. Assume that
(1) gμνðtR − t; xÞ ¼ sðμ; νÞgμνðtR þ t; xÞ,
(2) GFðtR − t; x; tR − t0; x0Þ ¼ GFðtR þ t0; x0; tR þ t; xÞ,
(3) zAðtR − tÞ ¼ zBðtR þ tÞ,
(4) x̃AðtR; xÞ ¼ x̃BðtR; xÞ,
(5) Λjðτj; x̃jÞ ¼ χjðτjÞFjðx̃jÞ,
(6) χAðτÞ ¼ χBðυR − τÞ,
(7) FAðx̃Þ ¼ FBðx̃Þ,
(8) ΩA ¼ ΩB ¼ Ω,
(9) βA þ βB ¼ ΩυR,
(10) j cos αAj ¼ j cos αBj, j sin αAj ¼ j sin αBj,
where υR ¼ τAðtR; zAðtRÞÞ þ τBðtR; zBðtRÞÞ and sðμ; νÞ is
the sign function defined in Lemma 10. Moreover, recall
that the detectors’ initial states are expressed as jψ ji ¼
cos αjjgji þ sin αjeiβj jeji.
These assumptions are sufficient to fulfill the conditions

given in Symmetry 1, thus fulfilling Corollary 1.
This proposition follows analogously to the previous

one, by combining the conditions in Symmetry 2 and the
Lemmas 2 and 9.
Proposition 7. Let gμν be the metric components in an

arbitrary coordinate system ðt; xÞ, zjðtÞ the spatial compo-
nents of the detectors’ trajectories, and ðτj; x̃jÞ the Fermi
normal coordinates adapted to zjðtÞ. Assume that
(1) gμνðtR − t; x0 − xÞ ¼ gμνðtR þ t; x0 þ xÞ,
(2) GFðtR−t;x0−x;tR−t0;x0−x0Þ¼GFðtRþt0;x0þx0;tRþ

t;x0þxÞ,
(3) zAðtR − tÞ ¼ 2x0 − zBðtR þ tÞ,
(4) x̃AðtR; x0 − xÞ ¼ x̃BðtR; x0 þ xÞ,
(5) Λjðτj; x̃jÞ ¼ χjðτjÞFjðx̃jÞ,
(6) χAðτÞ ¼ χBðυR − τÞ,

(7) FAðx̃Þ ¼ FBðx̃Þ,
(8) ΩA ¼ ΩB ¼ Ω,
(9) βA þ βB ¼ ΩυR,
(10) j cos αAj ¼ j cos αBj, j sin αAj ¼ j sin αBj,
where υR¼τAðtR;x0þzAðtRÞÞþτBðtR;x0−zBðtRÞÞ. Moreover,
recall that the detectors’ initial states are expressed as
jψ ji ¼ cos αjjgji þ sin αjeiβj jeji.
These assumptions are sufficient to fulfill the conditions

given in Symmetry 3, thus fulfilling Corollary 1.
This following proposition follows analogously to the

previous ones, by combining the conditions in Symmetry 3
and Lemmas 3 and 11.

APPENDIX F: ADDITIONAL SYMMETRIES
WHEN SWAPPING THE TIMES AT WHICH

THE DETECTORS ARE SWITCHED

In the numerical results of Figs. 2 and 4 we have
observed symmetries with respect to changing the sign
of Δt ¼ tB − tA. Here we show why these symmetries are
expected.
Proposition 8. Assume that
(1) The spacetime is flat.
(2) The detectors are inertial and comoving, and start in

the ground state.
(3) GFðt; x; t0; x0Þ ¼ GFðt0; x; t; x0Þ, in the comoving

frame of reference.
(4) The switching functions are equal besides a time

shift, χjðtÞ ¼ χðt − tjÞ [in the comoving frame of
reference, where Λjðt; xÞ ¼ χjðtÞFjðxÞ].

(5) Equal gaps, ΩA ¼ ΩB.
Then,

M ¼ MS; M� ¼ M�
S ; ðF1Þ

where S denotes swapping tA and tB.
Proof. Using the assumptions to simplify Eqs. (12) and

(14), and defining Ω ¼ ΩA ¼ ΩB,

M ¼ −λ2
Z

dtdxdt0dx0eiΩðtþt0Þχðt − tAÞχðt0 − tBÞ

× FAðxÞFBðx0ÞGFðt; x; t0; x0Þ
¼ MS; ðF2Þ

where, to obtain the last equality, we performed a change of
variables t → t0, t0 → t and used the hypotheses over
and GF.
The same result holds for M�, because the only

difference is using G�
F , which have the same symmetries

as GF. ▪
Proposition 8 implies that the quantities in the plots of

Fig. 2 must be even functions along the Δt axis, which is
exactly the case. The condition over GF is automatically
fulfilled for the vacuum of Minkowski, as seen in Lemma 4.
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Finally, the following proposition applies to the scenario
of Fig. 4, causing the odd symmetry that can be seen in the
plot of the relative phase (after adding π=2 to the relative
phase). In such a plot, the swap indicated by S in what will
be Eqs. (F3) is equivalent to changing the sign of
Δt ¼ tB − tA. The condition over GF is automatically
fulfilled for the vacuum of Minkowski, as seen in Lemma 4.
Proposition 9. Assume that
(1) The spacetime is flat.
(2) The detectors are inertial and comoving, and start in

the ground state.
(3) Λjðt; xÞ ¼ χjðtÞFjðxÞ in the comoving frame ðt; xÞ.
(4) χjðtj þ tÞ ¼ χjðtj − tÞ.
(5) GFðt; x; t0; x0Þ ¼ GFðtA þ tB − t; x; tA þ tB − t0; x0Þ.

Then,

jM�j ¼ jM�
S j; cosΔγ ¼ − cosðΔγÞS; ðF3Þ

where S indicates swapping tA, tB, andΔγ the relative phase
between Mþ and M−.

Proof. Using the assumptions to simplify Eqs. (12) and
(14), the definition of M�, and that switching tA and tB
changes χAðtÞ into χAðtþ tA − tBÞ and χBðtÞ into
χBðtþ tB − tAÞ,

M�
S ¼ −λ2

Z
dtdxdt0dx0eiðΩAtþΩBt0ÞG�

F ðt; x; t0; x0Þ

× χAðtþ tA − tBÞχBðt0 þ tB − tAÞFAðxÞFBðx0Þ

¼ −λ2eiðΩAþΩBÞðtAþtBÞ
Z

dtdxdt0dx0e−iðΩAtþΩBt0Þ

× χAðtÞχBðt0ÞFAðxÞFBðx0ÞG�
F ðt; x; t0; x0Þ

¼ eiðΩAþΩBÞðtAþtBÞM�ð−ΩA;−ΩBÞ: ðF4Þ

Here, to get the second equality, we performed the change
of variables t → tA þ tB − t, t0 → tA þ tB − t0 and used the
hypotheses upon χj and GF.
Finally, we get the Eq. (F3) by applying Proposition 1 for

the case where the initial states of the detector are the
ground states, and thus M�ð−ΩA;−ΩBÞ ¼ M̃�. ▪
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